
1

MIPS Instruction Set

Arithmetic Instructions

Instruction Example Meaning Comments

add add $1,$2,$3 $1=$2+$3

subtract sub $1,$2,$3 $1=$2-$3

add immediate addi $1,$2,100 $1=$2+100 "Immediate" means a constant

number

add unsigned addu $1,$2,$3 $1=$2+$3 Values are treated as unsigned

integers,

not two's complement integers

subtract unsigned subu $1,$2,$3 $1=$2-$3 Values are treated as unsigned

integers,

not two's complement integers

add immediate

unsigned

addiu

$1,$2,100

$1=$2+100 Values are treated as unsigned

integers,

not two's complement integers

Multiply (without

overflow)

mul $1,$2,$3 $1=$2*$3 Result is only 32 bits!

Multiply mult $2,$3 $hi,$low=$2*$3 Upper 32 bits stored in special

register hi

Lower 32 bits stored in special

register lo

Divide div $2,$3 $hi,$low=$2/$3 Remainder stored in special

register hi

Quotient stored in special registerlo

MIPS Instruction Set

2

Logical

Instruction Example Meaning Comments

and and $1,$2,$3 $1=$2&$3 Bitwise AND

or or $1,$2,$3 $1=$2|$3 Bitwise OR

and immediate andi $1,$2,100 $1=$2&100 Bitwise AND with immediate value

or immediate or $1,$2,100 $1=$2|100 Bitwise OR with immediate value

shift left logical sll $1,$2,10 $1=$2<<10 Shift left by constant number of bits

shift right logical srl $1,$2,10 $1=$2>>10 Shift right by constant number of bits

Data Transfer

Instruction Example Meaning Comments

load word lw

$1,100($2)

$1=Memory[$2+100] Copy from memory to register

store word sw

$1,100($2)

Memory[$2+100]=$1 Copy from register to memory

load upper

immediate

lui $1,100 $1=100x2^16 Load constant into upper 16 bits.

Lower 16 bits are set to zero.

load address la $1,label $1=Address of label Pseudo-instruction (provided by

assembler, not processor!)

Loads computed address of label (not its

contents) into register

load immediate li $1,100 $1=100 Pseudo-instruction (provided by

assembler, not processor!)

Loads immediate value into register

MIPS Instruction Set

3

move from hi mfhi $2 $2=hi Copy from special register hi to general

register

move from lo mflo $2 $2=lo Copy from special register lo to general

register

move move $1,$2 $1=$2 Pseudo-instruction (provided by

assembler, not processor!)

Copy from register to register.

Conditional Branch

Instruction Example Meaning Comments

branch on equal beq

$1,$2,100

if($1==$2) go to

PC+4+100

Test if registers are equal

branch on not equal bne

$1,$2,100

if($1!=$2) go to

PC+4+100

Test if registers are not

equal

branch on greater than bgt

$1,$2,100

if($1>$2) go to

PC+4+100

Pseduo-instruction

branch on greater than or

equal

bge

$1,$2,100

if($1>=$2) go to

PC+4+100

Pseduo-instruction

branch on less than blt

$1,$2,100

if($1<$2) go to

PC+4+100

Pseduo-instruction

branch on less than or

equal

ble

$1,$2,100

if($1<=$2) go to

PC+4+100

Pseduo-instruction

MIPS Instruction Set

4

Comparison

Instruction Example Meaning Comments

set on less than slt $1,$2,$3 if($2<$3)$1=1;

else $1=0

Test if less than.

If true, set $1 to 1. Otherwise, set $1

to 0.

set on less than

immediate

slti

$1,$2,100

if($2<100)$1=1;

else $1=0

Test if less than.

If true, set $1 to 1. Otherwise, set $1

to 0.

Unconditional Jump

Instruction Example Meaning Comments

jump j 1000 go to address 1000 Jump to target address

jump register jr $1 go to address stored in $1 For switch, procedure return

jump and link jal 1000 $ra=PC+4; go to address 1000 Use when making procedure call.

This saves the return address in $ra

System Calls

Service Operation Code

(in

$v0)

Arguments Results

print_int Print integer number (32 bit) 1 $a0 = integer to be

printed

None

print_float Print floating-point number (32 bit) 2 $f12 = float to be

printed

None

print_double Print floating-point number (64 bit) 3 $f12 = double to be

printed

None

MIPS Instruction Set

5

print_string Print null-terminated character string 4 $a0 = address of

string in memory

None

read_int Read integer number from user 5 None Integer

returned in

$v0

read_float Read floating-point number from user 6 None Float

returned in

$f0

read_double Read double floating-point number from

user

7 None Double

returned in

$f0

read_string Works the same as Standard C

Library fgets() function.

8 $a0 = memory

address of string

input buffer

$a1 = length of string

buffer (n)

None

sbrk Returns the address to a block of

memory containing n additional bytes.

(Useful for dynamic memory allocation)

9 $a0 = amount address in

$v0

exit Stop program from running 10 None None

print_char Print character 11 $a0 = character to be

printed

None

read_char Read character from user 12 None Char

returned in

$v0

exit2 Stops program from running and returns

an integer

17 $a0 = result (integer

number)

None

Assembler Directives

Directive Result

.word w1, ..., wn Store n 32-bit values in successive memory words

.half h1, ..., hn Store n 16-bit values in successive memory words

.byte b1, ..., bn Store n 8-bit values in successive memory words

MIPS Instruction Set

6

.ascii str Store the ASCII string str in memory.

Strings are in double-quotes, i.e. "Computer Science"

.asciiz str Store the ASCII string str in memory and null-terminate it

Strings are in double-quotes, i.e. "Computer Science"

.space n Leave an empty n-byte region of memory for later use

.align n Align the next datum on a 2^n byte boundary.

For example, .align 2 aligns the next value on a word boundary

Registers

Register

Number

Register

Name

Description

0 $zero The value 0

2-3 $v0 - $v1 (values) from expression evaluation and function results

4-7 $a0 - $a3 (arguments) First four parameters for subroutine

8-15, 24-25 $t0 - $t9 Temporary variables

16-23 $s0 - $s7 Saved values representing final computed results

31 $ra Return address

