
MIPS Instruction Set
Prof. James L. Frankel

Harvard University

Version of 7:12 PM 3-Apr-2018
Copyright © 2018, 2017, 2016, 2015 James L. Frankel. All rights reserved.

CPU Overview

• CPU is an acronym for Central Processor Unit

• The CPU is the computation unit of the computer
• The CPU does not include the memory or Input/Output (I/O) devices

• 32-bit Word Size (i.e., there are four bytes per word)

• No Processor Status Word (PSW)
• A PSW might contain flags (such as carry, overflow, negative), interrupt enable flag,

privileged execution mode flag, current interrupt priority, etc.

• Registers can be accessed at instruction execution speed

• Access to memory is slower than access to registers

• User’s data and code reside in memory; Data is moved into registers before
operations are performed on them

Simplified Block Diagram

CPUMemory

Registers

ALU

Sequencer

I/O Devices PC

HI

LO

CPU Registers

• General Purpose Registers (GPR)
• Thirty-two 32-bit GPRs
• Numbered 0 to 31; Designated $0 through $31
• Some are used by the hardware
• All have designated usage by software

• Multiply/Divide Registers
• Used by hardware multiply and divide instructions
• 32-bit HI register
• 32-bit LO register

• Program Counter (PC)
• 32-bit PC contains the address of the next instruction to be executed
• During instruction fetch, the PC is incremented to point to the next instruction

General Purpose Registers

• $0 is always read as value 0; Values written to it are ignored

• $1 (named $at) is reserved for use by the assembler

• $2 and $3 (named $v0 & $v1, respectively) are used in expression evaluation and also for the return value
from a function

• $4 through $7 (named $a0 through $a3) are used to pass actual parameters 1 through 4 to functions

• $8 through $15 and $24 and $25 (named $t0 through $t7 and $t8 and $t9) are used for temporaries that are
not saved by a called function

• $16 through $23 (named $s0 through $s7) are used for temporaries that must be saved by a called function

• $26 and $27 (named $k0 and $k1) are reserved for operating system use

• $28 (named $gp) is used to point to global variables

• $29 (named $sp) is the stack pointer

• $30 (named $fp) is the frame pointer

• $31 (named $ra) contains the return address

Hardware Use of General Purpose Registers

• In the CPU, all registers are general purpose and can be used
interchangeably except:
• $0 is always read as value 0; Values written to it are ignored

• $31 (named $ra) contains the return address
• The instructions that call a subroutine place the address of the instruction following the

subroutine call instruction (i.e., the return address) in register $ra

• The term subroutine is often used to refer to a procedure or function at the assembly
language level

Memory Addresses

• Memory in MIPS is byte-addressable
• That is, each byte in memory is sequentially numbered

• MIPS requires alignment for memory accesses
• A 32-bit word must be located and accessed using a word aligned address

• The address of a word is the address of the lowest numbered byte in that word

• This implies that the low-order two bits of a word address must both be zeros

• A 16-bit half-word must be located and accessed using a half-word aligned
address
• The address of a half-word is the address of the lower numbered byte in that half-word

• This implies that the low-order bit of a half-word address must be zero

• There is no alignment required for 8-bit byte accesses

Return Address

• Because instructions that call a subroutine overwrite register $ra with
their return address, any subroutine that calls another subroutine
must save register $ra prior to a nested call
• In order to allow nested and recursive subroutines, any function that calls

another subroutine generally saves register $ra on the stack (using the
equivalent of push and pop actions)

• We will delve into the calling conventions for functions and procedures later

Temporary and Saved GPRs

• The software convention differentiates between temporary (i.e., $tn) and
saved (i.e., $sn) registers

• Following these conventions, a subroutine is required to save (on the stack)
any $s registers that it uses
• A subroutine is not required to save any $t registers that it uses

• Of course, a subroutine is allowed to use both $t and $s GPR registers
• In a section of code in which a subroutine is not called, both $t and $s registers will

retain their values
• If a subroutine is called, the $t registers are not guaranteed to retain their values

across the call
• Therefore, if a caller wants to maintain the values in $t registers across a call, the caller will

push the selected $t registers’ values before the call and pop those registers’ values after the
call

Onus of Responsibility for Temporary and
Saved GPRs
• A caller is a code section that calls a subroutine

• A callee is a subroutine that is called

• Onus of responsibility for $t and $s registers
• The caller is responsible for saving and restoring any $t registers whose values

it needs to be retained across subroutine calls

• The callee is responsible for saving and restoring any $s registers that it
modifies

Stack

• The $sp register is used to maintain a stack

• $sp points to the word on top-of-stack

• The stack grows toward lower addresses

• Therefore, a push operation is implemented by
• First, decrementing the $sp by four
• Then, storing the word to be pushed on the stack into memory at the location

pointed to by $sp

• And similarly, a pop operation is implemented by
• First, reading the word on the top of stack by reading the word at the location

pointed to by $sp
• Then, incrementing the $sp by four

CPU Instruction Formats

• I-Type (Immediate)

• J-Type (Jump)

• R-Type (Register)

I-Type

31 0

6

op

5

rs

5

rt

16

immediate

J-Type

31 0

6

op target

26

R-Type

31 0

5

rt

5

rs

6

op

5

rd

5

re

6

funct

Instruction Summary

• Load & Store instructions move data between memory and registers
• All are I-type

• Computational instructions (arithmetic, logical, shift) operate on
registers
• Both R-type and I-type exist

• Jump & Branch instructions affect control flow (i.e., may change the
value in the PC register)
• Jumps are J-type or R-type

• Branches are I-type

Immutable Instructions

• In all modern computers, once instructions are loaded into memory
for execution, they are immutable
• That is, they cannot be modified

• This doesn’t have to be true in your new instruction set

• This implies that in all modern computers, data is not intermingled
with instructions in memory
• Data and instructions may be intermingled in an assembler program so long

as the assembler is able to separate all the instructions and all the data words
into separate segments (e.g., the text segment and the data segment)

Assembly Language Format

• Instructions begin with an opcode
• The opcode is usually indented (usually by a single tab character)
• The opcode is followed by white space (usually a single tab character)
• The tab is followed by the operands that are appropriate for that opcode
• Most instructions take the destination specifier as the first operand

• For example, in

addu rd, rs, rt

rd is the destination
rs & rt are sources

Role of an Assembler

• An assembler accepts a file containing a program written in a low-level, but
textual assembly language and produces a file containing that same
program in a machine code (i.e., numeric) representation

• Other roles of the assembler
• It allows the programmer to use labels on instructions and data and to reference

those label in the program
• This means that – in most cases – the programmer does not need to use numeric addresses

• It allows labels to be assigned numeric constant values and referenced
• It converts character and string constants into their character code values
• It accepts comments
• It may extend the instruction set with pseudo-instructions
• It may accept various assembler directives

Instruction Set Architecture (ISA) Descriptive
Information
• The description of each instruction will

• Give its opcode name

• Define the overall instruction format

• Define the assembly language syntax

• In English, concisely describe what the instruction does

• In a mathematical notation, describe what the instruction does

• Show precisely how the instruction is encoded in its machine representation

Add Instruction

• ADD Instruction, R-Type

• Format: ADD rd, rs, rt

• Description: The contents of general register rs and the contents of
general register rt are added to form a 32-bit result. The result is
placed in general register rd.
An overflow exception occurs if the two highest order carry-out bits
differ (2’s-complement overflow). The destination register rd is not
modified when an integer overflow exception occurs.

• Operation: GPR[rd] ← GPR[rs] + GPR[rt]

ADD Instruction Fields

31 0

5

rt

5

rs

6

SPECIAL
000000

5

rd

5

0
00000

6

ADD
100000

Add Unsigned Instruction

• ADDU Instruction, R-Type

• Format: ADDU rd, rs, rt

• Description: The contents of general register rs and the contents of
general register rt are added to form a 32-bit result. The result is
placed in general register rd.
No overflow exception occurs under any circumstances.
The only difference between this instruction and the ADD instruction
is that ADDU never causes an overflow exception.

• Operation: GPR[rd] ← GPR[rs] + GPR[rt]

ADDU Instruction Fields

31 0

5

rt

5

rs

6

SPECIAL
000000

5

rd

5

0
00000

6

ADDU
100001

Three-Operand R-Type Instructions

• ADD: Add

• ADDU: Add Unsigned

• SUB: Subtract

• SUBU: Subtract Unsigned

• SLT: Set on Less Than
• Compare as signed 32-bit integers
• Result is 1 if true, 0 if false

• SLTU: Set on Less Than Unsigned
• Compare as unsigned 32-bit integers
• Result is 1 if true, 0 if false

• AND: Bitwise Logical AND

• OR: Bitwise Logical OR

• XOR: Bitwise Logical Exclusive-OR

• NOR: Bitwise Logical NOR

Multiply Instruction

• MULT Instruction, Two-Operand R-Type

• Format: MULT rs, rt

• Description: The contents of general registers rs and rt are multiplied as 32-bit 2’s complement
(i.e., signed) values. No integer overflow exception occurs under any circumstances. This
instruction is only valid when rd = 0.
When the operation completes, the low order word of the double result is loaded into special
register LO, and the high order word of the double result is loaded into special register HI.
If either of the two preceding instructions is MFHI or MFLO, the results of these instructions are
undefined. Correct operation requires separating reads of HI or LO from writes by a minimum of
two other instructions.

• Operation: T-2: LO is undefined
HI is undefined

T-1: LO is undefined
HI is undefined

T: t ← GPR[rs] * GPR[rt]
LO ← t31..0
HI ← t63..32

MULT Instruction Fields

31 0

5

rt

5

rs

6

SPECIAL
000000

5

0
00000

5

0
00000

6

MULT
011000

Move From HI Instruction

• MFHI Instruction, One-Operand R-Type

• Format: MFHI rd

• Description: The contents of special register HI are placed in general
register rd.
To ensure proper operation in the event of interrupts, the two
instructions which follow an MFHI instruction may not be any of the
instructions which modify the HI register: MULT, MULTU, DIV, DIVU, or
MTHI.

• Operation: GPR[rd] ← HI

MFHI Instruction Fields

31 0

5

0
00000

5

0
00000

6

SPECIAL
000000

5

rd

5

0
00000

6

MFHI
010000

Multiply/Divide R-Type Instructions

• MULT: Multiply

• MULTU: Multiply Unsigned
• Similar to MULT, but…
• GPR[rs] & GPR[rt] are both treated as 32-bit unsigned values

• DIV: Divide
• Divides GPR[rs] by GPR[rt], LO ← quotient, HI ← remainder
• GPR[rs] & GPR[rt] are both treated as 32-bit 2’s complement values

• DIVU: Divide Unsigned
• Similar to DIV, but…
• GPR[rs] & GPR[rt] are both treated as 32-bit unsigned values

• MFHI: Move From HI

• MFLO: Move From LO

• MTHI: Move To HI

• MTLO: Move To LO

Shift Right Logical Instruction

• SRL Instruction, Shift R-Type

• Format: SRL rd, rt, sa

• Description: The contents of general register rt are shifted right by sa
bits, inserting zeros into the high order bits. The result is placed in
general register rd.

• Operation: GPR[rd] ← 0sa || GPR[rt]31..sa

SRL Instruction Fields

31 0

5

rt

5

0
00000

6

SPECIAL
000000

5

rd

5

sa

6

SRL
000010

Shift Right Arithmetic Instruction

• SRA Instruction, Shift R-Type

• Format: SRA rd, rt, sa

• Description: The contents of general register rt are shifted right by sa
bits, sign-extending the high order bit. The 32-bit result is placed in
general register rd.

• Operation: GPR[rd] ← (GPR[rt]31)sa || GPR[rt]31..sa

SRA Instruction Fields

31 0

5

rt

5

0
00000

6

SPECIAL
000000

5

rd

5

sa

6

SRA
000011

Shift Right Logical Variable Instruction

• SRLV Instruction, Shift R-Type

• Format: SRLV rd, rt, rs

• Description: The contents of general register rt are shifted right by
the number of bits specified by the low order five bits of general
register rs, inserting zeros into the high order bits. The 32-bit result is
placed in general register rd.

• Operation: s ← GPR[rs]4..0

GPR[rd] ← 0s || GPR[rt]31..s

SRLV Instruction Fields

31 0

5

rt

5

rs

6

SPECIAL
000000

5

rd

5

0
00000

6

SRLV
000110

Shift R-Type Instructions

• SLL: Shift Left Logical

• SRL: Shift Right Logical

• SRA: Shift Right Arithmetic

• SLLV: Shift Left Logical Variable

• SRLV: Shift Right Logical Variable

• SRAV: Shift Right Arithmetic Variable

Add Immediate Instruction

• ADDI Instruction, I-Type

• Format: ADDI rt, rs, immediate

• Description: The 16-bit immediate is sign-extended and added to the
contents of general register rs to form a 32-bit result. The result is
placed in general register rt.
An overflow exception occurs if the two highest order carry-out bits
differ (2’s-complement overflow). The destination register rt is not
modified when an integer overflow exception occurs.

• Operation: GPR[rt] ← GPR[rs] + (immediate15)16||immediate15..0

ADDI Instruction Fields

31 0

6

ADDI
001000

5

rs

5

rt

16

immediate

ALU I-Type Instructions

• ADDI: Add Immediate

• ADDIU: Add Immediate Unsigned
• The 16-bit immediate is sign-extended

• No overflow exception occurs under any circumstances

• SLTI: Set on Less Than Immediate
• The 16-bit immediate is sign-extended

• Compare as signed integers

• SLTIU: Set on Less Than Immediate Unsigned
• The 16-bit immediate is sign-extended

• Compare as unsigned integers

• ANDI: Bitwise Logical AND Immediate
• The 16-bit immediate is zero-extended

• ORI: Bitwise Logical OR Immediate
• The 16-bit immediate is zero-extended

• XORI: Bitwise Logical Exclusive-OR Immediate
• The 16-bit immediate is zero-extended

• LUI: Load Upper Immediate
• LUI rt, immediate

• Field rs should be zero (SBZ)

• The 16-bit immediate is shifted left 16 bits; the low order 16 bits are set to zeros; result is stored in general register rt

Branch on Equal Instruction

• BEQ Instruction, I-Type
• Format: BEQ rs, rt, offset
• Description: A branch target address is computed from the sum of the

address of the instruction in the delay slot and the 16-bit offset, shifted left
two bits and sign-extended to 32 bits. The contents of general register rs
and the contents of general register rt are compared. If the two registers
are equal, then the program branches to the target address, with a delay of
one instruction.
Operation: T: targetOffset ← (offset15)14 || offset || 02

condition ← (GPR[rs] = GPR[rt])
T+1: if condition then

PC ← PC + targetOffset
endif

BEQ Instruction Fields

31 0

6

BEQ
000100

5

rs

5

rt

16

offset

Branch I-Type Instructions

• BEQ: Branch on Equal

• BNE: Branch on Not Equal

• For all of the following instructions:
• Only one register is specified
• The assembly language has the form: OPCODE rs, offset
• Field rt should be zero (SBZ)
• Treat GPR[rs] as a signed integer

• BLEZ: Branch on Less Than or Equal to Zero

• BGTZ: Branch on Greater Than Zero

• BLTZ: Branch on Less Than Zero

• BGEZ: Branch on Greater Than or Equal to Zero

• BLTZAL: Branch on Less Than Zero and Link

• BGEZAL: Branch on Greater Than or Equal to Zero and Link

The And Link Instructions

• The And Link instructions place the address of the instruction
following the delay slot into the link (return address) register ($ra or
$31) unconditionally (i.e., whether or not the instruction branches,
register $ra is modified with the potential return address)

• Register rs may not be general register 31

• Thus, the And Link instructions are used to call subroutines

The offset in Branch Instructions

• Instructions are required to be on word-aligned addresses
• Therefore, the low-order two bits of the address of an instruction are always zeros

• The target address of a branch (or jump) instruction must be word aligned

• There is no benefit to being able to produce a non-word aligned target address

• Therefore, the offset field is left shifted two bits to force word-alignment and
allow a branch range which is four times larger than the non-shifted offset

• The offset field is 16 bits wide (and, therefore, can express a value from -32768 to
32767)

• Before being possibly added to the PC, the offset is left shifted two bits (and,
therefore, can express a value from -32768*4 to 32767*4)
• This allows a maximum branch range of from 32,768 instructions before the instruction in the

delay slot to 32,767 instructions after the instruction in the delay slot

Jump Instruction

• J Instruction, J-Type

• Format: J target

• Description: The 26-bit target address is shifted left two bits and
combined with the high order four bits of the address of the
instruction in the delay slot. The program unconditionally jumps to
this calculated address with a delay of one instruction.
Operation:T: temp ← target

T+1: PC ← PC31..28 || temp || 02

J Instruction Fields

31 0

6

J
000010

target

26

Jump And Link Instruction

• JAL Instruction, J-Type

• Format: JAL target

• Description: The 26-bit target address is shifted left two bits and
combined with the high order four bits of the address of the
instruction in the delay slot. The program unconditionally jumps to
this calculated address with a delay of one instruction. The address
of the instruction after the delay slot is placed in the link register, r31.
Operation:T: temp ← target

GPR[31] ← PC + 8
T+1: PC ← PC31..28 || temp || 02

JAL Instruction Fields

31 0

6

JAL
000011

target

26

Jump Register Instruction

• JR Instruction, R-Type

• Format: JR rs

• Description: The program unconditionally jumps to the address
contained in general register rs, with a delay of one instruction. This
instruction is only valid when rd = 0.
The low-order two bits of the target address in register rs must be
zeros because instructions must be word-aligned.
Operation:T: temp ← GPR[rs]

T+1: PC ← temp

JR Instruction Fields

31 0

5

0
00000

5

rs

6

SPECIAL
000000

5

0
00000

5

0
00000

6

JR
001000

Jump And Link Register Instruction

• JALR Instruction, R-Type

• Format: JALR rs, rd

• Description: The program unconditionally jumps to the address
contained in general register rs, with a delay of one instruction. The
address of the instruction after the delay slot is placed in general
register rd. Register specifiers rs and rd may not be equal.
The low-order two bits of the target address in register rs must be
zeros because instructions must be word-aligned.
Operation:T: temp ← GPR[rs]

GPR[rd] ← PC + 8
T+1: PC ← temp

JALR Instruction Fields

31 0

5

0
00000

5

rs

6

SPECIAL
000000

5

rd

5

0
00000

6

JALR
001001

Jump Instructions

• J: Jump

• JAL: Jump And Link

• JR: Jump Register

• JALR: Jump And Link Register

Load Word Instruction

• LW Instruction, I-Type

• Format: LW rt, offset(base)

• Description: The 16-bit offset is sign-extended and added to the
contents of general register base to form a virtual address. The
contents of the word at the memory location specified by the
effective address are loaded into general register rt.
The two least significant bits of the effective address must be zeros.
Operation:T: vAddr ← ((offset15)16 || offset15..0) + GPR[base]

mem ← LoadMemory(WORD, vAddr)
GPR[rt] is undefined

T+1: GPR[rt] ← mem

LW Instruction Fields

31 0

6

LW
100011

5

base

5

rt

16

offset

Load and Store Instructions

• LB: Load Byte

• LBU: Load Byte Unsigned

• LH: Load Halfword

• LHU: Load Halfword Unsigned

• LW: Load Word

• For the following Store instructions:
• The assembly language has the same form as for the Load instructions: OPCODE rt, offset(base)
• But, unlike other instructions, the leftmost operand, rt, is the source – not the destination; that is,

GPR[rt] is stored in memory at the address given by GPR[base]+(sign-extension(offset))

• SB: Store Byte

• SH: Store Halfword

• SW: Store Word

Load and Store Instructions offset Field

• For all of the Load and Store instructions, the offset field is not shifted
left before being address to the contents of the general register base

• This limits the range of halfwords and words that can be accessed via
Load and Store instructions, but makes all these instructions uniform
• A different design might allow twice the range when halfwords are accessed

and four times the range when words are accessed

Push Implementation

• There are no dedicated stack manipulation instructions

• Pushing register $reg onto the stack is implemented by
• addiu $sp, $sp, -4 # decrement the $sp for one word

• sw $reg, 0($sp) # store $reg on the stack

• Similarly, pushing three registers onto the stack is implemented by
• addiu $sp, $sp, -12 # decrement the $sp for three words

• sw $firstReg, 8($sp) # store $firstReg on the stack

• sw $secondReg, 4($sp) # store $secondReg on the stack

• sw $thirdReg, 0($sp) # store $thirdReg on the stack

Pop Implementation

• There are no dedicated stack manipulation instructions

• Popping register $reg off of the stack is implemented by
• lw $reg, 0($sp) # load $reg from the stack

• addiu $sp, $sp, 4 # increment the $sp for one word

• Similarly, popping three registers off of the stack is implemented by
• lw $thirdReg, 0($sp) # load $thirdReg from the stack

• lw $secondReg, 4($sp) # load $secondReg from the stack

• lw $firstReg, 8($sp) # load $firstReg from the stack

• addiu $sp, $sp, 12 # increment the $sp for three words

