MIPS Instruction Set

Arithmetic Instructions

Instruction

add

subtract

add immediate

add unsigned

subtract unsigned

add immediate
unsigned

Multiply (without

overflow)

Multiply

Divide

Example

add $1,%2,$3

sub $1,$2,83

addi $1,$2,100

addu $1,$2,$3

subu $1,$2,$3

addiu

$1,$2,100

mul $1,$2,8$3

mult $2,$3

div $2,8$3

Meaning

$1=$2+%$3

$1=$2-$3

$1=$2+100

$1=$2+%$3

$1=$2-$3

$1=%$2+100

$1=$2*$3

$hi, $low=$2*$3

$hi,$low=$2/$3

Comments

"Immediate" means a constant
number

Values are treated as unsigned
integers,
not two's complement integers

Values are treated as unsigned
integers,
not two's complement integers

Values are treated as unsigned
integers,
not two's complement integers

Result is only 32 bits!

Upper 32 bits stored in special
register hi
Lower 32 bits stored in special
register 1o

Remainder stored in special
register hi

Quotient stored in special registerlo

Logical

Instruction

and

or

and immediate
or immediate
shift left logical

shift right logical

Data Transfer

Instruction

load word

store word

load upper

immediate

load address

load immediate

MIPS Instruction Set

Example Meaning Comments

and $1,%2,5%3 $1=$2&%3 Bitwise AND

or $1,%$2,83 $1=%$2|$3 Bitwise OR

andi $1,$2,100 $1=$2&100 Bitwise AND with immediate value

or $1,$2,100 $1=$2|100 Bitwise OR with immediate value

sl1l $1,%2,10 $1=$2<<10 Shift left by constant number of bits

srl $1,%$2,10 $1=$2>>10 Shift right by constant number of bits

Example Meaning

1w $1=Memory[$2+100]
$1,100($2)

sw Memory[$2+100]=$1
$1,100($2)

lui $1,100 $1=100x2"16

la $1,label $1=Address of label

1i $1,100 $1=100

Comments

Copy from memory to register

Copy from register to memory

Load constant into upper 16 bits.
Lower 16 bits are set to zero.

Pseudo-instruction (provided by
assembler, not processor!)

Loads computed address of label (not its
contents) into register

Pseudo-instruction (provided by
assembler, not processor!)
Loads immediate value into register

move from hi mfhi $2 $2=hi

move from lo mflo $2 $2=lo

move move $1,$2 $1=%2

Conditional Branch

Instruction Example

branch on equal beqg
$1,$2,100

branch on not equal bne
$1,%2,100

branch on greater than bgt
$1,$2,100

branch on greater than or bge

equal $1,%$2,100

branch on less than blt
$1,82,100

branch on less than or ble

equal $1,%2,100

MIPS Instruction Set

Copy from special register hi to general

register

Copy from special register 1o to general

register

Pseudo-instruction (provided by
assembler, not processor!)
Copy from register to register.

Meaning

if($1==%$2) go to
PC+4+100

if($1!=$2) go to
PC+4+100

if($1>$2) go to
PC+4+100

if($1>=$2) go to
PC+4+100

if($1<$2) go to
PC+4+100

if($1<=$2) go to
PC+4+100

Comments

Test if registers are equal

Test if registers are not

equal

Pseduo-instruction

Pseduo-instruction

Pseduo-instruction

Pseduo-instruction

MIPS Instruction Set

Comparison

Instruction Example Meaning Comments
set on less than slt $1,%2,$3 if($2<$3)$1=1; Test if less than.
else $1=0 If true, set $1 to 1. Otherwise, set $1
to 0.
set on less than slti if($2<100)$1=1; Testif less than.
immediate $1,%$2,100 else $1=0 If true, set $1 to 1. Otherwise, set $1
to 0.

Unconditional Jump

Instruction Example Meaning Comments
jump j 1000 go to address 1000 Jump to target address
jump register Jjr $1 go to address stored in $1 For switch, procedure return

jump and link jal 1000 $ra=PC+4; go to address 1000 Use when making procedure call.
This saves the return address in $ra

System Calls

Service Operation Code Arguments Results
(in
$v0)
print_int Print integer number (32 bit) 1 $a0 = integer to be None
printed
print_float Print floating-point number (32 bit) 2 $f12 = float to be None
printed
print_double Print floating-point number (64 bit) 3 $f12 = double to be None
printed

print_string

read_int

read float

read_double

read_string

sbrk

exit

print_char

read_char

exit2

Print null-terminated character string

Read integer number from user

Read floating-point number from user

Read double floating-point number from
user

Works the same as Standard C
Library fgets () function.

Returns the address to a block of
memory containing n additional bytes.
(Useful for dynamic memory allocation)

Stop program from running

Print character

Read character from user

Stops program from running and returns
an integer

Assembler Directives

Directive

.word wl,

.half hil,

.byte bl,

Result

10

11

12

17

MIPS Instruction Set

$a0 = address of None

string in memory

None Integer
returned in
$v0

None Float
returned in
$f0

None Double
returned in
$f0

$a0 = memory None

address of string

input buffer

$al = length of string

buffer (n)

$a0 = amount address in
$vO0

None None

$a0 = character to be None

printed

None Char
returned in
$v0

$a0 = result (integer None

number)

., wn Store n 32-bit values in successive memory words
., hn Store n 16-bit values in successive memory words
., bn Store n 8-bit values in successive memory words

MIPS Instruction Set

.ascii str Store the ASCII string str in memory.
Strings are in double-quotes, i.e. "Computer Science"

.asciiz str Store the ASCII string str in memory and null-terminate it
Strings are in double-quotes, i.e. "Computer Science"

.space n Leave an empty n-byte region of memory for later use

.align n Align the next datum on a 2”n byte boundary.
For example, .align 2 aligns the next value on a word boundary

Registers
Register Register Description
Number Name
0 $zero The value 0
2-3 $v0 - vl (values) from expression evaluation and function results
4-7 $a0 - $a3 (arguments) First four parameters for subroutine

8-15,24-25 $t0-$t9 Temporary variables

16-23 $s0 - $s7 Saved values representing final computed results

31 $ra Return address

