
Document Number: MD00086
Revision 2.00
June 9, 2003

MIPS Technologies, Inc.
1225 Charleston Road

Mountain View, CA 94043-1353

Copyright © 2001-2003 MIPS Technologies Inc. All rights reserved.

MIPS32™ Architecture For Programmers
Volume II: The MIPS32™ Instruction Set

Copyright © 2001-2003 MIPS Technologies, Inc. All rights reserved.

Unpublished rights (if any) are reserved under the Copyright Laws of the United States of America.

If this document is provided in source format (i.e., in a modifiable form such as in FrameMaker or Microsoft Word format),
then its use and distribution is subject to a written agreement with MIPS Technologies, Inc. ("MIPS Technologies"). UNDER
NO CIRCUMSTANCES MAY A DOCUMENT PROVIDED IN SOURCE FORMAT BE DISTRIBUTED TO A THIRD
PARTY WITHOUT THE EXPRESS WRITTEN CONSENT OF MIPS TECHNOLOGIES.

This document contains information that is proprietary to MIPS Technologies. Any copying, reproducing, modifying, or use of
this information (in whole or in part) which is not expressly permitted in writing by MIPS Technologies or a
contractually-authorized third party is strictly prohibited. At a minimum, this information is protected under unfair competition
and copyright laws. Violations thereof may result in criminal penalties and fines.

MIPS Technologies or any contractually-authorized third party reserves the right to change the information contained in this
document to improve function, design or otherwise. MIPS Technologies does not assume any liability arising out of the
application or use of this information, or of any error of omission in such information. Any warranties, whether express,
statutory, implied or otherwise, including but not limited to the implied warranties of merchantability or fitness for a particular
purpose, are excluded. Any license under patent rights or any other intellectual property rights owned by MIPS Technologies
or third parties shall be conveyed by MIPS Technologies or any contractually-authorized third party in a separate license
agreement between the parties.

The information contained in this document shall not be exported or transferred for the purpose of reexporting in violation of
any U.S. or non-U.S. regulation, treaty, Executive Order, law, statute, amendment or supplement thereto.

The information contained in this document constitutes one or more of the following: commercial computer software,
commercial computer software documentation or other commercial items. If the user of this information, or any related
documentation of any kind, including related technical data or manuals, is an agency, department, or other entity of the United
States government (“Government”), the use, duplication, reproduction, release, modification, disclosure, or transfer of this
information, or any related documentation of any kind, is restricted in accordance with Federal Acquisition Regulation 12.212
for civilian agencies and Defense Federal Acquisition Regulation Supplement 227.7202 for military agencies. The use of this
information by the Government is further restricted in accordance with the terms of the license agreement(s) and/or applicable
contract terms and conditions covering this information from MIPS Technologies or any contractually-authorized third party.

MIPS®, R3000®, R4000®, R5000® and R10000® are among the registered trademarks of MIPS Technologies, Inc. in the
United States and certain other countries, and MIPS16™, MIPS16e™, MIPS32™, MIPS64™, MIPS-3D™, MIPS-based™,
MIPS I™, MIPS II™, MIPS III™, MIPS IV™, MIPS V™, MDMX™, MIPSsim™, MIPSsimCA™, MIPSsimIA™,
QuickMIPS™, SmartMIPS™, MIPS Technologies logo, 4K™, 4Kc™, 4Km™, 4Kp™, 4KE™, 4KEc™, 4KEm™, 4KEp™,
4KS™, 4KSc™, M4K™, 5K™, 5Kc™, 5Kf™, 20K™, 20Kc™, 25Kf™, R4300™, ASMACRO™, ATLAS™, BusBridge™,
CoreFPGA™, CoreLV™, EC™, JALGO™, MALTA™, MGB™, PDtrace™, SEAD™, SEAD-2™, SOC-it™, The Pipeline™,
and YAMON™ are among the trademarks of MIPS Technologies, Inc.

All other trademarks referred to herein are the property of their respective owners.

Template: B1.06, Build with Conditional Tags: 2B ARCH FPU_PS FPU_PSandARC MIPS32
MIPS32™ Architecture For Programmers Volume II, Revision 2.00

Copyright © 2001-2003 MIPS Technologies Inc. All rights reserved.

.

.
.
.
.
.
.
.
.
..
..
.
.
.
.
.
.
.
.
..
.
.
.
.

Table of Contents

Chapter 1 About This Book ..1
1.1 Typographical Conventions ...1

1.1.1 Italic Text ...1
1.1.2 Bold Text ...1
1.1.3 Courier Text ...1

1.2 UNPREDICTABLE and UNDEFINED ..2
1.2.1 UNPREDICTABLE...2
1.2.2 UNDEFINED...2

1.3 Special Symbols in Pseudocode Notation..2
1.4 For More Information ..4

Chapter 2 Guide to the Instruction Set ..7
2.1 Understanding the Instruction Fields ...7

2.1.1 Instruction Fields ...8
2.1.2 Instruction Descriptive Name and Mnemonic ...9
2.1.3 Format Field...9
2.1.4 Purpose Field ...10
2.1.5 Description Field..10
2.1.6 Restrictions Field ...10
2.1.7 Operation Field ..11
2.1.8 Exceptions Field...11
2.1.9 Programming Notes and Implementation Notes Fields ...11

2.2 Operation Section Notation and Functions ..12
2.2.1 Instruction Execution Ordering..12
2.2.2 Pseudocode Functions..12

2.3 Op and Function Subfield Notation ...20
2.4 FPU Instructions ..20

Chapter 3 The MIPS32™ Instruction Set ...23
3.1 Compliance and Subsetting..23
3.2 Alphabetical List of Instructions..24
ABS.fmt ..33
ADD..34
ADD.fmt ...35
ADDI...36
ADDIU..37
ADDU...38
ALNV.PS..39
AND..42
ANDI...43
B...44
BAL..45
BC1F...46
BC1FL ..48
BC1T...50
BC1TL ..52
BC2F...54
BC2FL ..55
BC2T...57
BC2TL ..58
BEQ..60
BEQL ..61
BGEZ ..63
BGEZAL...64
BGEZALL ..65
MIPS32™ Architecture For Programmers Volume II, Revision 2.00 i

Copyright © 2001-2003 MIPS Technologies Inc. All rights reserved.

.

.

.

.

.

.
.
.
.
..
.
.
.
.
.
.

BGEZL..67
BGTZ ..69
BGTZL..70
BLEZ...72
BLEZL ..73
BLTZ...75
BLTZAL ...76
BLTZALL...77
BLTZL ..79
BNE..81
BNEL ..82
BREAK...84
C.cond.fmt...85
CACHE...90
CEIL.L.fmt..97
CEIL.W.fmt ..99
CFC1..100
CFC2..102
CLO..103
CLZ..104
COP2..105
CTC1..106
CTC2..108
CVT.D.fmt ...109
CVT.L.fmt..110
CVT.PS.S...112
CVT.S.fmt..114
CVT.S.PL...115
CVT.S.PU ..116
CVT.W.fmt ..117
DERET...118
DI ...120
DIV ..122
DIV.fmt..124
DIVU..125
EHB..126
EI..127
ERET..129
EXT..131
FLOOR.L.fmt ..133
FLOOR.W.fmt ...135
INS ...136
J..138
JAL...139
JALR..140
JALR.HB ...142
JR ...145
JR.HB...147
LB ..150
LBU..151
LDC1..152
LDC2..153
LDXC1...154
LH ..155
LHU ...156
LL...157
LUI...159
LUXC1...160
LW ...161
LWC1...162
LWC2...163
LWL...164
LWR...167
LWXC1..171
MADD ...172
MADD.fmt...173
ii MIPS32™ Architecture For Programmers Volume II, Revision 2.00

Copyright © 2001-2003 MIPS Technologies Inc. All rights reserved.

MADDU ..175
MFC0 ...176
MFC1 ...177
MFC2 ...178
MFHC1 ..179
MFHC2 ..180
MFHI..181
MFLO ..182
MOV.fmt..183
MOVF..184
MOVF.fmt ...185
MOVN ...187
MOVN.fmt...188
MOVT..190
MOVT.fmt ...191
MOVZ..193
MOVZ.fmt ...194
MSUB ..196
MSUB.fmt..197
MSUBU ...199
MTC0...200
MTC1...201
MTC2...202
MTHC1..203
MTHC2..204
MTHI ...205
MTLO ..206
MUL...207
MUL.fmt ..208
MULT ..209
MULTU ...210
NEG.fmt...211
NMADD.fmt..212
NMSUB.fmt...214
NOP..216
NOR ...217
OR..218
ORI...219
PLL.PS...220
PLU.PS ..221
PREF..222
PREFX...226
PUL.PS ..227
PUU.PS ..228
RDHWR...229
RDPGPR..231
RECIP.fmt..232
ROTR...234
ROTRV..235
ROUND.L.fmt ...236
ROUND.W.fmt ..238
RSQRT.fmt ..240
SB...242
SC...243
SDBBP...246
SDC1..247
SDC2..248
SDXC1...249
SEB ..250
SEH..251
SH ..253
SLL ..254
SLLV..255
SLT ..256
SLTI ...257
SLTIU ..258
MIPS32™ Architecture For Programmers Volume II, Revision 2.00 iii

Copyright © 2001-2003 MIPS Technologies Inc. All rights reserved.

SLTU..259
SQRT.fmt...260
SRA..261
SRAV...262
SRL ..263
SRLV ...264
SSNOP...265
SUB..266
SUB.fmt ...267
SUBU...268
SUXC1...269
SW..270
SWC1...271
SWC2...272
SWL ...273
SWR...275
SWXC1..277
SYNC...278
SYNCI..282
SYSCALL..285
TEQ..286
TEQI ..287
TGE..288
TGEI ..289
TGEIU..290
TGEU...291
TLBP..292
TLBR ...293
TLBWI...295
TLBWR..297
TLT ..299
TLTI...300
TLTIU..301
TLTU ...302
TNE..303
TNEI ..304
TRUNC.L.fmt ..305
TRUNC.W.fmt...307
WAIT ...309
WRPGPR...311
WSBH..312
XOR ...313
XORI..314

Appendix A Instruction Bit Encodings ...315
A.1 Instruction Encodings and Instruction Classes ...315
A.2 Instruction Bit Encoding Tables..315
A.3 Floating Point Unit Instruction Format Encodings ...322

Appendix B Revision History ...325
iv MIPS32™ Architecture For Programmers Volume II, Revision 2.00

Copyright © 2001-2003 MIPS Technologies Inc. All rights reserved.

MIPS32™ Architecture For Programmers Volume II, Revision 2.00 v

Copyright © 2001-2003 MIPS Technologies Inc. All rights reserved.

List of Figures

Figure 2-1: Example of Instruction Description ..8
Figure 2-2: Example of Instruction Fields ...9
Figure 2-3: Example of Instruction Descriptive Name and Mnemonic ...9
Figure 2-4: Example of Instruction Format..9
Figure 2-5: Example of Instruction Purpose ..10
Figure 2-6: Example of Instruction Description ..10
Figure 2-7: Example of Instruction Restrictions ..11
Figure 2-8: Example of Instruction Operation ...11
Figure 2-9: Example of Instruction Exception...11
Figure 2-10: Example of Instruction Programming Notes...12
Figure 2-11: COP_LW Pseudocode Function..13
Figure 2-12: COP_LD Pseudocode Function...13
Figure 2-13: COP_SW Pseudocode Function..13
Figure 2-14: COP_SD Pseudocode Function...14
Figure 2-15: AddressTranslation Pseudocode Function ..14
Figure 2-16: LoadMemory Pseudocode Function..15
Figure 2-17: StoreMemory Pseudocode Function ...15
Figure 2-18: Prefetch Pseudocode Function ..16
Figure 2-19: ValueFPR Pseudocode Function ...17
Figure 2-20: StoreFPR Pseudocode Function ..18
Figure 2-21: SyncOperation Pseudocode Function..18
Figure 2-22: SignalException Pseudocode Function ...18
Figure 2-23: SignalDebugBreakpointException Pseudocode Function...19
Figure 2-24: SignalDebugModeBreakpointException Pseudocode Function ...19
Figure 2-25: NullifyCurrentInstruction PseudoCode Function..19
Figure 2-26: CoprocessorOperation Pseudocode Function..19
Figure 2-27: JumpDelaySlot Pseudocode Function ...20
Figure 2-28: FPConditionCode Pseudocode Function...20
Figure 2-29: SetFPConditionCode Pseudocode Function..20
Figure 3-1: Example of an ALNV.PS Operation ...39
Figure 3-2: Usage of Address Fields to Select Index and Way ...91
Figure 3-3: Operation of the EXT Instruction..131
Figure 3-4: Operation of the INS Instruction ...136
Figure 3-5: Unaligned Word Load Using LWL and LWR ..164
Figure 3-6: Bytes Loaded by LWL Instruction..165
Figure 3-7: Unaligned Word Load Using LWL and LWR ..168
Figure 3-8: Bytes Loaded by LWL Instruction..169
Figure 3-9: Unaligned Word Store Using SWL and SWR ..273
Figure 3-10: Bytes Stored by an SWL Instruction...274
Figure 3-11: Unaligned Word Store Using SWR and SWL ..275
Figure 3-12: Bytes Stored by SWR Instruction ...276
Figure A-1: Sample Bit Encoding Table..316

...

..
List of Tables

Table 1-1: Symbols Used in Instruction Operation Statements ..2
Table 2-1: AccessLength Specifications for Loads/Stores ...16
Table 3-1: CPU Arithmetic Instructions ...24
Table 3-2: CPU Branch and Jump Instructions...24
Table 3-3: CPU Instruction Control Instructions ..25
Table 3-4: CPU Load, Store, and Memory Control Instructions ..25
Table 3-5: CPU Logical Instructions ..26
Table 3-6: CPU Insert/Extract Instructions...26
Table 3-7: CPU Move Instructions ...26
Table 3-8: CPU Shift Instructions...27
Table 3-9: CPU Trap Instructions ...27
Table 3-10: Obsolete CPU Branch Instructions..28
Table 3-11: FPU Arithmetic Instructions..28
Table 3-12: FPU Branch Instructions..29
Table 3-13: FPU Compare Instructions ..29
Table 3-14: FPU Convert Instructions ..29
Table 3-15: FPU Load, Store, and Memory Control Instructions...30
Table 3-16: FPU Move Instructions..30
Table 3-17: Obsolete FPU Branch Instructions ..30
Table 3-18: Coprocessor Branch Instructions...31
Table 3-19: Coprocessor Execute Instructions..31
Table 3-20: Coprocessor Load and Store Instructions ..31
Table 3-21: Coprocessor Move Instructions ...31
Table 3-22: Obsolete Coprocessor Branch Instructions..31
Table 3-23: Privileged Instructions ...31
Table 3-24: EJTAG Instructions ...32
Table 3-25: FPU Comparisons Without Special Operand Exceptions ...86
Table 3-26: FPU Comparisons With Special Operand Exceptions for QNaNs..87
Table 3-27: Usage of Effective Address ...90
Table 3-28: Encoding of Bits[17:16] of CACHE Instruction ...91
Table 3-29: Encoding of Bits [20:18] of the CACHE Instruction ..92
Table 3-30: Values of thehint Field for the PREF Instruction ..223
Table 3-31: Hardware Register List ..229
Table A-1: Symbols Used in the Instruction Encoding Tables...316
Table A-2: MIPS32 Encoding of the Opcode Field..317
Table A-3: MIPS32 SPECIAL Opcode Encoding of Function Field ...318
Table A-4: MIPS32 REGIMM Encoding of rt Field ..318
Table A-5: MIPS32 SPECIAL2 Encoding of Function Field...318
Table A-6: MIPS32 SPECIAL3 Encoding of Function Field for Release 2 of the Architecture ... 318
Table A-7: MIPS32 MOVCI Encoding of tf Bit...319
Table A-8: MIPS32 SRL Encoding of Shift/Rotate..319
Table A-9: MIPS32 SRLV Encoding of Shift/Rotate...319
Table A-10: MIPS32 BSHFL Encoding of sa Field ...319
Table A-11: MIPS32 COP0 Encoding of rs Field...319
Table A-12: MIPS32 COP0 Encoding of Function Field When rs=CO...320
Table A-13: MIPS32 COP1 Encoding of rs Field...320
Table A-14: MIPS32 COP1 Encoding of Function Field When rs=S ..320
Table A-15: MIPS32 COP1 Encoding of Function Field When rs=D..321
Table A-16: MIPS32 COP1 Encoding of Function Field When rs=W or L ...321
Table A-17: MIPS64 COP1 Encoding of Function Field When rs=PS ..321
vi MIPS32™ Architecture For Programmers Volume II, Revision 2.00

Copyright © 2001-2003 MIPS Technologies Inc. All rights reserved.

...
Table A-18: MIPS32 COP1 Encoding of tf Bit When rs=S, D, or PS, Function=MOVCF .. 321
Table A-19: MIPS32 COP2 Encoding of rs Field...322
Table A-20: MIPS64 COP1X Encoding of Function Field ..322
Table A-21: Floating Point Unit Instruction Format Encodings...322
MIPS32™ Architecture For Programmers Volume II, Revision 2.00 vii

Copyright © 2001-2003 MIPS Technologies Inc. All rights reserved.

viii MIPS32™ Architecture For Programmers Volume II, Revision 2.00

Copyright © 2001-2003 MIPS Technologies Inc. All rights reserved.

32™

of the

t

by

ion
Chapter 1

About This Book

The MIPS32™ Architecture For Programmers Volume II comes as a multi-volume set.

• Volume I describes conventions used throughout the document set, and provides an introduction to the MIPS
Architecture

• Volume II provides detailed descriptions of each instruction in the MIPS32™ instruction set

• Volume III describes the MIPS32™ Privileged Resource Architecture which defines and governs the behavior
privileged resources included in a MIPS32™ processor implementation

• Volume IV-a describes the MIPS16e™ Application-Specific Extension to the MIPS32™ Architecture

• Volume IV-b describes the MDMX™ Application-Specific Extension to the MIPS32™ Architecture and is not
applicable to the MIPS32™ document set

• Volume IV-c describes the MIPS-3D™ Application-Specific Extension to the MIPS64™ Architecture and is no
applicable to the MIPS32™ document set

• Volume IV-d describes the SmartMIPS™Application-Specific Extension to the MIPS32™ Architecture

1.1 Typographical Conventions

This section describes the use ofitalic, bold andcourier fonts in this book.

1.1.1 Italic Text

• is used foremphasis

• is used forbits, fields, registers, that are important from a software perspective (for instance, address bits used
software, and programmable fields and registers), and variousfloating point instruction formats, such asS, D, andPS

• is used for the memory access types, such ascached anduncached

1.1.2 Bold Text

• represents a term that is beingdefined

• is used forbits andfields that are important from a hardware perspective (for instance,register bits, which are not
programmable but accessible only to hardware)

• is used for ranges of numbers; the range is indicated by an ellipsis. For instance,5..1 indicates numbers 5 through 1

• is used to emphasizeUNPREDICTABLE andUNDEFINED behavior, as defined below.

1.1.3 Courier Text

Courier fixed-width font is used for text that is displayed on the screen, and for examples of code and instruct
pseudocode.
MIPS32™ Architecture For Programmers Volume II, Revision 2.00 1

Copyright © 2001-2003 MIPS Technologies Inc. All rights reserved.

Chapter 1 About This Book

ions
.

, or

ated,

ry

 is

process

here is
ocessor

tation
1.2 UNPREDICTABLE and UNDEFINED

The termsUNPREDICTABLE andUNDEFINED are used throughout this book to describe the behavior of the
processor in certain cases.UNDEFINED behavior or operations can occur only as the result of executing instruct
in a privileged mode (i.e., in Kernel Mode or Debug Mode, or with the CP0 usable bit set in the Status register)
Unprivileged software can never causeUNDEFINED behavior or operations. Conversely, both privileged and
unprivileged software can causeUNPREDICTABLE results or operations.

1.2.1 UNPREDICTABLE

UNPREDICTABLE results may vary from processor implementation to implementation, instruction to instruction
as a function of time on the same implementation or instruction. Software can never depend on results that are
UNPREDICTABLE . UNPREDICTABLE operations may cause a result to be generated or not. If a result is gener
it is UNPREDICTABLE . UNPREDICTABLE operations may cause arbitrary exceptions.

UNPREDICTABLE results or operations have several implementation restrictions:

• Implementations of operations generatingUNPREDICTABLE results must not depend on any data source (memo
or internal state) which is inaccessible in the current processor mode

• UNPREDICTABLE operations must not read, write, or modify the contents of memory or internal state which
inaccessible in the current processor mode. For example,UNPREDICTABLE operations executed in user mode
must not access memory or internal state that is only accessible in Kernel Mode or Debug Mode or in another

• UNPREDICTABLE operations must not halt or hang the processor

1.2.2 UNDEFINED

UNDEFINED operations or behavior may vary from processor implementation to implementation, instruction to
instruction, or as a function of time on the same implementation or instruction.UNDEFINED operations or behavior
may vary from nothing to creating an environment in which execution can no longer continue.UNDEFINED operations
or behavior may cause data loss.

UNDEFINED operations or behavior has one implementation restriction:

• UNDEFINED operations or behavior must not cause the processor to hang (that is, enter a state from which t
no exit other than powering down the processor). The assertion of any of the reset signals must restore the pr
to an operational state

1.3 Special Symbols in Pseudocode Notation

In this book, algorithmic descriptions of an operation are described as pseudocode in a high-level language no
resembling Pascal. Special symbols used in the pseudocode notation are listed inTable 1-1.

Table 1-1 Symbols Used in Instruction Operation Statements

Symbol Meaning

← Assignment

=, ≠ Tests for equality and inequality

|| Bit string concatenation

xy A y-bit string formed byy copies of the single-bit valuex
2 MIPS32™ Architecture For Programmers Volume II, Revision 2.00

Copyright © 2001-2003 MIPS Technologies Inc. All rights reserved.

1.3 Special Symbols in Pseudocode Notation

ary
 is

ted.

ness
b#n
A constant valuen in baseb. For instance 10#100 represents the decimal value 100, 2#100 represents the bin
value 100 (decimal 4), and 16#100 represents the hexadecimal value 100 (decimal 256). If the "b#" prefix
omitted, the default base is 10.

xy..z
Selection of bitsy throughzof bit stringx. Little-endian bit notation (rightmost bit is 0) is used. Ify is less than
z, this expression is an empty (zero length) bit string.

+, − 2’s complement or floating point arithmetic: addition, subtraction

∗, × 2’s complement or floating point multiplication (both used for either)

div 2’s complement integer division

mod 2’s complement modulo

/ Floating point division

< 2’s complement less-than comparison

> 2’s complement greater-than comparison

≤ 2’s complement less-than or equal comparison

≥ 2’s complement greater-than or equal comparison

nor Bitwise logical NOR

xor Bitwise logical XOR

and Bitwise logical AND

or Bitwise logical OR

GPRLEN The length in bits (32 or 64) of the CPU general-purpose registers

GPR[x] CPU general-purpose registerx. The content ofGPR[0] is always zero.

SGPR[s,x] In Release 2 of the Architecture, multiple copies of the CPU general-purpose registers may be implemen
SGPR[s,x] refers to GPR sets, registerx. GPR[x] is a short-hand notation forSGPR[SRSCtlCSS, x].

FPR[x] Floating Point operand registerx

FCC[CC] Floating Point condition code CC.FCC[0] has the same value asCOC[1].

FPR[x] Floating Point (Coprocessor unit 1), general registerx

CPR[z,x,s] Coprocessor unitz, general registerx, select s

CP2CPR[x] Coprocessor unit 2, general registerx

CCR[z,x] Coprocessor unitz, control registerx

CP2CCR[x] Coprocessor unit 2, control registerx

COC[z] Coprocessor unitz condition signal

Xlat[x] Translation of the MIPS16e GPR numberx into the corresponding 32-bit GPR number

BigEndianMem
Endian mode as configured at chip reset (0→Little-Endian, 1→ Big-Endian). Specifies the endianness of the
memory interface (see LoadMemory and StoreMemory pseudocode function descriptions), and the endian
of Kernel and Supervisor mode execution.

BigEndianCPU
The endianness for load and store instructions (0→ Little-Endian, 1→ Big-Endian). In User mode, this
endianness may be switched by setting theREbit in theStatusregister. Thus, BigEndianCPU may be computed
as (BigEndianMem XOR ReverseEndian).

Table 1-1 Symbols Used in Instruction Operation Statements

Symbol Meaning
MIPS32™ Architecture For Programmers Volume II, Revision 2.00 3

Copyright © 2001-2003 MIPS Technologies Inc. All rights reserved.

Chapter 1 About This Book

URL:

, and

turn

e

me

led

h an
n

t
icular

n
g a

tion)

sical

-bit
PRs

nch or

 not

ment
e

1.4 For More Information

Various MIPS RISC processor manuals and additional information about MIPS products can be found at the MIPS

http://www.mips.com

ReverseEndian
Signal to reverse the endianness of load and store instructions. This feature is available in User mode only
is implemented by setting theREbit of theStatusregister. Thus, ReverseEndian may be computed as (SRREand
User mode).

LLbit

Bit of virtual state used to specify operation for instructions that provide atomic read-modify-write.LLbit is set
when a linked load occurs; it is tested and cleared by the conditional store. It is cleared, during other CPU
operation, when a store to the location would no longer be atomic. In particular, it is cleared by exception re
instructions.

I :,
I+n :,
I-n :

This occurs as a prefix toOperation description lines and functions as a label. It indicates the instruction tim
during which the pseudocode appears to “execute.” Unless otherwise indicated, all effects of the current
instruction appear to occur during the instruction time of the current instruction. No label is equivalent to a ti
label ofI . Sometimes effects of an instruction appear to occur either earlier or later — that is, during the
instruction time of another instruction. When this happens, the instruction operation is written in sections labe
with the instruction time, relative to the current instructionI , in which the effect of that pseudocode appears to
occur. For example, an instruction may have a result that is not available until after the next instruction. Suc
instruction has the portion of the instruction operation description that writes the result register in a sectio
labeledI+1.

The effect of pseudocode statements for the current instruction labelledI+1 appears to occur “at the same time”
as the effect of pseudocode statements labeledI for the following instruction. Within one pseudocode sequence,
the effects of the statements take place in order. However, between sequences of statements for differen
instructions that occur “at the same time,” there is no defined order. Programs must not depend on a part
order of evaluation between such sections.

PC

TheProgram Countervalue. During the instruction time of an instruction, this is the address of the instructio
word. The address of the instruction that occurs during the next instruction time is determined by assignin
value toPC during an instruction time. If no value is assigned toPC during an instruction time by any
pseudocode statement, it is automatically incremented by either 2 (in the case of a 16-bit MIPS16e instruc
or 4 before the next instruction time. A taken branch assigns the target address to thePCduring the instruction
time of the instruction in the branch delay slot.

PABITS The number of physical address bits implemented is represented by the symbol PABITS. As such, if 36 phy
address bits were implemented, the size of the physical address space would be 2PABITS = 236 bytes.

FP32RegistersMode

Indicates whether the FPU has 32-bit or 64-bit floating point registers (FPRs). In MIPS32, the FPU has 32 32
FPRs in which 64-bit data types are stored in even-odd pairs of FPRs. In MIPS64, the FPU has 32 64-bit F
in which 64-bit data types are stored in any FPR.

In MIPS32 implementations,FP32RegistersModeis always a 0. MIPS64 implementations have a compatibility
mode in which the processor references the FPRs as if it were a MIPS32 implementation. In such a case
FP32RegisterModeis computed from the FR bit in theStatusregister. If this bit is a 0, the processor operates
as if it had 32 32-bit FPRs. If this bit is a 1, the processor operates with 32 64-bit FPRs.

The value ofFP32RegistersMode is computed from the FR bit in theStatus register.

InstructionInBranchD
elaySlot

Indicates whether the instruction at the Program Counter address was executed in the delay slot of a bra
jump. This condition reflects thedynamic state of the instruction, not thestatic state. That is, the value is false
if a branch or jump occurs to an instruction whose PC immediately follows a branch or jump, but which is
executed in the delay slot of a branch or jump.

SignalException(exce
ption, argument)

Causes an exception to be signaled, using the exception parameter as the type of exception and the argu
parameter as an exception-specific argument). Control does not return from this pseudocode function - th
exception is signaled at the point of the call.

Table 1-1 Symbols Used in Instruction Operation Statements

Symbol Meaning
4 MIPS32™ Architecture For Programmers Volume II, Revision 2.00

Copyright © 2001-2003 MIPS Technologies Inc. All rights reserved.

1.4 For More Information
Comments or questions on the MIPS32™ Architecture or this document should be directed to

Director of MIPS Architecture
MIPS Technologies, Inc.
1225 Charleston Road
Mountain View, CA 94043

or via E-mail to architecture@mips.com.
MIPS32™ Architecture For Programmers Volume II, Revision 2.00 5

Copyright © 2001-2003 MIPS Technologies Inc. All rights reserved.

Chapter 1 About This Book
6 MIPS32™ Architecture For Programmers Volume II, Revision 2.00

Copyright © 2001-2003 MIPS Technologies Inc. All rights reserved.

etical
Chapter 2

Guide to the Instruction Set

This chapter provides a detailed guide to understanding the instruction descriptions, which are listed in alphab
order in the tables at the beginning of the next chapter.

2.1 Understanding the Instruction Fields

Figure 2-1 shows an example instruction. Following the figure are descriptions of the fields listed below:

• “Instruction Fields” on page 8

• “Instruction Descriptive Name and Mnemonic” on page 9

• “Format Field” on page 9

• “Purpose Field” on page 10

• “Description Field” on page 10

• “Restrictions Field” on page 10

• “Operation Field” on page 11

• “Exceptions Field” on page 11

• “Programming Notes and Implementation Notes Fields” on page 11
MIPS32™ Architecture For Programmers Volume II, Revision 2.00 7

Copyright © 2001-2003 MIPS Technologies Inc. All rights reserved.

Chapter 2 Guide to the Instruction Set

wing

f

Figure 2-1 Example of Instruction Description

2.1.1 Instruction Fields

Fields encoding the instruction word are shown in register form at the top of the instruction description. The follo
rules are followed:

0

Example Instruction Name EXAMPLE

31 2526 2021 1516

SPECIAL rs rt

6 5 5

rd 0 EXAMPLE

5 5 6

11 10 6 5 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Format: EXAMPLE rd, rs,rt MIPS32

Purpose: to execute an EXAMPLE op

Description: rd ← rs exampleop rt
This section describes the operation of the instruction in text, tables, and
illustrations. It includes information that would be difficult to encode in the
Operation section.

Restrictions:
This section lists any restrictions for the instruction. This can include values of the
instruction encoding fields such as register specifiers, operand values, operand
formats, address alignment, instruction scheduling hazards, and type of memory
access for addressed locations.

Operation:
/* This section describes the operation of an instruction in a */
/* high-level pseudo-language. It is precise in ways that the */
/* Description section is not, but is also missing information */
/* that is hard to express in pseudocode.*/

temp ← GPR[rs] exampleop GPR[rt]
GPR[rd] ← temp

Exceptions:
A list of exceptions taken by the instruction

Programming Notes:
Information useful to programmers, but not necessary to describe the operation o
the instruction

Implementation Notes:
Like Programming Notes, except for processor implementors

Instruction Mnemonic
and Descriptive Name

Instruction encoding
constant and variable
field names and values

Architecture level at
which instruction was
defined/redefined and
assembler format(s) for
each definition

Short description

Symbolic description

Full description of
instruction operation

Restrictions on
instruction and
operands

High-level language
description of instruction
operation

Exceptions that
instruction can cause

Notes for programmers

Notes for implementors
8 MIPS32™ Architecture For Programmers Volume II, Revision 2.00

Copyright © 2001-2003 MIPS Technologies Inc. All rights reserved.

2.1 Understanding the Instruction Fields

ed are
ded
e
vious
xtended

The
at which

ed data
• The values of constant fields and theopcode names are listed in uppercase (SPECIAL and ADD inFigure 2-2).
Constant values in a field are shown in binary below the symbolic or hexadecimal value.

• All variable fields are listed with the lowercase names used in the instruction description (rs, rt andrd in Figure 2-2).

• Fields that contain zeros but are not named are unused fields that are required to be zero (bits 10:6 inFigure 2-2). If
such fields are set to non-zero values, the operation of the processor isUNPREDICTABLE .

Figure 2-2 Example of Instruction Fields

2.1.2 Instruction Descriptive Name and Mnemonic

The instruction descriptive name and mnemonic are printed as page headings for each instruction, as shown inFigure
2-3.

Figure 2-3 Example of Instruction Descriptive Name and Mnemonic

2.1.3 Format Field

The assembler formats for the instruction and the architecture level at which the instruction was originally defin
given in theFormatfield. If the instruction definition was later extended, the architecture levels at which it was exten
and the assembler formats for the extended definition are shown in their order of extension (for an example, se
C.cond.fmt). The MIPS architecture levels are inclusive; higher architecture levels include all instructions in pre
levels. Extensions to instructions are backwards compatible. The original assembler formats are valid for the e
architecture.

Format: ADD rd, rs, rt MIPS32

Figure 2-4 Example of Instruction Format

The assembler format is shown with literal parts of the assembler instruction printed in uppercase characters.
variable parts, the operands, are shown as the lowercase names of the appropriate fields. The architectural level
the instruction was first defined, for example “MIPS32” is shown at the right side of the page.

There can be more than one assembler format for each architecture level. Floating point operations on formatt
show an assembly format with the actual assembler mnemonic for each valid value of thefmt field. For example, the
ADD.fmt instruction lists both ADD.S and ADD.D.

31 26 25 21 20 16 15 11 10 6 5 0

SPECIAL

000000
rs rt rd

0

00000

ADD

100000

6 5 5 5 5 6

Add Word ADD
MIPS32™ Architecture For Programmers Volume II, Revision 2.00 9

Copyright © 2001-2003 MIPS Technologies Inc. All rights reserved.

Chapter 2 Guide to the Instruction Set

s (once

n.

 and

ription

one

ards for
The assembler format lines sometimes include parenthetical comments to help explain variations in the format
again, see C.cond.fmt). These comments are not a part of the assembler format.

2.1.4 Purpose Field

The Purpose field gives a short description of the use of the instruction.

Purpose:

To add 32-bit integers. If an overflow occurs, then trap.

Figure 2-5 Example of Instruction Purpose

2.1.5 Description Field

If a one-line symbolic description of the instruction is feasible, it appears immediately to the right of theDescription
heading. The main purpose is to show how fields in the instruction are used in the arithmetic or logical operatio

Description: rd ← rs + rt

The 32-bit word value in GPRrt is added to the 32-bit value in GPRrs to produce a 32-bit result.

• If the addition results in 32-bit 2’s complement arithmetic overflow, the destination register is not modified
an Integer Overflow exception occurs

• If the addition does not overflow, the 32-bit result is placed into GPRrd

Figure 2-6 Example of Instruction Description

The body of the section is a description of the operation of the instruction in text, tables, and figures. This desc
complements the high-level language description in theOperation section.

This section uses acronyms for register descriptions. “GPRrt” is CPU general-purpose register specified by the
instruction fieldrt. “FPR fs” is the floating point operand register specified by the instruction fieldfs. “CP1 registerfd”
is the coprocessor 1 general register specified by the instruction fieldfd. “FCSR” is the floating pointControl /Status
register.

2.1.6 Restrictions Field

TheRestrictionsfield documents any possible restrictions that may affect the instruction. Most restrictions fall into
of the following six categories:

• Valid values for instruction fields (for example, see floating point ADD.fmt)

• ALIGNMENT requirements for memory addresses (for example, see LW)

• Valid values of operands (for example, see DADD)

• Valid operand formats (for example, see floating point ADD.fmt)

• Order of instructions necessary to guarantee correct execution. These ordering constraints avoid pipeline haz
which some processors do not have hardware interlocks (for example, see MUL).

• Valid memory access types (for example, see LL/SC)
10 MIPS32™ Architecture For Programmers Volume II, Revision 2.00

Copyright © 2001-2003 MIPS Technologies Inc. All rights reserved.

2.1 Understanding the Instruction Fields

tation

tion of a
ship
Restrictions:

None

Figure 2-7 Example of Instruction Restrictions

2.1.7 Operation Field

TheOperation field describes the operation of the instruction as pseudocode in a high-level language notation
resembling Pascal. This formal description complements theDescription section; it is not complete in itself because
many of the restrictions are either difficult to include in the pseudocode or are omitted for legibility.

Operation:

temp ← (GPR[rs] 31||GPR[rs] 31..0) + (GPR[rt] 31||GPR[rt] 31..0)
if temp 32 ≠ temp 31 then

SignalException(IntegerOverflow)
else

GPR[rd] ← temp
endif

Figure 2-8 Example of Instruction Operation

See Section 2.2, "Operation Section Notation and Functions" on page 12 for more information on the formal no
used here.

2.1.8 Exceptions Field

TheExceptionsfield lists the exceptions that can be caused byOperationof the instruction. It omits exceptions that can
be caused by the instruction fetch, for instance, TLB Refill, and also omits exceptions that can be caused by
asynchronous external events such as an Interrupt. Although a Bus Error exception may be caused by the opera
load or store instruction, this section does not list Bus Error for load and store instructions because the relation
between load and store instructions and external error indications, like Bus Error, are dependent upon the
implementation.

Exceptions:

Integer Overflow

Figure 2-9 Example of Instruction Exception

An instruction may cause implementation-dependent exceptions that are not present in theExceptions section.

2.1.9 Programming Notes and Implementation Notes Fields
MIPS32™ Architecture For Programmers Volume II, Revision 2.00 11

Copyright © 2001-2003 MIPS Technologies Inc. All rights reserved.

Chapter 2 Guide to the Instruction Set

ot

. Specific

ed

ode more
include

essor
nd how

into the

a load
ord in
TheNotes sections contain material that is useful for programmers and implementors, respectively, but that is n
necessary to describe the instruction and does not belong in the description sections.

Programming Notes:

ADDU performs the same arithmetic operation but does not trap on overflow.

Figure 2-10 Example of Instruction Programming Notes

2.2 Operation Section Notation and Functions

In an instruction description, theOperationsection uses a high-level language notation to describe the operation
performed by each instruction. Special symbols used in the pseudocode are described in the previous chapter
pseudocode functions are described below.

This section presents information about the following topics:

• “Instruction Execution Ordering” on page 12

• “Pseudocode Functions” on page 12

2.2.1 Instruction Execution Ordering

Each of the high-level language statements in theOperations section are executed sequentially (except as constrain
by conditional and loop constructs).

2.2.2 Pseudocode Functions

There are several functions used in the pseudocode descriptions. These are used either to make the pseudoc
readable, to abstract implementation-specific behavior, or both. These functions are defined in this section, and
the following:

• “Coprocessor General Register Access Functions” on page 12

• “Load Memory and Store Memory Functions” on page 14

• “Access Functions for Floating Point Registers” on page 16

• “Miscellaneous Functions” on page 18

2.2.2.1 Coprocessor General Register Access Functions

Defined coprocessors, except for CP0, have instructions to exchange words and doublewords between coproc
general registers and the rest of the system. What a coprocessor does with a word or doubleword supplied to it a
a coprocessor supplies a word or doubleword is defined by the coprocessor itself. This behavior is abstracted
functions described in this section.

COP_LW

The COP_LW function defines the action taken by coprocessor z when supplied with a word from memory during
word operation. The action is coprocessor-specific. The typical action would be to store the contents of memw
coprocessor general registerrt.
12 MIPS32™ Architecture For Programmers Volume II, Revision 2.00

Copyright © 2001-2003 MIPS Technologies Inc. All rights reserved.

2.2 Operation Section Notation and Functions

during
nts of

eration.

f the
COP_LW (z, rt, memword)
z: The coprocessor unit number
rt : Coprocessor general register specifier
memword: A 32-bit word value supplied to the coprocessor

/* Coprocessor-dependent action */

endfunction COP_LW

Figure 2-11 COP_LW Pseudocode Function

COP_LD

The COP_LD function defines the action taken by coprocessor z when supplied with a doubleword from memory
a load doubleword operation. The action is coprocessor-specific. The typical action would be to store the conte
memdouble in coprocessor general registerrt.

COP_LD (z, rt, memdouble)
z: The coprocessor unit number
rt : Coprocessor general register specifier
memdouble : 64-bit doubleword value supplied to the coprocessor.

/* Coprocessor-dependent action */

endfunction COP_LD

Figure 2-12 COP_LD Pseudocode Function

COP_SW

The COP_SW function defines the action taken by coprocessor z to supply a word of data during a store word op
The action is coprocessor-specific. The typical action would be to supply the contents of the low-order word in
coprocessor general registerrt.

dataword ← COP_SW (z, rt)
z: The coprocessor unit number
rt : Coprocessor general register specifier
dataword : 32-bit word value

/* Coprocessor-dependent action */

endfunction COP_SW

Figure 2-13 COP_SW Pseudocode Function

COP_SD

The COP_SD function defines the action taken by coprocessor z to supply a doubleword of data during a store
doubleword operation. The action is coprocessor-specific. The typical action would be to supply the contents o
low-order doubleword in coprocessor general registerrt.

datadouble ← COP_SD (z, rt)
z: The coprocessor unit number
rt : Coprocessor general register specifier
datadouble : 64-bit doubleword value

/* Coprocessor-dependent action */
MIPS32™ Architecture For Programmers Volume II, Revision 2.00 13

Copyright © 2001-2003 MIPS Technologies Inc. All rights reserved.

Chapter 2 Guide to the Instruction Set

st byte
dian

irtual
e
f
ly from

gorithm,

s
.
 the
not

type
mory

ntire
endfunction COP_SD

Figure 2-14 COP_SD Pseudocode Function

2.2.2.2 Load Memory and Store Memory Functions

Regardless of byte ordering (big- or little-endian), the address of a halfword, word, or doubleword is the smalle
address of the bytes that form the object. For big-endian ordering this is the most-significant byte; for a little-en
ordering this is the least-significant byte.

In theOperation pseudocode for load and store operations, the following functions summarize the handling of v
addresses and the access of physical memory. The size of the data item to be loaded or stored is passed in th
AccessLengthfield. The valid constant names and values are shown inTable 2-1. The bytes within the addressed unit o
memory (word for 32-bit processors or doubleword for 64-bit processors) that are used can be determined direct
theAccessLength and the two or three low-order bits of the address.

AddressTranslation

The AddressTranslation function translates a virtual address to a physical address and its cache coherence al
describing the mechanism used to resolve the memory reference.

Given the virtual addressvAddr, and whether the reference is to Instructions or Data (IorD), find the corresponding
physical address (pAddr) and the cache coherence algorithm (CCA) used to resolve the reference. If the virtual addres
is in one of the unmapped address spaces, the physical address andCCAare determined directly by the virtual address
If the virtual address is in one of the mapped address spaces then the TLB or fixed mapping MMU determines
physical address and access type; if the required translation is not present in the TLB or the desired access is
permitted, the function fails and an exception is taken.

(pAddr, CCA) ← AddressTranslation (vAddr, IorD, LorS)

/* pAddr : physical address */
/* CCA: Cache Coherence Algorithm, the method used to access caches*/
/* and memory and resolve the reference */

/* vAddr : virtual address */
/* IorD : Indicates whether access is for INSTRUCTION or DATA */
/* LorS : Indicates whether access is for LOAD or STORE */

/* See the address translation description for the appropriate MMU */
/* type in Volume III of this book for the exact translation mechanism */

endfunction AddressTranslation

Figure 2-15 AddressTranslation Pseudocode Function

LoadMemory

The LoadMemory function loads a value from memory.

This action uses cache and main memory as specified in both the Cache Coherence Algorithm (CCA) and the access
(IorD) to find the contents ofAccessLengthmemory bytes, starting at physical locationpAddr. The data is returned in a
fixed-width naturally aligned memory element (MemElem). The low-order 2 (or 3) bits of the address and the
AccessLengthindicate which of the bytes withinMemElemneed to be passed to the processor. If the memory access
of the reference isuncached, only the referenced bytes are read from memory and marked as valid within the me
element. If the access type iscachedbut the data is not present in cache, an implementation-specificsizeandalignment
block of memory is read and loaded into the cache to satisfy a load reference. At a minimum, this block is the e
memory element.
14 MIPS32™ Architecture For Programmers Volume II, Revision 2.00

Copyright © 2001-2003 MIPS Technologies Inc. All rights reserved.

2.2 Operation Section Notation and Functions

ry)

t are

d.

crease
MemElem ← LoadMemory (CCA, AccessLength, pAddr, vAddr, IorD)

/* MemElem: Data is returned in a fixed width with a natural alignment. The */
/* width is the same size as the CPU general-purpose register, */
/* 32 or 64 bits, aligned on a 32- or 64-bit boundary, */
/* respectively. */
/* CCA: Cache Coherence Algorithm, the method used to access caches */
/* and memory and resolve the reference */

/* AccessLength : Length, in bytes, of access */
/* pAddr : physical address */
/* vAddr : virtual address */
/* IorD : Indicates whether access is for Instructions or Data */

endfunction LoadMemory

Figure 2-16 LoadMemory Pseudocode Function

StoreMemory

The StoreMemory function stores a value to memory.

The specified data is stored into the physical locationpAddrusing the memory hierarchy (data caches and main memo
as specified by the Cache Coherence Algorithm (CCA). TheMemElem contains the data for an aligned, fixed-width
memory element (a word for 32-bit processors, a doubleword for 64-bit processors), though only the bytes tha
actually stored to memory need be valid. The low-order two (or three) bits ofpAddrand theAccessLengthfield indicate
which of the bytes within theMemElem data should be stored; only these bytes in memory will actually be change

StoreMemory (CCA, AccessLength, MemElem, pAddr, vAddr)

/* CCA: Cache Coherence Algorithm, the method used to access */
/* caches and memory and resolve the reference. */
/* AccessLength : Length, in bytes, of access */
/* MemElem: Data in the width and alignment of a memory element. */
/* The width is the same size as the CPU general */
/* purpose register, either 4 or 8 bytes, */
/* aligned on a 4- or 8-byte boundary. For a */
/* partial-memory-element store, only the bytes that will be*/
/* stored must be valid.*/
/* pAddr : physical address */
/* vAddr : virtual address */

endfunction StoreMemory

Figure 2-17 StoreMemory Pseudocode Function

Prefetch

The Prefetch function prefetches data from memory.

Prefetch is an advisory instruction for which an implementation-specific action is taken. The action taken may in
performance but must not change the meaning of the program or alter architecturally visible state.

Prefetch (CCA, pAddr, vAddr, DATA, hint)

/* CCA: Cache Coherence Algorithm, the method used to access */
/* caches and memory and resolve the reference. */
/* pAddr : physical address */
MIPS32™ Architecture For Programmers Volume II, Revision 2.00 15

Copyright © 2001-2003 MIPS Technologies Inc. All rights reserved.

Chapter 2 Guide to the Instruction Set

erpreted
load
/* vAddr : virtual address */
/* DATA: Indicates that access is for DATA */
/* hint : hint that indicates the possible use of the data */

endfunction Prefetch

Figure 2-18 Prefetch Pseudocode Function

Table 2-1 lists the data access lengths and their labels for loads and stores.

2.2.2.3 Access Functions for Floating Point Registers

The pseudocode shown in below specifies how the unformatted contents loaded or moved to CP1 registers are int
to form a formatted value. If an FPR contains a value in some format, rather than unformatted contents from a
(uninterpreted), it is valid to interpret the value in that format (but not to interpret it in a different format).

ValueFPR

The ValueFPR function returns a formatted value from the floating point registers.

value ← ValueFPR(fpr, fmt)

/* value: The formattted value from the FPR */

/* fpr: The FPR number */
/* fmt: The format of the data, one of: */
/* S, D, W, L, PS, */
/* OB, QH, */
/* UNINTERPRETED_WORD, */
/* UNINTERPRETED_DOUBLEWORD */
/* The UNINTERPRETED values are used to indicate that the datatype */
/* is not known as, for example, in SWC1 and SDC1 */

case fmt of
S, W, UNINTERPRETED_WORD:

valueFPR ← FPR[fpr]

D, UNINTERPRETED_DOUBLEWORD:
if (FP32RegistersMode = 0)

if (fpr 0 ≠ 0) then
valueFPR ← UNPREDICTABLE

Table 2-1 AccessLength Specifications for Loads/Stores

AccessLength Name Value Meaning

DOUBLEWORD 7 8 bytes (64 bits)

SEPTIBYTE 6 7 bytes (56 bits)

SEXTIBYTE 5 6 bytes (48 bits)

QUINTIBYTE 4 5 bytes (40 bits)

WORD 3 4 bytes (32 bits)

TRIPLEBYTE 2 3 bytes (24 bits)

HALFWORD 1 2 bytes (16 bits)

BYTE 0 1 byte (8 bits)
16 MIPS32™ Architecture For Programmers Volume II, Revision 2.00

Copyright © 2001-2003 MIPS Technologies Inc. All rights reserved.

2.2 Operation Section Notation and Functions

o CP1
ctions.
fferent
else
valueFPR ← FPR[fpr +1] 31..0 || FPR[fpr] 31..0

endif
else

valueFPR ← FPR[fpr]
endif

L, PS:
if (FP32RegistersMode = 0) then

valueFPR ← UNPREDICTABLE
else

valueFPR ← FPR[fpr]
endif

DEFAULT:
valueFPR ← UNPREDICTABLE

endcase
endfunction ValueFPR

Figure 2-19 ValueFPR Pseudocode Function

StoreFPR

The pseudocode shown below specifies the way a binary encoding representing a formatted value is stored int
registers by a computational or move operation. This binary representation is visible to store or move-from instru
Once an FPR receives a value from the StoreFPR(), it is not valid to interpret the value with ValueFPR() in a di
format.

StoreFPR (fpr, fmt, value)

/* fpr: The FPR number */
/* fmt: The format of the data, one of: */
/* S, D, W, L, PS, */
/* OB, QH, */
/* UNINTERPRETED_WORD, */
/* UNINTERPRETED_DOUBLEWORD */
/* value: The formattted value to be stored into the FPR */

/* The UNINTERPRETED values are used to indicate that the datatype */
/* is not known as, for example, in LWC1 and LDC1 */

case fmt of
S, W, UNINTERPRETED_WORD:

FPR[fpr] ← value

D, UNINTERPRETED_DOUBLEWORD:
if (FP32RegistersMode = 0)

if (fpr 0 ≠ 0) then
UNPREDICTABLE

else
FPR[fpr] ← UNPREDICTABLE32 || value 31..0
FPR[fpr +1] ← UNPREDICTABLE32 || value 63..32

endif
else

FPR[fpr] ← value
endif
MIPS32™ Architecture For Programmers Volume II, Revision 2.00 17

Copyright © 2001-2003 MIPS Technologies Inc. All rights reserved.

Chapter 2 Guide to the Instruction Set

a return

Debug

a return
L, PS:
if (FP32RegistersMode = 0) then

UNPREDICTABLE
else

FPR[fpr] ← value
endif

endcase

endfunction StoreFPR

Figure 2-20 StoreFPR Pseudocode Function

2.2.2.4 Miscellaneous Functions

This section lists miscellaneous functions not covered in previous sections.

SyncOperation

The SyncOperation function orders loads and stores to synchronize shared memory.

This action makes the effects of the synchronizable loads and stores indicated bystype occur in the same order for all
processors.

SyncOperation(stype)

/* stype : Type of load/store ordering to perform. */

/* Perform implementation-dependent operation to complete the */
/* required synchronization operation */

endfunction SyncOperation

Figure 2-21 SyncOperation Pseudocode Function

SignalException

The SignalException function signals an exception condition.

This action results in an exception that aborts the instruction. The instruction operation pseudocode never sees
from this function call.

SignalException(Exception, argument)

/* Exception : The exception condition that exists. */
/* argument: A exception-dependent argument, if any */

endfunction SignalException

Figure 2-22 SignalException Pseudocode Function

SignalDebugBreakpointException

The SignalDebugBreakpointException function signals a condition that causes entry into Debug Mode from non-
Mode.

This action results in an exception that aborts the instruction. The instruction operation pseudocode never sees
from this function call.
18 MIPS32™ Architecture For Programmers Volume II, Revision 2.00

Copyright © 2001-2003 MIPS Technologies Inc. All rights reserved.

2.2 Operation Section Notation and Functions

m

a return

tions
ation

he
ly
SignalDebugBreakpointException()

endfunction SignalDebugBreakpointException

Figure 2-23 SignalDebugBreakpointException Pseudocode Function

SignalDebugModeBreakpointException

The SignalDebugModeBreakpointException function signals a condition that causes entry into Debug Mode fro
Debug Mode (i.e., an exception generated while already running in Debug Mode).

This action results in an exception that aborts the instruction. The instruction operation pseudocode never sees
from this function call.

SignalDebugModeBreakpointException()

endfunction SignalDebugModeBreakpointException

Figure 2-24 SignalDebugModeBreakpointException Pseudocode Function

NullifyCurrentInstruction

The NullifyCurrentInstruction function nullifies the current instruction.

The instruction is aborted, inhibiting not only the functional effect of the instruction, but also inhibiting all excep
detected during fetch, decode, or execution of the instruction in question. For branch-likely instructions, nullific
kills the instruction in the delay slot of the branch likely instruction.

NullifyCurrentInstruction()

endfunction NullifyCurrentInstruction

Figure 2-25 NullifyCurrentInstruction PseudoCode Function

CoprocessorOperation

The CoprocessorOperation function performs the specified Coprocessor operation.

CoprocessorOperation (z, cop_fun)

/* z: Coprocessor unit number */
/* cop_fun : Coprocessor function from function field of instruction */

/* Transmit the cop_fun value to coprocessor z */

endfunction CoprocessorOperation

Figure 2-26 CoprocessorOperation Pseudocode Function

JumpDelaySlot

The JumpDelaySlot function is used in the pseudocode for the PC-relative instructions in the MIPS16e ASE. T
function returns TRUE if the instruction atvAddris executed in a jump delay slot. A jump delay slot always immediate
follows a JR, JAL, JALR, or JALX instruction.

JumpDelaySlot(vAddr)
MIPS32™ Architecture For Programmers Volume II, Revision 2.00 19

Copyright © 2001-2003 MIPS Technologies Inc. All rights reserved.

Chapter 2 Guide to the Instruction Set

is
,
tains

 in
/* vAddr :Virtual address */

endfunction JumpDelaySlot

Figure 2-27 JumpDelaySlot Pseudocode Function

FPConditionCode

The FPConditionCode function returns the value of a specific floating point condition code.

tf ←FPConditionCode(cc)

/* tf: The value of the specified condition code */

/* cc: The Condition code number in the range 0..7 */

if cc = 0 then
FPConditionCode ← FCSR23

else
FPConditionCode ← FCSR24+cc

endif

endfunction FPConditionCode

Figure 2-28 FPConditionCode Pseudocode Function

SetFPConditionCode

The SetFPConditionCode function writes a new value to a specific floating point condition code.

SetFPConditionCode(cc)
if cc = 0 then

FCSR ← FCSR31..24 || tf || FCSR 22..0
else

FCSR ← FCSR31..25+cc || tf || FCSR 23+cc..0
endif

endfunction SetFPConditionCode

Figure 2-29 SetFPConditionCode Pseudocode Function

2.3 Op and Function Subfield Notation

In some instructions, the instruction subfieldsopand functioncan have constant 5- or 6-bit values. When reference
made to these instructions, uppercase mnemonics are used. For instance, in the floating point ADD instruction
op=COP1 andfunction=ADD. In other cases, a single field has both fixed and variable subfields, so the name con
both upper- and lowercase characters.

2.4 FPU Instructions

In the detailed description of each FPU instruction, all variable subfields in an instruction format (such asfs, ft,
immediate, and so on) are shown in lowercase. The instruction name (such as ADD, SUB, and so on) is shown
uppercase.
20 MIPS32™ Architecture For Programmers Volume II, Revision 2.00

Copyright © 2001-2003 MIPS Technologies Inc. All rights reserved.

2.4 FPU Instructions

 For
to a

S16e
For the sake of clarity, an alias is sometimes used for a variable subfield in the formats of specific instructions.
example,rs=basein the format for load and store instructions. Such an alias is always lowercase since it refers
variable subfield.

Bit encodings for mnemonics are given in Volume I, in the chapters describing the CPU, FPU, MDMX, and MIP
instructions.

See Section 2.3, "Op and Function Subfield Notation" on page 20 for a description of theop andfunction subfields.
MIPS32™ Architecture For Programmers Volume II, Revision 2.00 21

Copyright © 2001-2003 MIPS Technologies Inc. All rights reserved.

Chapter 2 Guide to the Instruction Set
22 MIPS32™ Architecture For Programmers Volume II, Revision 2.00

Copyright © 2001-2003 MIPS Technologies Inc. All rights reserved.

in this
n
 to the
by

te,

.

tions.

itted

ping

d in the
eld in

rdance

ns.

ASE is

ASE

are
Chapter 3

The MIPS32™ Instruction Set

3.1 Compliance and Subsetting

To be compliant with the MIPS32 Architecture, designs must implement a set of required features, as described
document set. To allow flexibility in implementations, the MIPS32 Architecture does provide subsetting rules. A
implementation that follows these rules is compliant with the MIPS32 Architecture as long as it adheres strictly
rules, and fully implements the remaining instructions.Supersetting of the MIPS32 Architecture is only allowed
adding functions to theSPECIAL2 major opcode, by adding control for co-processors via theCOP2, LWC2, SWC2,
LDC2, and/or SDC2, and/or COP3 opcodes, or via the addition of approved Application Specific Extensions. No
however, that a decision to use theCOP3 opcode in an implementation of the MIPS32 Architecture precludes a
compatible upgrade to the MIPS64 Architecture because theCOP3 opcode is used as part of the floating point ISA in
the MIPS64 Architecture.

The instruction set subsetting rules are as follows:

• All CPU instructions must be implemented - no subsetting is allowed.

• The FPU and related support instructions, including the MOVF and MOVT CPU instructions, may be omitted
Software may determine if an FPU is implemented by checking the state of the FP bit in theConfig1CP0 register. If
the FPU is implemented, it must include S, D, and W formats, operate instructions, and all supporting instruc
Software may determine which FPU data types are implemented by checking the appropriate bit in theFIR CP1
register. The following allowable FPU subsets are compliant with the MIPS32 architecture:

– No FPU

– FPU with S, D, and W formats and all supporting instructions

• Coprocessor 2 is optional and may be omitted. Software may determine if Coprocessor 2 is implemented by
checking the state of the C2 bit in theConfig1 CP0 register. If Coprocessor 2 is implemented, the Coprocessor 2
interface instructions (BC2, CFC2, COP2, CTC2, LDC2, LWC2, MFC2, MTC2, SDC2, and SWC2) may be om
on an instruction-by-instruction basis.

• Supervisor Mode is optional. If Supervisor Mode is not implemented, bit 3 of theStatus register must be ignored on
write and read as zero.

• The standard TLB-based memory management unit may be replaced with a simpler MMU (e.g., a Fixed Map
MMU). If this is done, the rest of the interface to the Privileged Resource Architecture must be preserved. If a
TLB-based memory management unit is implemented, it must be the standard TLB-based MMU as describe
Privileged Resource Architecture chapter. Software may determine the type of the MMU by checking the MT fi
theConfig CP0 register.

• The Privileged Resource Architecture includes several implementation options and may be subsetted in acco
with those options.

• Instruction, CP0 Register, and CP1 Control Register fields that are marked “Reserved” or shown as “0” in the
description of that field are reserved for future use by the architecture and are not available to implementatio
Implementations may only use those fields that are explicitly reserved for implementation dependent use.

• Supported ASEs are optional and may be subsetted out. If most cases, software may determine if a supported
implemented by checking the appropriate bit in theConfig1 or Config3 CP0 register. If they are implemented, they
must implement the entire ISA applicable to the component, or implement subsets that are approved by the
specifications.

• EJTAG is optional and may be subsetted out. If it is implemented, it must implement only those subsets that
approved by the EJTAG specification.
MIPS32™ Architecture For Programmers Volume II, Revision 2.00 23

Copyright © 2001-2003 MIPS Technologies Inc. All rights reserved.

Chapter 3 The MIPS32™ Instruction Set

e the
• If any instruction is subsetted out based on the rules above, an attempt to execute that instruction must caus
appropriate exception (typically Reserved Instruction or Coprocessor Unusable).

3.2 Alphabetical List of Instructions

Table 3-1 throughTable 3-24 provide a list of instructions grouped by category. Individual instruction descriptions
follow the tables, arranged in alphabetical order.

Table 3-1 CPU Arithmetic Instructions

Mnemonic Instruction

ADD Add Word

ADDI Add Immediate Word

ADDIU Add Immediate Unsigned Word

ADDU Add Unsigned Word

CLO Count Leading Ones in Word

CLZ Count Leading Zeros in Word

DIV Divide Word

DIVU Divide Unsigned Word

MADD Multiply and Add Word to Hi, Lo

MADDU Multiply and Add Unsigned Word to Hi, Lo

MSUB Multiply and Subtract Word to Hi, Lo

MSUBU Multiply and Subtract Unsigned Word to Hi, Lo

MUL Multiply Word to GPR

MULT Multiply Word

MULTU Multiply Unsigned Word

SEB Sign-Extend Byte Release 2 Only

SEH Sign-Extend Halftword Release 2 Only

SLT Set on Less Than

SLTI Set on Less Than Immediate

SLTIU Set on Less Than Immediate Unsigned

SLTU Set on Less Than Unsigned

SUB Subtract Word

SUBU Subtract Unsigned Word

Table 3-2 CPU Branch and Jump Instructions

Mnemonic Instruction

B Unconditional Branch
24 MIPS32™ Architecture For Programmers Volume II, Revision 2.00

Copyright © 2001-2003 MIPS Technologies Inc. All rights reserved.

3.2 Alphabetical List of Instructions
BAL Branch and Link

BEQ Branch on Equal

BGEZ Branch on Greater Than or Equal to Zero

BGEZAL Branch on Greater Than or Equal to Zero and Link

BGTZ Branch on Greater Than Zero

BLEZ Branch on Less Than or Equal to Zero

BLTZ Branch on Less Than Zero

BLTZAL Branch on Less Than Zero and Link

BNE Branch on Not Equal

J Jump

JAL Jump and Link

JALR Jump and Link Register

JALR.HB Jump and Link Register with Hazard Barrier Release 2 Only

JR Jump Register

JR.HB Jump Register with Hazard Barrier Release 2 Only

Table 3-3 CPU Instruction Control Instructions

Mnemonic Instruction

EHB Execution Hazard Barrier Release 2 Only

NOP No Operation

SSNOP Superscalar No Operation

Table 3-4 CPU Load, Store, and Memory Control Instructions

Mnemonic Instruction

LB Load Byte

LBU Load Byte Unsigned

LH Load Halfword

LHU Load Halfword Unsigned

LL Load Linked Word

LW Load Word

LWL Load Word Left

LWR Load Word Right

PREF Prefetch

Table 3-2 CPU Branch and Jump Instructions

Mnemonic Instruction
MIPS32™ Architecture For Programmers Volume II, Revision 2.00 25

Copyright © 2001-2003 MIPS Technologies Inc. All rights reserved.

Chapter 3 The MIPS32™ Instruction Set
SB Store Byte

SC Store Conditional Word

SD Store Doubleword

SH Store Halfword

SW Store Word

SWL Store Word Left

SWR Store Word Right

SYNC Synchronize Shared Memory

SYNCI Synchronize Caches to Make Instruction Writes Effective Release 2 Only

Table 3-5 CPU Logical Instructions

Mnemonic Instruction

AND And

ANDI And Immediate

LUI Load Upper Immediate

NOR Not Or

OR Or

ORI Or Immediate

XOR Exclusive Or

XORI Exclusive Or Immediate

Table 3-6 CPU Insert/Extract Instructions

Mnemonic Instruction

EXT Extract Bit Field Release 2 Only

INS Insert Bit Field Release 2 Only

WSBH Word Swap Bytes Within Halfwords Release 2 Only

Table 3-7 CPU Move Instructions

Mnemonic Instruction

MFHI Move From HI Register

MFLO Move From LO Register

MOVF Move Conditional on Floating Point False

Table 3-4 CPU Load, Store, and Memory Control Instructions

Mnemonic Instruction
26 MIPS32™ Architecture For Programmers Volume II, Revision 2.00

Copyright © 2001-2003 MIPS Technologies Inc. All rights reserved.

3.2 Alphabetical List of Instructions
MOVN Move Conditional on Not Zero

MOVT Move Conditional on Floating Point True

MOVZ Move Conditional on Zero

MTHI Move To HI Register

MTLO Move To LO Register

RDHWR Read Hardware Register Release 2 Only

Table 3-8 CPU Shift Instructions

Mnemonic Instruction

ROTR Rotate Word Right Release 2 Only

ROTRV Rotate Word Right Variable Release 2 Only

SLL Shift Word Left Logical

SLLV Shift Word Left Logical Variable

SRA Shift Word Right Arithmetic

SRAV Shift Word Right Arithmetic Variable

SRL Shift Word Right Logical

SRLV Shift Word Right Logical Variable

Table 3-9 CPU Trap Instructions

Mnemonic Instruction

BREAK Breakpoint

SYSCALL System Call

TEQ Trap if Equal

TEQI Trap if Equal Immediate

TGE Trap if Greater or Equal

TGEI Trap if Greater of Equal Immediate

TGEIU Trap if Greater or Equal Immediate Unsigned

TGEU Trap if Greater or Equal Unsigned

TLT Trap if Less Than

TLTI Trap if Less Than Immediate

TLTIU Trap if Less Than Immediate Unsigned

TLTU Trap if Less Than Unsigned

TNE Trap if Not Equal

Table 3-7 CPU Move Instructions

Mnemonic Instruction
MIPS32™ Architecture For Programmers Volume II, Revision 2.00 27

Copyright © 2001-2003 MIPS Technologies Inc. All rights reserved.

Chapter 3 The MIPS32™ Instruction Set
TNEI Trap if Not Equal Immediate

Table 3-10 Obsolete1 CPU Branch Instructions

1. Software is strongly encouraged to avoid use of the Branch Likely instructions, as they will be removed from
a future revision of the MIPS32 architecture.

Mnemonic Instruction

BEQL Branch on Equal Likely

BGEZALL Branch on Greater Than or Equal to Zero and Link Likely

BGEZL Branch on Greater Than or Equal to Zero Likely

BGTZL Branch on Greater Than Zero Likely

BLEZL Branch on Less Than or Equal to Zero Likely

BLTZALL Branch on Less Than Zero and Link Likely

BLTZL Branch on Less Than Zero Likely

BNEL Branch on Not Equal Likely

Table 3-11 FPU Arithmetic Instructions

Mnemonic Instruction

ABS.fmt Floating Point Absolute Value

ADD.fmt Floating Point Add

DIV.fmt Floating Point Divide

MADD.fmt Floating Point Multiply Add

MSUB.fmt Floating Point Multiply Subtract

MUL.fmt Floating Point Multiply

NEG.fmt Floating Point Negate

NMADD.fmt Floating Point Negative Multiply Add

NMSUB.fmt Floating Point Negative Multiply Subtract

RECIP.fmt Reciprocal Approximation

RSQRT.fmt Reciprocal Square Root Approximation

SQRT Floating Point Square Root

SUB.fmt Floating Point Subtract

Table 3-9 CPU Trap Instructions

Mnemonic Instruction
28 MIPS32™ Architecture For Programmers Volume II, Revision 2.00

Copyright © 2001-2003 MIPS Technologies Inc. All rights reserved.

3.2 Alphabetical List of Instructions
Table 3-12 FPU Branch Instructions

Mnemonic Instruction

BC1F Branch on FP False

BC1T Branch on FP True

Table 3-13 FPU Compare Instructions

Mnemonic Instruction

C.cond.fmt Floating Point Compare

Table 3-14 FPU Convert Instructions

Mnemonic Instruction

ALNV.PS Floating Point Align Variable 64-bit FPU Only

CEIL.L.fmt Floating Point Ceiling Convert to Long Fixed Point 64-bit FPU Only

CEIL.W.fmt Floating Point Ceiling Convert to Word Fixed Point

CVT.D.fmt Floating Point Convert to Double Floating Point

CVT.L.fmt Floating Point Convert to Long Fixed Point 64-bit FPU Only

CVT.PS.S Floating Point Convert Pair to Paired Single 64-bit FPU Only

CVT.S.PL Floating Point Convert Pair Lower to Single Floating Point 64-bit FPU Only

CVT.S.PU Floating Point Convert Pair Upper to Single Floating Point 64-bit FPU Only

CVT.S.fmt Floating Point Convert to Single Floating Point

CVT.W.fmt Floating Point Convert to Word Fixed Point

FLOOR.L.fmt Floating Point Floor Convert to Long Fixed Point 64-bit FPU Only

FLOOR.W.fmt Floating Point Floor Convert to Word Fixed Point

PLL.PS Pair Lower Lower 64-bit FPU Only

PLU.PS Pair Lower Upper 64-bit FPU Only

PUL.PS Pair Upper Lower 64-bit FPU Only

PUU.PS Pair Upper Upper 64-bit FPU Only

ROUND.L.fmt Floating Point Round to Long Fixed Point 64-bit FPU Only

ROUND.W.fmt Floating Point Round to Word Fixed Point

TRUNC.L.fmt Floating Point Truncate to Long Fixed Point 64-bit FPU Only

TRUNC.W.fmt Floating Point Truncate to Word Fixed Point
MIPS32™ Architecture For Programmers Volume II, Revision 2.00 29

Copyright © 2001-2003 MIPS Technologies Inc. All rights reserved.

Chapter 3 The MIPS32™ Instruction Set
Table 3-15 FPU Load, Store, and Memory Control Instructions

Mnemonic Instruction

LDC1 Load Doubleword to Floating Point

LDXC1 Load Doubleword Indexed to Floating Point 64-bit FPU Only

LUXC1 Load Doubleword Indexed Unaligned to Floating Point 64-bit FPU Only

LWC1 Load Word to Floating Point

LWXC1 Load Word Indexed to Floating Point 64-bit FPU Only

PREFX Prefetch Indexed

SDC1 Store Doubleword from Floating Point

SDXC1 Store Doubleword Indexed from Floating Point 64-bit FPU Only

SUXC1 Store Doubleword Indexed Unaligned from Floating Point 64-bit FPU Only

SWC1 Store Word from Floating Point

SWXC1 Store Word Indexed from Floating Point 64-bit FPU Only

Table 3-16 FPU Move Instructions

Mnemonic Instruction

CFC1 Move Control Word from Floating Point

CTC1 Move Control Word to Floating Point

MFC1 Move Word from Floating Point

MFHC1 Move Word from High Half of Floating Point Register Release 2 Only

MOV.fmt Floating Point Move

MOVF.fmt Floating Point Move Conditional on Floating Point False

MOVN.fmt Floating Point Move Conditional on Not Zero

MOVT.fmt Floating Point Move Conditional on Floating Point True

MOVZ.fmt Floating Point Move Conditional on Zero

MTC1 Move Word to Floating Point

MTHC1 Move Word to High Half of Floating Point Register Release 2 Only

Table 3-17 Obsolete1 FPU Branch Instructions

1. Software is strongly encouraged to avoid use of the Branch Likely instructions, as they will be removed from
a future revision of the MIPS32 architecture.

Mnemonic Instruction

BC1FL Branch on FP False Likely

BC1TL Branch on FP True Likely
30 MIPS32™ Architecture For Programmers Volume II, Revision 2.00

Copyright © 2001-2003 MIPS Technologies Inc. All rights reserved.

3.2 Alphabetical List of Instructions
Table 3-18 Coprocessor Branch Instructions

Mnemonic Instruction

BC2F Branch on COP2 False

BC2T Branch on COP2 True

Table 3-19 Coprocessor Execute Instructions

Mnemonic Instruction

COP2 Coprocessor Operation to Coprocessor 2

Table 3-20 Coprocessor Load and Store Instructions

Mnemonic Instruction

LDC2 Load Doubleword to Coprocessor 2

LWC2 Load Word to Coprocessor 2

SDC2 Store Doubleword from Coprocessor 2

SWC2 Store Word from Coprocessor 2

Table 3-21 Coprocessor Move Instructions

Mnemonic Instruction

CFC2 Move Control Word from Coprocessor 2

CTC2 Move Control Word to Coprocessor 2

MFC2 Move Word from Coprocessor 2

MFHC2 Move Word from High Half of Coprocessor 2 Register Release 2 Only

MTC2 Move Word to Coprocessor 2

MTHC2 Move Word to High Half of Coprocessor 2 Register Release 2 Only

Table 3-22 Obsolete1 Coprocessor Branch Instructions

1. Software is strongly encouraged to avoid use of the Branch Likely instructions, as they will be removed from
a future revision of the MIPS32 architecture.

Mnemonic Instruction

BC2FL Branch on COP2 False Likely

BC2TL Branch on COP2 True Likely

Table 3-23 Privileged Instructions

Mnemonic Instruction

CACHE Perform Cache Operation
MIPS32™ Architecture For Programmers Volume II, Revision 2.00 31

Copyright © 2001-2003 MIPS Technologies Inc. All rights reserved.

Chapter 3 The MIPS32™ Instruction Set
DI Disable Interrupts Release 2 Only

EI Enable Interrupts Release 2 Only

ERET Exception Return

MFC0 Move from Coprocessor 0

MTC0 Move to Coprocessor 0

RDPGPR Read GPR from Previous Shadow Set Release 2 Only

TLBP Probe TLB for Matching Entry

TLBR Read Indexed TLB Entry

TLBWI Write Indexed TLB Entry

TLBWR Write Random TLB Entry

WAIT Enter Standby Mode

WRPGPR Write GPR to Previous Shadow Set Release 2 Only

Table 3-24 EJTAG Instructions

Mnemonic Instruction

DERET Debug Exception Return

SDBBP Software Debug Breakpoint

Table 3-23 Privileged Instructions

Mnemonic Instruction
32 MIPS32™ Architecture For Programmers Volume II, Revision 2.00

Copyright © 2001-2003 MIPS Technologies Inc. All rights reserved.

MIPS32™ Architecture For Programmers Volume II, Revision 2.00 33

Copyright © 2001-2003 MIPS Technologies Inc. All rights reserved.

ABS.fmt

Format: ABS.S fd, fs MIPS32
ABS.D fd, fs MIPS32
ABS.PS fd, fs MIPS64

MIPS32 Release 2

Purpose:

To compute the absolute value of an FP value

Description: fd ← abs(fs)

The absolute value of the value in FPRfs is placed in FPRfd. The operand and result are values in formatfmt.
ABS.PS takes the absolute value of the two values in FPRfs independently, and ORs together any generated excep-
tions.

Cause bits are ORed into theFlag bits if no exception is taken.

This operation is arithmetic; a NaN operand signals invalid operation.

Restrictions:

The fieldsfs and fd must specify FPRs valid for operands of typefmt. If they are not valid, the result isUNPRE-
DICTABLE .

The operand must be a value in formatfmt; if it is not, the result isUNPREDICTABLE and the value of the operand
FPR becomesUNPREDICTABLE .

The result of ABS.PS isUNPREDICTABLE if the processor is executing in 16 FP registers mode.

Operation:

StoreFPR(fd, fmt, AbsoluteValue(ValueFPR(fs, fmt)))

Exceptions:

Coprocessor Unusable, Reserved Instruction

Floating Point Exceptions:

Unimplemented Operation, Invalid Operation

31 26 25 21 20 16 15 11 10 6 5 0

COP1

010001
fmt

0

00000
fs fd

ABS

000101

6 5 5 5 5 6

Floating Point Absolute Value ABS.fmt

34 MIPS32™ Architecture For Programmers Volume II, Revision 2.00

Copyright © 2001-2003 MIPS Technologies Inc. All rights reserved.

ADD

Format: ADD rd, rs, rt MIPS32

Purpose:

To add 32-bit integers. If an overflow occurs, then trap.

Description: rd ← rs + rt

The 32-bit word value in GPRrt is added to the 32-bit value in GPRrs to produce a 32-bit result.

• If the addition results in 32-bit 2’s complement arithmetic overflow, the destination register is not modified and
an Integer Overflow exception occurs.

• If the addition does not overflow, the 32-bit result is placed into GPRrd.

Restrictions:

None

Operation:

temp ← (GPR[rs] 31||GPR[rs] 31..0) + (GPR[rt] 31||GPR[rt] 31..0)
if temp 32 ≠ temp 31 then

SignalException(IntegerOverflow)
else

GPR[rd] ← temp
endif

Exceptions:

Integer Overflow

Programming Notes:

ADDU performs the same arithmetic operation but does not trap on overflow.

31 26 25 21 20 16 15 11 10 6 5 0

SPECIAL

000000
rs rt rd

0

00000

ADD

100000

6 5 5 5 5 6

Add Word ADD

MIPS32™ Architecture For Programmers Volume II, Revision 2.00 35

Copyright © 2001-2003 MIPS Technologies Inc. All rights reserved.

ADD.fmt

Format: ADD.S fd, fs, ft MIPS32
ADD.D fd, fs, ft MIPS32
ADD.PS fd, fs, ft MIPS64

MIPS32 Release 2

Purpose:

To add floating point values

Description: fd ← fs + ft

The value in FPRft is added to the value in FPRfs. The result is calculated to infinite precision, rounded by using to
the current rounding mode inFCSR, and placed into FPRfd. The operands and result are values in formatfmt.
ADD.PS adds the upper and lower halves of FPRfs and FPRft independently, and ORs together any generated
exceptions.

Cause bits are ORed into theFlag bits if no exception is taken.

Restrictions:

The fieldsfs, ft, andfd must specify FPRs valid for operands of typefmt. If they are not valid, the result isUNPRE-
DICTABLE .

The operands must be values in formatfmt; if they are not, the result isUNPREDICTABLE and the value of the
operand FPRs becomesUNPREDICTABLE .

The result of ADD.PS isUNPREDICTABLE if the processor is executing in 16 FP registers mode.

Operation:

StoreFPR (fd, fmt, ValueFPR(fs, fmt) +fmt ValueFPR(ft, fmt))

Exceptions:

Coprocessor Unusable, Reserved Instruction

Floating Point Exceptions:

Unimplemented Operation, Invalid Operation, Inexact, Overflow, Underflow

31 26 25 21 20 16 15 11 10 6 5 0

COP1

010001
fmt ft fs fd

ADD

000000

6 5 5 5 5 6

Floating Point Add ADD.fmt

36 MIPS32™ Architecture For Programmers Volume II, Revision 2.00

Copyright © 2001-2003 MIPS Technologies Inc. All rights reserved.

ADDI

Format: ADDI rt, rs, immediate MIPS32

Purpose:

To add a constant to a 32-bit integer. If overflow occurs, then trap.

Description: rt ← rs + immediate

The 16-bit signedimmediateis added to the 32-bit value in GPRrs to produce a 32-bit result.

• If the addition results in 32-bit 2’s complement arithmetic overflow, the destination register is not modified and
an Integer Overflow exception occurs.

• If the addition does not overflow, the 32-bit result is placed into GPRrt.

Restrictions:

None

Operation:

temp ← (GPR[rs] 31||GPR[rs] 31..0) + sign_extend(immediate)
if temp 32 ≠ temp 31 then

SignalException(IntegerOverflow)
else

GPR[rt] ← temp
endif

Exceptions:

Integer Overflow

Programming Notes:

ADDIU performs the same arithmetic operation but does not trap on overflow.

31 26 25 21 20 16 15 0

ADDI

001000
rs rt immediate

6 5 5 16

Add Immediate Word ADDI

MIPS32™ Architecture For Programmers Volume II, Revision 2.00 37

Copyright © 2001-2003 MIPS Technologies Inc. All rights reserved.

ADDIU

Format: ADDIU rt, rs, immediate MIPS32

Purpose:

To add a constant to a 32-bit integer

Description: rt ← rs + immediate

The 16-bit signedimmediateis added to the 32-bit value in GPRrs and the 32-bit arithmetic result is placed into
GPRrt.

No Integer Overflow exception occurs under any circumstances.

Restrictions:

None

Operation:

temp ← GPR[rs] + sign_extend(immediate)
GPR[rt] ← temp

Exceptions:

None

Programming Notes:

The term “unsigned” in the instruction name is a misnomer; this operation is 32-bit modulo arithmetic that does not
trap on overflow. This instruction is appropriate for unsigned arithmetic, such as address arithmetic, or integer arith-
metic environments that ignore overflow, such as C language arithmetic.

31 26 25 21 20 16 15 0

ADDIU

001001
rs rt immediate

6 5 5 16

Add Immediate Unsigned Word ADDIU

38 MIPS32™ Architecture For Programmers Volume II, Revision 2.00

Copyright © 2001-2003 MIPS Technologies Inc. All rights reserved.

ADDU

Format: ADDU rd, rs, rt MIPS32

Purpose:

To add 32-bit integers

Description: rd ← rs + rt

The 32-bit word value in GPRrt is added to the 32-bit value in GPRrs and the 32-bit arithmetic result is placed into
GPRrd.

No Integer Overflow exception occurs under any circumstances.

Restrictions:

None

Operation:

temp ← GPR[rs] + GPR[rt]
GPR[rd] ← temp

Exceptions:

None

Programming Notes:

The term “unsigned” in the instruction name is a misnomer; this operation is 32-bit modulo arithmetic that does not
trap on overflow. This instruction is appropriate for unsigned arithmetic, such as address arithmetic, or integer arith-
metic environments that ignore overflow, such as C language arithmetic.

31 26 25 21 20 16 15 11 10 6 5 0

SPECIAL

000000
rs rt rd

0

00000

ADDU

100001

6 5 5 5 5 6

Add Unsigned Word ADDU

lf of
ALNV.PS

Format: ALNV.PS fd, fs, ft, rs MIPS64
MIPS32 Release 2

Purpose:

To align a misaligned pair of paired single values

Description: fd ← ByteAlign(rs 2..0 , fs, ft)

FPRfs is concatenated with FPRft and this value is funnel-shifted by GPRrs2..0 bytes, and written into FPRfd. If
GPR rs2..0 is 0, fd receivesfs. If GPR rs2..0 is 4, the operation depends on the current endianness.

Figure 3-1 illustrates the following example: for a big-endian operation and a byte alignment of 4, the upper hafd
receives the lower half of the paired single value infs, and the lower half offd receives the upper half of the paired
single value inft.

Figure 3-1 Example of an ALNV.PS Operation

The move is nonarithmetic; it causes no IEEE 754 exceptions.

31 26 25 21 20 16 15 11 10 6 5 0

COP1X

010011
rs ft fs fd

ALNV.PS

011110

6 5 5 5 5 6

Floating Point Align Variable ALNV.PS

63 3132 0

63 3132 0

63 3132 0

fs ft

fd
MIPS32™ Architecture For Programmers Volume II, Revision 2.00 39

Copyright © 2001-2003 MIPS Technologies Inc. All rights reserved.

:

Restrictions:

The fieldsfs, ft,andfd must specify FPRs valid for operands of typePS. If they are not valid, the result isUNPRE-
DICTABLE .

If GPR rs1..0 are non-zero, the results areUNPREDICTABLE .

The result of this instruction isUNPREDICTABLE if the processor is executing in 16 FP registers mode.

Operation:

if GPR[rs] 2..0 = 0 then
StoreFPR(fd, PS,ValueFPR(fs,PS))

else if GPR[rs] 2..0 ≠ 4 then
UNPREDICTABLE

else if BigEndianCPU then
StoreFPR(fd, PS, ValueFPR(fs, PS) 31..0 || ValueFPR(ft,PS) 63..32)

else
StoreFPR(fd, PS, ValueFPR(ft, PS) 31..0 || ValueFPR(fs,PS) 63..32)

endif

Exceptions:

Coprocessor Unusable, Reserved Instruction

Programming Notes:

ALNV.PS is designed to be used with LUXC1 to load 8 bytes of data from any 4-byte boundary. For example
/* Copy T2 bytes (a multiple of 16) of data T0 to T1, T0 unaligned, T1 aligned.

Reads one dw beyond the end of T0. */
LUXC1 F0, 0(T0) /* set up by reading 1st src dw */
LI T3, 0 /* index into src and dst arrays */
ADDIU T4, T0, 8 /* base for odd dw loads */
ADDIU T5, T1, -8/* base for odd dw stores */

LOOP:
LUXC1 F1, T3(T4)
ALNV.PS F2, F0, F1, T0/* switch F0, F1 for little-endian */
SDC1 F2, T3(T1)
ADDIU T3, T3, 16
LUXC1 F0, T3(T0)
ALNV.PS F2, F1, F0, T0/* switch F1, F0 for little-endian */
BNE T3, T2, LOOP
SDC1 F2, T3(T5)

DONE:

Floating Point Align Variable (cont.) ALNV.PS
40 MIPS32™ Architecture For Programmers Volume II, Revision 2.00

Copyright © 2001-2003 MIPS Technologies Inc. All rights reserved.

dress:
ALNV.PS is also useful with SUXC1 to store paired-single results in a vector loop to a possibly misaligned ad

/* T1[i] = T0[i] + F8, T0 aligned, T1 unaligned. */
CVT.PS.S F8, F8, F8/* make addend paired-single */

/* Loop header computes 1st pair into F0, stores high half if T1 */
/* misaligned */

LOOP:
LDC1 F2, T3(T4)/* get T0[i+2]/T0[i+3] */
ADD.PS F1, F2, F8/* compute T1[i+2]/T1[i+3] */
ALNV.PS F3, F0, F1, T1/* align to dst memory */
SUXC1 F3, T3(T1)/* store to T1[i+0]/T1[i+1] */
ADDIU T3, 16 /* i = i + 4 */
LDC1 F2, T3(T0)/* get T0[i+0]/T0[i+1] */
ADD.PS F0, F2, F8/* compute T1[i+0]/T1[i+1] */
ALNV.PS F3, F1, F0, T1/* align to dst memory */
BNE T3, T2, LOOP
SUXC1 F3, T3(T5)/* store to T1[i+2]/T1[i+3] */

/* Loop trailer stores all or half of F0, depending on T1 alignment */

Floating Point Align Variable (cont.) ALNV.PS
MIPS32™ Architecture For Programmers Volume II, Revision 2.00 41

Copyright © 2001-2003 MIPS Technologies Inc. All rights reserved.

42 MIPS32™ Architecture For Programmers Volume II, Revision 2.00

Copyright © 2001-2003 MIPS Technologies Inc. All rights reserved.

AND

Format: AND rd, rs, rt MIPS32

Purpose:

To do a bitwise logical AND

Description: rd ← rs AND rt

The contents of GPRrs are combined with the contents of GPRrt in a bitwise logical AND operation. The result is
placed into GPRrd.

Restrictions:

None

Operation:

GPR[rd] ← GPR[rs] and GPR[rt]

Exceptions:

None

31 26 25 21 20 16 15 11 10 6 5 0

SPECIAL

000000
rs rt rd

0

00000

AND

100100

6 5 5 5 5 6

And AND

MIPS32™ Architecture For Programmers Volume II, Revision 2.00 43

Copyright © 2001-2003 MIPS Technologies Inc. All rights reserved.

ANDI

Format: ANDI rt, rs, immediate MIPS32

Purpose:

To do a bitwise logical AND with a constant

Description: rt ← rs AND immediate

The 16-bitimmediateis zero-extended to the left and combined with the contents of GPRrs in a bitwise logical AND
operation. The result is placed into GPRrt.

Restrictions:

None

Operation:

GPR[rt] ← GPR[rs] and zero_extend(immediate)

Exceptions:

None

31 26 25 21 20 16 15 0

ANDI

001100
rs rt immediate

6 5 5 16

And Immediate ANDI

44 MIPS32™ Architecture For Programmers Volume II, Revision 2.00

Copyright © 2001-2003 MIPS Technologies Inc. All rights reserved.

B

Format: B offset Assembly Idiom

Purpose:

To do an unconditional branch

Description: branch

B offset is the assembly idiom used to denote an unconditional branch. The actual instruction is interpreted by the
hardware as BEQ r0, r0, offset.

An 18-bit signed offset (the 16-bitoffsetfield shifted left 2 bits) is added to the address of the instruction following
the branch (not the branch itself), in the branch delay slot, to form a PC-relative effective target address.

Restrictions:

Processor operation isUNPREDICTABLE if a branch, jump, ERET, DERET, or WAIT instruction is placed in the
delay slot of a branch or jump.

Operation:

I: target_offset ← sign_extend(offset || 0 2)
I+1: PC ← PC + target_offset

Exceptions:

None

Programming Notes:

With the 18-bit signed instruction offset, the conditional branch range is± 128 Kbytes. Use jump (J) or jump register
(JR) instructions to branch to addresses outside this range.

31 26 25 21 20 16 15 0

BEQ

000100

0

00000

0

00000
offset

6 5 5 16

Unconditional Branch B

MIPS32™ Architecture For Programmers Volume II, Revision 2.00 45

Copyright © 2001-2003 MIPS Technologies Inc. All rights reserved.

BAL

Format: BAL rs, offset Assembly Idiom

Purpose:

To do an unconditional PC-relative procedure call

Description: procedure_call

BAL offset is the assembly idiom used to denote an unconditional branch. The actual instruction is iterpreted by the
hardware as BGEZAL r0, offset.

Place the return address link in GPR 31. The return link is the address of the second instruction following the branch,
where execution continues after a procedure call.

An 18-bit signed offset (the 16-bitoffsetfield shifted left 2 bits) is added to the address of the instruction following
the branch (not the branch itself), in the branch delay slot, to form a PC-relative effective target address.

Restrictions:

Processor operation isUNPREDICTABLE if a branch, jump, ERET, DERET, or WAIT instruction is placed in the
delay slot of a branch or jump.

GPR 31 must not be used for the source registerrs, because such an instruction does not have the same effect when
reexecuted. The result of executing such an instruction isUNPREDICTABLE . This restriction permits an exception
handler to resume execution by reexecuting the branch when an exception occurs in the branch delay slot.

Operation:

I: target_offset ← sign_extend(offset || 0 2)
GPR[31] ← PC + 8

I+1: PC ← PC + target_offset

Exceptions:

None

Programming Notes:

With the 18-bit signed instruction offset, the conditional branch range is± 128 KBytes. Use jump and link (JAL) or
jump and link register (JALR) instructions for procedure calls to addresses outside this range.

31 26 25 21 20 16 15 0

REGIMM

000001

0

00000

BGEZAL

10001
offset

6 5 5 16

Branch and Link BAL

ng
P con-
delay

e

es for
BC1F

Format: BC1F offset (cc = 0 implied) MIPS32
BC1F cc, offset MIPS32

Purpose:

To test an FP condition code and do a PC-relative conditional branch

Description: if cc = 0 then branch

An 18-bit signed offset (the 16-bitoffsetfield shifted left 2 bits) is added to the address of the instruction followi
the branch (not the branch itself) in the branch delay slot to form a PC-relative effective target address. If the F
dition code bitCC is false (0), the program branches to the effective target address after the instruction in the
slot is executed. An FP condition code is set by the FP compare instruction, C.cond.fmt.

Restrictions:

Processor operation isUNPREDICTABLE if a branch, jump, ERET, DERET, or WAIT instruction is placed in th
delay slot of a branch or jump.

Operation:

This operation specification is for the general Branch On Condition operation with thetf (true/false) andnd (nullify
delay slot) fields as variables. The individual instructions BC1F, BC1FL, BC1T, and BC1TL have specific valu
tf andnd.

I: condition ← FPConditionCode(cc) = 0
target_offset ← (offset 15) GPRLEN-(16+2) || offset || 0 2

I+1: if condition then
PC ← PC + target_offset

endif

31 26 25 21 20 18 17 16 15 0

COP1

010001

BC

01000
cc

nd

0

tf

0
offset

6 5 3 1 1 16

Branch on FP False BC1F
46 MIPS32™ Architecture For Programmers Volume II, Revision 2.00

Copyright © 2001-2003 MIPS Technologies Inc. All rights reserved.

r

ndition

re

t sets
tion.
Exceptions:

Coprocessor Unusable, Reserved Instruction

Floating Point Exceptions:

Unimplemented Operation

Programming Notes:

With the 18-bit signed instruction offset, the conditional branch range is± 128 KBytes. Use jump (J) or jump registe
(JR) instructions to branch to addresses outside this range

Historical Information:

The MIPS I architecture defines a single floating point condition code, implemented as the coprocessor 1 co
signal (Cp1Cond) and theC bit in the FPControl/Statusregister. MIPS I, II, and III architectures must have theCC
field set to 0, which is implied by the first format in the “Format” section.

The MIPS IV and MIPS32 architectures add seven moreCondition Codebits to the original condition code 0. FP
compare and conditional branch instructions specify theCondition Codebit to set or test. Both assembler formats a
valid for MIPS IV and MIPS32.

In the MIPS I, II, and III architecturesthere must be at least one instruction between the compare instruction tha
the condition code and the branch instruction that tests it. Hardware does not detect a violation of this restric

Branch on FP False (cont.) BC1F
MIPS32™ Architecture For Programmers Volume II, Revision 2.00 47

Copyright © 2001-2003 MIPS Technologies Inc. All rights reserved.

lot only

ng
P
delay

e

es for
BC1FL

Format: BC1FL offset (cc = 0 implied) MIPS32
BC1FL cc, offset MIPS32

Purpose:

To test an FP condition code and make a PC-relative conditional branch; execute the instruction in the delay s
if the branch is taken.

Description: if cc = 0 then branch_likely

An 18-bit signed offset (the 16-bitoffsetfield shifted left 2 bits) is added to the address of the instruction followi
the branch (not the branch itself) in the branch delay slot to form a PC-relative effective target address. If the FCon-
dition Codebit CC is false (0), the program branches to the effective target address after the instruction in the
slot is executed. If the branch is not taken, the instruction in the delay slot is not executed.

An FP condition code is set by the FP compare instruction, C.cond.fmt.

Restrictions:

Processor operation isUNPREDICTABLE if a branch, jump, ERET, DERET, or WAIT instruction is placed in th
delay slot of a branch or jump.

Operation:

This operation specification is for the general Branch On Condition operation with thetf (true/false) andnd (nullify
delay slot) fields as variables. The individual instructions BC1F, BC1FL, BC1T, and BC1TL have specific valu
tf andnd.

I: condition ← FPConditionCode(cc) = 0
target_offset ← (offset 15) GPRLEN-(16+2) || offset || 0 2

I+1: if condition then
PC ← PC + target_offset

else
NullifyCurrentInstruction()

endif

31 26 25 21 20 18 17 16 15 0

COP1

010001

BC

01000
cc

nd

1

tf

0
offset

6 5 3 1 1 16

Branch on FP False Likely BC1FL
48 MIPS32™ Architecture For Programmers Volume II, Revision 2.00

Copyright © 2001-2003 MIPS Technologies Inc. All rights reserved.

r

rom a

is not
ranch
re is

ndition

re

that
riction.
Exceptions:

Coprocessor Unusable, Reserved Instruction

Floating Point Exceptions:

Unimplemented Operation

Programming Notes:

With the 18-bit signed instruction offset, the conditional branch range is± 128 KBytes. Use jump (J) or jump registe
(JR) instructions to branch to addresses outside this range.

Software is strongly encouraged to avoid the use of the Branch Likely instructions, as they will be removed f
future revision of the MIPS Architecture.

Some implementations always predict the branch will be taken, so there is a significant penalty if the branch
taken. Software should only use this instruction when there is a very high probability (98% or more) that the b
will be taken. If the branch is not likely to be taken or if the probability of a taken branch is unknown, softwa
encouraged to use the BC1F instruction instead.

Historical Information:

The MIPS I architecture defines a single floating point condition code, implemented as the coprocessor 1 co
signal (Cp1Cond) and theC bit in the FPControl/Statusregister. MIPS I, II, and III architectures must have theCC
field set to 0, which is implied by the first format in the “Format” section.

The MIPS IV and MIPS32 architectures add seven moreCondition Codebits to the original condition code 0. FP
compare and conditional branch instructions specify theCondition Codebit to set or test. Both assembler formats a
valid for MIPS IV and MIPS32.

In the MIPS II andIII architectionrsthere must be at least one instruction between the compare instruction
sets a condition code and the branch instruction that tests it. Hardware does not detect a violation of this rest

Branch on FP False Likely (cont.) BC1FL
MIPS32™ Architecture For Programmers Volume II, Revision 2.00 49

Copyright © 2001-2003 MIPS Technologies Inc. All rights reserved.

ng
P con-

ay slot

e

es for
BC1T

Format: BC1T offset (cc = 0 implied) MIPS32
BC1T cc, offset MIPS32

Purpose:

To test an FP condition code and do a PC-relative conditional branch

Description: if cc = 1 then branch

An 18-bit signed offset (the 16-bitoffsetfield shifted left 2 bits) is added to the address of the instruction followi
the branch (not the branch itself) in the branch delay slot to form a PC-relative effective target address. If the F
dition code bitCC is true (1), the program branches to the effective target address after the instruction in the del
is executed. An FP condition code is set by the FP compare instruction, C.cond.fmt.

Restrictions:

Processor operation isUNPREDICTABLE if a branch, jump, ERET, DERET, or WAIT instruction is placed in th
delay slot of a branch or jump.

Operation:

This operation specification is for the general Branch On Condition operation with thetf (true/false) andnd (nullify
delay slot) fields as variables. The individual instructions BC1F, BC1FL, BC1T, and BC1TL have specific valu
tf andnd.

I: condition ← FPConditionCode(cc) = 1
target_offset ← (offset 15) GPRLEN-(16+2) || offset || 0 2

I+1: if condition then
PC ← PC + target_offset

endif

31 26 25 21 20 18 17 16 15 0

COP1

010001

BC

01000
cc

nd

0

tf

1
offset

6 5 3 1 1 16

Branch on FP True BC1T
50 MIPS32™ Architecture For Programmers Volume II, Revision 2.00

Copyright © 2001-2003 MIPS Technologies Inc. All rights reserved.

r

ndition

re

sets
tion.
Exceptions:

Coprocessor Unusable, Reserved Instruction

Floating Point Exceptions:

Unimplemented Operation

Programming Notes:

With the 18-bit signed instruction offset, the conditional branch range is± 128 KBytes. Use jump (J) or jump registe
(JR) instructions to branch to addresses outside this range.

Historical Information:

The MIPS I architecture defines a single floating point condition code, implemented as the coprocessor 1 co
signal (Cp1Cond) and theC bit in the FPControl/Statusregister. MIPS I, II, and III architectures must have theCC
field set to 0, which is implied by the first format in the “Format” section.

The MIPS IV and MIPS32 architectures add seven moreCondition Codebits to the original condition code 0. FP
compare and conditional branch instructions specify theCondition Codebit to set or test. Both assembler formats a
valid for MIPS IV and MIPS32.

In the MIPS I, II, and III architecturesthere must be at least one instruction between the compare instruction that
the condition code and the branch instruction that tests it. Hardware does not detect a violation of this restric

Branch on FP True (cont.) BC1T
MIPS32™ Architecture For Programmers Volume II, Revision 2.00 51

Copyright © 2001-2003 MIPS Technologies Inc. All rights reserved.

only if

ng
P
delay

e

es for
BC1TL

Format: BC1TL offset (cc = 0 implied) MIPS32
BC1TL cc, offset MIPS32

Purpose:

To test an FP condition code and do a PC-relative conditional branch; execute the instruction in the delay slot
the branch is taken.

Description: if cc = 1 then branch_likely

An 18-bit signed offset (the 16-bitoffsetfield shifted left 2 bits) is added to the address of the instruction followi
the branch (not the branch itself) in the branch delay slot to form a PC-relative effective target address. If the FCon-
dition Codebit CC is true (1), the program branches to the effective target address after the instruction in the
slot is executed. If the branch is not taken, the instruction in the delay slot is not executed.

An FP condition code is set by the FP compare instruction, C.cond.fmt.

Restrictions:

Processor operation isUNPREDICTABLE if a branch, jump, ERET, DERET, or WAIT instruction is placed in th
delay slot of a branch or jump.

Operation:

This operation specification is for the general Branch On Condition operation with thetf (true/false) andnd (nullify
delay slot) fields as variables. The individual instructions BC1F, BC1FL, BC1T, and BC1TL have specific valu
tf andnd.

I: condition ← FPConditionCode(cc) = 1
target_offset ← (offset 15) GPRLEN-(16+2) || offset || 0 2

I+1: if condition then
PC ← PC + target_offset

else
NullifyCurrentInstruction()

endif

31 26 25 21 20 18 17 16 15 0

COP1

010001

BC

01000
cc

nd

1

tf

1
offset

6 5 3 1 1 16

Branch on FP True Likely BC1TL
52 MIPS32™ Architecture For Programmers Volume II, Revision 2.00

Copyright © 2001-2003 MIPS Technologies Inc. All rights reserved.

r

rom a

is not
ranch
re is

ndition

re

that
riction.
Exceptions:

Coprocessor Unusable, Reserved Instruction

Floating Point Exceptions:

Unimplemented Operation

Programming Notes:

With the 18-bit signed instruction offset, the conditional branch range is± 128 KBytes. Use jump (J) or jump registe
(JR) instructions to branch to addresses outside this range.

Software is strongly encouraged to avoid the use of the Branch Likely instructions, as they will be removed f
future revision of the MIPS Architecture.

Some implementations always predict the branch will be taken, so there is a significant penalty if the branch
taken. Software should only use this instruction when there is a very high probability (98% or more) that the b
will be taken. If the branch is not likely to be taken or if the probability of a taken branch is unknown, softwa
encouraged to use the BC1T instruction instead.

Historical Information:

The MIPS I architecture defines a single floating point condition code, implemented as the coprocessor 1 co
signal (Cp1Cond) and theC bit in the FPControl/Statusregister. MIPS I, II, and III architectures must have theCC
field set to 0, which is implied by the first format in the “Format” section.

The MIPS IV and MIPS32 architectures add seven moreCondition Codebits to the original condition code 0. FP
compare and conditional branch instructions specify theCondition Codebit to set or test. Both assembler formats a
valid for MIPS IV and MIPS32.

In the MIPS II andIII architectionrsthere must be at least one instruction between the compare instruction
sets a condition code and the branch instruction that tests it. Hardware does not detect a violation of this rest

Branch on FP True Likely (cont.) BC1TL
MIPS32™ Architecture For Programmers Volume II, Revision 2.00 53

Copyright © 2001-2003 MIPS Technologies Inc. All rights reserved.

54 MIPS32™ Architecture For Programmers Volume II, Revision 2.00

Copyright © 2001-2003 MIPS Technologies Inc. All rights reserved.

BC2F

Format: BC2F offset (cc = 0 implied) MIPS32
BC2F cc, offset MIPS32

Purpose:

To test a COP2 condition code and do a PC-relative conditional branch

Description: if cc = 0 then branch

An 18-bit signed offset (the 16-bitoffsetfield shifted left 2 bits) is added to the address of the instruction following
the branch (not the branch itself) in the branch delay slot to form a PC-relative effective target address. If the COP2
condition specified byCC is false (0), the program branches to the effective target address after the instruction in the
delay slot is executed.

Restrictions:

Processor operation isUNPREDICTABLE if a branch, jump, ERET, DERET, or WAIT instruction is placed in the
delay slot of a branch or jump.

Operation:

This operation specification is for the general Branch On Condition operation with thetf (true/false) andnd (nullify
delay slot) fields as variables. The individual instructions BC2F, BC2FL, BC2T, and BC2TL have specific values for
tf andnd.

I: condition ← COP2Condition(cc) = 0
target_offset ← (offset 15) GPRLEN-(16+2) || offset || 0 2

I+1: if condition then
PC ← PC + target_offset

endif

Exceptions:

Coprocessor Unusable, Reserved Instruction

Programming Notes:

With the 18-bit signed instruction offset, the conditional branch range is± 128 KBytes. Use jump (J) or jump register
(JR) instructions to branch to addresses outside this range.

31 26 25 21 20 18 17 16 15 0

COP2

010010

BC

01000
cc

nd

0

tf

0
offset

6 5 3 1 1 16

Branch on COP2 False BC2F

lay slot

ng
COP2
in the

e

es for
BC2FL

Format: BC2FL offset (cc = 0 implied) MIPS32
BC2FL cc, offset MIPS32

Purpose:

To test a COP2 condition code and make a PC-relative conditional branch; execute the instruction in the de
only if the branch is taken.

Description: if cc = 0 then branch_likely

An 18-bit signed offset (the 16-bitoffsetfield shifted left 2 bits) is added to the address of the instruction followi
the branch (not the branch itself) in the branch delay slot to form a PC-relative effective target address. If the
condition specified byCC is false (0), the program branches to the effective target address after the instruction
delay slot is executed. If the branch is not taken, the instruction in the delay slot is not executed.

Restrictions:

Processor operation isUNPREDICTABLE if a branch, jump, ERET, DERET, or WAIT instruction is placed in th
delay slot of a branch or jump.

Operation:

This operation specification is for the general Branch On Condition operation with thetf (true/false) andnd (nullify
delay slot) fields as variables. The individual instructions BC2F, BC2FL, BC2T, and BC2TL have specific valu
tf andnd.

I: condition ← COP2Condition(cc) = 0
target_offset ← (offset 15) GPRLEN-(16+2) || offset || 0 2

I+1: if condition then
PC ← PC + target_offset

else
NullifyCurrentInstruction()

endif

31 26 25 21 20 18 17 16 15 0

COP2

010010

BC

01000
cc

nd

1

tf

0
offset

6 5 3 1 1 16

Branch on COP2 False Likely BC2FL
MIPS32™ Architecture For Programmers Volume II, Revision 2.00 55

Copyright © 2001-2003 MIPS Technologies Inc. All rights reserved.

r

rom a

is not
ranch
re is
Exceptions:

Coprocessor Unusable, Reserved Instruction

Programming Notes:

With the 18-bit signed instruction offset, the conditional branch range is± 128 KBytes. Use jump (J) or jump registe
(JR) instructions to branch to addresses outside this range.

Software is strongly encouraged to avoid the use of the Branch Likely instructions, as they will be removed f
future revision of the MIPS Architecture.

Some implementations always predict the branch will be taken, so there is a significant penalty if the branch
taken. Software should only use this instruction when there is a very high probability (98% or more) that the b
will be taken. If the branch is not likely to be taken or if the probability of a taken branch is unknown, softwa
encouraged to use the BC2F instruction instead.

Branch on COP2 False Likely (cont.) BC2FL
56 MIPS32™ Architecture For Programmers Volume II, Revision 2.00

Copyright © 2001-2003 MIPS Technologies Inc. All rights reserved.

MIPS32™ Architecture For Programmers Volume II, Revision 2.00 57

Copyright © 2001-2003 MIPS Technologies Inc. All rights reserved.

BC2T

Format: BC2T offset (cc = 0 implied) MIPS32
BC2T cc, offset MIPS32

Purpose:

To test a COP2 condition code and do a PC-relative conditional branch

Description: if cc = 1 then branch

An 18-bit signed offset (the 16-bitoffsetfield shifted left 2 bits) is added to the address of the instruction following
the branch (not the branch itself) in the branch delay slot to form a PC-relative effective target address. If the COP2
condition specified byCC is true (1), the program branches to the effective target address after the instruction in the
delay slot is executed.

Restrictions:

Processor operation isUNPREDICTABLE if a branch, jump, ERET, DERET, or WAIT instruction is placed in the
delay slot of a branch or jump.

Operation:

This operation specification is for the general Branch On Condition operation with thetf (true/false) andnd (nullify
delay slot) fields as variables. The individual instructions BC2F, BC2FL, BC2T, and BC2TL have specific values for
tf andnd.

I: condition ← COP2Condition(cc) = 1
target_offset ← (offset 15) GPRLEN-(16+2) || offset || 0 2

I+1: if condition then
PC ← PC + target_offset

endif

Exceptions:

Coprocessor Unusable, Reserved Instruction

Programming Notes:

With the 18-bit signed instruction offset, the conditional branch range is± 128 KBytes. Use jump (J) or jump register
(JR) instructions to branch to addresses outside this range.

31 26 25 21 20 18 17 16 15 0

COP2

010010

BC

01000
cc

nd

0

tf

1
offset

6 5 3 1 1 16

Branch on COP2 True BC2T

lot only

ng
COP2

in the

e

es for
BC2TL

Format: BC2TL offset (cc = 0 implied) MIPS32
BC2TL cc, offset MIPS32

Purpose:

To test a COP2 condition code and do a PC-relative conditional branch; execute the instruction in the delay s
if the branch is taken.

Description: if cc = 1 then branch_likely

An 18-bit signed offset (the 16-bitoffsetfield shifted left 2 bits) is added to the address of the instruction followi
the branch (not the branch itself) in the branch delay slot to form a PC-relative effective target address. If the
condition specified byCC is true (1), the program branches to the effective target address after the instruction
delay slot is executed. If the branch is not taken, the instruction in the delay slot is not executed.

Restrictions:

Processor operation isUNPREDICTABLE if a branch, jump, ERET, DERET, or WAIT instruction is placed in th
delay slot of a branch or jump.

Operation:

This operation specification is for the general Branch On Condition operation with thetf (true/false) andnd (nullify
delay slot) fields as variables. The individual instructions BC2F, BC2FL, BC2T, and BC2TL have specific valu
tf andnd.

I: condition ← COP2Condition(cc) = 1
target_offset ← (offset 15) GPRLEN-(16+2) || offset || 0 2

I+1: if condition then
PC ← PC + target_offset

else
NullifyCurrentInstruction()

endif

31 26 25 21 20 18 17 16 15 0

COP2

010010

BC

01000
cc

nd

1

tf

1
offset

6 5 3 1 1 16

Branch on COP2 True Likely BC2TL
58 MIPS32™ Architecture For Programmers Volume II, Revision 2.00

Copyright © 2001-2003 MIPS Technologies Inc. All rights reserved.

r

rom a

is not
ranch
re is
Exceptions:

Coprocessor Unusable, Reserved Instruction

Programming Notes:

With the 18-bit signed instruction offset, the conditional branch range is± 128 KBytes. Use jump (J) or jump registe
(JR) instructions to branch to addresses outside this range.

Software is strongly encouraged to avoid the use of the Branch Likely instructions, as they will be removed f
future revision of the MIPS Architecture.

Some implementations always predict the branch will be taken, so there is a significant penalty if the branch
taken. Software should only use this instruction when there is a very high probability (98% or more) that the b
will be taken. If the branch is not likely to be taken or if the probability of a taken branch is unknown, softwa
encouraged to use the BC2T instruction instead.

Branch on COP2 True Likely (cont.) BC2TL
MIPS32™ Architecture For Programmers Volume II, Revision 2.00 59

Copyright © 2001-2003 MIPS Technologies Inc. All rights reserved.

60 MIPS32™ Architecture For Programmers Volume II, Revision 2.00

Copyright © 2001-2003 MIPS Technologies Inc. All rights reserved.

BEQ

Format: BEQ rs, rt, offset MIPS32

Purpose:

To compare GPRs then do a PC-relative conditional branch

Description: if rs = rt then branch

An 18-bit signed offset (the 16-bitoffsetfield shifted left 2 bits) is added to the address of the instruction following
the branch (not the branch itself), in the branch delay slot, to form a PC-relative effective target address.

If the contents of GPRrs and GPRrt are equal, branch to the effective target address after the instruction in the delay
slot is executed.

Restrictions:

Processor operation isUNPREDICTABLE if a branch, jump, ERET, DERET, or WAIT instruction is placed in the
delay slot of a branch or jump.

Operation:

I: target_offset ← sign_extend(offset || 0 2)
condition ← (GPR[rs] = GPR[rt])

I+1: if condition then
PC ← PC + target_offset

endif

Exceptions:

None

Programming Notes:

With the 18-bit signed instruction offset, the conditional branch range is± 128 Kbytes. Use jump (J) or jump register
(JR) instructions to branch to addresses outside this range.

BEQ r0, r0 offset, expressed as B offset, is the assembly idiom used to denote an unconditional branch.

31 26 25 21 20 16 15 0

BEQ

000100
rs rt offset

6 5 5 16

Branch on Equal BEQ

.

ng

lot is

e

BEQL

Format: BEQL rs, rt, offset MIPS32

Purpose:

To compare GPRs then do a PC-relative conditional branch; execute the delay slot only if the branch is taken

Description: if rs = rt then branch_likely

An 18-bit signed offset (the 16-bitoffsetfield shifted left 2 bits) is added to the address of the instruction followi
the branch (not the branch itself), in the branch delay slot, to form a PC-relative effective target address.

If the contents of GPRrs and GPRrt are equal, branch to the target address after the instruction in the delay s
executed. If the branch is not taken, the instruction in the delay slot is not executed.

Restrictions:

Processor operation isUNPREDICTABLE if a branch, jump, ERET, DERET, or WAIT instruction is placed in th
delay slot of a branch or jump.

Operation:

I: target_offset ← sign_extend(offset || 0 2)
condition ← (GPR[rs] = GPR[rt])

I+1: if condition then
PC ← PC + target_offset

else
NullifyCurrentInstruction()

endif

Exceptions:

None

31 26 25 21 20 16 15 0

BEQL

010100
rs rt offset

6 5 5 16

Branch on Equal Likely BEQL
MIPS32™ Architecture For Programmers Volume II, Revision 2.00 61

Copyright © 2001-2003 MIPS Technologies Inc. All rights reserved.

r

rom a

is not
ranch
re is
Programming Notes:

With the 18-bit signed instruction offset, the conditional branch range is± 128 KBytes. Use jump (J) or jump registe
(JR) instructions to branch to addresses outside this range.

Software is strongly encouraged to avoid the use of the Branch Likely instructions, as they will be removed f
future revision of the MIPS Architecture.

Some implementations always predict the branch will be taken, so there is a significant penalty if the branch
taken. Software should only use this instruction when there is a very high probability (98% or more) that the b
will be taken. If the branch is not likely to be taken or if the probability of a taken branch is unknown, softwa
encouraged to use the BEQ instruction instead.

Historical Information:

In the MIPS I architecture, this instruction signaled a Reserved Instruction Exception.

Branch on Equal Likely (cont.) BEQL
62 MIPS32™ Architecture For Programmers Volume II, Revision 2.00

Copyright © 2001-2003 MIPS Technologies Inc. All rights reserved.

MIPS32™ Architecture For Programmers Volume II, Revision 2.00 63

Copyright © 2001-2003 MIPS Technologies Inc. All rights reserved.

BGEZ

Format: BGEZ rs, offset MIPS32

Purpose:

To test a GPR then do a PC-relative conditional branch

Description: if rs ≥ 0 then branch

An 18-bit signed offset (the 16-bitoffsetfield shifted left 2 bits) is added to the address of the instruction following
the branch (not the branch itself), in the branch delay slot, to form a PC-relative effective target address.

If the contents of GPRrs are greater than or equal to zero (sign bit is 0), branch to the effective target address after the
instruction in the delay slot is executed.

Restrictions:

Processor operation isUNPREDICTABLE if a branch, jump, ERET, DERET, or WAIT instruction is placed in the
delay slot of a branch or jump.

Operation:

I: target_offset ← sign_extend(offset || 0 2)
condition ← GPR[rs] ≥ 0 GPRLEN

I+1: if condition then
PC ← PC + target_offset

endif

Exceptions:

None

Programming Notes:

With the 18-bit signed instruction offset, the conditional branch range is± 128 KBytes. Use jump (J) or jump register
(JR) instructions to branch to addresses outside this range.

31 26 25 21 20 16 15 0

REGIMM

000001
rs

BGEZ

00001
offset

6 5 5 16

Branch on Greater Than or Equal to Zero BGEZ

64 MIPS32™ Architecture For Programmers Volume II, Revision 2.00

Copyright © 2001-2003 MIPS Technologies Inc. All rights reserved.

BGEZAL

Format: BGEZAL rs, offset MIPS32

Purpose:

To test a GPR then do a PC-relative conditional procedure call

Description: if rs ≥ 0 then procedure_call

Place the return address link in GPR 31. The return link is the address of the second instruction following the branch,
where execution continues after a procedure call.

An 18-bit signed offset (the 16-bitoffsetfield shifted left 2 bits) is added to the address of the instruction following
the branch (not the branch itself), in the branch delay slot, to form a PC-relative effective target address.

If the contents of GPRrs are greater than or equal to zero (sign bit is 0), branch to the effective target address after the
instruction in the delay slot is executed.

Restrictions:

Processor operation isUNPREDICTABLE if a branch, jump, ERET, DERET, or WAIT instruction is placed in the
delay slot of a branch or jump.

GPR 31 must not be used for the source registerrs, because such an instruction does not have the same effect when
reexecuted. The result of executing such an instruction isUNPREDICTABLE . This restriction permits an exception
handler to resume execution by reexecuting the branch when an exception occurs in the branch delay slot.

Operation:

I: target_offset ← sign_extend(offset || 0 2)
condition ← GPR[rs] ≥ 0 GPRLEN

GPR[31] ← PC + 8
I+1: if condition then

PC ← PC + target_offset
endif

Exceptions:

None

Programming Notes:

With the 18-bit signed instruction offset, the conditional branch range is± 128 KBytes. Use jump and link (JAL) or
jump and link register (JALR) instructions for procedure calls to addresses outside this range.

BGEZAL r0, offset, expressed as BAL offset, is the assembly idiom used to denote a PC-relative branch and link.
BAL is used in a manner similar to JAL, but provides PC-relative addressing and a more limited target PC range.

31 26 25 21 20 16 15 0

REGIMM

000001
rs

BGEZAL

10001
offset

6 5 5 16

Branch on Greater Than or Equal to Zero and Link BGEZAL

ken.

ranch,

ng

ter the
ted.

hen

e

BGEZALL

Format: BGEZALL rs, offset MIPS32

Purpose:

To test a GPR then do a PC-relative conditional procedure call; execute the delay slot only if the branch is ta

Description: if rs ≥ 0 then procedure_call_likely

Place the return address link in GPR 31. The return link is the address of the second instruction following the b
where execution continues after a procedure call.

An 18-bit signed offset (the 16-bitoffsetfield shifted left 2 bits) is added to the address of the instruction followi
the branch (not the branch itself), in the branch delay slot, to form a PC-relative effective target address.

If the contents of GPRrs are greater than or equal to zero (sign bit is 0), branch to the effective target address af
instruction in the delay slot is executed. If the branch is not taken, the instruction in the delay slot is not execu

Restrictions:

GPR 31 must not be used for the source registerrs, because such an instruction does not have the same effect w
reexecuted. The result of executing such an instruction isUNPREDICTABLE . This restriction permits an exception
handler to resume execution by reexecuting the branch when an exception occurs in the branch delay slot.

Processor operation isUNPREDICTABLE if a branch, jump, ERET, DERET, or WAIT instruction is placed in th
delay slot of a branch or jump.

Operation:

I: target_offset ← sign_extend(offset || 0 2)
condition ← GPR[rs] ≥ 0 GPRLEN

GPR[31] ← PC + 8
I+1: if condition then

PC ← PC + target_offset
else

NullifyCurrentInstruction()
endif

Exceptions:

None

31 26 25 21 20 16 15 0

REGIMM

000001
rs

BGEZALL

10011
offset

6 5 5 16

Branch on Greater Than or Equal to Zero and Link Likely BGEZALL
MIPS32™ Architecture For Programmers Volume II, Revision 2.00 65

Copyright © 2001-2003 MIPS Technologies Inc. All rights reserved.

rom a

is not
branch
re is
Programming Notes:

With the 18-bit signed instruction offset, the conditional branch range is± 128 KBytes. Use jump and link (JAL) or
jump and link register (JALR) instructions for procedure calls to addresses outside this range.

Software is strongly encouraged to avoid the use of the Branch Likely instructions, as they will be removed f
future revision of the MIPS Architecture.

Some implementations always predict the branch will be taken, so there is a significant penalty if the branch
taken. Software should only use this instruction when there is a very high probability (98% or more) that the
will be taken. If the branch is not likely to be taken or if the probability of a taken branch is unknown, softwa
encouraged to use the BGEZAL instruction instead.

Historical Information:

In the MIPS I architecture, this instruction signaled a Reserved Instruction Exception.

Branch on Greater Than or Equal to Zero and Link Likely (con’t.) BGEZALL
66 MIPS32™ Architecture For Programmers Volume II, Revision 2.00

Copyright © 2001-2003 MIPS Technologies Inc. All rights reserved.

ng

ter the
ted.

e

BGEZL

Format: BGEZL rs, offset MIPS32

Purpose:

To test a GPR then do a PC-relative conditional branch; execute the delay slot only if the branch is taken.

Description: if rs ≥ 0 then branch_likely

An 18-bit signed offset (the 16-bitoffsetfield shifted left 2 bits) is added to the address of the instruction followi
the branch (not the branch itself), in the branch delay slot, to form a PC-relative effective target address.

If the contents of GPRrs are greater than or equal to zero (sign bit is 0), branch to the effective target address af
instruction in the delay slot is executed. If the branch is not taken, the instruction in the delay slot is not execu

Restrictions:

Processor operation isUNPREDICTABLE if a branch, jump, ERET, DERET, or WAIT instruction is placed in th
delay slot of a branch or jump.

Operation:

I: target_offset ← sign_extend(offset || 0 2)
condition ← GPR[rs] ≥ 0 GPRLEN

I+1: if condition then
PC ← PC + target_offset

else
NullifyCurrentInstruction()

endif

Exceptions:

None

31 26 25 21 20 16 15 0

REGIMM

000001
rs

BGEZL

00011
offset

6 5 5 16

Branch on Greater Than or Equal to Zero Likely BGEZL
MIPS32™ Architecture For Programmers Volume II, Revision 2.00 67

Copyright © 2001-2003 MIPS Technologies Inc. All rights reserved.

r

rom a

is not
ranch
re is
Programming Notes:

With the 18-bit signed instruction offset, the conditional branch range is± 128 KBytes. Use jump (J) or jump registe
(JR) instructions to branch to addresses outside this range.

Software is strongly encouraged to avoid the use of the Branch Likely instructions, as they will be removed f
future revision of the MIPS Architecture.

Some implementations always predict the branch will be taken, so there is a significant penalty if the branch
taken. Software should only use this instruction when there is a very high probability (98% or more) that the b
will be taken. If the branch is not likely to be taken or if the probability of a taken branch is unknown, softwa
encouraged to use the BGEZ instruction instead.

Historical Information:

In the MIPS I architecture, this instruction signaled a Reserved Instruction Exception.

Branch on Greater Than or Equal to Zero Likely (cont.) BGEZL
68 MIPS32™ Architecture For Programmers Volume II, Revision 2.00

Copyright © 2001-2003 MIPS Technologies Inc. All rights reserved.

MIPS32™ Architecture For Programmers Volume II, Revision 2.00 69

Copyright © 2001-2003 MIPS Technologies Inc. All rights reserved.

BGTZ

Format: BGTZ rs, offset MIPS32

Purpose:

To test a GPR then do a PC-relative conditional branch

Description: if rs > 0 then branch

An 18-bit signed offset (the 16-bitoffsetfield shifted left 2 bits) is added to the address of the instruction following
the branch (not the branch itself), in the branch delay slot, to form a PC-relative effective target address.

If the contents of GPRrs are greater than zero (sign bit is 0 but value not zero), branch to the effective target address
after the instruction in the delay slot is executed.

Restrictions:

Processor operation isUNPREDICTABLE if a branch, jump, ERET, DERET, or WAIT instruction is placed in the
delay slot of a branch or jump.

Operation:

I: target_offset ← sign_extend(offset || 0 2)
condition ← GPR[rs] > 0 GPRLEN

I+1: if condition then
PC ← PC + target_offset

endif

Exceptions:

None

Programming Notes:

With the 18-bit signed instruction offset, the conditional branch range is± 128 KBytes. Use jump (J) or jump register
(JR) instructions to branch to addresses outside this range.

31 26 25 21 20 16 15 0

BGTZ

000111
rs

0

00000
offset

6 5 5 16

Branch on Greater Than Zero BGTZ

ng

dress
ot exe-

e

BGTZL

Format: BGTZL rs, offset MIPS32

Purpose:

To test a GPR then do a PC-relative conditional branch; execute the delay slot only if the branch is taken.

Description: if rs > 0 then branch_likely

An 18-bit signed offset (the 16-bitoffsetfield shifted left 2 bits) is added to the address of the instruction followi
the branch (not the branch itself), in the branch delay slot, to form a PC-relative effective target address.

If the contents of GPRrs are greater than zero (sign bit is 0 but value not zero), branch to the effective target ad
after the instruction in the delay slot is executed. If the branch is not taken, the instruction in the delay slot is n
cuted.

Restrictions:

Processor operation isUNPREDICTABLE if a branch, jump, ERET, DERET, or WAIT instruction is placed in th
delay slot of a branch or jump.

Operation:

I: target_offset ← sign_extend(offset || 0 2)
condition ← GPR[rs] > 0 GPRLEN

I+1: if condition then
PC ← PC + target_offset

else
NullifyCurrentInstruction()

endif

Exceptions:

None

31 26 25 21 20 16 15 0

BGTZL

010111
rs

0

00000
offset

6 5 5 16

Branch on Greater Than Zero Likely BGTZL
70 MIPS32™ Architecture For Programmers Volume II, Revision 2.00

Copyright © 2001-2003 MIPS Technologies Inc. All rights reserved.

r

rom a

is not
ranch
re is
Programming Notes:

With the 18-bit signed instruction offset, the conditional branch range is± 128 KBytes. Use jump (J) or jump registe
(JR) instructions to branch to addresses outside this range.

Software is strongly encouraged to avoid the use of the Branch Likely instructions, as they will be removed f
future revision of the MIPS Architecture.

Some implementations always predict the branch will be taken, so there is a significant penalty if the branch
taken. Software should only use this instruction when there is a very high probability (98% or more) that the b
will be taken. If the branch is not likely to be taken or if the probability of a taken branch is unknown, softwa
encouraged to use the BGTZ instruction instead.

Historical Information:

In the MIPS I architecture, this instruction signaled a Reserved Instruction Exception.

Branch on Greater Than Zero Likely (cont.) BGTZL
MIPS32™ Architecture For Programmers Volume II, Revision 2.00 71

Copyright © 2001-2003 MIPS Technologies Inc. All rights reserved.

72 MIPS32™ Architecture For Programmers Volume II, Revision 2.00

Copyright © 2001-2003 MIPS Technologies Inc. All rights reserved.

BLEZ

Format: BLEZ rs, offset MIPS32

Purpose:

To test a GPR then do a PC-relative conditional branch

Description: if rs ≤ 0 then branch

An 18-bit signed offset (the 16-bitoffsetfield shifted left 2 bits) is added to the address of the instruction following
the branch (not the branch itself), in the branch delay slot, to form a PC-relative effective target address.

If the contents of GPRrs are less than or equal to zero (sign bit is 1 or value is zero), branch to the effective target
address after the instruction in the delay slot is executed.

Restrictions:

Processor operation isUNPREDICTABLE if a branch, jump, ERET, DERET, or WAIT instruction is placed in the
delay slot of a branch or jump.

Operation:

I: target_offset ← sign_extend(offset || 0 2)
condition ← GPR[rs] ≤ 0 GPRLEN

I+1: if condition then
PC ← PC + target_offset

endif

Exceptions:

None

Programming Notes:

With the 18-bit signed instruction offset, the conditional branch range is± 128 KBytes. Use jump (J) or jump register
(JR) instructions to branch to addresses outside this range.

31 26 25 21 20 16 15 0

BLEZ

000110
rs

0

00000
offset

6 5 5 16

Branch on Less Than or Equal to Zero BLEZ

ng

arget
slot is

e

BLEZL

Format: BLEZL rs, offset MIPS32

Purpose:

To test a GPR then do a PC-relative conditional branch; execute the delay slot only if the branch is taken.

Description: if rs ≤ 0 then branch_likely

An 18-bit signed offset (the 16-bitoffsetfield shifted left 2 bits) is added to the address of the instruction followi
the branch (not the branch itself), in the branch delay slot, to form a PC-relative effective target address.

If the contents of GPRrs are less than or equal to zero (sign bit is 1 or value is zero), branch to the effective t
address after the instruction in the delay slot is executed. If the branch is not taken, the instruction in the delay
not executed.

Restrictions:

Processor operation isUNPREDICTABLE if a branch, jump, ERET, DERET, or WAIT instruction is placed in th
delay slot of a branch or jump.

Operation:

I: target_offset ← sign_extend(offset || 0 2)
condition ← GPR[rs] ≤ 0 GPRLEN

I+1: if condition then
PC ← PC + target_offset

else
NullifyCurrentInstruction()

endif

Exceptions:

None

31 26 25 21 20 16 15 0

BLEZL

010110
rs

0

00000
offset

6 5 5 16

Branch on Less Than or Equal to Zero Likely BLEZL
MIPS32™ Architecture For Programmers Volume II, Revision 2.00 73

Copyright © 2001-2003 MIPS Technologies Inc. All rights reserved.

r

rom a

is not
ranch
re is
Programming Notes:

With the 18-bit signed instruction offset, the conditional branch range is± 128 KBytes. Use jump (J) or jump registe
(JR) instructions to branch to addresses outside this range.

Software is strongly encouraged to avoid the use of the Branch Likely instructions, as they will be removed f
future revision of the MIPS Architecture.

Some implementations always predict the branch will be taken, so there is a significant penalty if the branch
taken. Software should only use this instruction when there is a very high probability (98% or more) that the b
will be taken. If the branch is not likely to be taken or if the probability of a taken branch is unknown, softwa
encouraged to use the BLEZ instruction instead.

Historical Information:

In the MIPS I architecture, this instruction signaled a Reserved Instruction Exception.

Branch on Less Than or Equal to Zero Likely (cont.) BLEZL
74 MIPS32™ Architecture For Programmers Volume II, Revision 2.00

Copyright © 2001-2003 MIPS Technologies Inc. All rights reserved.

MIPS32™ Architecture For Programmers Volume II, Revision 2.00 75

Copyright © 2001-2003 MIPS Technologies Inc. All rights reserved.

BLTZ

Format: BLTZ rs, offset MIPS32

Purpose:

To test a GPR then do a PC-relative conditional branch

Description: if rs < 0 then branch

An 18-bit signed offset (the 16-bitoffsetfield shifted left 2 bits) is added to the address of the instruction following
the branch (not the branch itself), in the branch delay slot, to form a PC-relative effective target address.

If the contents of GPRrs are less than zero (sign bit is 1), branch to the effective target address after the instruction in
the delay slot is executed.

Restrictions:

Processor operation isUNPREDICTABLE if a branch, jump, ERET, DERET, or WAIT instruction is placed in the
delay slot of a branch or jump.

Operation:
I: target_offset ← sign_extend(offset || 0 2)

condition ← GPR[rs] < 0 GPRLEN

I+1: if condition then
PC ← PC + target_offset

endif

Exceptions:

None

Programming Notes:

With the 18-bit signed instruction offset, the conditional branch range is± 128 KBytes. Use jump and link (JAL) or
jump and link register (JALR) instructions for procedure calls to addresses outside this range.

31 26 25 21 20 16 15 0

REGIMM

000001
rs

BLTZ

00000
offset

6 5 5 16

Branch on Less Than Zero BLTZ

76 MIPS32™ Architecture For Programmers Volume II, Revision 2.00

Copyright © 2001-2003 MIPS Technologies Inc. All rights reserved.

BLTZAL

Format: BLTZAL rs, offset MIPS32

Purpose:

To test a GPR then do a PC-relative conditional procedure call

Description: if rs < 0 then procedure_call

Place the return address link in GPR 31. The return link is the address of the second instruction following the branch,
where execution continues after a procedure call.

An 18-bit signed offset (the 16-bitoffsetfield shifted left 2 bits) is added to the address of the instruction following
the branch (not the branch itself), in the branch delay slot, to form a PC-relative effective target address.

If the contents of GPRrs are less than zero (sign bit is 1), branch to the effective target address after the instruction in
the delay slot is executed.

Restrictions:

GPR 31 must not be used for the source registerrs, because such an instruction does not have the same effect when
reexecuted. The result of executing such an instruction is UNPREDICTABLE. This restriction permits an exception
handler to resume execution by reexecuting the branch when an exception occurs in the branch delay slot.

Processor operation isUNPREDICTABLE if a branch, jump, ERET, DERET, or WAIT instruction is placed in the
delay slot of a branch or jump.

Operation:

I: target_offset ← sign_extend(offset || 0 2)
condition ← GPR[rs] < 0 GPRLEN

GPR[31] ← PC + 8
I+1: if condition then

PC ← PC + target_offset
endif

Exceptions:

None

Programming Notes:

With the 18-bit signed instruction offset, the conditional branch range is± 128 KBytes. Use jump and link (JAL) or
jump and link register (JALR) instructions for procedure calls to addresses outside this range.

31 26 25 21 20 16 15 0

REGIMM

000001
rs

BLTZAL

10000
offset

6 5 5 16

Branch on Less Than Zero and Link BLTZAL

ken.

ranch,

ng

ion in

hen
eption

e

BLTZALL

Format: BLTZALL rs, offset MIPS32

Purpose:

To test a GPR then do a PC-relative conditional procedure call; execute the delay slot only if the branch is ta

Description: if rs < 0 then procedure_call_likely

Place the return address link in GPR 31. The return link is the address of the second instruction following the b
where execution continues after a procedure call.

An 18-bit signed offset (the 16-bitoffsetfield shifted left 2 bits) is added to the address of the instruction followi
the branch (not the branch itself), in the branch delay slot, to form a PC-relative effective target address.

If the contents of GPRrs are less than zero (sign bit is 1), branch to the effective target address after the instruct
the delay slot is executed. If the branch is not taken, the instruction in the delay slot is not executed.

Restrictions:

GPR 31 must not be used for the source registerrs, because such an instruction does not have the same effect w
reexecuted. The result of executing such an instruction is UNPREDICTABLE. This restriction permits an exc
handler to resume execution by reexecuting the branch when an exception occurs in the branch delay slot.

Processor operation isUNPREDICTABLE if a branch, jump, ERET, DERET, or WAIT instruction is placed in th
delay slot of a branch or jump.

Operation:

I: target_offset ← sign_extend(offset || 0 2)
condition ← GPR[rs] < 0 GPRLEN

GPR[31] ← PC + 8
I+1: if condition then

PC ← PC + target_offset
else

NullifyCurrentInstruction()
endif

Exceptions:

None

31 26 25 21 20 16 15 0

REGIMM

000001
rs

BLTZALL

10010
offset

6 5 5 16

Branch on Less Than Zero and Link Likely BLTZALL
MIPS32™ Architecture For Programmers Volume II, Revision 2.00 77

Copyright © 2001-2003 MIPS Technologies Inc. All rights reserved.

rom a

is not
ranch
re is
Programming Notes:

With the 18-bit signed instruction offset, the conditional branch range is± 128 KBytes. Use jump and link (JAL) or
jump and link register (JALR) instructions for procedure calls to addresses outside this range.

Software is strongly encouraged to avoid the use of the Branch Likely instructions, as they will be removed f
future revision of the MIPS Architecture.

Some implementations always predict the branch will be taken, so there is a significant penalty if the branch
taken. Software should only use this instruction when there is a very high probability (98% or more) that the b
will be taken. If the branch is not likely to be taken or if the probability of a taken branch is unknown, softwa
encouraged to use the BLTZAL instruction instead.

Historical Information:

In the MIPS I architecture, this instruction signaled a Reserved Instruction Exception.

Branch on Less Than Zero and Link Likely (cont.) BLTZALL
78 MIPS32™ Architecture For Programmers Volume II, Revision 2.00

Copyright © 2001-2003 MIPS Technologies Inc. All rights reserved.

ng

ion in

e

BLTZL

Format: BLTZL rs, offset MIPS32

Purpose:

To test a GPR then do a PC-relative conditional branch; execute the delay slot only if the branch is taken.

Description: if rs < 0 then branch_likely

An 18-bit signed offset (the 16-bitoffsetfield shifted left 2 bits) is added to the address of the instruction followi
the branch (not the branch itself), in the branch delay slot, to form a PC-relative effective target address.

If the contents of GPRrs are less than zero (sign bit is 1), branch to the effective target address after the instruct
the delay slot is executed. If the branch is not taken, the instruction in the delay slot is not executed.

Restrictions:

Processor operation isUNPREDICTABLE if a branch, jump, ERET, DERET, or WAIT instruction is placed in th
delay slot of a branch or jump.

Operation:

I: target_offset ← sign_extend(offset || 0 2)
condition ← GPR[rs] < 0 GPRLEN

I+1: if condition then
PC ← PC + target_offset

else
NullifyCurrentInstruction()

endif

Exceptions:

None

31 26 25 21 20 16 15 0

REGIMM

000001
rs

BLTZL

00010
offset

6 5 5 16

Branch on Less Than Zero Likely BLTZL
MIPS32™ Architecture For Programmers Volume II, Revision 2.00 79

Copyright © 2001-2003 MIPS Technologies Inc. All rights reserved.

r

rom a

is not
ranch
re is
Programming Notes:

With the 18-bit signed instruction offset, the conditional branch range is± 128 KBytes. Use jump (J) or jump registe
(JR) instructions to branch to addresses outside this range.

Software is strongly encouraged to avoid the use of the Branch Likely instructions, as they will be removed f
future revision of the MIPS Architecture.

Some implementations always predict the branch will be taken, so there is a significant penalty if the branch
taken. Software should only use this instruction when there is a very high probability (98% or more) that the b
will be taken. If the branch is not likely to be taken or if the probability of a taken branch is unknown, softwa
encouraged to use the BLTZ instruction instead.

Historical Information:

In the MIPS I architecture, this instruction signaled a Reserved Instruction Exception.

Branch on Less Than Zero Likely (cont.) BLTZL
80 MIPS32™ Architecture For Programmers Volume II, Revision 2.00

Copyright © 2001-2003 MIPS Technologies Inc. All rights reserved.

MIPS32™ Architecture For Programmers Volume II, Revision 2.00 81

Copyright © 2001-2003 MIPS Technologies Inc. All rights reserved.

BNE

Format: BNE rs, rt, offset MIPS32

Purpose:

To compare GPRs then do a PC-relative conditional branch

Description: if rs ≠ rt then branch

An 18-bit signed offset (the 16-bitoffsetfield shifted left 2 bits) is added to the address of the instruction following
the branch (not the branch itself), in the branch delay slot, to form a PC-relative effective target address.

If the contents of GPRrs and GPRrt are not equal, branch to the effective target address after the instruction in the
delay slot is executed.

Restrictions:

Processor operation isUNPREDICTABLE if a branch, jump, ERET, DERET, or WAIT instruction is placed in the
delay slot of a branch or jump.

Operation:

I: target_offset ← sign_extend(offset || 0 2)
condition ← (GPR[rs] ≠ GPR[rt])

I+1: if condition then
PC ← PC + target_offset

endif

Exceptions:

None

Programming Notes:

With the 18-bit signed instruction offset, the conditional branch range is± 128 KBytes. Use jump (J) or jump register
(JR) instructions to branch to addresses outside this range.

31 26 25 21 20 16 15 0

BNE

000101
rs rt offset

6 5 5 16

Branch on Not Equal BNE

.

ng

the

e

BNEL

Format: BNEL rs, rt, offset MIPS32

Purpose:

To compare GPRs then do a PC-relative conditional branch; execute the delay slot only if the branch is taken

Description: if rs ≠ rt then branch_likely

An 18-bit signed offset (the 16-bitoffsetfield shifted left 2 bits) is added to the address of the instruction followi
the branch (not the branch itself), in the branch delay slot, to form a PC-relative effective target address.

If the contents of GPRrs and GPRrt are not equal, branch to the effective target address after the instruction in
delay slot is executed. If the branch is not taken, the instruction in the delay slot is not executed.

Restrictions:

Processor operation isUNPREDICTABLE if a branch, jump, ERET, DERET, or WAIT instruction is placed in th
delay slot of a branch or jump.

Operation:

I: target_offset ← sign_extend(offset || 0 2)
condition ← (GPR[rs] ≠ GPR[rt])

I+1: if condition then
PC ← PC + target_offset

else
NullifyCurrentInstruction()

endif

Exceptions:

None

31 26 25 21 20 16 15 0

BNEL

010101
rs rt offset

6 5 5 16

Branch on Not Equal Likely BNEL
82 MIPS32™ Architecture For Programmers Volume II, Revision 2.00

Copyright © 2001-2003 MIPS Technologies Inc. All rights reserved.

r

rom a

is not
ranch
re is
Programming Notes:

With the 18-bit signed instruction offset, the conditional branch range is± 128 KBytes. Use jump (J) or jump registe
(JR) instructions to branch to addresses outside this range.

Software is strongly encouraged to avoid the use of the Branch Likely instructions, as they will be removed f
future revision of the MIPS Architecture.

Some implementations always predict the branch will be taken, so there is a significant penalty if the branch
taken. Software should only use this instruction when there is a very high probability (98% or more) that the b
will be taken. If the branch is not likely to be taken or if the probability of a taken branch is unknown, softwa
encouraged to use the BNE instruction instead.

Historical Information:

In the MIPS I architecture, this instruction signaled a Reserved Instruction Exception.

Branch on Not Equal Likely (cont.) BNEL
MIPS32™ Architecture For Programmers Volume II, Revision 2.00 83

Copyright © 2001-2003 MIPS Technologies Inc. All rights reserved.

84 MIPS32™ Architecture For Programmers Volume II, Revision 2.00

Copyright © 2001-2003 MIPS Technologies Inc. All rights reserved.

BREAK

Format: BREAK MIPS32

Purpose:

To cause a Breakpoint exception

Description:

A breakpoint exception occurs, immediately and unconditionally transferring control to the exception handler. The
codefield is available for use as software parameters, but is retrieved by the exception handler only by loading the
contents of the memory word containing the instruction.

Restrictions:

None

Operation:

SignalException(Breakpoint)

Exceptions:

Breakpoint

31 26 25 6 5 0

SPECIAL

000000
code

BREAK

001101

6 20 6

Breakpoint BREAK

-

e. If

i-
n of the

ndi-

ritten

s true

res

ool-
P val-

true

. Each

he sec-
ot follow

est for
econd
C.cond.fmt

Format: C.cond.S fs, ft (cc = 0 implied) MIPS32
C.cond.D fs, ft (cc = 0 implied) MIPS32
C.cond.PS fs, ft(cc = 0 implied) MIPS64

MIPS32 Release 2
C.cond.S cc, fs, ft MIPS32
C.cond.D cc, fs, ft MIPS32
C.cond.PS cc, fs, ft MIPS64

MIPS32 Release 2

Purpose:

To compare FP values and record the Boolean result in a condition code

Description: cc ← fs compare_cond ft

The value in FPRfs is compared to the value in FPRft; the values are in formatfmt. The comparison is exact and nei
ther overflows nor underflows.

If the comparison specified bycond2..1 is true for the operand values, the result is true; otherwise, the result is fals
no exception is taken, the result is written into condition codeCC; true is 1 and false is 0.

c.cond.PS compares the upper and lower halves of FPRfsand FPRft independently and writes the results into cond
tion codes CC +1 and CC respectively. The CC number must be even. If the number is not even the operatio
instruction isUNPREDICTABLE .

If one of the values is an SNaN, orcond3 is set and at least one of the values is a QNaN, an Invalid Operation co
tion is raised and the Invalid Operation flag is set in theFCSR. If the Invalid OperationEnablebit is set in theFCSR,
no result is written and an Invalid Operation exception is taken immediately. Otherwise, the Boolean result is w
into condition codeCC.

There are four mutually exclusive ordering relations for comparing floating point values; one relation is alway
and the others are false. The familiar relations aregreater than, less than, andequal. In addition, the IEEE floating
point standard defines the relationunordered,which is true when at least one operand value is NaN; NaN compa
unordered with everything, including itself. Comparisons ignore the sign of zero, so +0 equals -0.

The comparison condition is a logical predicate, or equation, of the ordering relations such asless than or equal,
equal, not less than, or unordered or equal. Compare distinguishes among the 16 comparison predicates. The B
ean result of the instruction is obtained by substituting the Boolean value of each ordering relation for the two F
ues in the equation. If theequal relation is true, for example, then all four example predicates above yield a
result. If theunordered relation is true then only the final predicate,unordered or equal, yields a true result.

Logical negation of a compare result allows eight distinct comparisons to test for the 16 predicates as shown in
mnemonic tests for both a predicate and its logical negation. For each mnemonic,comparetests the truth of the first
predicate. When the first predicate is true, the result is true as shown in the “If Predicate Is True” column, and t
ond predicate must be false, and vice versa. (Note that the False predicate is never true and False/True do n
the normal pattern.)

The truth of the second predicate is the logical negation of the instruction result. After a compare instruction, t
the truth of the first predicate can be made with the Branch on FP True (BC1T) instruction and the truth of the s
can be made with Branch on FP False (BC1F).

31 26 25 21 20 16 15 11 10 8 7 6 5 4 3 0

COP1

010001
fmt ft fs cc 0

A

0

FC

11
cond

6 5 5 5 3 1 1 2 4

Floating Point Compare C.cond.fmt
MIPS32™ Architecture For Programmers Volume II, Revision 2.00 85

Copyright © 2001-2003 MIPS Technologies Inc. All rights reserved.

6
hen an
Table 3-25 shows another set of eight compare operations, distinguished by acond3 value of 1 and testing the same 1
conditions. For these additional comparisons, if at least one of the operands is a NaN, including Quiet NaN, t
Invalid Operation condition is raised. If the Invalid Operation condition is enabled in theFCSR, an Invalid Operation
exception occurs.

Table 3-25 FPU Comparisons Without Special Operand Exceptions

Instruction Comparison Predicate
Comparison CC

Result Instruction

Cond
Mnemonic

Name of Predicate and
Logically Negated Predicate (Abbreviation)

Relation
Values

If
Predicate
 Is True

Inv Op
Excp.

if
QNaN

?

Condition
Field

> < = ? 3 2..0

F
False [this predicate is always False] F F F F

F

No 0

0
True (T) T T T T

UN
Unordered F F F T T

1
Ordered (OR) T T T F F

EQ
Equal F F T F T

2
Not Equal (NEQ) T T F T F

UEQ
Unordered or Equal F F T T T

3
Ordered or Greater Than or Less Than (OGL) T T F F F

OLT
Ordered or Less Than F T F F T

4
Unordered or Greater Than or Equal (UGE) T F T T F

ULT
Unordered or Less Than F T F T T

5
Ordered or Greater Than or Equal (OGE) T F T F F

OLE
Ordered or Less Than or Equal F T T F T

6
Unordered or Greater Than (UGT) T F F T F

ULE
Unordered or Less Than or Equal F T T T T

7
Ordered or Greater Than (OGT) T F F F F

Key: ? =unordered, > =greater than, < = less than, = isequal, T = True, F = False

Floating Point Compare (cont.) C.cond.fmt
86 MIPS32™ Architecture For Programmers Volume II, Revision 2.00

Copyright © 2001-2003 MIPS Technologies Inc. All rights reserved.

Table 3-26 FPU Comparisons With Special Operand Exceptions for QNaNs

Instruction Comparison Predicate
Comparison CC

Result
Instructio

n

Cond
Mnemonic

Name of Predicate and
Logically Negated Predicate (Abbreviation)

Relation
Values If

Predicate
Is True

Inv Op
Excp If
QNaN?

Condition
Field

> < = ? 3 2..0

SF
Signaling False [this predicate always False] F F F F

F

Yes 1

0
Signaling True (ST) T T T T

NGLE
Not Greater Than or Less Than or Equal F F F T T

1
Greater Than or Less Than or Equal (GLE) T T T F F

SEQ
Signaling Equal F F T F T

2
Signaling Not Equal (SNE) T T F T F

NGL
Not Greater Than or Less Than F F T T T

3
Greater Than or Less Than (GL) T T F F F

LT
Less Than F T F F T

4
Not Less Than (NLT) T F T T F

NGE
Not Greater Than or Equal F T F T T

5
Greater Than or Equal (GE) T F T F F

LE
Less Than or Equal F T T F T

6
Not Less Than or Equal (NLE) T F F T F

NGT
Not Greater Than F T T T T

7
Greater Than (GT) T F F F F

Key: ? =unordered, > =greater than, < = less than, = isequal, T = True, F =False

Floating Point Compare (cont.) C.cond.fmt
MIPS32™ Architecture For Programmers Volume II, Revision 2.00 87

Copyright © 2001-2003 MIPS Technologies Inc. All rights reserved.

di-

alf as an
er. The
on are
Restrictions:

The fieldsfsandft must specify FPRs valid for operands of typefmt; if they are not valid, the result isUNPREDICT-
ABLE .

The operands must be values in formatfmt; if they are not, the result isUNPREDICTABLE and the value of the
operand FPRs becomesUNPREDICTABLE .

The result of C.cond.PS isUNPREDICTABLE if the processor is executing in 16 FP registers mode, or if the con
tion code number is odd.

Operation:
if SNaN(ValueFPR(fs, fmt)) or SNaN(ValueFPR(ft, fmt)) or

QNaN(ValueFPR(fs, fmt)) or QNaN(ValueFPR(ft, fmt)) then
less ← false
equal ← false
unordered ← true
if (SNaN(ValueFPR(fs,fmt)) or SNaN(ValueFPR(ft,fmt))) or
(cond 3 and (QNaN(ValueFPR(fs,fmt)) or QNaN(ValueFPR(ft,fmt)))) then

SignalException(InvalidOperation)
endif

else
less ← ValueFPR(fs, fmt) < fmt ValueFPR(ft, fmt)
equal ← ValueFPR(fs, fmt) = fmt ValueFPR(ft, fmt)
unordered ← false

endif
condition ← (cond 2 and less) or (cond 1 and equal)

or (cond 0 and unordered)
SetFPConditionCode(cc, condition)

For c.cond.PS, the pseudo code above is repeated for both halves of the operand registers, treating each h
independent single-precision values. Exceptions on the two halves are logically ORed and reported togeth
results of the lower half comparison are written to condition code CC; the results of the upper half comparis
written to condition code CC+1.

Floating Point Compare (cont.) C.cond.fmt
88 MIPS32™ Architecture For Programmers Volume II, Revision 2.00

Copyright © 2001-2003 MIPS Technologies Inc. All rights reserved.

Invalid
NaNs
it code
ling
if two
Exceptions:

Coprocessor Unusable, Reserved Instruction

Floating Point Exceptions:

Unimplemented Operation, Invalid Operation

Programming Notes:

FP computational instructions, including compare, that receive an operand value of Signaling NaN raise the
Operation condition. Comparisons that raise the Invalid Operation condition for Quiet NaNs in addition to S
permit a simpler programming model if NaNs are errors. Using these compares, programs do not need explic
to check for QNaNs causing theunorderedrelation. Instead, they take an exception and allow the exception hand
system to deal with the error when it occurs. For example, consider a comparison in which we want to know
numbers are equal, but for whichunordered would be an error.

comparisons using explicit tests for QNaN
c.eq.d $f2,$f4# check for equal
nop
bc1t L2 # it is equal
c.un.d $f2,$f4# it is not equal,

but might be unordered
bc1t ERROR # unordered goes off to an error handler

not-equal-case code here
...

equal-case code here
L2:
--
comparison using comparisons that signal QNaN

c.seq.d $f2,$f4 # check for equal
nop
bc1t L2 # it is equal
nop

it is not unordered here
...

not-equal-case code here
...

equal-case code here

Floating Point Compare (cont.) C.cond.fmt
MIPS32™ Architecture For Programmers Volume II, Revision 2.00 89

Copyright © 2001-2003 MIPS Technologies Inc. All rights reserved.

ss. The
ache as
CACHE

Format: CACHE op, offset(base) MIPS32

Purpose:

To perform the cache operation specified by op.

Description:

The 16-bit offset is sign-extended and added to the contents of the base register to form an effective addre
effective address is used in one of the following ways based on the operation to be performed and the type of c
described in the following table.

31 26 25 21 20 16 15 0

CACHE

101111
base op offset

6 5 5 16

Table 3-27 Usage of Effective Address

Operation
Requires an

Type of
Cache Usage of Effective Address

Address Virtual
The effective address is used to address the cache. It is implementation dependent
whether an address translation is performed on the effective address (with the
possibility that a TLB Refill or TLB Invalid exception might occur)

Address Physical The effective address is translated by the MMU to a physical address. The physical
address is then used to address the cache

Index N/A

The effective address is translated by the MMU to a physical address. It is
implementation dependent whether the effective address or the translated physical
address is used to index the cache.

Assuming that the total cache size in bytes is CS, the associativity is A, and the
number of bytes per tag is BPT, the following calculations give the fields of the
address which specify the way and the index:

OffsetBit ← Log2(BPT)
IndexBit ← Log2(CS / A)
WayBit ← IndexBit + Ceiling(Log2(A))
Way ← Addr WayBit-1..IndexBit
Index ← Addr IndexBit-1..OffsetBit

For a direct-mapped cache, the Way calculation is ignored and the Index value
fully specifies the cache tag. This is shown symbolically in the figure below.

Perform Cache Operation CACHE
90 MIPS32™ Architecture For Programmers Volume II, Revision 2.00

Copyright © 2001-2003 MIPS Technologies Inc. All rights reserved.

dex
ould use
r TLB

ddress

ple, if
ed via a
ion is
r Index

rtion of
hether

ches the

cache
ded.
Figure 3-2 Usage of Address Fields to Select Index and Way

A TLB Refill and TLB Invalid (both with cause code equal TLBL) exception can occur on any operation. For in
operations (where the address is used to index the cache but need not match the cache tag) software sh
unmapped addresses to avoid TLB exceptions. This instruction never causes TLB Modified exceptions no
Refill exceptions with a cause code of TLBS.

The effective address may be an arbitrarily-aligned by address. The CACHE instruction never causes an A
Error Exception due to an non-aligned address.

A Cache Error exception may occur as a byproduct of some operations performed by this instruction. For exam
a Writeback operation detects a cache or bus error during the processing of the operation, that error is report
Cache Error exception. Similarly, a Bus Error Exception may occur if a bus operation invoked by this instruct
terminated in an error. However, cache error exceptions should must be triggered by an Index Load Tag o
Store tag operation, as these operations are used for initialization and diagnostic purposes.

An Address Error Exception (with cause code equal AdEL) may occur if the effective address references a po
the kernel address space which would normally result in such an exception. It is implementation dependent w
such an exception does occur.

It is implementation dependent whether a data watch is triggered by a cache instruction whose address mat
Watch register address match conditions.

Bits [17:16] of the instruction specify the cache on which to perform the operation, as follows:

Bits [20:18] of the instruction specify the operation to perform. To provide software with a consistent base of
operations, certain encodings must be supported on all processors. The remaining encodings are recommen

Table 3-28 Encoding of Bits[17:16] of CACHE Instruction

Code Name Cache

2#00 I Primary Instruction

2#01 D Primary Data or Unified Primary

2#10 T Tertiary

2#11 S Secondary

Perform Cache Operation CACHE

Way

0

Index

OffsetBitIndexBitWayBit

Unused byte index
MIPS32™ Architecture For Programmers Volume II, Revision 2.00 91

Copyright © 2001-2003 MIPS Technologies Inc. All rights reserved.

Table 3-29 Encoding of Bits [20:18] of the CACHE Instruction

Code Caches Name

Effective
Address
Operand

Type Operation Compliance

2#000

I Index Invalidate Index

Set the state of the cache block at the specified
index to invalid.

This required encoding may be used by
software to invalidate the entire instruction
cache by stepping through all valid indices.

Required

D
Index Writeback
Invalidate / Index

Invalidate
Index

For a write-back cache: If the state of the cache
block at the specified index is valid and dirty,
write the block back to the memory address
specified by the cache tag. After that operation
is completed, set the state of the cache block to
invalid. If the block is valid but not dirty, set the
state of the block to invalid.

For a write-through cache: Set the state of the
cache block at the specified index to invalid.

This required encoding may be used by
software to invalidate the entire data cache by
stepping through all valid indices. Note that
Index Store Tag should be used to initialize the
cache at powerup.

Required

S, T
Index Writeback
Invalidate / Index

Invalidate
Index Optional

2#001 All Index Load Tag Index

Read the tag for the cache block at the specified
index into theTagLoandTagHiCoprocessor 0
registers. If theDataLo andDataHi registers
are implemented, also read the data
corresponding to the byte index into the
DataLo andDataHi registers. This operation
must not cause a Cache Error Exception.

The granularity and alignment of the data read
into theDataLo andDataHi registers is
implementation-dependent, but is typically the
result of an aligned access to the cache,
ignoring the appropriate low-order bits of the
byte index.

Recommended

Perform Cache Operation CACHE
92 MIPS32™ Architecture For Programmers Volume II, Revision 2.00

Copyright © 2001-2003 MIPS Technologies Inc. All rights reserved.

2#010 All Index Store Tag Index

Write the tag for the cache block at the
specified index from theTagLo andTagHi
Coprocessor 0 registers. This operation must
not cause a Cache Error Exception.

This required encoding may be used by
software to initialize the entire instruction or
data caches by stepping through all valid
indices. Doing so requires that theTagLo and
TagHi registers associated with the cache be
initialized first.

Required

2#011 All Implementation
Dependent Unspecified

Available for implementation-dependent
operation. Optional

2#100

I, D Hit Invalidate Address If the cache block contains the specified
address, set the state of the cache block to
invalid.

This required encoding may be used by
software to invalidate a range of addresses
from the instruction cache by stepping through
the address range by the line size of the cache.

Required
(Instruction Cache
Encoding Only),
Recommended

otherwise

S, T Hit Invalidate Address Optional

Table 3-29 Encoding of Bits [20:18] of the CACHE Instruction

Code Caches Name

Effective
Address
Operand

Type Operation Compliance
MIPS32™ Architecture For Programmers Volume II, Revision 2.00 93

Copyright © 2001-2003 MIPS Technologies Inc. All rights reserved.

2#101

I Fill Address
Fill the cache from the specified address.

Recommended

D
Hit Writeback
Invalidate / Hit

Invalidate
Address

For a write-back cache: If the cache block
contains the specified address and it is valid
and dirty, write the contents back to memory.
After that operation is completed, set the state
of the cache block to invalid. If the block is
valid but not dirty, set the state of the block to
invalid.

For a write-through cache: If the cache block
contains the specified address, set the state of
the cache block to invalid.

This required encoding may be used by
software to invalidate a range of addresses
from the data cache by stepping through the
address range by the line size of the cache.

Required

S, T
Hit Writeback
Invalidate / Hit

Invalidate
Address Optional

2#110

D Hit Writeback Address If the cache block contains the specified
address and it is valid and dirty, write the
contents back to memory. After the operation is
completed, leave the state of the line valid, but
clear the dirty state. For a write-through cache,
this operation may be treated as a nop.

Recommended

S, T Hit Writeback Address Optional

Table 3-29 Encoding of Bits [20:18] of the CACHE Instruction

Code Caches Name

Effective
Address
Operand

Type Operation Compliance
94 MIPS32™ Architecture For Programmers Volume II, Revision 2.00

Copyright © 2001-2003 MIPS Technologies Inc. All rights reserved.

2#111 I, D Fetch and Lock Address

If the cache does not contain the specified
address, fill it from memory, performing a
writeback if required, and set the state to valid
and locked. If the cache already contains the
specified address, set the state to locked. In
set-associative or fully-associative caches, the
way selected on a fill from memory is
implementation dependent.

The lock state may be cleared by executing an
Index Invalidate, Index Writeback Invalidate,
Hit Invalidate, or Hit Writeback Invalidate
operation to the locked line, or via an Index
Store Tag operation to the line that clears the
lock bit. Note that clearing the lock state via
Index Store Tag is dependent on the
implementation-dependent cache tag and cache
line organization, and that Index and Index
Writeback Invalidate operations are dependent
on cache line organization. Only Hit and Hit
Writeback Invalidate operations are generally
portable across implementations.

It is implementation dependent whether a
locked line is displaced as the result of an
external invalidate or intervention that hits on
the locked line. Software must not depend on
the locked line remaining in the cache if an
external invalidate or intervention would
invalidate the line if it were not locked.

It is implementation dependent whether a Fetch
and Lock operation affects more than one line.
For example, more than one line around the
referenced address may be fetched and locked.
It is recommended that only the single line
containing the referenced address be affected.

Recommended

Table 3-29 Encoding of Bits [20:18] of the CACHE Instruction

Code Caches Name

Effective
Address
Operand

Type Operation Compliance
MIPS32™ Architecture For Programmers Volume II, Revision 2.00 95

Copyright © 2001-2003 MIPS Technologies Inc. All rights reserved.

che-

e

Restrictions:

The operation of this instruction isUNDEFINED for any operation/cache combination that is not implemented.

The operation of this instruction isUNDEFINED if the operaation requires an address, and that address is unca
able.

The operation of the instruction isUNPREDICTABLE if the cache line that contains the CACHE instruction is th
target of an invalidate or a writeback invalidate.

If access to Coprocessor 0 is not enabled, a Coprocessor Unusable Exception is signaled.

Operation:

vAddr ← GPR[base] + sign_extend(offset)
(pAddr, uncached) ← AddressTranslation(vAddr, DataReadReference)
CacheOp(op, vAddr, pAddr)

Exceptions:

TLB Refill Exception.

TLB Invalid Exception

Coprocessor Unusable Exception

Address Error Exception

Cache Error Exception

Bus Error Exception

Perform Cache Operation (cont.) CACHE
96 MIPS32™ Architecture For Programmers Volume II, Revision 2.00

Copyright © 2001-2003 MIPS Technologies Inc. All rights reserved.

+

t

CEIL.L.fmt

Format: CEIL.L.S fd, fs MIPS64
MIPS32 Release 2

CEIL.L.D fd, fs MIPS64
MIPS32 Release 2

Purpose:

To convert an FP value to 64-bit fixed point, rounding up

Description: fd ← convert_and_round(fs)

The value in FPRfs, in formatfmt, is converted to a value in 64-bit long fixed point format and rounding toward∞
(rounding mode 2). The result is placed in FPRfd.

When the source value is Infinity, NaN, or rounds to an integer outside the range -263 to 263-1, the result cannot be
represented correctly, an IEEE Invalid Operation condition exists, a d the Invalid Operation flag is set in theFCSR. If
the Invalid OperationEnablebit is set in theFCSR, no result is written tofd and an Invalid Operation exception is

taken immediately. Otherwise, the default result, 263–1, is written tofd.

Restrictions:

The fieldsfsandfd must specify valid FPRs;fs for typefmtandfd for long fixed point; if they are not valid, the resul
is UNPREDICTABLE .

The operand must be a value in formatfmt; if it is not, the result isUNPREDICTABLE and the value of the operand
FPR becomesUNPREDICTABLE .

The result of this instruction isUNPREDICTABLE if the processor is executing in 16 FP registers mode.

Operation:

StoreFPR(fd, L, ConvertFmt(ValueFPR(fs, fmt), fmt, L))

31 26 25 21 20 16 15 11 10 6 5 0

COP1

010001
fmt

0

00000
fs fd

CEIL.L

001010

6 5 5 5 5 6

Fixed Point Ceiling Convert to Long Fixed Point CEIL.L.fmt
MIPS32™ Architecture For Programmers Volume II, Revision 2.00 97

Copyright © 2001-2003 MIPS Technologies Inc. All rights reserved.

Exceptions:

Coprocessor Unusable, Reserved Instruction

Floating Point Exceptions:

Invalid Operation, Unimplemented Operation, Inexact, Overflow

Fixed Point Ceiling Convert to Long Fixed Point (cont.) CEIL.L.fmt
98 MIPS32™ Architecture For Programmers Volume II, Revision 2.00

Copyright © 2001-2003 MIPS Technologies Inc. All rights reserved.

MIPS32™ Architecture For Programmers Volume II, Revision 2.00 99

Copyright © 2001-2003 MIPS Technologies Inc. All rights reserved.

CEIL.W.fmt

Format: CEIL.W.S fd, fs MIPS32
CEIL.W.D fd, fs MIPS32

Purpose:

To convert an FP value to 32-bit fixed point, rounding up

Description: fd ← convert_and_round(fs)

The value in FPRfs, in format fmt, is converted to a value in 32-bit word fixed point format and rounding toward +∞
(rounding mode 2). The result is placed in FPRfd.

When the source value is Infinity, NaN, or rounds to an integer outside the range -231 to 231-1, the result cannot be
represented correctly, an IEEE Invalid Operation condition exists, and the Invalid Operation flag is set in theFCSR. If
the Invalid OperationEnablebit is set in theFCSR, no result is written tofd and an Invalid Operation exception is

taken immediately. Otherwise, the default result, 231–1, is written tofd.

Restrictions:

The fieldsfsandfd must specify valid FPRs;fs for typefmtandfd for word fixed point; if they are not valid, the result
is UNPREDICTABLE .

The operand must be a value in formatfmt; if it is not, the result isUNPREDICTABLE and the value of the operand
FPR becomesUNPREDICTABLE .

Operation:

StoreFPR(fd, W, ConvertFmt(ValueFPR(fs, fmt), fmt, W))

Exceptions:

Coprocessor Unusable, Reserved Instruction

Floating Point Exceptions:

Invalid Operation, Unimplemented Operation, Inexact, Overflow

31 26 25 21 20 16 15 11 10 6 5 0

COP1

010001
fmt

0

00000
fs fd

CEIL.W

001110

6 5 5 5 5 6

Floating Point Ceiling Convert to Word Fixed Point CEIL.W.fmt

CFC1

Format: CFC1 rt, fs MIPS32

Purpose:

To copy a word from an FPU control register to a GPR

Description: rt ← FP_Control[fs]

Copy the 32-bit word from FP (coprocessor 1) control registerfs into GPRrt.

Restrictions:

There are a few control registers defined for the floating point unit. The result isUNPREDICTABLE if fsspecifies a
register that does not exist.

Operation:

if fs = 0 then
temp ← FIR

elseif fs = 25 then
temp ← 0 24 || FCSR 31..25 || FCSR 23

elseif fs = 26 then
temp ← 0 14 || FCSR 17..12 || 0 5 || FCSR 6..2 || 0 2

elseif fs = 28 then
temp ← 0 20 || FCSR 11.7 || 0 4 || FCSR 24 || FCSR 1..0

elseif fs = 31 then
temp ← FCSR

else
temp ← UNPREDICTABLE

endif
GPR[rt] ← temp

31 26 25 21 20 16 15 11 10 0

COP1

010001

CF

00010
rt fs

0

000 0000 0000

6 5 5 5 11

Move Control Word From Floating Point CFC1
100 MIPS32™ Architecture For Programmers Volume II, Revision 2.00

Copyright © 2001-2003 MIPS Technologies Inc. All rights reserved.

ere not
Exceptions:

Coprocessor Unusable, Reserved Instruction

Historical Information:

For the MIPS I, II and III architectures, the contents of GPRrt areUNPREDICTABLE for the instruction immedi-
ately following CFC1.

MIPS V and MIPS32 introduced the three control registers that access portions of FCSR. These registers w
available in MIPS I, II, III, or IV.

Move Control Word From Floating Point (cont.) CFC1
MIPS32™ Architecture For Programmers Volume II, Revision 2.00 101

Copyright © 2001-2003 MIPS Technologies Inc. All rights reserved.

102 MIPS32™ Architecture For Programmers Volume II, Revision 2.00

Copyright © 2001-2003 MIPS Technologies Inc. All rights reserved.

CFC2

Format: CFC2 rt, rd MIPS32

The syntax shown above is an example using CFC1 as a model. The specific syntax is implementation dependent.

Purpose:

To copy a word from a Coprocessor 2 control register to a GPR

Description: rt ← CP2CCR[Impl]

Copy the 32-bit word from the Coprocessor 2 control register denoted by theImpl field. The interpretation of theImpl
field is left entirely to the Coprocessor 2 implementation and is not specified by the architecture.

Restrictions:

The result isUNPREDICTABLE if Impl specifies a register that does not exist.

Operation:

temp ← CP2CCR[Impl]
GPR[rt] ← temp

Exceptions:

Coprocessor Unusable, Reserved Instruction

31 26 25 21 20 16 15 11 10 0

COP2

010010

CF

00010
rt Impl

6 5 5 16

Move Control Word From Coprocessor 2 CFC2

MIPS32™ Architecture For Programmers Volume II, Revision 2.00 103

Copyright © 2001-2003 MIPS Technologies Inc. All rights reserved.

CLO

Format: CLO rd, rs MIPS32

Purpose:

To Count the number of leading ones in a word

Description: rd ← count_leading_ones rs

Bits 31..0 of GPRrs are scanned from most significant to least significant bit. The number of leading ones is counted
and the result is written to GPRrd. If all of bits 31..0 were set in GPRrs, the result written to GPRrd is 32.

Restrictions:

To be compliant with the MIPS32 and MIPS64 Architecture, software must place the same GPR number in both the
rt andrd fields of the instruction. The operation of the instruction isUNPREDICTABLE if the rt andrd fields of the
instruction contain different values.

Operation:

temp ← 32
for i in 31 .. 0

if GPR[rs] i = 0 then
temp ← 31 - i
break

endif
endfor
GPR[rd] ← temp

Exceptions:

None

31 26 25 21 20 16 15 11 10 6 5 0

SPECIAL2

011100
rs rt rd

0

00000

CLO

100001

6 5 5 5 5 6

Count Leading Ones in Word CLO

104 MIPS32™ Architecture For Programmers Volume II, Revision 2.00

Copyright © 2001-2003 MIPS Technologies Inc. All rights reserved.

CLZ

Format: CLZ rd, rs MIPS32

Purpose

Count the number of leading zeros in a word

Description: rd ← count_leading_zeros rs

Bits 31..0 of GPRrs are scanned from most significant to least significant bit. The number of leading zeros is counted
and the result is written to GPRrd. If no bits were set in GPRrs, the result written to GPRrt is 32.

Restrictions:

To be compliant with the MIPS32 and MIPS64 Architecture, software must place the same GPR number in both the
rt andrd fields of the instruction. The operation of the instruction isUNPREDICTABLE if the rt andrd fields of the
instruction contain different values.

Operation:

temp ← 32
for i in 31 .. 0

if GPR[rs] i = 1 then
temp ← 31 - i
break

endif
endfor
GPR[rd] ← temp

Exceptions:

None

31 26 25 21 20 16 15 11 10 6 5 0

SPECIAL2

011100
rs rt rd

0

00000

CLZ

100000

6 5 5 5 5 6

Count Leading Zeros in Word CLZ

MIPS32™ Architecture For Programmers Volume II, Revision 2.00 105

Copyright © 2001-2003 MIPS Technologies Inc. All rights reserved.

COP2

Format: COP2 func MIPS32

Purpose:

To performance an operation to Coprocessor 2

Description: CoprocessorOperation(2, cofun)

An implementation-dependent operation is performance to Coprocessor 2, with thecofunvalue passed as an argu-
ment. The operation may specify and reference internal coprocessor registers, and may change the state of the copro-
cessor conditions, but does not modify state within the processor. Details of coprocessor operation and internal state
are described in the documentation for each Coprocessor 2 implementation.

Restrictions:

Operation:

CoprocessorOperation(2, cofun)

Exceptions:

Coprocessor Unusable
Reserved Instruction

31 26 25 24 0

COP2

010010

CO

1
cofun

6 1 25

Coprocessor Operation to Coprocessor 2 COP2

ses
CTC1

Format: CTC1 rt, fs MIPS32

Purpose:

To copy a word from a GPR to an FPU control register

Description: FP_Control[fs] ← rt

Copy the low word from GPRrt into the FP (coprocessor 1) control register indicated byfs.

Writing to the floating pointControl/Statusregister, theFCSR, causes the appropriate exception if anyCausebit and
its correspondingEnablebit are both set. The register is written before the exception occurs. Writing toFEXRto set a
cause bit whose enable bit is already set, or writing toFENRto set an enable bit whose cause bit is already set cau
the appropriate exception. The register is written before the exception occurs.

Restrictions:

There are a few control registers defined for the floating point unit. The result isUNPREDICTABLE if fsspecifies a
register that does not exist.

31 26 25 21 20 16 15 11 10 0

COP1

010001

CT

00110
rt fs

0

000 0000 0000

6 5 5 5 11

Move Control Word to Floating Point CTC1
106 MIPS32™ Architecture For Programmers Volume II, Revision 2.00

Copyright © 2001-2003 MIPS Technologies Inc. All rights reserved.

ere not
Operation:

temp ← GPR[rt] 31..0
if fs = 25 then

if temp 31..8 ≠ 0 24 then
UNPREDICTABLE

else
FCSR ← temp 7..1 || FCSR 24 || temp 0 || FCSR 22..0

endif
elseif fs = 26 then

if temp 22..18 ≠ 0 then
UNPREDICTABLE

else
FCSR ← FCSR31..18 || temp 17..12 || FCSR 11..7 ||
temp 6..2 || FCSR 1..0

endif
elseif fs = 28 then

if temp 22..18 ≠ 0 then
UNPREDICTABLE

else
FCSR ← FCSR31..25 || temp 2 || FCSR 23..12 || temp 11..7
|| FCSR 6..2 || temp 1..0

endif
elseif fs = 31 then

if temp 22..18 ≠ 0 then
UNPREDICTABLE

else
FCSR ← temp

endif
else

UNPREDICTABLE
endif

Exceptions:

Coprocessor Unusable, Reserved Instruction

Floating Point Exceptions:

Unimplemented Operation, Invalid Operation, Division-by-zero, Inexact, Overflow, Underflow

Historical Information:

For the MIPS I, II and III architectures, the contents of floating point control registerfs are undefined for the instruc-
tion immediately following CTC1.

MIPS V and MIPS32 introduced the three control registers that access portions of FCSR. These registers w
available in MIPS I, II, III, or IV.

Move Control Word to Floating Point (cont.) CTC1
MIPS32™ Architecture For Programmers Volume II, Revision 2.00 107

Copyright © 2001-2003 MIPS Technologies Inc. All rights reserved.

108 MIPS32™ Architecture For Programmers Volume II, Revision 2.00

Copyright © 2001-2003 MIPS Technologies Inc. All rights reserved.

CTC2

Format: CTC2 rt, rd MIPS32

The syntax shown above is an example using CTC1 as a model. The specific syntax is implementation dependent.

Purpose:

To copy a word from a GPR to a Coprocessor 2 control register

Description: CP2CCR[Impl] ← rt

Copy the low word from GPRrt into the Coprocessor 2 control register denoted by theImpl field. The interpretation
of theImpl field is left entirely to the Coprocessor 2 implementation and is not specified by the architecture.

Restrictions:

The result isUNPREDICTABLE if rd specifies a register that does not exist.

Operation:

temp ← GPR[rt]
CP2CCR[Impl] ← temp

Exceptions:

Coprocessor Unusable, Reserved Instruction

31 26 25 21 20 16 15 11 10 0

COP2

010010

CT

00110
rt Impl

6 5 5 16

Move Control Word to Coprocessor 2 CTC2

MIPS32™ Architecture For Programmers Volume II, Revision 2.00 109

Copyright © 2001-2003 MIPS Technologies Inc. All rights reserved.

CVT.D.fmt

Format: CVT.D.S fd, fs MIPS32
CVT.D.W fd, fs MIPS32
CVT.D.L fd, fs MIPS64

MIPS32 Release 2

Purpose:

To convert an FP or fixed point value to double FP

Description: fd ← convert_and_round(fs)

The value in FPRfs, in format fmt, is converted to a value in double floating point format and rounded according to
the current rounding mode inFCSR. The result is placed in FPRfd. If fmt is S or W, then the operation is always
exact.

Restrictions:

The fieldsfs andfd must specify valid FPRs—fs for type fmt andfd for double floating point—if they are not valid,
the result isUNPREDICTABLE .

The operand must be a value in formatfmt; if it is not, the result isUNPREDICTABLE and the value of the operand
FPR becomesUNPREDICTABLE .

For CVT.D.L, the result of this instruction isUNPREDICTABLE if the processor is executing in 16 FP registers
mode.

Operation:

StoreFPR (fd, D, ConvertFmt(ValueFPR(fs, fmt), fmt, D))

Exceptions:

Coprocessor Unusable, Reserved Instruction

Floating Point Exceptions:

Invalid Operation, Unimplemented Operation, Inexact

31 26 25 21 20 16 15 11 10 6 5 0

COP1

010001
fmt

0

00000
fs fd

CVT.D

100001

6 5 5 5 5 6

Floating Point Convert to Double Floating Point CVT.D.fmt

ng
CVT.L.fmt

Format: CVT.L.S fd, fs MIPS64
MIPS32 Release 2

CVT.L.D fd, fs MIPS64
MIPS32 Release 2

Purpose:

To convert an FP value to a 64-bit fixed point

Description: fd ← convert_and_round(fs)

Convert the value in formatfmt in FPR fs to long fixed point format and round according to the current roundi
mode inFCSR. The result is placed in FPRfd.

When the source value is Infinity, NaN, or rounds to an integer outside the range -263 to 263-1, the result cannot be
represented correctly, an IEEE Invalid Operation condition exists, and the Invalid Operation flag is set in theFCSR.
If the Invalid OperationEnablebit is set in theFCSR, no result is written tofd and an Invalid Operation exception is

taken immediately. Otherwise, the default result, 263–1, is written tofd.

Restrictions:

The fieldsfs and fd must specify valid FPRs—fs for type fmt and fd for long fixed point—if they are not valid, the
result isUNPREDICTABLE .

The operand must be a value in formatfmt; if it is not, the result isUNPREDICTABLE and the value of the operand
FPR becomesUNPREDICTABLE .

The result of this instruction isUNPREDICTABLE if the processor is executing in 16 FP registers mode.

Operation:

StoreFPR (fd, L, ConvertFmt(ValueFPR(fs, fmt), fmt, L))

31 26 25 21 20 16 15 11 10 6 5 0

COP1

010001
fmt

0

00000
fs fd

CVT.L

100101

6 5 5 5 5 6

Floating Point Convert to Long Fixed Point CVT.L.fmt
110 MIPS32™ Architecture For Programmers Volume II, Revision 2.00

Copyright © 2001-2003 MIPS Technologies Inc. All rights reserved.

Exceptions:

Coprocessor Unusable, Reserved Instruction

Floating Point Exceptions:

Invalid Operation, Unimplemented Operation, Inexact, Overflow

Floating Point Convert to Long Fixed Point, cont. CVT.L.fmt
MIPS32™ Architecture For Programmers Volume II, Revision 2.00 111

Copyright © 2001-2003 MIPS Technologies Inc. All rights reserved.

CVT.PS.S

Format: CVT.PS.S fd, fs, ft MIPS64
MIPS32 Release 2

Purpose:

To convert two FP values to a paired single value

Description: fd ← fs 31..0 || ft 31..0

The single-precision values in FPRfs andft are written into FPRfd as a paired-single value. The value in FPRfs is
written into the upper half, and the value in FPRft is written into the lower half.

CVT.PS.S is similar to PLL.PS, except that it expects operands of formatS instead ofPS.

The move is non-arithmetic; it causes no IEEE 754 exceptions.

Restrictions:

The fieldsfs andft must specify FPRs valid for operands of typeS; if they are not valid, the result isUNPREDICT-
ABLE .

The operand must be a value in formatS; if it is not, the result isUNPREDICTABLE and the value of the operand
FPR becomesUNPREDICTABLE .

The result of this instruction isUNPREDICTABLE if the processor is executing in 16 FP registers mode.

31 26 25 21 20 16 15 11 10 6 5 0

COP1
010001

fmt
10000

ft fs fd
CVT.PS
100110

6 5 5 5 5 6

Floating Point Convert Pair to Paired Single CVT.PS.S

31 310 0

63 3132 0

fs ft

fd
112 MIPS32™ Architecture For Programmers Volume II, Revision 2.00

Copyright © 2001-2003 MIPS Technologies Inc. All rights reserved.

Operation:

StoreFPR(fd, S, ValueFPR(fs,S) || ValueFPR(ft,S))

Exceptions:

Coprocessor Unusable, Reserved Instruction

Floating Point Exceptions:

Invalid Operation, Unimplemented Operation

Floating Point Convert Pair to Paired Single (cont.) CVT.PS.S
MIPS32™ Architecture For Programmers Volume II, Revision 2.00 113

Copyright © 2001-2003 MIPS Technologies Inc. All rights reserved.

114 MIPS32™ Architecture For Programmers Volume II, Revision 2.00

Copyright © 2001-2003 MIPS Technologies Inc. All rights reserved.

CVT.S.fmt

Format: CVT.S.D fd, fs MIPS32
CVT.S.W fd, fs MIPS32
CVT.S.L fd, fs MIPS64

MIPS32 Release 2

Purpose:

To convert an FP or fixed point value to single FP

Description: fd ← convert_and_round(fs)

The value in FPRfs, in formatfmt, is converted to a value in single floating point format and rounded according to the
current rounding mode inFCSR. The result is placed in FPRfd.

Restrictions:

The fieldsfs andfd must specify valid FPRs—fs for type fmt andfd for single floating point. If they are not valid, the
result isUNPREDICTABLE .

The operand must be a value in formatfmt; if it is not, the result isUNPREDICTABLE and the value of the operand
FPR becomesUNPREDICTABLE .

For CVT.S.L, the result of this instruction isUNPREDICTABLE if the processor is executing in 16 FP registers
mode.

Operation:

StoreFPR(fd, S, ConvertFmt(ValueFPR(fs, fmt), fmt, S))

Exceptions:

Coprocessor Unusable, Reserved Instruction

Floating Point Exceptions:

Invalid Operation, Unimplemented Operation, Inexact, Overflow, Underflow

31 26 25 21 20 16 15 11 10 6 5 0

COP1

010001
fmt

0

00000
fs fd

CVT.S

100000

6 5 5 5 5 6

Floating Point Convert to Single Floating Point CVT.S.fmt

MIPS32™ Architecture For Programmers Volume II, Revision 2.00 115

Copyright © 2001-2003 MIPS Technologies Inc. All rights reserved.

CVT.S.PL

Format: CVT.S.PL fd, fs MIPS64
MIPS32 Release 2

Purpose:

To convert one half of a paired single FP value to single FP

Description: fd ← convert_and_round(fs)

The lower paired single value in FPRfs, in format PS, is converted to a value in single floating point format and
rounded according to the current rounding mode inFCSR. The result is placed in FPRfd. This instruction can be used
to isolate the lower half of a paired single value.

Restrictions:

The fieldsfs andfd must specify valid FPRs—fs for typePSandfd for single floating point. If they are not valid, the
result isUNPREDICTABLE .

The operand must be a value in formatPS; if it is not, the result isUNPREDICTABLE and the value of the operand
FPR becomesUNPREDICTABLE .

The result of CVT.S.PL isUNPREDICTABLE if the processor is executing in 16 FP registers mode.

Operation:

StoreFPR (fd, S, ConvertFmt(ValueFPR(fs, PS), PL, S))

Exceptions:

Coprocessor Unusable, Reserved Instruction

Floating Point Exceptions:

Invalid Operation, Unimplemented Operation, Inexact, Overflow, Underflow

31 26 25 21 20 16 15 11 10 6 5 0

COP1

010001

fmt

10110

0

00000
fs fd

CVT.S.PL

101000

6 5 5 5 5 6

Floating Point Convert Pair Lower to Single Floating Point CVT.S.PL

116 MIPS32™ Architecture For Programmers Volume II, Revision 2.00

Copyright © 2001-2003 MIPS Technologies Inc. All rights reserved.

CVT.S.PU

Format: CVT.S.PU fd, fs MIPS64
MIPS32 Release 2

Purpose:

To convert one half of a paired single FP value to single FP

Description: fd ← convert_and_round(fs)

The upper paired single value in FPRfs, in format PS, is converted to a value in single floating point format and
rounded according to the current rounding mode inFCSR. The result is placed in FPRfd. This instruction can be used
to isolate the upper half of a paired single value.

Restrictions:

The fieldsfs andfd must specify valid FPRs—fs for typePSandfd for single floating point. If they are not valid, the
result isUNPREDICTABLE .

The operand must be a value in formatPS; if it is not, the result isUNPREDICTABLE and the value of the operand
FPR becomesUNPREDICTABLE .

The result of CVT.S.PU isUNPREDICTABLE if the processor is executing in 16 FP registers mode.

Operation:

StoreFPR (fd, S, ConvertFmt(ValueFPR(fs, PS), PU, S))

Exceptions:

Coprocessor Unusable, Reserved Instruction

Floating Point Exceptions:

Invalid Operation, Unimplemented Operation, Inexact, Overflow, Underflow

31 26 25 21 20 16 15 11 10 6 5 0

COP1

010001

fmt

10110

0

00000
fs fd

CVT.S.PU

100000

6 5 5 5 5 6

Floating Point Convert Pair Upper to Single Floating Point CVT.S.PU

MIPS32™ Architecture For Programmers Volume II, Revision 2.00 117

Copyright © 2001-2003 MIPS Technologies Inc. All rights reserved.

CVT.W.fmt

Format: CVT.W.S fd, fs MIPS32
CVT.W.D fd, fs MIPS32

Purpose:

To convert an FP value to 32-bit fixed point

Description: fd ← convert_and_round(fs)

The value in FPRfs, in formatfmt, is converted to a value in 32-bit word fixed point format and rounded according to
the current rounding mode inFCSR. The result is placed in FPRfd.

When the source value is Infinity, NaN, or rounds to an integer outside the range -231 to 231-1, the result cannot be
represented correctly, an IEEE Invalid Operation condition exists, and the Invalid Operation flag is set in theFCSR. If
the Invalid OperationEnablebit is set in theFCSR, no result is written tofd and an Invalid Operation exception is

taken immediately. Otherwise, the default result, 231–1, is written tofd.

Restrictions:

The fieldsfs andfd must specify valid FPRs—fs for type fmt andfd for word fixed point—if they are not valid, the
result isUNPREDICTABLE .

The operand must be a value in formatfmt; if it is not, the result isUNPREDICTABLE and the value of the operand
FPR becomesUNPREDICTABLE .

Operation:

StoreFPR(fd, W, ConvertFmt(ValueFPR(fs, fmt), fmt, W))

Exceptions:

Coprocessor Unusable, Reserved Instruction

Floating Point Exceptions:

Invalid Operation, Unimplemented Operation, Inexact, Overflow

31 26 25 21 20 16 15 11 10 6 5 0

COP1

010001
fmt

0

00000
fs fd

CVT.W

100100

6 5 5 5 5 6

Floating Point Convert to Word Fixed Point CVT.W.fmt

n at the
as

on, a
ons (for
n (for

essor 0
olving
ith the
DERET

Format: DERET EJTAG

Purpose:

To Return from a debug exception.

Description:

DERET clears execution and instruction hazards, returns from Debug Mode and resumes non-debug executio
instruction whose address is contained in theDEPCregister. DERET does not execute the next instruction (i.e. it h
no delay slot).

Restrictions:

A DERET placed between an LL and SC instruction does not cause the SC to fail.

If the DEPC register with the return address for the DERET was modified by an MTC0 or a DMTC0 instructi
CP0 hazard exists that must be removed via software insertion of the appropriate number of SSNOP instructi
implementations of Release 1 of the Architecture) or by an EHB, or other execution hazard clearing instructio
implementations of Release 2 of the Architecture).

DERET implements a software barrier that resolves all execution and instruction hazards created by Coproc
state changes (for Release 2 implementations, refer to the SYNCI instruction for additional information on res
instruction hazards created by writing the instruction stream). The effects of this barrier are seen starting w
instruction fetch and decode of the instruction at the PC to which the DERET returns.

This instruction is legal only if the processor is executing in Debug Mode.The operation of the processor isUNDE-
FINED if a DERET is executed in the delay slot of a branch or jump instruction.

31 26 25 24 6 5 0

COP0

010000

CO

1

0

000 0000 0000 0000 0000

DERET

011111

6 1 19 6

Debug Exception Return DERET
118 MIPS32™ Architecture For Programmers Volume II, Revision 2.00

Copyright © 2001-2003 MIPS Technologies Inc. All rights reserved.

Operation:

DebugDM ← 0
DebugIEXI ← 0
if IsMIPS16Implemented() then

PC ← DEPC31..1 || 0
ISAMode ← DEPC0

else
PC ← DEPC

endif
ClearHazards()

Exceptions:

Coprocessor Unusable Exception
Reserved Instruction Exception

Debug Exception Return (cont.) DERET
MIPS32™ Architecture For Programmers Volume II, Revision 2.00 119

Copyright © 2001-2003 MIPS Technologies Inc. All rights reserved.

PR

Excep-
DI

Format: DI MIPS32 Release 2
DI rt MIPS32 Release 2

Purpose:

To return the previous value of theStatusregister and disable interrupts. If DI is specified without an argument, G
r0 is implied, which discards the previous value of the Status register.

Description: rt ← Status; Status IE ← 0

The current value of theStatusregister is loaded into general registerrt. The Interrupt Enable (IE) bit in theStatus
register is then cleared.

Restrictions:

If access to Coprocessor 0 is not enabled, a Coprocessor Unusable Exception is signaled.

In implementations prior to Release 2 of the architecture, this instruction resulted in a Reserved Instruction
tion.

Operation:

This operation specification is for the general interrupt enable/disable operation, with thescfield as a variable. The
individual instructions DI and EI have a specific value for thesc field.

data ← Status
GPR[rt] ← data
Status IE ← 0

31 26 25 21 20 16 15 11 10 6 5 4 3 2 0

COP0
0100 00

MFMC0
01 011 rt 12

0110 0
0

000 00
sc
0

0
0 0

0
000

6 5 5 5 5 1 2 3

Disable Interrupts DI
120 MIPS32™ Architecture For Programmers Volume II, Revision 2.00

Copyright © 2001-2003 MIPS Technologies Inc. All rights reserved.

c-

e change
. Soft-
Exceptions:

Coprocessor Unusable
Reserved Instruction (Release 1 implementations)

Programming Notes:

The effects of this instruction are identical to those accomplished by the sequence of readingStatusinto a GPR, clear-
ing the IE bit, and writing the result back toStatus. Unlike the multiple instruction sequence, however, the DI instru
tion can not be aborted in the middle by an interrupt or exception.

This instruction creates an execution hazard between the change to the Status register and the point where th
to the interrupt enable takes effect. This hazard is cleared by the EHB, JALR.HB, JR.HB, or ERET instructions
ware must not assume that a fixed latency will clear the execution hazard.

Disable Interrupts, cont. DI
MIPS32™ Architecture For Programmers Volume II, Revision 2.00 121

Copyright © 2001-2003 MIPS Technologies Inc. All rights reserved.

s.
DIV

Format: DIV rs, rt MIPS32

Purpose:

To divide a 32-bit signed integers

Description: (HI, LO) ← rs / rt

The 32-bit word value in GPRrs is divided by the 32-bit value in GPRrt, treating both operands as signed value
The 32-bit quotient is placed into special registerLO and the 32-bit remainder isplaced into special registerHI.

No arithmetic exception occurs under any circumstances.

Restrictions:

If the divisor in GPRrt is zero, the arithmetic result value isUNPREDICTABLE .

Operation:
q ← GPR[rs] 31..0 div GPR[rt] 31..0
LO ← q
r ← GPR[rs] 31..0 mod GPR[rt] 31..0
HI ← r

Exceptions:

None

31 26 25 21 20 16 15 6 5 0

SPECIAL

000000
rs rt

0

00 0000 0000

DIV

011010

6 5 5 10 6

Divide Word DIV
122 MIPS32™ Architecture For Programmers Volume II, Revision 2.00

Copyright © 2001-2003 MIPS Technologies Inc. All rights reserved.

ed and
divi-

th the
more

te
nal con-
EAK

tions to
re

mance

lt of
bse-
and
Programming Notes:

No arithmetic exception occurs under any circumstances. If divide-by-zero or overflow conditions are detect
some action taken, then the divide instruction is typically followed by additional instructions to check for a zero
sor and/or for overflow. If the divide is asynchronous then the zero-divisor check can execute in parallel wi
divide. The action taken on either divide-by-zero or overflow is either a convention within the program itself, or
typically within the system software; one possibility is to take a BREAK exception with acodefield value to signal
the problem to the system software.

As an example, the C programming language in a UNIX® environment expects division by zero to either termina
the program or execute a program-specified signal handler. C does not expect overflow to cause any exceptio
dition. If the C compiler uses a divide instruction, it also emits code to test for a zero divisor and execute a BR
instruction to inform the operating system if a zero is detected.

In some processors the integer divide operation may proceed asynchronously and allow other CPU instruc
execute before it is complete. An attempt to readLO or HI before the results are written interlocks until the results a
ready. Asynchronous execution does not affect the program result, but offers an opportunity for perfor
improvement by scheduling the divide so that other instructions can execute in parallel.

Historical Perspective:

In MIPS 1 through MIPS III, if either of the two instructions preceding the divide is an MFHI or MFLO, the resu
the MFHI or MFLO is UNPREDICTABLE. Reads of the HI or LO special register must be separated from su
quent instructions that write to them by two or more instructions. This restriction was removed in MIPS IV
MIPS32 and all subsequent levels of the architecture.

Divide Word (cont.) DIV
MIPS32™ Architecture For Programmers Volume II, Revision 2.00 123

Copyright © 2001-2003 MIPS Technologies Inc. All rights reserved.

124 MIPS32™ Architecture For Programmers Volume II, Revision 2.00

Copyright © 2001-2003 MIPS Technologies Inc. All rights reserved.

DIV.fmt

Format: DIV.S fd, fs, ft MIPS32
DIV.D fd, fs, ft MIPS32

Purpose:

To divide FP values

Description: fd ← fs / ft

The value in FPRfs is divided by the value in FPRft. The result is calculated to infinite precision, rounded according
to the current rounding mode inFCSR, and placed into FPRfd. The operands and result are values in formatfmt.

Restrictions:

The fieldsfs, ft, andfd must specify FPRs valid for operands of typefmt; if they are not valid, the result isUNPRED-
ICABLE .

The operands must be values in formatfmt; if they are not, the result isUNPREDICTABLE and the value of the
operand FPRs becomesUNPREDICTABLE .

Operation:

StoreFPR (fd, fmt, ValueFPR(fs, fmt) / ValueFPR(ft, fmt))

Exceptions:

Coprocessor Unusable, Reserved Instruction

Floating Point Exceptions:

Inexact, Invalid Operation, Unimplemented Operation, Division-by-zero, Overflow, Underflow

31 26 25 21 20 16 15 11 10 6 5 0

COP1

010001
fmt ft fs fd

DIV

000011

6 5 5 5 5 6

Floating Point Divide DIV.fmt

MIPS32™ Architecture For Programmers Volume II, Revision 2.00 125

Copyright © 2001-2003 MIPS Technologies Inc. All rights reserved.

DIVU

Format: DIVU rs, rt MIPS32

Purpose:

To divide a 32-bit unsigned integers

Description: (HI, LO) ← rs / rt

The 32-bit word value in GPRrs is divided by the 32-bit value in GPRrt, treating both operands as unsigned values.
The 32-bit quotient is placed into special registerLO and the 32-bit remainder is placed into special registerHI.

No arithmetic exception occurs under any circumstances.

Restrictions:

If the divisor in GPRrt is zero, the arithmetic result value isUNPREDICTABLE .

Operation:

q ← (0 || GPR[rs] 31..0) div (0 || GPR[rt] 31..0)
r ← (0 || GPR[rs] 31..0) mod (0 || GPR[rt] 31..0)
LO ← sign_extend(q 31..0)
HI ← sign_extend(r 31..0)

Exceptions:

None

Programming Notes:

See “Programming Notes” for the DIV instruction.

Historical Perspective:

In MIPS 1 through MIPS III, if either of the two instructions preceding the divide is an MFHI or MFLO, the result of
the MFHI or MFLO is UNPREDICTABLE. Reads of the HI or LO special register must be separated from subse-
quent instructions that write to them by two or more instructions. This restriction was removed in MIPS IV and
MIPS32 and all subsequent levels of the architecture.

31 26 25 21 20 16 15 6 5 0

SPECIAL

000000
rs rt

0

00 0000 0000

DIVU

011011

6 5 5 10 6

Divide Unsigned Word DIVU

126 MIPS32™ Architecture For Programmers Volume II, Revision 2.00

Copyright © 2001-2003 MIPS Technologies Inc. All rights reserved.

EHB

Format: EHB MIPS32 Release 2

Purpose:

To stop instruction execution until all execution hazards have been cleared.

Description:

EHB is the assembly idiom used to denote execution hazard barrier. The actual instruction is interpreted by the hard-
ware as SLL r0, r0, 3.

This instruction alters the instruction issue behavior on a pipelined processor by stopping execution until all execu-
tion hazards have been cleared. Other than those that might be created as a consequence of setting StatusCU0, there
are no execution hazards visible to an unprivileged program running in User Mode. All execution hazards created by
previous instructions are cleared for instructions executed immediately following the EHB, even if the EHB is exe-
cuted in the delay slot of a branch or jump. The EHB instruction does not clear instruction hazards - such hazards are
cleared by the JALR.HB, JR.HB, and ERET instructions.

Restrictions:

None

Operation:

ClearExecutionHazards()

Exceptions:

None

Programming Notes:

In MIPS32 Release 2 implementations, this instruction resolves all execution hazards. On a superscalar processor,
EHB has alters the instruction issue behavior in a manner identical to SSNOP. For backward compatibility with
Release 1 implementations, the last of a sequence of SSNOPs can be replaced by an EHB. In Release 1 implementa-
tions, the EHB will be treated as an SSNOP, thereby preserving the semantics of the sequence. In Release 2 imple-
mentations, replacing the final SSNOP with an EHB should have no performance effect because a properly sized
sequence of SSNOPs will have already cleared the hazard. As EHB becomes the standard in MIPS implementations,
the previous SSNOPs can be removed, leaving only the EHB.

31 26 25 21 20 16 15 11 10 6 5 0

SPECIAL

000000

0

00000

0

00000

0

00000

3

00011

SLL

000000

6 5 5 5 5 6

Execution Hazard Barrier EHB

PR

Excep-
EI

Format: EI MIPS32 Release 2
EI rt MIPS32 Release 2

Purpose:

To return the previous value of theStatusregister and enable interrupts. If EI is specified without an argument, G
r0 is implied, which discards the previous value of the Status register.

Description: rt ← Status; Status IE ← 1

The current value of theStatusregister is loaded into general register rt. The Interrupt Enable (IE) bit in theStatus
register is then set.

Restrictions:

If access to Coprocessor 0 is not enabled, a Coprocessor Unusable Exception is signaled.

In implementations prior to Release 2 of the architecture, this instruction resulted in a Reserved Instruction
tion.

Operation:

This operation specification is for the general interrupt enable/disable operation, with thescfield as a variable. The
individual instructions DI and EI have a specific value for thesc field.

data ← Status
GPR[rt] ← data
Status IE ← 1

31 26 25 21 20 16 15 11 10 6 5 4 3 2 0

COP0
0100 00

MFMC0
01 011 rt 12

0110 0
0

000 00
sc
1

0
0 0

0
000

6 5 5 5 5 1 2 3

Enable Interrupts EI
MIPS32™ Architecture For Programmers Volume II, Revision 2.00 127

Copyright © 2001-2003 MIPS Technologies Inc. All rights reserved.

EI

e change
. Soft-
Exceptions:

Coprocessor Unusable
Reserved Instruction (Release 1 implementations)

Programming Notes:

The effects of this instruction are identical to those accomplished by the sequence of readingStatusinto a GPR, set-
ting the IE bit, and writing the result back toStatus. Unlike the multiple instruction sequence, however, the
instruction can not be aborted in the middle by an interrupt or exception.

This instruction creates an execution hazard between the change to the Status register and the point where th
to the interrupt enable takes effect. This hazard is cleared by the EHB, JALR.HB, JR.HB, or ERET instructions
ware must not assume that a fixed latency will clear the execution hazard.

Enable Interrupts, cont. EI
128 MIPS32™ Architecture For Programmers Volume II, Revision 2.00

Copyright © 2001-2003 MIPS Technologies Inc. All rights reserved.

ocess-

c-

essor 0
olving
ith the

ntly
ERET

Format: ERET MIPS32

Purpose:

To return from interrupt, exception, or error trap.

Description:

ERET clears execution and instruction hazards, conditionally restores SRSCtlCSS from SRSCtlPSSin a Release 2
implementation, and returns to the interrupted instruction at the completion of interrupt, exception, or error pr
ing. ERET does not execute the next instruction (i.e., it has no delay slot).

Restrictions:

The operation of the processor isUNDEFINED if an ERET is executed in the delay slot of a branch or jump instru
tion.

An ERET placed between an LL and SC instruction will always cause the SC to fail.

ERET implements a software barrier that resolves all execution and instruction hazards created by Coproc
state changes (for Release 2 implementations, refer to the SYNCI instruction for additional information on res
instruction hazards created by writing the instruction stream). The effects of this barrier are seen starting w
instruction fetch and decode of the instruction at the PC to which the ERET returns.

In a Release 2 implementation, ERET does not restore SRSCtlCSSfrom SRSCtlPSSif StatusBEV = 1, or if StatusERL =
1 because any exception that sets StatusERL to 1 (Reset, Soft Reset, NMI, or cache error) does not save SRSCtlCSSin
SRSCtlPSS. If software sets StatusERL to 1, it must be aware of the operation of an ERET that may be subseque
executed.

31 26 25 24 6 5 0

COP0

010000

CO

1

0

000 0000 0000 0000 0000

ERET

011000

6 1 19 6

Exception Return ERET
MIPS32™ Architecture For Programmers Volume II, Revision 2.00 129

Copyright © 2001-2003 MIPS Technologies Inc. All rights reserved.

Operation:

if Status ERL = 1 then
temp ← ErrorEPC
Status ERL ← 0

else
temp ← EPC
Status EXL ← 0
if (ArchitectureRevision ≥ 2) and (SRSCtl HSS > 0) and (Status BEV = 0)then

SRSCtl CSS ← SRSCtl PSS
endif

endif
if IsMIPS16Implemented() then

PC ← temp 31..1 || 0
ISAMode ← temp 0

else
PC ← temp

endif
LLbit ← 0
ClearHazards()

Exceptions:
Coprocessor Unusable Exception

Exception Return ERET
130 MIPS32™ Architecture For Programmers Volume II, Revision 2.00

Copyright © 2001-2003 MIPS Technologies Inc. All rights reserved.

d
e

eption.
EXT

Format: ext rt, rs, pos, size MIPS32 Release 2

Purpose:

To extract a bit field from GPRrs and store it right-justified into GPRrt.

Description: rt ← ExtractField(rs, msbd, lsb)

The bit field starting at bitposand extending forsizebits is extracted from GPRrs and stored zero-extended an
right-justified in GPRrt. The assembly language argumentspos and sizeare converted by the assembler to th
instruction fieldsmsbd(the most significant bit of the destination field in GPRrt), in instruction bits 15..11, andlsb
(least significant bit of the source field in GPRrs), in instruction bits 10..6, as follows:

msbd ← size-1
lsb ← pos

The values ofpos andsize must satisfy all of the following relations:

0 ≤ pos < 32
0 < size ≤ 32
0 < pos+size ≤ 32

Figure 3-3 shows the symbolic operation of the instruction.

Restrictions:

In implementations prior to Release of the architecture, this instruction resulted in a Reserved Instruction Exc

The operation isUNPREDICTABLE if lsb+msbd > 31.

31 26 25 21 20 16 15 11 10 6 5 0

SPECIAL3

011111
rs rt msbd

(size-1)
lsb

(pos)

EXT

000000

6 5 5 5 5 6

Extract Bit Field EXT

Figure 3-3 Operation of the EXT Instruction

31 pos+size
lsb+msbd+1

 pos+size-1
 lsb+msbd

pos
lsb

 pos-1
 lsb-1 0

GPR rs
Initial
Value

IJKL MNOP QRST

32-(pos+size)
32-(lsb+msbd+1)

size
msbd+1

pos
lsb

31 size
msbd+1

size-1
 msbd 0

GPR rt
Final Value

0 MNOP

32-size
32-(msbd+1)

size
msbd+1
MIPS32™ Architecture For Programmers Volume II, Revision 2.00 131

Copyright © 2001-2003 MIPS Technologies Inc. All rights reserved.

Operation:

if (lsb + msbd) > 31) then
UNPREDICTABLE

endif
temp ← 032-(msbd+1) || GPR[rs] msbd+lsb..lsb
GPR[rt] ← temp

Exceptions:

Reserved Instruction

Extract Bit Field, cont. EXT
132 MIPS32™ Architecture For Programmers Volume II, Revision 2.00

Copyright © 2001-2003 MIPS Technologies Inc. All rights reserved.

-

FLOOR.L.fmt

Format: FLOOR.L.S fd, fs MIPS64
MIPS32 Release 2

FLOOR.L.D fd, fs MIPS64
MIPS32 Release 2

Purpose:

To convert an FP value to 64-bit fixed point, rounding down

Description: fd ← convert_and_round(fs)

The value in FPRfs, in format fmt, is converted to a value in 64-bit long fixed point format and rounded toward∞
(rounding mode 3). The result is placed in FPRfd.

When the source value is Infinity, NaN, or rounds to an integer outside the range -263 to 263-1, the result cannot be
represented correctly, an IEEE Invalid Operation condition exists, and the Invalid Operation flag is set in theFCSR. If
the Invalid Operation Enable bit is set in theFCSR, no result is written tofd and an Invalid Operation exception is

taken immediately. Otherwise, the default result, 263–1, is written tofd.

Restrictions:

The fieldsfs and fd must specify valid FPRs—fs for type fmt and fd for long fixed point—if they are not valid, the
result isUNPREDICTABLE .

The operand must be a value in formatfmt; if it is not, the result isUNPREDICTABLE and the value of the operand
FPR becomesUNPREDICTABLE .

The result of this instruction isUNPREDICTABLE if the processor is executing in 16 FP registers mode.

Operation:

StoreFPR(fd, L, ConvertFmt(ValueFPR(fs, fmt), fmt, L))

31 26 25 21 20 16 15 11 10 6 5 0

COP1

010001
fmt

0

00000
fs fd

FLOOR.L

001011

6 5 5 5 5 6

Floating Point Floor Convert to Long Fixed Point FLOOR.L.fmt
MIPS32™ Architecture For Programmers Volume II, Revision 2.00 133

Copyright © 2001-2003 MIPS Technologies Inc. All rights reserved.

Exceptions:

Coprocessor Unusable, Reserved Instruction

Floating Point Exceptions:

Invalid Operation, Unimplemented Operation, Inexact, Overflow

Floating Point Floor Convert to Long Fixed Point (cont.) FLOOR.L.fmt
134 MIPS32™ Architecture For Programmers Volume II, Revision 2.00

Copyright © 2001-2003 MIPS Technologies Inc. All rights reserved.

MIPS32™ Architecture For Programmers Volume II, Revision 2.00 135

Copyright © 2001-2003 MIPS Technologies Inc. All rights reserved.

FLOOR.W.fmt

Format: FLOOR.W.S fd, fs MIPS32
FLOOR.W.D fd, fs MIPS32

Purpose:

To convert an FP value to 32-bit fixed point, rounding down

Description: fd ← convert_and_round(fs)

The value in FPRfs, in format fmt, is converted to a value in 32-bit word fixed point format and rounded toward –∞
(rounding mode 3). The result is placed in FPRfd.

When the source value is Infinity, NaN, or rounds to an integer outside the range -231 to 231-1, the result cannot be
represented correctly, an IEEE Invalid Operation condition exists, and the Invalid Operation flag is set in theFCSR. If
the Invalid OperationEnablebit is set in theFCSR, no result is written tofd and an Invalid Operation exception is

taken immediately. Otherwise, the default result, 231–1, is written tofd.

Restrictions:

The fieldsfs andfd must specify valid FPRs—fs for type fmt andfd for word fixed point—if they are not valid, the
result isUNPREDICTABLE .

The operand must be a value in formatfmt; if it is not, the result isUNPREDICTABLE and the value of the operand
FPR becomesUNPREDICTABLE .

Operation:

StoreFPR(fd, W, ConvertFmt(ValueFPR(fs, fmt), fmt, W))

Exceptions:

Coprocessor Unusable, Reserved Instruction

Floating Point Exceptions:

Invalid Operation, Unimplemented Operation, Inexact, Overflow

31 26 25 21 20 16 15 11 10 6 5 0

COP1

010001
fmt

0

00000
fs fd

FLOOR.W

001111

6 5 5 5 5 6

Floating Point Floor Convert to Word Fixed Point FLOOR.W.fmt

e

INS

Format: ins rt, rs, pos, size MIPS32 Release 2

Purpose:

To merge a right-justified bit field from GPRrs into a specified field in GPRrt.

Description: rt ← InsertField(rt, rs, msb, lsb)

The right-mostsizebits from GPRrs are merged into the value from GPRrt starting at bit positionpos. The result
isplaced back in GPRrt. The assembly language argumentspos and sizeare converted by the assembler to th
instruction fieldsmsb(the most significant bit of the field), in instruction bits 15..11, andlsb (least significant bit of
the field), in instruction bits 10..6, as follows:

msb ← pos+size-1
lsb ← pos

The values ofpos andsize must satisfy all of the following relations:

0 ≤ pos < 32
0 < size ≤ 32
0 < pos+size ≤ 32

 Figure 3-4 shows the symbolic operation of the instruction.

31 26 25 21 20 16 15 11 10 6 5 0

SPECIAL3

011111
rs rt msb

(pos+size-1)
lsb

(pos)
INS

000100

6 5 5 5 5 6

Insert Bit Field INS

Figure 3-4 Operation of the INS Instruction

31 size
msb-lsb+1

 size-1
 msb-lsb 0

GPR rs ABCD EFGH

32-size
32-(msb-lsb+1)

size
msb-lsb+1

31 pos+size
msb+1

 pos+size-1
 msb

pos
lsb

 pos-1
 lsb-1 0

GPR rt
Initial
Value

IJKL MNOP QRST

32-(pos+size)
32-(msb+1)

size
msb-lsb+1

pos
lsb

31 pos+size
msb+1

pos+size-1
msb

pos
lsb

pos-1
lsb-1 0

GPR rt
Final Value

IJKL EFGH QRST

32-(pos+size)
32-(msb+1)

size
msb-lsb+1

pos
lsb
136 MIPS32™ Architecture For Programmers Volume II, Revision 2.00

Copyright © 2001-2003 MIPS Technologies Inc. All rights reserved.

Excep-
Restrictions:

In implementations prior to Release 2 of the architecture, this instruction resulted in a Reserved Instruction
tion.

The operation isUNPREDICTABLE if lsb > msb.

Operation:

if lsb > msb) then
UNPREDICTABLE

endif
GPR[rt] ← GPR[rt] 31..msb+1 || GPR[rs] msb-lsb..0 || GPR[rt] lsb-1..0

Exceptions:

Reserved Instruction

Insert Bit Field, cont. INS
MIPS32™ Architecture For Programmers Volume II, Revision 2.00 137

Copyright © 2001-2003 MIPS Technologies Inc. All rights reserved.

138 MIPS32™ Architecture For Programmers Volume II, Revision 2.00

Copyright © 2001-2003 MIPS Technologies Inc. All rights reserved.

J

Format: J target MIPS32

Purpose:

To branch within the current 256 MB-aligned region

Description:

This is a PC-region branch (not PC-relative); the effective target address is in the “current” 256 MB-aligned region.
The low 28 bits of the target address is theinstr_indexfield shifted left 2 bits. The remaining upper bits are the corre-
sponding bits of the address of the instruction in the delay slot (not the branch itself).

Jump to the effective target address. Execute the instruction that follows the jump, in the branch delay slot, before
executing the jump itself.

Restrictions:

Processor operation isUNPREDICTABLE if a branch, jump, ERET, DERET, or WAIT instruction is placed in the
delay slot of a branch or jump.

Operation:

I:
I+1: PC ← PC GPRLEN-1..28 || instr_index || 0 2

Exceptions:

None

Programming Notes:

Forming the branch target address by catenating PC and index bits rather than adding a signed offset to the PC is an
advantage if all program code addresses fit into a 256 MB region aligned on a 256 MB boundary. It allows a branch
from anywhere in the region to anywhere in the region, an action not allowed by a signed relative offset.

This definition creates the following boundary case: When the jump instruction is in the last word of a 256 MB
region, it can branch only to the following 256 MB region containing the branch delay slot.

31 26 25 0

J

000010
instr_index

6 26

Jump J

MIPS32™ Architecture For Programmers Volume II, Revision 2.00 139

Copyright © 2001-2003 MIPS Technologies Inc. All rights reserved.

JAL

Format: JAL target MIPS32

Purpose:

To execute a procedure call within the current 256 MB-aligned region

Description:

Place the return address link in GPR 31. The return link is the address of the second instruction following the branch,
at which location execution continues after a procedure call.

This is a PC-region branch (not PC-relative); the effective target address is in the “current” 256 MB-aligned region.
The low 28 bits of the target address is theinstr_indexfield shifted left 2 bits. The remaining upper bits are the corre-
sponding bits of the address of the instruction in the delay slot (not the branch itself).

Jump to the effective target address. Execute the instruction that follows the jump, in the branch delay slot, before
executing the jump itself.

Restrictions:

Processor operation isUNPREDICTABLE if a branch, jump, ERET, DERET, or WAIT instruction is placed in the
delay slot of a branch or jump.

Operation:

I: GPR[31] ← PC + 8
I+1: PC ← PC GPRLEN-1..28 || instr_index || 0 2

Exceptions:

None

Programming Notes:

Forming the branch target address by catenating PC and index bits rather than adding a signed offset to the PC is an
advantage if all program code addresses fit into a 256 MB region aligned on a 256 MB boundary. It allows a branch
from anywhere in the region to anywhere in the region, an action not allowed by a signed relative offset.

This definition creates the following boundary case: When the branch instruction is in the last word of a 256 MB
region, it can branch only to the following 256 MB region containing the branch delay slot.

31 26 25 0

JAL

000011
instr_index

6 26

Jump and Link JAL

ch,

y

y

elease
escrip-

n reex-
-

16e
target

and bit

e

JALR

Format: JALR rs (rd = 31 implied) MIPS32
JALR rd, rs MIPS32

Purpose:

To execute a procedure call to an instruction address in a register

Description: rd ← return_addr, PC ← rs

Place the return address link in GPRrd. The return link is the address of the second instruction following the bran
where execution continues after a procedure call.

For processors that do not implement the MIPS16e ASE:

• Jump to the effective target address in GPRrs. Execute the instruction that follows the jump, in the branch dela
slot, before executing the jump itself.

For processors that do implement the MIPS16e ASE:

• Jump to the effective target address in GPRrs. Execute the instruction that follows the jump, in the branch dela
slot, before executing the jump itself. Set theISA Mode bit to the value in GPRrs bit 0. Bit 0 of the target
address is always zero so that no Address Exceptions occur when bit 0 of the source register is one

In release 1 of the architecture, the only defined hint field value is 0, which sets default handling of JALR. In R
2 of the architecture, bit 10 of the hint field is used to encode a hazard barrier. See the JALR.HB instruction d
tion for additional information.

Restrictions:

Register specifiersrs andrd must not be equal, because such an instruction does not have the same effect whe
ecuted. The result of executing such an instruction isUNPREDICTABLE . This restriction permits an exception han
dler to resume execution by re-executing the branch when an exception occurs in the branch delay slot.

The effective target address in GPRrs must be naturally-aligned. For processors that do not implement the MIPS
ASE, if either of the two least-significant bits are not zero, an Address Error exception occurs when the branch
is subsequently fetched as an instruction. For processors that do implement the MIPS16e ASE, if bit 0 is zero
1 is one, an Address Error exception occurs when the jump target is subsequently fetched as an instruction.

Processor operation isUNPREDICTABLE if a branch, jump, ERET, DERET, or WAIT instruction is placed in th
delay slot of a branch or jump.

31 26 25 21 20 16 15 11 10 6 5 0

SPECIAL

000000
rs

0

00000
rd hint

JALR

001001

6 5 5 5 5 6

Jump and Link Register JALR
140 MIPS32™ Architecture For Programmers Volume II, Revision 2.00

Copyright © 2001-2003 MIPS Technologies Inc. All rights reserved.

s use
Operation:

I: temp ← GPR[rs]
GPR[rd] ← PC + 8

I+1: if Config1 CA = 0 then
PC ← temp

else
PC ← temp GPRLEN-1..1 || 0
ISAMode ← temp 0

endif

Exceptions:

None

Programming Notes:

This is the only branch-and-link instruction that can select a register for the return link; all other link instruction
GPR 31. The default register for GPRrd, if omitted in the assembly language instruction, is GPR 31.

Jump and Link Register, cont. JALR
MIPS32™ Architecture For Programmers Volume II, Revision 2.00 141

Copyright © 2001-2003 MIPS Technologies Inc. All rights reserved.

ards

ch,

y

y

essor 0
olving
ith the
t bar-
or 0 is

or the

n reex-
-

S16
target

nd bit 1
JALR.HB

Format: JALR.HB rs (rd = 31 implied) MIPS32 Release 2
JALR.HB rd, rs MIPS32 Release 2

Purpose:

To execute a procedure call to an instruction address in a register and clear all execution and instruction haz

Description: rd ← return_addr, PC ← rs, clear execution and instruction hazards

Place the return address link in GPRrd. The return link is the address of the second instruction following the bran
where execution continues after a procedure call.

For processors that do not implement the MIPS16 ASE:

• Jump to the effective target address in GPRrs. Execute the instruction that follows the jump, in the branch dela
slot, before executing the jump itself.

For processors that do implement the MIPS16 ASE:

• Jump to the effective target address in GPRrs. Execute the instruction that follows the jump, in the branch dela
slot, before executing the jump itself. Set theISA Mode bit to the value in GPRrs bit 0. Bit 0 of the target
address is always zero so that no Address Exceptions occur when bit 0 of the source register is one

JALR.HB implements a software barrier that resolves all execution and instruction hazards created by Coproc
state changes (for Release 2 implementations, refer to the SYNCI instruction for additional information on res
instruction hazards created by writing the instruction stream). The effects of this barrier are seen starting w
instruction fetch and decode of the instruction at the PC to which the JALR.HB instruction jumps. An equivalen
rier is also implemented by the ERET instruction, but that instruction is only available if access to Coprocess
enabled, whereas JALR.HB is legal in all operating modes.

This instruction clears both execution and instruction hazards. Refer to the EHB instruction description f
method of clearing execution hazards alone.

JALR.HB uses bit 10 of the instruction (the upper bit of the hint field) to denote the hazard barrier operation.

Restrictions:

Register specifiersrs andrd must not be equal, because such an instruction does not have the same effect whe
ecuted. The result of executing such an instruction isUNPREDICTABLE . This restriction permits an exception han
dler to resume execution by re-executing the branch when an exception occurs in the branch delay slot.

The effective target address in GPRrs must be naturally-aligned. For processors that do not implement the MIP
ASE, if either of the two least-significant bits are not zero, an Address Error exception occurs when the branch
is subsequently fetched as an instruction. For processors that do implement the MIPS16 ASE, if bit 0 is zero a
is one, an Address Error exception occurs when the jump target is subsequently fetched as an instruction.

31 26 25 21 20 16 15 11 10 9 6 5 0

SPECIAL

000000
rs

0

00000
rd 1 Any other legal

hint value

JALR

001001

6 5 5 5 1 4 6

Jump and Link Register with Hazard Barrier JALR.HB
142 MIPS32™ Architecture For Programmers Volume II, Revision 2.00

Copyright © 2001-2003 MIPS Technologies Inc. All rights reserved.

tions
, or
.

. Only

e

other
is

ues. A
am, or
re that
hazards
ar the

coded as
n (JR)
Restrictions, cont.:

After modifying an instruction stream mapping or writing to the instruction stream, execution of those instruc
hasUNPREDICTABLE behavior until the instruction hazard has been cleared with JALR.HB, JR.HB, ERET
DERET. Further, the operation isUNPREDICTABLE if the mapping of the current instruction stream is modified

JALR.HB does not clear hazards created by any instruction that is executed in the delay slot of the JALR.HB
hazards created by instructions executed before the JALR.HB are cleared by the JALR.HB.

Processor operation isUNPREDICTABLE if a branch, jump, ERET, DERET, or WAIT instruction is placed in th
delay slot of a branch or jump.

Operation:

I: temp ← GPR[rs]
GPR[rd] ← PC + 8

I+1: if Config1 CA = 0 then
PC ← temp

else
PC ← temp GPRLEN-1..1 || 0
ISAMode ← temp 0

endif
ClearHazards()

Exceptions:

None

Programming Notes:

JALR and JALR.HB are the only branch-and-link instructions that can select a register for the return link; all
link instructions use GPR 31. The default register for GPRrd, if omitted in the assembly language instruction,
GPR 31.

This instruction implements the final step in clearing execution and instruction hazards before execution contin
hazard is created when a Coprocessor 0 or TLB write affects execution or the mapping of the instruction stre
after a write to the instruction stream. When such a situation exists, software must explicitly indicate to hardwa
the hazard should be cleared. Execution hazards alone can be cleared with the EHB instruction. Instruction
can only be cleared with a JR.HB, JALR.HB, or ERET instruction. These instructions cause hardware to cle
hazard before the instruction at the target of the jump is fetched. Note that because these instructions are en
jumps, the process of clearing an instruction hazard can often be included as part of a call (JALR) or retur
sequence, by simply replacing the original instructions with the HB equivalent.

Jump and Link Register with Hazard Barrier, cont. JALR.HB
MIPS32™ Architecture For Programmers Volume II, Revision 2.00 143

Copyright © 2001-2003 MIPS Technologies Inc. All rights reserved.

Example: Clearing hazards due to an ASID change
/*
 * Code used to modify ASID and call a routine with the new
 * mapping established.
 *
 * a0 = New ASID to establish
 * a1 = Address of the routine to call
 */

mfc0 v0, C0_EntryHi /* Read current ASID */
li v1, ~M_EntryHiASID /* Get negative mask for field */
and v0, v0, v1 /* Clear out current ASID value */
or v0, v0, a0 /* OR in new ASID value */
mtc0 v0, C0_EntryHi /* Rewrite EntryHi with new ASID */
jalr.hb a1 /* Call routine, clearing the hazard */
nop

Jump and Link Register with Hazard Barrier, cont. JALR.HB
144 MIPS32™ Architecture For Programmers Volume II, Revision 2.00

Copyright © 2001-2003 MIPS Technologies Inc. All rights reserved.

ot,

16e
target

and bit

ease 2
ruction

e

JR

Format: JR rs MIPS32

Purpose:

To execute a branch to an instruction address in a register

Description: PC ← rs

Jump to the effective target address in GPRrs. Execute the instruction following the jump, in the branch delay sl
before jumping.

For processors that implement the MIPS16e ASE, set theISA Modebit to the value in GPRrs bit 0. Bit 0 of the target
address is always zero so that no Address Exceptions occur when bit 0 of the source register is one

Restrictions:

The effective target address in GPRrs must be naturally-aligned. For processors that do not implement the MIPS
ASE, if either of the two least-significant bits are not zero, an Address Error exception occurs when the branch
is subsequently fetched as an instruction. For processors that do implement the MIPS16e ASE, if bit 0 is zero
1 is one, an Address Error exception occurs when the jump target is subsequently fetched as an instruction.

In release 1 of the architecture, the only defined hint field value is 0, which sets default handling of JR. In Rel
of the architecture, bit 10 of the hint field is used to encode an instruction hazard barrier. See the JR.HB inst
description for additional information.

Processor operation isUNPREDICTABLE if a branch, jump, ERET, DERET, or WAIT instruction is placed in th
delay slot of a branch or jump.

Operation:

I: temp ← GPR[rs]
I+1: if Config1 CA = 0 then

PC ← temp
else

PC ← temp GPRLEN-1..1 || 0
ISAMode ← temp 0

endif

Exceptions:

None

31 26 25 21 20 11 10 6 5 0

SPECIAL

000000
rs

0

00 0000 0000
hint

JR

001000

6 5 10 5 6

Jump Register JR
MIPS32™ Architecture For Programmers Volume II, Revision 2.00 145

Copyright © 2001-2003 MIPS Technologies Inc. All rights reserved.

,

Programming Notes:

Software should use the value 31 for thers field of the instruction word on return from a JAL, JALR, or BGEZAL
and should use a value other than 31 for remaining uses of JR.

Jump Register, cont. JR
146 MIPS32™ Architecture For Programmers Volume II, Revision 2.00

Copyright © 2001-2003 MIPS Technologies Inc. All rights reserved.

ot,

essor 0
olving
ith the
arrier
r 0 is

or the

S16
target

nd bit 1

tions
Fur-

ly haz-

e

JR.HB

Format: JR.HB rs MIPS32 Release 2

Purpose:

To execute a branch to an instruction address in a register and clear all execution and instruction hazards.

Description: PC ← rs, clear execution and instruction hazards

Jump to the effective target address in GPRrs. Execute the instruction following the jump, in the branch delay sl
before jumping.

JR.HB implements a software barrier that resolves all execution and instruction hazards created by Coproc
state changes (for Release 2 implementations, refer to the SYNCI instruction for additional information on res
instruction hazards created by writing the instruction stream). The effects of this barrier are seen starting w
instruction fetch and decode of the instruction at the PC to which the JR.HB instruction jumps. An equivalent b
is also implemented by the ERET instruction, but that instruction is only available if access to Coprocesso
enabled, whereas JR.HB is legal in all operating modes.

This instruction clears both execution and instruction hazards. Refer to the EHB instruction description f
method of clearing execution hazards alone.

JR.HB uses bit 10 of the instruction (the upper bit of the hint field) to denote the hazard barrier operation.

For processors that implement the MIPS16 ASE, set theISA Modebit to the value in GPRrs bit 0. Bit 0 of the target
address is always zero so that no Address Exceptions occur when bit 0 of the source register is one.

Restrictions:

The effective target address in GPRrs must be naturally-aligned. For processors that do not implement the MIP
ASE, if either of the two least-significant bits are not zero, an Address Error exception occurs when the branch
is subsequently fetched as an instruction. For processors that do implement the MIPS16 ASE, if bit 0 is zero a
is one, an Address Error exception occurs when the jump target is subsequently fetched as an instruction.

After modifying an instruction stream mapping or writing to the instruction stream, execution of those instruc
hasUNPREDICTABLE behavior until the hazard has been cleared with JALR.HB, JR.HB, ERET, or DERET.
ther, the operation isUNPREDICTABLE if the mapping of the current instruction stream is modified.

JR.HB does not clear hazards created by any instruction that is executed in the delay slot of the JALR.HB. On
ards created by instructions executed before the JR.HB are cleared by the JALR.HB.

Processor operation isUNPREDICTABLE if a branch, jump, ERET, DERET, or WAIT instruction is placed in th
delay slot of a branch or jump.

31 26 25 21 20 11 10 9 6 5 0

SPECIAL

000000
rs

0

00 0000 0000
1 Any other legal

hint value

JR

001000

6 5 10 1 4 6

Jump Register with Hazard Barrier JR.HB
MIPS32™ Architecture For Programmers Volume II, Revision 2.00 147

Copyright © 2001-2003 MIPS Technologies Inc. All rights reserved.

ues. A
am, or
re that
hazards
ar the

coded as
n (JR)
Operation:

I: temp ← GPR[rs]
I+1: if Config1 CA = 0 then

PC ← temp
else

PC ← temp GPRLEN-1..1 || 0
ISAMode ← temp 0

endif
ClearHazards()

Exceptions:

None

Programming Notes:

This instruction implements the final step in clearing execution and instruction hazards before execution contin
hazard is created when a Coprocessor 0 or TLB write affects execution or the mapping of the instruction stre
after a write to the instruction stream. When such a situation exists, software must explicitly indicate to hardwa
the hazard should be cleared. Execution hazards alone can be cleared with the EHB instruction. Instruction
can only be cleared with a JR.HB, JALR.HB, or ERET instruction. These instructions cause hardware to cle
hazard before the instruction at the target of the jump is fetched. Note that because these instructions are en
jumps, the process of clearing an instruction hazard can often be included as part of a call (JALR) or retur
sequence, by simply replacing the original instructions with the HB equivalent.

Example: Clearing hazards due to an ASID change

/*
 * Routine called to modify ASID and return with the new
 * mapping established.
 *
 * a0 = New ASID to establish
 */

mfc0 v0, C0_EntryHi /* Read current ASID */
li v1, ~M_EntryHiASID /* Get negative mask for field */
and v0, v0, v1 /* Clear out current ASID value */
or v0, v0, a0 /* OR in new ASID value */
mtc0 v0, C0_EntryHi /* Rewrite EntryHi with new ASID */
jr.hb ra /* Return, clearing the hazard */
nop

Example: Making a write to the instruction stream visible

/*
 * Routine called after new instructions are written to
 * make them visible and return with the hazards cleared.
 */

{Synchronize the caches - see the SYNCI and CACHE instructions}
sync /* Force memory synchronization */
jr.hb ra /* Return, clearing the hazard */
nop

Jump Register with Hazard Barrier, cont. JR.HB
148 MIPS32™ Architecture For Programmers Volume II, Revision 2.00

Copyright © 2001-2003 MIPS Technologies Inc. All rights reserved.

Example: Clearing instruction hazards in-line

la AT, 10f
jr.hb AT /* Jump to next instruction, clearing */
nop /* hazards */

10:

Jump Register with Hazard Barrier, cont. JR.HB
MIPS32™ Architecture For Programmers Volume II, Revision 2.00 149

Copyright © 2001-2003 MIPS Technologies Inc. All rights reserved.

150 MIPS32™ Architecture For Programmers Volume II, Revision 2.00

Copyright © 2001-2003 MIPS Technologies Inc. All rights reserved.

LB

Format: LB rt, offset(base) MIPS32

Purpose:

To load a byte from memory as a signed value

Description: rt ← memory[base+offset]

The contents of the 8-bit byte at the memory location specified by the effective address are fetched, sign-extended,
and placed in GPRrt. The 16-bit signedoffsetis added to the contents of GPRbaseto form the effective address.

Restrictions:

None

Operation:

vAddr ← sign_extend(offset) + GPR[base]
(pAddr, CCA) ← AddressTranslation (vAddr, DATA, LOAD)
pAddr ← pAddr PSIZE-1..2 || (pAddr 1..0 xor ReverseEndian 2)
memword← LoadMemory (CCA, BYTE, pAddr, vAddr, DATA)
byte ← vAddr 1..0 xor BigEndianCPU 2

GPR[rt] ← sign_extend(memword 7+8*byte..8*byte)

Exceptions:

TLB Refill, TLB Invalid, Address Error, Watch

31 26 25 21 20 16 15 0

LB

100000
base rt offset

6 5 5 16

Load Byte LB

MIPS32™ Architecture For Programmers Volume II, Revision 2.00 151

Copyright © 2001-2003 MIPS Technologies Inc. All rights reserved.

LBU

Format: LBU rt, offset(base) MIPS32

Purpose:

To load a byte from memory as an unsigned value

Description: rt ← memory[base+offset]

The contents of the 8-bit byte at the memory location specified by the effective address are fetched, zero-extended,
and placed in GPRrt. The 16-bit signedoffsetis added to the contents of GPRbaseto form the effective address.

Restrictions:

None

Operation:

vAddr ← sign_extend(offset) + GPR[base]
(pAddr, CCA) ← AddressTranslation (vAddr, DATA, LOAD)
pAddr ← pAddr PSIZE-1..2 || (pAddr 1..0 xor ReverseEndian 2)
memword← LoadMemory (CCA, BYTE, pAddr, vAddr, DATA)
byte ← vAddr 1..0 xor BigEndianCPU 2

GPR[rt] ← zero_extend(memword 7+8*byte..8*byte)

Exceptions:

TLB Refill, TLB Invalid, Address Error, Watch

31 26 25 21 20 16 15 0

LBU

100100
base rt offset

6 5 5 16

Load Byte Unsigned LBU

152 MIPS32™ Architecture For Programmers Volume II, Revision 2.00

Copyright © 2001-2003 MIPS Technologies Inc. All rights reserved.

LDC1

Format: LDC1 ft, offset(base) MIPS32

Purpose:

To load a doubleword from memory to an FPR

Description: ft ← memory[base+offset]

The contents of the 64-bit doubleword at the memory location specified by the aligned effective address are fetched
and placed in FPRft. The 16-bit signedoffsetis added to the contents of GPRbaseto form the effective address.

Restrictions:

An Address Error exception occurs if EffectiveAddress2..0≠ 0 (not doubleword-aligned).

Operation:

vAddr ← sign_extend(offset) + GPR[base]
if vAddr 2..0 ≠ 03 then

SignalException(AddressError)
endif
(pAddr, CCA) ← AddressTranslation (vAddr, DATA, LOAD)
paddr ← paddr xor ((BigEndianCPU xor ReverseEndian) || 0 2)
memlsw ← LoadMemory(CCA, WORD, pAddr, vAddr, DATA)
paddr ← paddr xor 2#100
memmsw← LoadMemory(CCA, WORD, pAddr, vAddr+4, DATA)
StoreFPR(ft, UNINTERPRETED_WORD, memlsw)
StoreFPR(ft+1, UNINTERPRETED_WORD, memmsw)

Exceptions:

Coprocessor Unusable, Reserved Instruction, TLB Refill, TLB Invalid, Address Error, Watch

31 26 25 21 20 16 15 0

LDC1

110101
base ft offset

6 5 5 16

Load Doubleword to Floating Point LDC1

MIPS32™ Architecture For Programmers Volume II, Revision 2.00 153

Copyright © 2001-2003 MIPS Technologies Inc. All rights reserved.

LDC2

Format: LDC2 rt, offset(base) MIPS32

Purpose:

To load a doubleword from memory to a Coprocessor 2 register

Description: rt ← memory[base+offset]

The contents of the 64-bit doubleword at the memory location specified by the aligned effective address are fetched
and placed in Coprocessor 2 registerrt. The 16-bit signedoffsetis added to the contents of GPRbaseto form the
effective address.

Restrictions:

An Address Error exception occurs if EffectiveAddress2..0≠ 0 (not doubleword-aligned).

Operation:

vAddr ← sign_extend(offset) + GPR[base]
if vAddr 2..0 ≠ 03 then SignalException(AddressError) endif
(pAddr, CCA) ← AddressTranslation (vAddr, DATA, LOAD)
paddr ← paddr xor ((BigEndianCPU xor ReverseEndian) || 0 2)
memlsw ← LoadMemory(CCA, WORD, pAddr, vAddr, DATA)
paddr ← paddr xor 2#100
memmsw← LoadMemory(CCA, WORD, pAddr, vAddr+4, DATA)
memlsw
memmsw

Exceptions:

Coprocessor Unusable, Reserved Instruction, TLB Refill, TLB Invalid, Address Error, Watch

31 26 25 21 20 16 15 0

LDC2

110110
base rt offset

6 5 5 16

Load Doubleword to Coprocessor 2 LDC2

154 MIPS32™ Architecture For Programmers Volume II, Revision 2.00

Copyright © 2001-2003 MIPS Technologies Inc. All rights reserved.

LDXC1

Format: LDXC1 fd, index(base) MIPS64
MIPS32 Release 2

Purpose:

To load a doubleword from memory to an FPR (GPR+GPR addressing)

Description: fd ← memory[base+index]

The contents of the 64-bit doubleword at the memory location specified by the aligned effective address are fetched
and placed in FPRfd. The contents of GPRindex and GPRbaseare added to form the effective address.

Restrictions:

An Address Error exception occurs if EffectiveAddress2..0≠ 0 (not doubleword-aligned).

Operation:

vAddr ← GPR[base] + GPR[index]
if vAddr 2..0 ≠ 03 then

SignalException(AddressError)
endif
(pAddr, CCA) ← AddressTranslation (vAddr, DATA, LOAD)
paddr ← paddr xor ((BigEndianCPU xor ReverseEndian) || 0 2)
memlsw ← LoadMemory(CCA, WORD, pAddr, vAddr, DATA)
paddr ← paddr xor 2#100
memmsw← LoadMemory(CCA, WORD, pAddr, vAddr+4, DATA)
StoreFPR(ft, UNINTERPRETED_WORD, memlsw)
StoreFPR(ft+1, UNINTERPRETED_WORD, memmsw)

Exceptions:

TLB Refill, TLB Invalid, Address Error, Reserved Instruction, Coprocessor Unusable, Watch

31 26 25 21 20 16 15 11 10 6 5 0

COP1X

010011
base index

0

00000
fd

LDXC1

000001

6 5 5 5 5 6

Load Doubleword Indexed to Floating Point LDXC1

MIPS32™ Architecture For Programmers Volume II, Revision 2.00 155

Copyright © 2001-2003 MIPS Technologies Inc. All rights reserved.

LH

Format: LH rt, offset(base) MIPS32

Purpose:

To load a halfword from memory as a signed value

Description: rt ← memory[base+offset]

The contents of the 16-bit halfword at the memory location specified by the aligned effective address are fetched,
sign-extended, and placed in GPRrt. The 16-bit signedoffsetis added to the contents of GPRbaseto form the effec-
tive address.

Restrictions:

The effective address must be naturally-aligned. If the least-significant bit of the address is non-zero, an Address
Error exception occurs.

Operation:

vAddr ← sign_extend(offset) + GPR[base]
if vAddr 0 ≠ 0 then

SignalException(AddressError)
endif
(pAddr, CCA) ← AddressTranslation (vAddr, DATA, LOAD)
pAddr ← pAddr PSIZE–1..2 || (pAddr 1..0 xor (ReverseEndian || 0))
memword ← LoadMemory (CCA, HALFWORD, pAddr, vAddr, DATA)
byte ← vAddr 1..0 xor (BigEndianCPU || 0)
GPR[rt] ← sign_extend(memword 15+8*byte..8*byte)

Exceptions:

TLB Refill, TLB Invalid, Bus Error, Address Error, Watch

31 26 25 21 20 16 15 0

LH

100001
base rt offset

6 5 5 16

Load Halfword LH

156 MIPS32™ Architecture For Programmers Volume II, Revision 2.00

Copyright © 2001-2003 MIPS Technologies Inc. All rights reserved.

LHU

Format: LHU rt, offset(base) MIPS32

Purpose:

To load a halfword from memory as an unsigned value

Description: rt ← memory[base+offset]

The contents of the 16-bit halfword at the memory location specified by the aligned effective address are fetched,
zero-extended, and placed in GPRrt. The 16-bit signedoffsetis added to the contents of GPRbaseto form the effec-
tive address.

Restrictions:

The effective address must be naturally-aligned. If the least-significant bit of the address is non-zero, an Address
Error exception occurs.

Operation:

vAddr ← sign_extend(offset) + GPR[base]
if vAddr 0 ≠ 0 then

SignalException(AddressError)
endif
(pAddr, CCA) ← AddressTranslation (vAddr, DATA, LOAD)
pAddr ← pAddr PSIZE–1..2 || (pAddr 1..0 xor (ReverseEndian || 0))
memword ← LoadMemory (CCA, HALFWORD, pAddr, vAddr, DATA)
byte ← vAddr 1..0 xor (BigEndianCPU || 0)
GPR[rt] ← zero_extend(memword 15+8*byte..8*byte)

Exceptions:

TLB Refill, TLB Invalid, Address Error, Watch

31 26 25 21 20 16 15 0

LHU

100101
base rt offset

6 5 5 16

Load Halfword Unsigned LHU

s for

ed and

rocessor.
e RMW
and suc-

fail on

MW

not, the
nta-

ress is
LL

Format: LL rt, offset(base) MIPS32

Purpose:

To load a word from memory for an atomic read-modify-write

Description: rt ← memory[base+offset]

The LL and SC instructions provide the primitives to implement atomic read-modify-write (RMW) operation
synchronizable memory locations.

The contents of the 32-bit word at the memory location specified by the aligned effective address are fetch
written into GPRrt. The 16-bit signedoffset is added to the contents of GPRbase to form an effective address.

This begins a RMW sequence on the current processor. There can be only one active RMW sequence per p
When an LL is executed it starts an active RMW sequence replacing any other sequence that was active. Th
sequence is completed by a subsequent SC instruction that either completes the RMW sequence atomically
ceeds, or does not and fails.

Executing LL on one processor does not cause an action that, by itself, causes an SC for the same block to
another processor.

An execution of LL does not have to be followed by execution of SC; a program is free to abandon the R
sequence without attempting a write.

Restrictions:

The addressed location must be synchronizable by all processors and I/O devices sharing the location; if it is
result inUNPREDICTABLE . Which storage is synchronizable is a function of both CPU and system impleme
tions. See the documentation of the SC instruction for the formal definition.

The effective address must be naturally-aligned. If either of the 2 least-significant bits of the effective add
non-zero, an Address Error exception occurs.

Operation:

vAddr ← sign_extend(offset) + GPR[base]
if vAddr 1..0 ≠ 0 2 then

SignalException(AddressError)
endif
(pAddr, CCA) ← AddressTranslation (vAddr, DATA, LOAD)
memword ← LoadMemory (CCA, WORD, pAddr, vAddr, DATA)
GPR[rt] ← memword
LLbit ← 1

31 26 25 21 20 16 15 0

LL

110000
base rt offset

6 5 5 16

Load Linked Word LL
MIPS32™ Architecture For Programmers Volume II, Revision 2.00 157

Copyright © 2001-2003 MIPS Technologies Inc. All rights reserved.

Exceptions:

TLB Refill, TLB Invalid, Address Error, Reserved Instruction, Watch

Programming Notes:

There is no Load Linked Word Unsigned operation corresponding to Load Word Unsigned.

Load Linked Word (cont.) LL
158 MIPS32™ Architecture For Programmers Volume II, Revision 2.00

Copyright © 2001-2003 MIPS Technologies Inc. All rights reserved.

MIPS32™ Architecture For Programmers Volume II, Revision 2.00 159

Copyright © 2001-2003 MIPS Technologies Inc. All rights reserved.

LUI

Format: LUI rt, immediate MIPS32

Purpose:

To load a constant into the upper half of a word

Description: rt ← immediate || 0 16

The 16-bit immediateis shifted left 16 bits and concatenated with 16 bits of low-order zeros. The 32-bit result is
placed into GPRrt.

Restrictions:

None

Operation:

GPR[rt] ← immediate || 0 16

Exceptions:

None

31 26 25 21 20 16 15 0

LUI

001111

0

00000
rt immediate

6 5 5 16

Load Upper Immediate LUI

160 MIPS32™ Architecture For Programmers Volume II, Revision 2.00

Copyright © 2001-2003 MIPS Technologies Inc. All rights reserved.

LUXC1

Format: LUXC1 fd, index(base) MIPS64
MIPS32 Release 2

Purpose:

To load a doubleword from memory to an FPR (GPR+GPR addressing), ignoring alignment

Description: fd ← memory[(base+index) PSIZE-1..3]

The contents of the 64-bit doubleword at the memory location specified by the effective address are fetched and
placed into the low word of coprocessor 1 general registerfd. The contents of GPRindexand GPRbaseare added to
form the effective address. The effective address is doubleword-aligned; EffectiveAddress2..0 are ignored.

Restrictions:

The result of this instruction isUNPREDICTABLE if the processor is executing in 16 FP registers mode.

Operation:

vAddr ← (GPR[base]+GPR[index]) 63..3 || 0 3

(pAddr, CCA) ← AddressTranslation (vAddr, DATA, LOAD)
paddr ← paddr xor ((BigEndianCPU xor ReverseEndian) || 0 2)
memlsw ← LoadMemory(CCA, WORD, pAddr, vAddr, DATA)
paddr ← paddr xor 2#100
memmsw← LoadMemory(CCA, WORD, pAddr, vAddr+4, DATA)
StoreFPR(ft, UNINTERPRETED_WORD, memlsw)
StoreFPR(ft+1, UNINTERPRETED_WORD, memmsw)

Exceptions:

Coprocessor Unusable, Reserved Instruction, TLB Refill, TLB Invalid, Watch

31 26 25 21 20 16 15 11 10 6 5 0

COP1X

010011
base index

0

00000
fd

LUXC1

000101

6 5 5 5 5 6

Load Doubleword Indexed Unaligned to Floating Point LUXC1

MIPS32™ Architecture For Programmers Volume II, Revision 2.00 161

Copyright © 2001-2003 MIPS Technologies Inc. All rights reserved.

LW

Format: LW rt, offset(base) MIPS32

Purpose:

To load a word from memory as a signed value

Description: rt ← memory[base+offset]

The contents of the 32-bit word at the memory location specified by the aligned effective address are fetched,
sign-extended to the GPR register length if necessary, and placed in GPRrt. The 16-bit signedoffsetis added to the
contents of GPRbaseto form the effective address.

Restrictions:

The effective address must be naturally-aligned. If either of the 2 least-significant bits of the address is non-zero, an
Address Error exception occurs.

Operation:

vAddr ← sign_extend(offset) + GPR[base]
if vAddr 1..0 ≠ 0 2 then

SignalException(AddressError)
endif
(pAddr, CCA) ← AddressTranslation (vAddr, DATA, LOAD)
memword← LoadMemory (CCA, WORD, pAddr, vAddr, DATA)
GPR[rt] ← memword

Exceptions:

TLB Refill, TLB Invalid, Bus Error, Address Error, Watch

31 26 25 21 20 16 15 0

LW

100011
base rt offset

6 5 5 16

Load Word LW

162 MIPS32™ Architecture For Programmers Volume II, Revision 2.00

Copyright © 2001-2003 MIPS Technologies Inc. All rights reserved.

LWC1

Format: LWC1 ft, offset(base) MIPS32

Purpose:

To load a word from memory to an FPR

Description: ft ← memory[base+offset]

The contents of the 32-bit word at the memory location specified by the aligned effective address are fetched and
placed into the low word of coprocessor 1 general registerft. The 16-bit signedoffset is added to the contents of
GPRbaseto form the effective address.

Restrictions:

An Address Error exception occurs if EffectiveAddress1..0≠ 0 (not word-aligned).

Operation:

vAddr ← sign_extend(offset) + GPR[base]
if vAddr 1..0 ≠ 0 2 then

SignalException(AddressError)
endif
(pAddr, CCA) ← AddressTranslation (vAddr, DATA, LOAD)

memword ← LoadMemory(CCA, WORD, pAddr, vAddr, DATA)

StoreFPR(ft, UNINTERPRETED_WORD,
memword)

Exceptions:

TLB Refill, TLB Invalid, Address Error, Reserved Instruction, Coprocessor Unusable, Watch

31 26 25 21 20 16 15 0

LWC1

110001
base rt offset

6 5 5 16

Load Word to Floating Point LWC1

MIPS32™ Architecture For Programmers Volume II, Revision 2.00 163

Copyright © 2001-2003 MIPS Technologies Inc. All rights reserved.

LWC2

Format: LWC2 rt, offset(base) MIPS32

Purpose:

To load a word from memory to a COP2 register

Description: rt ← memory[base+offset]

The contents of the 32-bit word at the memory location specified by the aligned effective address are fetched and
placed into the low word of COP2 (Coprocessor 2) general registerrt. The 16-bit signedoffsetis added to the con-
tents of GPRbaseto form the effective address.

Restrictions:

An Address Error exception occurs if EffectiveAddress1..0≠ 0 (not word-aligned).

Operation:

vAddr ← sign_extend(offset) + GPR[base]
if vAddr 12..0 ≠ 02 then

SignalException(AddressError)
endif
(pAddr, CCA) ← AddressTranslation (vAddr, DATA, LOAD)

memword ← LoadMemory(CCA, DOUBLEWORD, pAddr, vAddr, DATA)

CPR[2,rt,0] ← memword

Exceptions:

TLB Refill, TLB Invalid, Address Error, Reserved Instruction, Coprocessor Unusable, Watch

31 26 25 21 20 16 15 0

LWC2

110010
base rt offset

6 5 5 16

Load Word to Coprocessor 2 LWC2

4 con-

r word
nder of
LWL

Format: LWL rt, offset(base) MIPS32

Purpose:

To load the most-significant part of a word as a signed value from an unaligned memory address

Description: rt ← rt MERGE memory[base+offset]

The 16-bit signedoffsetis added to the contents of GPRbaseto form an effective address(EffAddr). EffAddr is the
address of the most-significant of 4 consecutive bytes forming a word(W) in memory starting at an arbitrary byte
boundary.

The most-significant 1 to 4 bytes ofW is in the aligned word containing theEffAddr. This part ofW is loaded into the
most-significant (left) part of the word in GPRrt. The remaining least-significant part of the word in GPRrt is
unchanged.

The figure below illustrates this operation using big-endian byte ordering for 32-bit and 64-bit registers. The
secutive bytes in 2..5 form an unaligned word starting at location 2. A part ofW, 2 bytes, is in the aligned word con-
taining the most-significant byte at 2. First, LWL loads these 2 bytes into the left part of the destination registe
and leaves the right part of the destination word unchanged. Next, the complementary LWR loads the remai
the unaligned word

Figure 3-5 Unaligned Word Load Using LWL and LWR

31 26 25 21 20 16 15 0

LWL

100010
base rt offset

6 5 5 16

Load Word Left LWL

Word at byte 2 in big-endian memory; each memory byte contains its own address

 most - significance - least

0 1 2 3 4 5 6 7 8 9 Memory initial contents

e f g h GPR 24 Initial contents

2 3 g h After executing LWL $24,2($0)

2 3 4 5 Then after LWR $24,5($0)
164 MIPS32™ Architecture For Programmers Volume II, Revision 2.00

Copyright © 2001-2003 MIPS Technologies Inc. All rights reserved.

ithin an
or
ing.
The bytes loaded from memory to the destination register depend on both the offset of the effective address w
aligned word, that is, the low 2 bits of the address (vAddr1..0), and the current byte-ordering mode of the process
(big- or little-endian). The figure below shows the bytes loaded for every combination of offset and byte order

Figure 3-6 Bytes Loaded by LWL Instruction

Memory contents and byte offsets Initial contents of Dest Register

0 1 2 3 ←big-endian

I J K L offset (vAddr1..0) e f g h

3 2 1 0 ←little-endian most least

most least — significance —

— significance —

Destination register contents after instruction (shaded is unchanged)

Big-endian vAddr1..0 Little-endian

I J K L 0 L f g h

J K L h 1 K L g h

K L g h 2 J K L h

L f g h 3 I J K L

Load Word Left (con’t) LWL
MIPS32™ Architecture For Programmers Volume II, Revision 2.00 165

Copyright © 2001-2003 MIPS Technologies Inc. All rights reserved.

ing bits

iction.
the
instruc-
Restrictions:

None

Operation:

vAddr ← sign_extend(offset) + GPR[base]
(pAddr, CCA) ← AddressTranslation (vAddr, DATA, LOAD)
pAddr ← pAddr PSIZE-1..2 || (pAddr 1..0 xor ReverseEndian 2)
if BigEndianMem = 0 then

pAddr ← pAddr PSIZE-1..2 || 0 2

endif
byte ← vAddr 1..0 xor BigEndianCPU 2

memword← LoadMemory (CCA, byte, pAddr, vAddr, DATA)
temp ← memword 7+8*byte..0 || GPR[rt] 23-8*byte..0
GPR[rt] ← temp

Exceptions:

None

TLB Refill, TLB Invalid, Bus Error, Address Error, Watch

Programming Notes:

The architecture provides no direct support for treating unaligned words as unsigned values, that is, zero
63..32 of the destination register when bit 31 is loaded.

Historical Information

In the MIPS I architecture, the LWL and LWR instructions were exceptions to the load-delay scheduling restr
A LWL or LWR instruction which was immediately followed by another LWL or LWR instruction, and used
same destination register would correctly merge the 1 to 4 loaded bytes with the data loaded by the previous
tion. All such restrictions were removed from the architecture in MIPS II.

Load Word Left (con’t) LWL
166 MIPS32™ Architecture For Programmers Volume II, Revision 2.00

Copyright © 2001-2003 MIPS Technologies Inc. All rights reserved.

.

4 con-

gister.
LWR

Format: LWR rt, offset(base) MIPS32

Purpose:

To load the least-significant part of a word from an unaligned memory address as a signed value

Description: rt ← rt MERGE memory[base+offset]

The 16-bit signedoffsetis added to the contents of GPRbaseto form an effective address(EffAddr). EffAddr is the
address of the least-significant of 4 consecutive bytes forming a word(W) in memory starting at an arbitrary byte
boundary.

A part of W, the least-significant 1 to 4 bytes, is in the aligned word containingEffAddr. This part ofW is loaded into
the least-significant (right) part of the word in GPRrt. The remaining most-significant part of the word in GPRrt is
unchanged.

Executing both LWR and LWL, in either order, delivers a sign-extended word value in the destination register

The figure below illustrates this operation using big-endian byte ordering for 32-bit and 64-bit registers. The
secutive bytes in 2..5 form an unaligned word starting at location 2. A part ofW, 2 bytes, is in the aligned word con-
taining the least-significant byte at 5. First, LWR loads these 2 bytes into the right part of the destination re
Next, the complementary LWL loads the remainder of the unaligned word.

31 26 25 21 20 16 15 0

LWR

100110
base rt offset

6 5 5 16

Load Word Right LWR
MIPS32™ Architecture For Programmers Volume II, Revision 2.00 167

Copyright © 2001-2003 MIPS Technologies Inc. All rights reserved.

ithin an
or
ing.
Figure 3-7 Unaligned Word Load Using LWL and LWR

The bytes loaded from memory to the destination register depend on both the offset of the effective address w
aligned word, that is, the low 2 bits of the address (vAddr1..0), and the current byte-ordering mode of the process
(big- or little-endian). The figure below shows the bytes loaded for every combination of offset and byte order

Load Word Right (cont.) LWR

Word at byte 2 in big-endian memory; each memory byte contains its own address

 most - significance - least

0 1 2 3 4 5 6 7 8 9 Memory initial contents

e f g h GPR 24 Initial contents

e f 4 5 After executing LWR $24,5($0)

2 3 4 5 Then after LWL $24,2($0)
168 MIPS32™ Architecture For Programmers Volume II, Revision 2.00

Copyright © 2001-2003 MIPS Technologies Inc. All rights reserved.

Figure 3-8 Bytes Loaded by LWL Instruction

Memory contents and byte offsets Initial contents of Dest Register

0 1 2 3 ←big-endian

I J K L offset (vAddr1..0) e f g h

3 2 1 0 ←little-endian most least

most least — significance—

— significance —

Destination register contents after instruction (shaded is unchanged)

Big-endian vAddr1..0 Little-endian Little-endian

e f g I 0 I J K L

e f I J 1 e I J K

e I J K 2 e f I J

I J K L 3 e f g I

Load Word Right (cont.) LWR
MIPS32™ Architecture For Programmers Volume II, Revision 2.00 169

Copyright © 2001-2003 MIPS Technologies Inc. All rights reserved.

ing bits

iction.
the
instruc-
Restrictions:

None

Operation:

vAddr ← sign_extend(offset) + GPR[base]
(pAddr, CCA) ← AddressTranslation (vAddr, DATA, LOAD)
pAddr ← pAddr PSIZE-1..2 || (pAddr 1..0 xor ReverseEndian 2)
if BigEndianMem = 0 then

pAddr ← pAddr PSIZE-1..2 || 0 2

endif
byte ← vAddr 1..0 xor BigEndianCPU 2

memword← LoadMemory (CCA, byte, pAddr, vAddr, DATA)
temp ← memword 31..32-8*byte || GPR[rt] 31–8*byte..0
GPR[rt] ← temp

Exceptions:

TLB Refill, TLB Invalid, Bus Error, Address Error, Watch

Programming Notes:

The architecture provides no direct support for treating unaligned words as unsigned values, that is, zero
63..32 of the destination register when bit 31 is loaded.

Historical Information

In the MIPS I architecture, the LWL and LWR instructions were exceptions to the load-delay scheduling restr
A LWL or LWR instruction which was immediately followed by another LWL or LWR instruction, and used
same destination register would correctly merge the 1 to 4 loaded bytes with the data loaded by the previous
tion. All such restrictions were removed from the architecture in MIPS II.

Load Word Right (cont.) LWR
170 MIPS32™ Architecture For Programmers Volume II, Revision 2.00

Copyright © 2001-2003 MIPS Technologies Inc. All rights reserved.

MIPS32™ Architecture For Programmers Volume II, Revision 2.00 171

Copyright © 2001-2003 MIPS Technologies Inc. All rights reserved.

LWXC1

Format: LWXC1 fd, index(base) MIPS64
MIPS32 Release 2

Purpose:

To load a word from memory to an FPR (GPR+GPR addressing)

Description: fd ← memory[base+index]

The contents of the 32-bit word at the memory location specified by the aligned effective address are fetched and
placed into the low word of coprocessor 1 general registerfd. The contents of GPRindexand GPRbaseare added to
form the effective address.

Restrictions:

An Address Error exception occurs if EffectiveAddress1..0≠ 0 (not word-aligned).

Operation:

vAddr ← GPR[base] + GPR[index]
if vAddr 1..0 ≠ 0 2 then

SignalException(AddressError)
endif
(pAddr, CCA) ← AddressTranslation (vAddr, DATA, LOAD)

memword ← LoadMemory(CCA, WORD, pAddr, vAddr, DATA)

StoreFPR(ft, UNINTERPRETED_WORD,
memword)

Exceptions:

TLB Refill, TLB Invalid, Address Error, Reserved Instruction, Coprocessor Unusable, Watch

31 26 25 21 20 16 15 11 10 6 5 0

COP1X

010011
base index

0

00000
fd

LWXC1

000000

6 5 5 5 5 6

Load Word Indexed to Floating Point LWXC1

172 MIPS32™ Architecture For Programmers Volume II, Revision 2.00

Copyright © 2001-2003 MIPS Technologies Inc. All rights reserved.

MADD

Format: MADD rs, rt MIPS32

Purpose:

To multiply two words and add the result to Hi, Lo

Description: (HI,LO) ← (HI,LO) + (rs × rt)

The 32-bit word value in GPRrs is multiplied by the 32-bit word value in GPRrt, treating both operands as signed
values, to produce a 64-bit result. The product is added to the 64-bit concatenated values ofHI andLO.. The most sig-
nificant 32 bits of the result are written intoHI and the least signficant 32 bits are written intoLO. No arithmetic
exception occurs under any circumstances.

Restrictions:

None

This instruction does not provide the capability of writing directly to a target GPR.

Operation:

temp ← (HI || LO) + (GPR[rs] × GPR[rt])
HI ← temp 63..32
LO ← temp 31..0

Exceptions:

None

Programming Notes:

Where the size of the operands are known, software should place the shorter operand in GPRrt. This may reduce the
latency of the instruction on those processors which implement data-dependent instruction latencies.

31 26 25 21 20 16 15 11 10 6 5 0

SPECIAL2

011100
rs rt

0

0000

0

00000

MADD

000000

6 5 5 5 5 6

Multiply and Add Word to Hi,Lo MADD

unding
MADD.fmt

Format: MADD.S fd, fr, fs, ft MIPS64
MIPS32 Release 2

MADD.D fd, fr, fs, ft MIPS64
MIPS32 Release 2

MADD.PS fd, fr, fs, ft MIPS64
MIPS32 Release 2

Purpose:

To perform a combined multiply-then-add of FP values

Description: fd ← (fs × ft) + fr

The value in FPRfs is multiplied by the value in FPRft to produce an intermediate product. The value in FPRfr is
added to the product. The result sum is calculated to infinite precision, rounded according to the current ro
mode inFCSR, and placed into FPRfd. The operands and result are values in formatfmt.

MADD.PS multiplies then adds the upper and lower halves of FPRfr, FPRfs, and FPRft independently, and ORs
together any generated exceptional conditions.

Cause bits are ORed into theFlag bits if no exception is taken.

Restrictions:

The fieldsfr, fs, ft, andfd must specify FPRs valid for operands of typefmt; if they are not valid, the result isUNPRE-
DICTABLE .

The operands must be values in formatfmt; if they are not, the result isUNPREDICTABLE and the value of the
operand FPRs becomesUNPREDICTABLE .

The result of MADD.PS isUNPREDICTABLE if the processor is executing in 16 FP registers mode.

Operation:

vfr ← ValueFPR(fr, fmt)
vfs ← ValueFPR(fs, fmt)
vft ← ValueFPR(ft, fmt)
StoreFPR(fd, fmt, (vfs ×fmt vft) +fmt vfr)

31 26 25 21 20 16 15 11 10 6 5 3 2 0

COP1X

010011
fr ft fs fd

MADD

100
fmt

6 5 5 5 5 3 3

Floating Point Multiply Add MADD.fmt
MIPS32™ Architecture For Programmers Volume II, Revision 2.00 173

Copyright © 2001-2003 MIPS Technologies Inc. All rights reserved.

Exceptions:

Coprocessor Unusable, Reserved Instruction

Floating Point Exceptions:

Inexact, Unimplemented Operation, Invalid Operation, Overflow, Underflow

Floating Point Multiply Add (cont.) MADD.fmt
174 MIPS32™ Architecture For Programmers Volume II, Revision 2.00

Copyright © 2001-2003 MIPS Technologies Inc. All rights reserved.

MIPS32™ Architecture For Programmers Volume II, Revision 2.00 175

Copyright © 2001-2003 MIPS Technologies Inc. All rights reserved.

MADDU

Format: MADDU rs, rt MIPS32

Purpose:

To multiply two unsigned words and add the result to Hi, Lo.

Description: (HI,LO) ← (HI,LO) + (rs × rt)

The 32-bit word value in GPRrs is multiplied by the 32-bit word value in GPRrt, treating both operands as unsigned
values, to produce a 64-bit result. The product is added to the 64-bit concatenated values ofHI andLO.. The most sig-
nificant 32 bits of the result are written intoHI and the least signficant 32 bits are written intoLO. No arithmetic
exception occurs under any circumstances.

Restrictions:

None

This instruction does not provide the capability of writing directly to a target GPR.

Operation:

temp ← (HI || LO) + (GPR[rs] × GPR[rt])
HI ← temp 63..32
LO ← temp 31..0

Exceptions:

None

Programming Notes:

Where the size of the operands are known, software should place the shorter operand in GPRrt. This may reduce the
latency of the instruction on those processors which implement data-dependent instruction latencies.

31 26 25 21 20 16 15 11 10 6 5 0

SPECIAL2

011100
rs rt

0

00000

0

00000

MADDU

000001

6 5 5 5 5 6

Multiply and Add Unsigned Word to Hi,Lo MADDU

176 MIPS32™ Architecture For Programmers Volume II, Revision 2.00

Copyright © 2001-2003 MIPS Technologies Inc. All rights reserved.

MFC0

Format: MFC0 rt, rd MIPS32
MFC0 rt, rd, sel MIPS32

Purpose:

To move the contents of a coprocessor 0 register to a general register.

Description: rt ← CPR[0,rd,sel]

The contents of the coprocessor 0 register specified by the combination of rd and sel are loaded into general register
rt. Note that not all coprocessor 0 registers support the sel field. In those instances, the sel field must be zero.

Restrictions:

The results areUNDEFINED if coprocessor 0 does not contain a register as specified byrd andsel.

Operation:

data ← CPR[0,rd,sel]
GPR[rt] ← data

Exceptions:

Coprocessor Unusable

Reserved Instruction

31 26 25 21 20 16 15 11 10 3 2 0

COP0

010000

MF

00000
rt rd

0

00000000
sel

6 5 5 5 8 3

Move from Coprocessor 0 MFC0

MIPS32™ Architecture For Programmers Volume II, Revision 2.00 177

Copyright © 2001-2003 MIPS Technologies Inc. All rights reserved.

MFC1

Format: MFC1 rt, fs MIPS32

Purpose:

To copy a word from an FPU (CP1) general register to a GPR

Description: rt ← fs

The contents of FPR fs are loaded into general register rt.

Restrictions:

Operation:
data ← ValueFPR(fs, UNINTERPRETED_WORD)
GPR[rt] ← data

Exceptions:

Coprocessor Unusable, Reserved Instruction

Historical Information:

For MIPS I, MIPS II, and MIPS III the contents of GPRrt areUNPREDICTABLE for the instruction immediately
following MFC1.

31 26 25 21 20 16 15 11 10 0

COP1

010001

MF

00000
rt fs

0

000 0000 0000

6 5 5 5 11

Move Word From Floating Point MFC1

178 MIPS32™ Architecture For Programmers Volume II, Revision 2.00

Copyright © 2001-2003 MIPS Technologies Inc. All rights reserved.

MFC2

Format: MFC2 rt, rd MIPS32
MFC2, rt, rd, sel MIPS32

The syntax shown above is an example using MFC1 as a model. The specific syntax is implementation dependent.

Purpose:

To copy a word from a COP2 general register to a GPR

Description: rt ← CP2CPR[Impl]

The contents of the coprocessor 2 register denoted by theImpl field are and placed into general register rt. The inter-
pretation of theImpl field is left entirely to the Coprocessor 2 implementation and is not specified by the architecture.

Restrictions:

The results areUNPREDICTABLE if Impl specifies a coprocessor 2 register that does not exist.

Operation:

data ← CP2CPR[Impl]
GPR[rt] ← data

Exceptions:

Coprocessor Unusable

31 26 25 21 20 16 15 11 10 8 7 0

COP2

010010

MF

00000
rt Impl

6 5 5

Move Word From Coprocessor 2 MFC2

MIPS32™ Architecture For Programmers Volume II, Revision 2.00 179

Copyright © 2001-2003 MIPS Technologies Inc. All rights reserved.

MFHC1

Format: MFHC1 rt, fs MIPS32 Release 2

Purpose:

To copy a word from the high half of an FPU (CP1) general register to a GPR

Description: rt ← fs 63..32

The contents of the high word of FPRfs are loaded into general registerrt. This instruction is primarily intended to
support 64-bit floating point units on a 32-bit CPU, but the semantics of the instruction are defined for all cases.

Restrictions:

In implementations prior to Release 2 of the architecture, this instruction resulted in a Reserved Instruction Excep-
tion.

The results areUNPREDICTABLE if StatusFR = 0 andfs is odd.

Operation:
data ← ValueFPR(fs, UNINTERPRETED_DOUBLEWORD)63..32
GPR[rt] ← data

Exceptions:

Coprocessor Unusable

Reserved Instruction

31 26 25 21 20 16 15 11 10 0

COP1

010001

MFH

00011
rt fs

0

000 0000 0000

6 5 5 5 11

Move Word From High Half of Floating Point Register MFHC1

180 MIPS32™ Architecture For Programmers Volume II, Revision 2.00

Copyright © 2001-2003 MIPS Technologies Inc. All rights reserved.

MFHC2

Format: MFHC2 rt, rd MIPS32 Release 2
MFHC2, rt, rd, sel MIPS32 Release 2

The syntax shown above is an example using MFHC1 as a model. The specific syntax is implementation dependent.

Purpose:

To copy a word from the high half of a COP2 general register to a GPR

Description: rt ← CP2CPR[Impl] 63..32

The contents of the high word of the coprocessor 2 register denoted by theImpl field are placed into GPR rt. The
interpretation of theImpl field is left entirely to the Coprocessor 2 implementation and is not specified by the archi-
tecture.

Restrictions:

The results areUNPREDICTABLE if Impl specifies a coprocessor 2 register that does not exist, or if that register is
not 64 bits wide.

In implementations prior to Release 2 of the architecture, this instruction resulted in a Reserved Instruction Excep-
tion.

Operation:

data ← CP2CPR[Impl] 63..32
GPR[rt] ← data

Exceptions:

Coprocessor Unusable

Reserved Instruction

31 26 25 21 20 16 15 11 10 3 2 0

COP2

010010

MFH

00011
rt Impl

6 5 5 16

Move Word From High Half of Coprocessor 2 Register MFHC2

MIPS32™ Architecture For Programmers Volume II, Revision 2.00 181

Copyright © 2001-2003 MIPS Technologies Inc. All rights reserved.

MFHI

Format: MFHI rd MIPS32

Purpose:

To copy the special purposeHI register to a GPR

Description: rd ← HI

The contents of special registerHI are loaded into GPRrd.

Restrictions:

None

Operation:

GPR[rd] ← HI

Exceptions:

None

Historical Information:

In the MIPS I, II, and III architectures, the two instructions which follow the MFHI must not moodify the HI register.
If this restriction is violated, the result of the MFHI isUNPREDICTABLE . This restriction was removed in MIPS
IV and MIPS32, and all subsequent levels of the architecture.

31 26 25 16 15 11 10 6 5 0

SPECIAL

000000

0

00 0000 0000
rd

0

00000

MFHI

010000

6 10 5 5 6

Move From HI Register MFHI

182 MIPS32™ Architecture For Programmers Volume II, Revision 2.00

Copyright © 2001-2003 MIPS Technologies Inc. All rights reserved.

MFLO

Format: MFLO rd MIPS32

Purpose:

To copy the special purposeLO register to a GPR

Description: rd ← LO

The contents of special registerLO are loaded into GPRrd.

Restrictions: None

Operation:
GPR[rd] ← LO

Exceptions:

None

Historical Information:

In the MIPS I, II, and III architectures, the two instructions which follow the MFHI must not moodify the HI register.
If this restriction is violated, the result of the MFHI isUNPREDICTABLE . This restriction was removed in MIPS
IV and MIPS32, and all subsequent levels of the architecture.

31 26 25 16 15 11 10 6 5 0

SPECIAL

000000

0

00 0000 0000
rd

0

00000

MFLO

010010

6 10 5 5 6

Move From LO Register MFLO

MIPS32™ Architecture For Programmers Volume II, Revision 2.00 183

Copyright © 2001-2003 MIPS Technologies Inc. All rights reserved.

MOV.fmt

Format: MOV.S fd, fs MIPS32
MOV.D fd, fs MIPS32
MOV.PS fd, fs MIPS64

MIPS32 Release 2

Purpose:

To move an FP value between FPRs

Description: fd ← fs

The value in FPRfs is placed into FPRfd. The source and destination are values in formatfmt. In paired-single for-
mat, both the halves of the pair are copied tofd.

The move is non-arithmetic; it causes no IEEE 754 exceptions.

Restrictions:

The fieldsfs and fd must specify FPRs valid for operands of typefmt; if they are not valid, the result isUNPRE-
DICTABLE .

The operand must be a value in formatfmt; if it is not, the result isUNPREDICTABLE and the value of the operand
FPR becomesUNPREDICTABLE .

The result of MOV.PS isUNPREDICTABLE if the processor is executing in 16 FP registers mode.

Operation:

StoreFPR(fd, fmt, ValueFPR(fs, fmt))

Exceptions:

Coprocessor Unusable, Reserved Instruction

Floating Point Exceptions:

Unimplemented Operation

31 26 25 21 20 16 15 11 10 6 5 0

COP1

010001
fmt

0

00000
fs fd

MOV

000110

6 5 5 5 5 6

Floating Point Move MOV.fmt

184 MIPS32™ Architecture For Programmers Volume II, Revision 2.00

Copyright © 2001-2003 MIPS Technologies Inc. All rights reserved.

MOVF

Format: MOVF rd, rs, cc MIPS32

Purpose:

To test an FP condition code then conditionally move a GPR

Description: if cc = 0 then rd ← rs

If the floating point condition code specified byCC is zero, then the contents of GPRrs are placed into GPRrd.

Restrictions:

Operation:

if FPConditionCode(cc) = 0 then
GPR[rd] ← GPR[rs]

endif

Exceptions:

Reserved Instruction, Coprocessor Unusable

31 26 25 21 20 18 17 16 15 11 10 6 5 0

SPECIAL

000000
rs cc

0

0

tf

0
rd

0

00000

MOVCI

000001

6 5 3 1 1 5 5 6

Move Conditional on Floating Point False MOVF

be
MOVF.fmt

Format: MOVF.S fd, fs, cc MIPS32
MOVF.D fd, fs, cc MIPS32
MOVF.PS fd, fs, cc MIPS64

MIPS32 Release 2

Purpose:

To test an FP condition code then conditionally move an FP value

Description: if cc = 0 then fd ← fs

If the floating point condition code specified byCC is zero, then the value in FPRfs is placed into FPRfd. The source
and destination are values in formatfmt.

If the condition code is not zero, then FPRfs is not copied and FPRfd retains its previous value in formatfmt. If fd did
not contain a value either in formatfmt or previously unused data from a load or move-to operation that could
interpreted in formatfmt, then the value offd becomesUNPREDICTABLE .

MOVF.PS conditionally merges the lower half of FPRfs into the lower half of FPRfd if condition codeCC is zero,
and independently merges the upper half of FPRfs into the upper half of FPRfd if condition codeCC+1 is zero. The
CC field must be even; if it is odd, the result of this operation isUNPREDICTABLE .

The move is non-arithmetic; it causes no IEEE 754 exceptions.

Restrictions:

The fieldsfs and fd must specify FPRs valid for operands of typefmt; if they are not valid, the result isUNPRE-
DICTABLE . The operand must be a value in formatfmt; if it is not, the result isUNPREDITABLE and the value of
the operand FPR becomesUNPREDICTABLE .

The result of MOVF.PS isUNPREDICTABLE if the processor is executing in 16 FP registers mode.

31 26 25 21 20 18 17 16 15 11 10 6 5 0

COP1

010001
fmt cc

0

0

tf

0
fs fd

MOVCF

010001

6 5 3 1 1 5 5 6

Floating Point Move Conditional on Floating Point False MOVF.fmt
MIPS32™ Architecture For Programmers Volume II, Revision 2.00 185

Copyright © 2001-2003 MIPS Technologies Inc. All rights reserved.

Operation:

if FPConditionCode(cc) = 0 then
StoreFPR(fd, fmt, ValueFPR(fs, fmt))

else
StoreFPR(fd, fmt, ValueFPR(fd, fmt))

Exceptions:

Coprocessor Unusable, Reserved Instruction

Floating Point Exceptions:

Unimplemented Operation

Floating Point Move Conditional on Floating Point False (cont.) MOVF.fmt
186 MIPS32™ Architecture For Programmers Volume II, Revision 2.00

Copyright © 2001-2003 MIPS Technologies Inc. All rights reserved.

MIPS32™ Architecture For Programmers Volume II, Revision 2.00 187

Copyright © 2001-2003 MIPS Technologies Inc. All rights reserved.

MOVN

Format: MOVN rd, rs, rt MIPS32

Purpose:

To conditionally move a GPR after testing a GPR value

Description: if rt ≠ 0 then rd ← rs

If the value in GPRrt is not equal to zero, then the contents of GPRrs are placed into GPRrd.

Restrictions:

None

Operation:

if GPR[rt] ≠ 0 then
GPR[rd] ← GPR[rs]

endif

Exceptions:

None

Programming Notes:

The non-zero value tested here is thecondition trueresult from the SLT, SLTI, SLTU, and SLTIU comparison instruc-
tions.

31 26 25 21 20 16 15 11 10 6 5 0

SPECIAL

000000
rs rt rd

0

00000

MOVN

001011

6 5 5 5 5 6

Move Conditional on Not Zero MOVN

e

ter-
MOVN.fmt

Format: MOVN.S fd, fs, rt MIPS32
MOVN.D fd, fs, rt MIPS32
MOVN.PS fd, fs, rt MIPS64

MIPS32 Release 2

Purpose:

To test a GPR then conditionally move an FP value

Description: if rt ≠ 0 then fd ← fs

If the value in GPRrt is not equal to zero, then the value in FPRfs is placed in FPRfd. The source and destination ar
values in formatfmt.

If GPR rt contains zero, then FPRfs is not copied and FPRfd contains its previous value in formatfmt. If fd did not
contain a value either in formatfmt or previously unused data from a load or move-to operation that could be in
preted in formatfmt, then the value offd becomesUNPREDICTABLE .

The move is non-arithmetic; it causes no IEEE 754 exceptions.

Restrictions:

The fieldsfs and fd must specify FPRs valid for operands of typefmt; if they are not valid, the result isUNPRE-
DICTABLE .

The operand must be a value in formatfmt; if it is not, the result isUNPREDICTABLE and the value of the operand
FPR becomesUNPREDICTABLE .

The result of MOVN.PS isUNPREDICTABLE if the processor is executing in 16 FP registers mode.

31 26 25 21 20 16 15 11 10 6 5 0

COP1

010001
fmt rt fs fd

MOVN

010011

6 5 5 5 5 6

Floating Point Move Conditional on Not Zero MOVN.fmt
188 MIPS32™ Architecture For Programmers Volume II, Revision 2.00

Copyright © 2001-2003 MIPS Technologies Inc. All rights reserved.

Operation:

if GPR[rt] ≠ 0 then
StoreFPR(fd, fmt, ValueFPR(fs, fmt))

else
StoreFPR(fd, fmt, ValueFPR(fd, fmt))

endif

Exceptions:

Coprocessor Unusable, Reserved Instruction

Floating Point Exceptions:

Unimplemented Operation

Floating Point Move Conditional on Not Zero MOVN.fmt
MIPS32™ Architecture For Programmers Volume II, Revision 2.00 189

Copyright © 2001-2003 MIPS Technologies Inc. All rights reserved.

190 MIPS32™ Architecture For Programmers Volume II, Revision 2.00

Copyright © 2001-2003 MIPS Technologies Inc. All rights reserved.

MOVT

Format: MOVT rd, rs, cc MIPS32

Purpose:

To test an FP condition code then conditionally move a GPR

Description: if cc = 1 then rd ← rs

If the floating point condition code specified byCC is one, then the contents of GPRrs are placed into GPRrd.

Restrictions:

Operation:

if FPConditionCode(cc) = 1 then
GPR[rd] ← GPR[rs]

endif

Exceptions:

Reserved Instruction, Coprocessor Unusable

31 26 25 21 20 18 17 16 15 11 10 6 5 0

SPECIAL

000000
rs cc

0

0

tf

1
rd

0

00000

MOVCI

000001

6 5 3 1 1 5 5 6

Move Conditional on Floating Point True MOVT

be
MOVT.fmt

Format: MOVT.S fd, fs, cc MIPS32
MOVT.D fd, fs, cc MIPS32
MOVT.PS fd, fs, cc MIPS64

MIPS32 Release 2

Purpose:

To test an FP condition code then conditionally move an FP value

Description: if cc = 1 then fd ← fs

If the floating point condition code specified byCC is one, then the value in FPRfs is placed into FPRfd. The source
and destination are values in formatfmt.

If the condition code is not one, then FPRfs is not copied and FPRfd contains its previous value in formatfmt. If fd
did not contain a value either in formatfmt or previously unused data from a load or move-to operation that could
interpreted in formatfmt, then the value offd becomes undefined.

MOVT.PS conditionally merges the lower half of FPRfs into the lower half of FPRfd if condition codeCC is one,
and independently merges the upper half of FPRfs into the upper half of FPRfd if condition codeCC+1 is one. The
CC field should be even; if it is odd, the result of this operation isUNPREDICTABLE .

The move is non-arithmetic; it causes no IEEE 754 exceptions.

Restrictions:

The fieldsfs and fd must specify FPRs valid for operands of typefmt; if they are not valid, the result isUNPRE-
DICTABLE . The operand must be a value in formatfmt; if it is not, the result isUNPREDICTABLE and the value
of the operand FPR becomesUNPREDICTABLE .

The result of MOVT.PS isUNPREDICTABLE if the processor is executing in 16 FP registers mode.

31 26 25 21 20 18 17 16 15 11 10 6 5 0

COP1

010001
fmt cc

0

0

tf

1
fs fd

MOVCF

010001

6 5 3 1 1 5 5 6

Floating Point Move Conditional on Floating Point True MOVT.fmt
MIPS32™ Architecture For Programmers Volume II, Revision 2.00 191

Copyright © 2001-2003 MIPS Technologies Inc. All rights reserved.

Operation:

if FPConditionCode(cc) = 0 then
StoreFPR(fd, fmt, ValueFPR(fs, fmt))

else
StoreFPR(fd, fmt, ValueFPR(fd, fmt))

endif

Exceptions:

Coprocessor Unusable, Reserved Instruction

Floating Point Exceptions:

Unimplemented Operation

Floating Point Move Conditional on Floating Point True MOVT.fmt
192 MIPS32™ Architecture For Programmers Volume II, Revision 2.00

Copyright © 2001-2003 MIPS Technologies Inc. All rights reserved.

MIPS32™ Architecture For Programmers Volume II, Revision 2.00 193

Copyright © 2001-2003 MIPS Technologies Inc. All rights reserved.

MOVZ

Format: MOVZ rd, rs, rt MIPS32

Purpose:

To conditionally move a GPR after testing a GPR value

Description: if rt = 0 then rd ← rs

If the value in GPRrt is equal to zero, then the contents of GPRrs are placed into GPRrd.

Restrictions:

None

Operation:

if GPR[rt] = 0 then
GPR[rd] ← GPR[rs]

endif

Exceptions:

None

Programming Notes:

The zero value tested here is thecondition falseresult from the SLT, SLTI, SLTU, and SLTIU comparison instruc-
tions.

31 26 25 21 20 16 15 11 10 6 5 0

SPECIAL

000000
rs rt rd

0

00000

MOVZ

001010

6 5 5 5 5 6

Move Conditional on Zero MOVZ

l-

eted
MOVZ.fmt

Format: MOVZ.S fd, fs, rt MIPS32
MOVZ.D fd, fs, rt MIPS32
MOVZ.PS fd, fs, rt MIPS64

MIPS32 Release 2

Purpose:

To test a GPR then conditionally move an FP value

Description: if rt = 0 then fd ← fs

If the value in GPRrt is equal to zero then the value in FPRfs is placed in FPRfd. The source and destination are va
ues in formatfmt.

If GPR rt is not zero, then FPRfs is not copied and FPRfd contains its previous value in formatfmt. If fd did not con-
tain a value either in formatfmt or previously unused data from a load or move-to operation that could be interpr
in formatfmt, then the value offd becomesUNPREDICTABLE .

The move is non-arithmetic; it causes no IEEE 754 exceptions.

Restrictions:

The fieldsfs and fd must specify FPRs valid for operands of typefmt; if they are not valid, the result isUNPRE-
DICTABLE .

The operand must be a value in formatfmt; if it is not, the result isUNPREDICTABLE and the value of the operand
FPR becomesUNPREDICTABLE .

The result of MOVZ.PS isUNPREDICTABLE if the processor is executing in 16 FP registers mode.

31 26 25 21 20 16 15 11 10 6 5 0

COP1

010001
fmt rt fs fd

MOVZ

010010

6 5 5 5 5 6

Floating Point Move Conditional on Zero MOVZ.fmt
194 MIPS32™ Architecture For Programmers Volume II, Revision 2.00

Copyright © 2001-2003 MIPS Technologies Inc. All rights reserved.

Operation:

if GPR[rt] = 0 then
StoreFPR(fd, fmt, ValueFPR(fs, fmt))

else
StoreFPR(fd, fmt, ValueFPR(fd, fmt))

endif

Exceptions:

Coprocessor Unusable, Reserved Instruction

Floating Point Exceptions:

Unimplemented Operation

Floating Point Move Conditional on Zero (cont.) MOVZ.fmt
MIPS32™ Architecture For Programmers Volume II, Revision 2.00 195

Copyright © 2001-2003 MIPS Technologies Inc. All rights reserved.

196 MIPS32™ Architecture For Programmers Volume II, Revision 2.00

Copyright © 2001-2003 MIPS Technologies Inc. All rights reserved.

MSUB

Format: MSUB rs, rt MIPS32

Purpose:

To multiply two words and subtract the result from Hi, Lo

Description: (HI,LO) ← (HI,LO) - (rs × rt)

The 32-bit word value in GPRrs is multiplied by the 32-bit value in GPRrt, treating both operands as signed values,
to produce a 64-bit result. The product is subtracted from the 64-bit concatenated values ofHI andLO.. The most sig-
nificant 32 bits of the result are written intoHI and the least signficant 32 bits are written intoLO. No arithmetic
exception occurs under any circumstances.

Restrictions:

None

This instruction does not provide the capability of writing directly to a target GPR.

Operation:

temp ← (HI || LO) - (GPR[rs] × GPR[rt])
HI ← temp 63..32
LO ← temp 31..0

Exceptions:

None

Programming Notes:

Where the size of the operands are known, software should place the shorter operand in GPRrt. This may reduce the
latency of the instruction on those processors which implement data-dependent instruction latencies.

31 26 25 21 20 16 15 11 10 6 5 0

SPECIAL2

011100
rs rt

0

00000

0

00000

MSUB

000100

6 5 5 5 5 6

Multiply and Subtract Word to Hi,Lo MSUB

current
MSUB.fmt

Format: MSUB.S fd, fr, fs, ft MIPS64
MSUB.D fd, fr, fs, ft MIPS64
MSUB.PS fd, fr, fs, ft MIPS64

MIPS32 Release 2

Purpose:

To perform a combined multiply-then-subtract of FP values

Description: fd ← (fs × ft) − fr

The value in FPRfs is multiplied by the value in FPRft to produce an intermediate product. The value in FPRfr is
subtracted from the product. The subtraction result is calculated to infinite precision, rounded according to the
rounding mode inFCSR, and placed into FPRfd. The operands and result are values in formatfmt.

MSUB.PS multiplies then subtracts the upper and lower halves of FPRfr, FPRfs, and FPRft independently, and ORs
together any generated exceptional conditions.

Cause bits are ORed into theFlag bits if no exception is taken.

Restrictions:

The fieldsfr, fs, ft, andfd must specify FPRs valid for operands of typefmt; if they are not valid, the result isUNPRE-
DICTABLE .

The operands must be values in formatfmt; if they are not, the result isUNPREDICTABLE and the value of the
operand FPRs becomesUNPREDICTABLE .

The result of MSUB.PS isUNPREDICTABLE if the processor is executing in 16 FP registers mode.

Operation:

vfr ← ValueFPR(fr, fmt)
vfs ← ValueFPR(fs, fmt)
vft ← ValueFPR(ft, fmt)
StoreFPR(fd, fmt, (vfs ×fmt vft) −fmt vfr))

31 26 25 21 20 16 15 11 10 6 5 3 2 0

COP1X

010011
fr ft fs fd

MSUB

101
fmt

6 5 5 5 5 3 3

Floating Point Multiply Subtract MSUB.fmt
MIPS32™ Architecture For Programmers Volume II, Revision 2.00 197

Copyright © 2001-2003 MIPS Technologies Inc. All rights reserved.

Exceptions:

Coprocessor Unusable, Reserved Instruction

Floating Point Exceptions:

Inexact, Unimplemented Operation, Invalid Operation, Overflow, Underflow

Floating Point Multiply Subtract (cont.) MSUB.fmt
198 MIPS32™ Architecture For Programmers Volume II, Revision 2.00

Copyright © 2001-2003 MIPS Technologies Inc. All rights reserved.

MIPS32™ Architecture For Programmers Volume II, Revision 2.00 199

Copyright © 2001-2003 MIPS Technologies Inc. All rights reserved.

MSUBU

Format: MSUBU rs, rt MIPS32

Purpose:

To multiply two words and subtract the result from Hi, Lo

Description: (HI,LO) ← (HI,LO) - (rs × rt)

The 32-bit word value in GPRrs is multiplied by the 32-bit word value in GPRrt, treating both operands as unsigned
values, to produce a 64-bit result. The product is subtracted from the 64-bit concatenated values ofHI andLO.. The
most significant 32 bits of the result are written intoHI and the least signficant 32 bits are written intoLO. No arith-
metic exception occurs under any circumstances.

Restrictions:

None

This instruction does not provide the capability of writing directly to a target GPR.

Operation:

temp ← (HI || LO) - (GPR[rs] × GPR[rt])
HI ← temp 63..32
LO ← temp 31..0

Exceptions:

None

Programming Notes:

Where the size of the operands are known, software should place the shorter operand in GPRrt. This may reduce the
latency of the instruction on those processors which implement data-dependent instruction latencies.

31 26 25 21 20 16 15 11 10 6 5 0

SPECIAL2

011100
rs rt

0

00000

0

00000

MSUBU

000101

6 5 5 5 5 6

Multiply and Subtract Word to Hi,Lo MSUBU

200 MIPS32™ Architecture For Programmers Volume II, Revision 2.00

Copyright © 2001-2003 MIPS Technologies Inc. All rights reserved.

MTC0

Format: MTC0 rt, rd MIPS32
MTC0 rt, rd, sel MIPS32

Purpose:

To move the contents of a general register to a coprocessor 0 register.

Description: CPR[0, rd, sel] ← rt

The contents of general register rt are loaded into the coprocessor 0 register specified by the combination of rd and
sel. Not all coprocessor 0 registers support the the sel field. In those instances, the sel field must be set to zero.

Restrictions:

The results areUNDEFINED if coprocessor 0 does not contain a register as specified byrd andsel.

Operation:

data ← GPR[rt]
CPR[0,rd,sel] ← data

Exceptions:

Coprocessor Unusable

Reserved Instruction

31 26 25 21 20 16 15 11 10 3 2 0

COP0

010000

MT

00100
rt rd

0

0000 000
sel

6 5 5 5 8 3

Move to Coprocessor 0 MTC0

MIPS32™ Architecture For Programmers Volume II, Revision 2.00 201

Copyright © 2001-2003 MIPS Technologies Inc. All rights reserved.

MTC1

Format: MTC1 rt, fs MIPS32

Purpose:

To copy a word from a GPR to an FPU (CP1) general register

Description: fs ← rt

The low word in GPRrt is placed into the low word of floating point (Coprocessor 1) general register fs.

Restrictions:

Operation:

data ← GPR[rt] 31..0
StoreFPR(fs, UNINTERPRETED_WORD, data)

Exceptions:

Coprocessor Unusable

Historical Information:

For MIPS I, MIPS II, and MIPS III the value of FPRfs is UNPREDICTABLE for the instruction immediately follow-
ing MTC1.

31 26 25 21 20 16 15 11 10 0

COP1

010001

MT

00100
rt fs

0

000 0000 0000

6 5 5 5 11

Move Word to Floating Point MTC1

202 MIPS32™ Architecture For Programmers Volume II, Revision 2.00

Copyright © 2001-2003 MIPS Technologies Inc. All rights reserved.

MTC2

Format: MTC2 rt, rd MIPS32
MTC2 rt, rd, sel MIPS32

The syntax shown above is an example using MTC1 as a model. The specific syntax is implementation dependent.

Purpose:

To copy a word from a GPR to a COP2 general register

Description: CP2CPR[Impl] ← rt

The low word in GPRrt is placed into the low word of coprocessor 2 general register denoted by theImpl field. The
interpretation of theImpl field is left entirely to the Coprocessor 2 implementation and is not specified by the archi-
tecture.

Restrictions:

The results areUNPREDICTABLE if Impl specifies a coprocessor 2 register that does not exist.

Operation:

data ← GPR[rt]
CP2CPR[Impl] ← data

Exceptions:

Coprocessor Unusable

Reserved Instruction

31 26 25 21 20 16 15 11 10 8 7 0

COP2

010010

MT

00100
rt Impl

6 5 5 16

Move Word to Coprocessor 2 MTC2

MIPS32™ Architecture For Programmers Volume II, Revision 2.00 203

Copyright © 2001-2003 MIPS Technologies Inc. All rights reserved.

MTHC1

Format: MTHC1 rt, fs MIPS32 Release 2

Purpose:

To copy a word from a GPR to the high half of an FPU (CP1) general register

Description: fs 63..32 ← rt

The word in GPRrt is placed into the high word of floating point (Coprocessor 1) general registerfs. This instruction
is primarily intended to support 64-bit floating point units on a 32-bit CPU, but the semantics of the instruction are
defined for all cases.

Restrictions:

In implementations prior to Release 2 of the architecture, this instruction resulted in a Reserved Instruction Excep-
tion.

The results areUNPREDICTABLE if StatusFR = 0 andfs is odd.

Operation:

newdata ← GPR[rt]olddata ← ValueFPR(fs, UNINTERPRETED_DOUBLEWORD) 31..0
StoreFPR(fs, UNINTERPRETED_DOUBLEWORD, newdata || olddata)

Exceptions:

Coprocessor Unusable

Reserved Instruction

Programming Notes

When paired with MTC1 to write a value to a 64-bit FPR, the MTC1 must be executed first, followed by the MTHC1.
This is because of the semantic definition of MTC1, which is not aware that software will be using an MTHC1
instruction to complete the operation, and sets the upper half of the 64-bit FPR to anUNPREDICTABLE value.

31 26 25 21 20 16 15 11 10 0

COP1

010001

MTH

00111
rt fs

0

000 0000 0000

6 5 5 5 11

Move Word to High Half of Floating Point Register MTHC1

204 MIPS32™ Architecture For Programmers Volume II, Revision 2.00

Copyright © 2001-2003 MIPS Technologies Inc. All rights reserved.

MTHC2

Format: MTHC2 rt, rd MIPS32 Release 2
MTHC2 rt, rd, sel MIPS32 Release 2

The syntax shown above is an example using MTHC1 as a model. The specific syntax is implementation dependent.

Purpose:

To copy a word from a GPR to the high half of a COP2 general register

Description: CP2CPR[Impl] 63..32 ← rt

The word in GPRrt is placed into the high word of coprocessor 2 general register denoted by theImpl field. The
interpretation of theImpl field is left entirely to the Coprocessor 2 implementation and is not specified by the archi-
tecture.

Restrictions:

The results areUNPREDICTABLE if Impl specifies a coprocessor 2 register that does not exist, or if that register is
not 64 bits wide.

In implementations prior to Release 2 of the architecture, this instruction resulted in a Reserved Instruction Excep-
tion.

Operation:

data ← GPR[rt]
CP2CPR[Impl] ← data || CPR[2,rd,sel] 31..0

Exceptions:

Coprocessor Unusable

Reserved Instruction

Programming Notes

When paired with MTC2 to write a value to a 64-bit CPR, the MTC2 must be executed first, followed by the
MTHC2. This is because of the semantic definition of MTC2, which is not aware that software will be using an
MTHC2 instruction to complete the operation, and sets the upper half of the 64-bit CPR to anUNPREDICTABLE
value.

31 26 25 21 20 16 15 11 10 0

COP2

010010

MTH

00111
rt Impl

6 5 5 16

Move Word to High Half of Coprocessor 2 Register MTHC2

MIPS32™ Architecture For Programmers Volume II, Revision 2.00 205

Copyright © 2001-2003 MIPS Technologies Inc. All rights reserved.

MTHI

Format: MTHI rs MIPS32

Purpose:

To copy a GPR to the special purposeHI register

Description: HI ← rs

The contents of GPRrs are loaded into special registerHI.

Restrictions:

A computed result written to theHI/LO pair by DIV, DIVU,MULT, or MULTU must be read by MFHI or MFLO
before a new result can be written into eitherHI or LO.

If an MTHI instruction is executed following one of these arithmetic instructions, but before an MFLO or MFHI
instruction, the contents ofLO are UNPREDICTABLE. The following example shows this illegal situation:

MUL r2,r4 # start operation that will eventually write to HI,LO
... # code not containing mfhi or mflo
MTHI r6
... # code not containing mflo
MFLO r3 # this mflo would get an UNPREDICTABLE value

Operation:

HI ← GPR[rs]

Exceptions:

None

Historical Information:

In MIPS I-III, if either of the two preceding instructions is MFHI, the result of that MFHI is UNPREDICTABLE.
Reads of theHI or LO special register must be separated from any subsequent instructions that write to them by two
or more instructions. In MIPS IV and later, including MIPS32 and MIPS64, this restriction does not exist.

31 26 25 21 20 6 5 0

SPECIAL

000000
rs

0

000 0000 0000 0000

MTHI

010001

6 5 15 6

Move to HI Register MTHI

206 MIPS32™ Architecture For Programmers Volume II, Revision 2.00

Copyright © 2001-2003 MIPS Technologies Inc. All rights reserved.

MTLO

Format: MTLO rs MIPS32

Purpose:

To copy a GPR to the special purposeLO register

Description: LO ← rs

The contents of GPRrs are loaded into special registerLO.

Restrictions:

A computed result written to theHI/LO pair by DIV, DIVU, MULT, or MULTU must be read by MFHI or MFLO
before a new result can be written into eitherHI or LO.

If an MTLO instruction is executed following one of these arithmetic instructions, but before an MFLO or MFHI
instruction, the contents ofHI are UNPREDICTABLE. The following example shows this illegal situation:

MUL r2,r4 # start operation that will eventually write to HI,LO
... # code not containing mfhi or mflo
MTLO r6
... # code not containing mfhi
MFHI r3 # this mfhi would get an UNPREDICTABLE value

Operation:

LO ← GPR[rs]

Exceptions:

None

Historical Information:

In MIPS I-III, if either of the two preceding instructions is MFHI, the result of that MFHI is UNPREDICTABLE.
Reads of theHI or LO special register must be separated from any subsequent instructions that write to them by two
or more instructions. In MIPS IV and later, including MIPS32 and MIPS64, this restriction does not exist.

31 26 25 21 20 6 5 0

SPECIAL

000000
rs

0

000 0000 0000 0000

MTLO

010011

6 5 15 6

Move to LO Register MTLO

MIPS32™ Architecture For Programmers Volume II, Revision 2.00 207

Copyright © 2001-2003 MIPS Technologies Inc. All rights reserved.

MUL

Format: MUL rd, rs, rt MIPS32

Purpose:

To multiply two words and write the result to a GPR.

Description: rd ← rs × rt

The 32-bit word value in GPRrs is multiplied by the 32-bit value in GPRrt, treating both operands as signed values,
to produce a 64-bit result. The least significant 32 bits of the product are written to GPRrd. The contents ofHI and
LO areUNPREDICTABLE after the operation. No arithmetic exception occurs under any circumstances.

Restrictions:

Note that this instruction does not provide the capability of writing the result to the HI and LO registers.

Operation:

temp <- GPR[rs] * GPR[rt]
GPR[rd] <- temp 31..0
HI <- UNPREDICTABLE
LO <- UNPREDICTABLE

Exceptions:

None

Programming Notes:

In some processors the integer multiply operation may proceed asynchronously and allow other CPU instructions to
execute before it is complete. An attempt to readGPR rdbefore the results are written interlocks until the results are
ready. Asynchronous execution does not affect the program result, but offers an opportunity for performance
improvement by scheduling the multiply so that other instructions can execute in parallel.

Programs that require overflow detection must check for it explicitly.

Where the size of the operands are known, software should place the shorter operand in GPRrt. This may reduce the
latency of the instruction on those processors which implement data-dependent instruction latencies.

31 26 25 21 20 16 15 11 10 6 5 0

SPECIAL2

011100
rs rt rd

0

00000

MUL

000010

6 5 5 5 5 6

Multiply Word to GPR MUL

208 MIPS32™ Architecture For Programmers Volume II, Revision 2.00

Copyright © 2001-2003 MIPS Technologies Inc. All rights reserved.

MUL.fmt

Format: MUL.S fd, fs, ft MIPS32
MUL.D fd, fs, ft MIPS32
MUL.PS fd, fs, ft MIPS64

MIPS32 Release 2

Purpose:

To multiply FP values

Description: fd ← fs × ft

The value in FPRfs is multiplied by the value in FPRft. The result is calculated to infinite precision, rounded accord-
ing to the current rounding mode inFCSR, and placed into FPRfd. The operands and result are values in formatfmt.
MUL.PS multiplies the upper and lower halves of FPRfs and FPRft independently, and ORs together any generated
exceptional conditions.

Restrictions:

The fieldsfs, ft, andfd must specify FPRs valid for operands of typefmt; if they are not valid, the result isUNPRE-
DICTABLE .

The operands must be values in formatfmt; if they are not, the result isUNPREDICTABLE and the value of the
operand FPRs becomesUNPREDICTABLE .

The result of MUL.PS isUNPREDICTABLE if the processor is executing in 16 FP registers mode.

Operation:

StoreFPR (fd, fmt, ValueFPR(fs, fmt) ×fmt ValueFPR(ft, fmt))

Exceptions:

Coprocessor Unusable, Reserved Instruction

Floating Point Exceptions:

Inexact, Unimplemented Operation, Invalid Operation, Overflow, Underflow

31 26 25 21 20 16 15 11 10 6 5 0

COP1

010001
fmt ft fs fd

MUL

000010

6 5 5 5 5 6

Floating Point Multiply MUL.fmt

MIPS32™ Architecture For Programmers Volume II, Revision 2.00 209

Copyright © 2001-2003 MIPS Technologies Inc. All rights reserved.

MULT

Format: MULT rs, rt MIPS32

Purpose:

To multiply 32-bit signed integers

Description: (HI, LO) ← rs × rt

The 32-bit word value in GPRrt is multiplied by the 32-bit value in GPRrs, treating both operands as signed values,
to produce a 64-bit result. The low-order 32-bit word of the result is placed into special registerLO, and the
high-order 32-bit word is splaced into special registerHI.

No arithmetic exception occurs under any circumstances.

Restrictions:

None

Operation:

prod ← GPR[rs] 31..0 × GPR[rt] 31..0
LO ← prod 31..0
HI ← prod 63..32

Exceptions:

None

Programming Notes:

In some processors the integer multiply operation may proceed asynchronously and allow other CPU instructions to
execute before it is complete. An attempt to readLO or HI before the results are written interlocks until the results are
ready. Asynchronous execution does not affect the program result, but offers an opportunity for performance
improvement by scheduling the multiply so that other instructions can execute in parallel.

Programs that require overflow detection must check for it explicitly.

Where the size of the operands are known, software should place the shorter operand in GPRrt. This may reduce the
latency of the instruction on those processors which implement data-dependent instruction latencies.

31 26 25 21 20 16 15 6 5 0

SPECIAL

000000
rs rt

0

00 0000 0000

MULT

011000

6 5 5 10 6

Multiply Word MULT

210 MIPS32™ Architecture For Programmers Volume II, Revision 2.00

Copyright © 2001-2003 MIPS Technologies Inc. All rights reserved.

MULTU

Format: MULTU rs, rt MIPS32

Purpose:

To multiply 32-bit unsigned integers

Description: (HI, LO) ← rs × rt

The 32-bit word value in GPRrt is multiplied by the 32-bit value in GPRrs, treating both operands as unsigned val-
ues, to produce a 64-bit result. The low-order 32-bit word of the result is placed into special registerLO, and the
high-order 32-bit word is placed into special registerHI.

No arithmetic exception occurs under any circumstances.

Restrictions:

None

Operation:

prod ← (0 || GPR[rs] 31..0) × (0 || GPR[rt] 31..0)
LO ← prod 31..0
HI ← prod 63..32

Exceptions:

None

Programming Notes:

In some processors the integer multiply operation may proceed asynchronously and allow other CPU instructions to
execute before it is complete. An attempt to readLO or HI before the results are written interlocks until the results are
ready. Asynchronous execution does not affect the program result, but offers an opportunity for performance
improvement by scheduling the multiply so that other instructions can execute in parallel.

Programs that require overflow detection must check for it explicitly.

Where the size of the operands are known, software should place the shorter operand in GPRrt. This may reduce the
latency of the instruction on those processors which implement data-dependent instruction latencies.

31 26 25 21 20 16 15 6 5 0

SPECIAL

000000
rs rt

0

00 0000 0000

MULTU

011001

6 5 5 10 6

Multiply Unsigned Word MULTU

MIPS32™ Architecture For Programmers Volume II, Revision 2.00 211

Copyright © 2001-2003 MIPS Technologies Inc. All rights reserved.

NEG.fmt

Format: NEG.S fd, fs MIPS32
NEG.D fd, fs MIPS32
NEG.PS fd, fs MIPS64

MIPS32 Release 2

Purpose:

To negate an FP value

Description: fd ← −fs

The value in FPRfs is negated and placed into FPRfd. The value is negated by changing the sign bit value. The oper-
and and result are values in formatfmt. NEG.PS negates the upper and lower halves of FPRfs independently, and
ORs together any generated exceptional conditions.

This operation is arithmetic; a NaN operand signals invalid operation.

Restrictions:

The fieldsfs and fd must specify FPRs valid for operands of typefmt; if they are not valid, the result isUNPRE-
DICTABLE . The operand must be a value in formatfmt; if it is not, the result isUNPREDICTABLE and the value
of the operand FPR becomesUNPREDICTABLE .

The result of NEG.PS isUNPREDICTABLE if the processor is executing in 16 FP registers mode.

Operation:

StoreFPR(fd, fmt, Negate(ValueFPR(fs, fmt)))

Exceptions:

Coprocessor Unusable, Reserved Instruction

Floating Point Exceptions:

Unimplemented Operation, Invalid Operation

31 26 25 21 20 16 15 11 10 6 5 0

COP1

010001
fmt

0

00000
fs fd

NEG

000111

6 5 5 5 5 6

Floating Point Negate NEG.fmt

NMADD.fmt

Format: NMADD.S fd, fr, fs, ft MIPS64
NMADD.D fd, fr, fs, ft MIPS64
NMADD.PS fd, fr, fs, ft MIPS64

MIPS32 Release 2

Purpose:

To negate a combined multiply-then-add of FP values

Description: fd ← − ((fs × ft) + fr)

The value in FPRfs is multiplied by the value in FPRft to produce an intermediate product. The value in FPRfr is
added to the product.

The result sum is calculated to infinite precision, rounded according to the current rounding mode inFCSR, negated
by changing the sign bit, and placed into FPRfd. The operands and result are values in formatfmt.

NMADD.PS applies the operation to the upper and lower halves of FPRfr, FPRfs, and FPRft independently, and
ORs together any generated exceptional conditions.

Cause bits are ORed into theFlag bits if no exception is taken.

Restrictions:

The fieldsfr, fs, ft, andfd must specify FPRs valid for operands of typefmt; if they are not valid, the result isUNPRE-
DICTABLE .

The operands must be values in formatfmt; if they are not, the result isUNPREDICTABLE and the value of the
operand FPRs becomesUNPREDICTABLE .

The result of NMADD.PS isUNPREDICTABLE if the processor is executing in 16 FP registers mode.

Operation:

vfr ← ValueFPR(fr, fmt)
vfs ← ValueFPR(fs, fmt)
vft ← ValueFPR(ft, fmt)
StoreFPR(fd, fmt, −(vfr +fmt (vfs ×fmt vft)))

31 26 25 21 20 16 15 11 10 6 5 3 2 0

COP1X

010011
fr ft fs fd

NMADD

110
fmt

6 5 5 5 5 3 3

Floating Point Negative Multiply Add NMADD.fmt
212 MIPS32™ Architecture For Programmers Volume II, Revision 2.00

Copyright © 2001-2003 MIPS Technologies Inc. All rights reserved.

Exceptions:

Coprocessor Unusable, Reserved Instruction

Floating Point Exceptions:

Inexact, Unimplemented Operation, Invalid Operation, Overflow, Underflow

Floating Point Negative Multiply Add (cont.) NMADD.fmt
MIPS32™ Architecture For Programmers Volume II, Revision 2.00 213

Copyright © 2001-2003 MIPS Technologies Inc. All rights reserved.

NMSUB.fmt

Format: NMSUB.S fd, fr, fs, ft MIPS64
NMSUB.D fd, fr, fs, ft MIPS64
NMSUB.PS fd, fr, fs, ft MIPS64

MIPS32 Release 2

Purpose:

To negate a combined multiply-then-subtract of FP values

Description: fd ← - ((fs × ft) - fr)

The value in FPRfs is multiplied by the value in FPRft to produce an intermediate product. The value in FPRfr is
subtracted from the product.

The result is calculated to infinite precision, rounded according to the current rounding mode inFCSR, negated by
changing the sign bit, and placed into FPRfd. The operands and result are values in formatfmt.

NMSUB.PS applies the operation to the upper and lower halves of FPRfr, FPRfs, and FPRft independently, and
ORs together any generated exceptional conditions.

Cause bits are ORed into theFlag bits if no exception is taken.

Restrictions:

The fieldsfr, fs, ft, andfd must specify FPRs valid for operands of typefmt; if they are not valid, the result isUNPRE-
DICTABLE .

The operands must be values in formatfmt; if they are not, the result isUNPREDICTABLE and the value of the
operand FPRs becomesUNPREDICTABLE .

The result of NMSUB.PS isUNPREDICTABLE if the processor is executing in 16 FP registers mode.

Operation:

vfr ← ValueFPR(fr, fmt)
vfs ← ValueFPR(fs, fmt)
vft ← ValueFPR(ft, fmt)
StoreFPR(fd, fmt, −((vfs ×fmt vft) −fmt vfr))

31 26 25 21 20 16 15 11 10 6 5 3 2 0

COP1X

010011
fr ft fs fd

NMSUB

111
fmt

6 5 5 5 5 3 3

Floating Point Negative Multiply Subtract NMSUB.fmt
214 MIPS32™ Architecture For Programmers Volume II, Revision 2.00

Copyright © 2001-2003 MIPS Technologies Inc. All rights reserved.

Exceptions:

Coprocessor Unusable, Reserved Instruction

Floating Point Exceptions:

Inexact, Unimplemented Operation, Invalid Operation, Overflow, Underflow

Floating Point Negative Multiply Subtract (cont.) NMSUB.fmt
MIPS32™ Architecture For Programmers Volume II, Revision 2.00 215

Copyright © 2001-2003 MIPS Technologies Inc. All rights reserved.

216 MIPS32™ Architecture For Programmers Volume II, Revision 2.00

Copyright © 2001-2003 MIPS Technologies Inc. All rights reserved.

NOP

Format: NOP Assembly Idiom

Purpose:

To perform no operation.

Description:

NOP is the assembly idiom used to denote no operation. The actual instruction is interpreted by the hardware as SLL
r0, r0, 0.

Restrictions:

None

Operation:

None

Exceptions:

None

Programming Notes:

The zero instruction word, which represents SLL, r0, r0, 0, is the preferred NOP for software to use to fill branch and
jump delay slots and to pad out alignment sequences.

31 26 25 21 20 16 15 11 10 6 5 0

SPECIAL

000000

0

00000

0

00000

0

00000

0

00000

SLL

000000

6 5 5 5 5 6

No Operation NOP

MIPS32™ Architecture For Programmers Volume II, Revision 2.00 217

Copyright © 2001-2003 MIPS Technologies Inc. All rights reserved.

NOR

Format: NOR rd, rs, rt MIPS32

Purpose:

To do a bitwise logical NOT OR

Description: rd ← rs NOR rt

The contents of GPRrs are combined with the contents of GPRrt in a bitwise logical NOR operation. The result is
placed into GPRrd.

Restrictions:

None

Operation:

GPR[rd] ← GPR[rs] nor GPR[rt]

Exceptions:

None

31 26 25 21 20 16 15 11 10 6 5 0

SPECIAL

000000
rs rt rd

0

00000

NOR

100111

6 5 5 5 5 6

Not Or NOR

218 MIPS32™ Architecture For Programmers Volume II, Revision 2.00

Copyright © 2001-2003 MIPS Technologies Inc. All rights reserved.

OR

Format: OR rd, rs, rt MIPS32

Purpose:

To do a bitwise logical OR

Description: rd ← rs or rt

The contents of GPRrs are combined with the contents of GPRrt in a bitwise logical OR operation. The result is
placed into GPRrd.

Restrictions:

None

Operation:

GPR[rd] ← GPR[rs] or GPR[rt]

Exceptions:

None

31 26 25 21 20 16 15 11 10 6 5 0

SPECIAL

000000
rs rt rd

0

00000

OR

100101

6 5 5 5 5 6

Or OR

MIPS32™ Architecture For Programmers Volume II, Revision 2.00 219

Copyright © 2001-2003 MIPS Technologies Inc. All rights reserved.

ORI

Format: ORI rt, rs, immediate MIPS32

Purpose:

To do a bitwise logical OR with a constant

Description: rt ← rs or immediate

The 16-bitimmediateis zero-extended to the left and combined with the contents of GPRrs in a bitwise logical OR
operation. The result is placed into GPRrt.

Restrictions:

None

Operation:

GPR[rt] ← GPR[rs] or zero_extend(immediate)

Exceptions:

None

31 26 25 21 20 16 15 0

ORI

001101
rs rt immediate

6 5 5 16

Or Immediate ORI

220 MIPS32™ Architecture For Programmers Volume II, Revision 2.00

Copyright © 2001-2003 MIPS Technologies Inc. All rights reserved.

PLL.PS

Format: PLL.PS fd, fs, ft MIPS64
MIPS32 Release 2

Purpose:

To merge a pair of paired single values with realignment

Description: fd ← lower(fs) || lower(ft)

A new paired-single value is formed by catenating the lower single offs (bits 31..0) and the lower single offt (bits
31..0).

The move is non-arithmetic; it causes no IEEE 754 exceptions.

Restrictions:

The fieldsfs, ft,andfd must specify FPRs valid for operands of typePS. If they are not valid, the result isUNPRE-
DICTABLE .

The result of this instruction isUNPREDICTABLE if the processor is executing in 16 FP registers mode.

Operation:

StoreFPR(fd, PS, ValueFPR(fs, PS) 31..0 || ValueFPR(ft, PS) 31..0)

Exceptions:

Coprocessor Unusable, Reserved Instruction

31 26 25 21 20 16 15 11 10 6 5 0

COP1

010001

fmt

10110
ft fs fd

PLL

101100

6 5 5 5 5 6

Pair Lower Lower PLL.PS

MIPS32™ Architecture For Programmers Volume II, Revision 2.00 221

Copyright © 2001-2003 MIPS Technologies Inc. All rights reserved.

PLU.PS

Format: PLU.PS fd, fs, ft MIPS64
MIPS32 Release 2

Purpose:

To merge a pair of paired single values with realignment

Description: fd ← lower(fs) || upper(ft)

A new paired-single value is formed by catenating the lower single offs (bits 31..0) and the upper single offt (bits
63..32).

The move is non-arithmetic; it causes no IEEE 754 exceptions.

Restrictions:

The fieldsfs, ft,andfd must specify FPRs valid for operands of typePS. If they are not valid, the result isUNPRE-
DICTABLE .

The result of this instruction isUNPREDICTABLE if the processor is executing in 16 FP registers mode.

Operation:

StoreFPR(fd, PS, ValueFPR(fs, PS) 31..0 || ValueFPR(ft, PS) 63..32)

Exceptions:

Coprocessor Unusable, Reserved Instruction

31 26 25 21 20 16 15 11 10 6 5 0

COP1

010001

fmt

10110
ft fs fd

PLU

101101

6 5 5 5 5 6

Pair Lower Upper PLU.PS

perfor-
cluding
a pro-
e of the

eption, the
tion that

etected

emory
store to

des the
tation

reFor-
PREF

Format: PREF hint,offset(base) MIPS32

Purpose:

To move data between memory and cache.

Description: prefetch_memory(base+offset)

PREF adds the 16-bit signedoffsetto the contents of GPRbaseto form an effective byte address. Thehint field sup-
plies information about the way that the data is expected to be used.

PREF enables the processor to take some action, typically prefetching the data into cache, to improve program
mance. The action taken for a specific PREF instruction is both system and context dependent. Any action, in
doing nothing, is permitted as long as it does not change architecturally visible state or alter the meaning of
gram. Implementations are expected either to do nothing, or to take an action that increases the performanc
program. The PrepareForStore function is unique in that it may modify the architecturally visible state.

PREF does not cause addressing-related exceptions. If the address specified would cause an addressing exc
exception condition is ignored and no data movement occurs.However even if no data is prefetched, some ac
is not architecturally visible, such as writeback of a dirty cache line, can take place.

It is implementation dependent whether a Bus Error or Cache Error exception is reported if such an error is d
as a byproduct of the action taken by the PREF instruction.

PREF never generates a memory operation for a location with anuncached memory access type.

If PREF results in a memory operation, the memory access type used for the operation is determined by the m
access type of the effective address, just as it would be if the memory operation had been caused by a load or
the effective address.

For a cached location, the expected and useful action for the processor is to prefetch a block of data that inclu
effective address. The size of the block and the level of the memory hierarchy it is fetched into are implemen
specific.

Thehint field supplies information about the way the data is expected to be used. With the exception of Prepa
Store, ahint value cannot cause an action to modify architecturally visible state. A processor may use ahint value to
improve the effectiveness of the prefetch action.

31 26 25 21 20 16 15 0

PREF

110011
base hint offset

6 5 5 16

Prefetch PREF
222 MIPS32™ Architecture For Programmers Volume II, Revision 2.00

Copyright © 2001-2003 MIPS Technologies Inc. All rights reserved.

Table 3-30 Values of thehint Field for the PREF Instruction

Value Name Data Use and Desired Prefetch Action

0 load
Use: Prefetched data is expected to be read (not modified).

Action: Fetch data as if for a load.

1 store
Use: Prefetched data is expected to be stored or modified.

Action: Fetch data as if for a store.

2-3 Reserved Reserved for future use - not available to implementations.

4 load_streamed

Use: Prefetched data is expected to be read (not modified) but not
reused extensively; it “streams” through cache.

Action: Fetch data as if for a load and place it in the cache so that it
does not displace data prefetched as “retained.”

5 store_streamed

Use: Prefetched data is expected to be stored or modified but not
reused extensively; it “streams” through cache.

Action: Fetch data as if for a store and place it in the cache so that
it does not displace data prefetched as “retained.”

6 load_retained

Use: Prefetched data is expected to be read (not modified) and
reused extensively; it should be “retained” in the cache.

Action: Fetch data as if for a load and place it in the cache so that it
is not displaced by data prefetched as “streamed.”

7 store_retained

Use: Prefetched data is expected to be stored or modified and reused
extensively; it should be “retained” in the cache.

Action: Fetch data as if for a store and place it in the cache so that
it is not displaced by data prefetched as “streamed.”

Prefetch (cont.) PREF
MIPS32™ Architecture For Programmers Volume II, Revision 2.00 223

Copyright © 2001-2003 MIPS Technologies Inc. All rights reserved.

8-24 Reserved Reserved for future use - not available to implementations.

25 writeback_invalidate
(also known as “nudge”)

Use: Data is no longer expected to be used.

Action: For a writeback cache, schedule a wirteback of any dirty
data. At the completion of the writeback, mark the state of any cache
lines written back as invalid.

26-29

Implementation
Dependent Unassigned by the Architecture - available for

implementation-dependent use.

30
PrepareForStore

Use: Prepare the cache for writing an entire line, without the
overhead involved in filling the line from memory.

Action: If the reference hits in the cache, no action is taken. If the
reference misses in the cache, a line is selected for replacement, any
valid and dirty victim is written back to memory, the entire line is
filled with zero data, and the state of the line is marked as valid and
dirty.

Programming Note: Because the cache line is filled with zero data
on a cache miss, software must not assume that this action, in and
of itself, can be used as a fast bzero-type function.

31

Implementation
Dependent Unassigned by the Architecture - available for

implementation-dependent use.

Table 3-30 Values of thehint Field for the PREF Instruction
224 MIPS32™ Architecture For Programmers Volume II, Revision 2.00

Copyright © 2001-2003 MIPS Technologies Inc. All rights reserved.

e TLB.
prefetch

ss pointer

etected
have

are to
e truly
Restrictions:

None

Operation:

vAddr ← GPR[base] + sign_extend(offset)
(pAddr, CCA) ← AddressTranslation(vAddr, DATA, LOAD)
Prefetch(CCA, pAddr, vAddr, DATA, hint)

Exceptions:

Bus Error, Cache Error

Prefetch does not take any TLB-related or address-related exceptions under any circumstances.

Programming Notes:

Prefetch cannot prefetch data from a mapped location unless the translation for that location is present in th
Locations in memory pages that have not been accessed recently may not have translations in the TLB, so
may not be effective for such locations.

Prefetch does not cause addressing exceptions. It does not cause an exception to prefetch using an addre
value before the validity of a pointer is determined.

It is implementation dependent whether a Bus Error or Cache Error exception is reported if such an error is d
as a byproduct of the action taken by the PREF instruction. Typically, this only occurs in systems which
high-reliability requirements.

Prefetch operations have no effect on cache lines that were previously locked with the CACHE instruction.

Hint field encodings whose function is described as “streamed” or “retained” convey usage intent from softw
hardware. Software should not assume that hardware will always prefetch data in an optimal way. If data is to b
retained, software should use the Cache instruction to lock data into the cache.

Prefetch (cont.) PREF
MIPS32™ Architecture For Programmers Volume II, Revision 2.00 225

Copyright © 2001-2003 MIPS Technologies Inc. All rights reserved.

226 MIPS32™ Architecture For Programmers Volume II, Revision 2.00

Copyright © 2001-2003 MIPS Technologies Inc. All rights reserved.

PREFX

Format: PREFX hint, index(base) MIPS64
MIPS32 Release 2

Purpose:

To move data between memory and cache.

Description: prefetch_memory[base+index]

PREFX adds the contents of GPRindexto the contents of GPRbaseto form an effective byte address. Thehint field
supplies information about the way the data is expected to be used.

The only functional difference between the PREF and PREFX instructions is the addressing mode implemented by
the two. Refer to the PREF instruction for all other details, including the encoding of thehint field.

Restrictions:

Operation:

vAddr ← GPR[base] + GPR[index]
(pAddr, CCA) ← AddressTranslation(vAddr, DATA, LOAD)
Prefetch(CCA, pAddr, vAddr, DATA, hint)

Exceptions:

Coprocessor Unusable, Reserved Instruction, Bus Error, Cache Error

Programming Notes:

The PREFX instruction is only available on processors that implement floating point and should never by generated
by compilers in situations in which the corresponding load and store indexed floating point instructions are generated.

Also refer to the corresponding section in the PREF instruction description.

31 26 25 21 20 16 15 11 10 6 5 0

COP1X

010011
base index hint

0

00000

PREFX

001111

6 5 5 5 5 6

Prefetch Indexed PREFX

MIPS32™ Architecture For Programmers Volume II, Revision 2.00 227

Copyright © 2001-2003 MIPS Technologies Inc. All rights reserved.

PUL.PS

Format: PUL.PS fd, fs, ft MIPS64
MIPS32 Release 2

Purpose:

To merge a pair of paired single values with realignment

Description: fd ← upper(fs) || lower(ft)

A new paired-single value is formed by catenating the upper single offs (bits 63..32) and the lower single offt (bits
31..0).

The move is non-arithmetic; it causes no IEEE 754 exceptions.

Restrictions:

The fieldsfs, ft,andfd must specify FPRs valid for operands of typePS. If they are not valid, the result isUNPRE-
DICTABLE .

The result of this instruction isUNPREDICTABLE if the processor is executing in 16 FP registers mode.

Operation:

StoreFPR(fd, PS, ValueFPR(fs, PS) 63..32 || ValueFPR(ft, PS) 31..0)

Exceptions:

Coprocessor Unusable, Reserved Instruction

31 26 25 21 20 16 15 11 10 6 5 0

COP1

010001

fmt

10110
ft fs fd

PUL

101110

6 5 5 5 5 6

Pair Upper Lower PUL.PS

228 MIPS32™ Architecture For Programmers Volume II, Revision 2.00

Copyright © 2001-2003 MIPS Technologies Inc. All rights reserved.

PUU.PS

Format: PUU.PS fd, fs, ft MIPS64
MIPS32 Release 2

Purpose:

To merge a pair of paired single values with realignment

Description: fd ← upper(fs) || upper(ft)

A new paired-single value is formed by catenating the upper single offs (bits 63..32) and the upper single offt (bits
63..32).

The move is non-arithmetic; it causes no IEEE 754 exceptions.

Restrictions:

The fieldsfs, ft,andfd must specify FPRs valid for operands of typePS. If they are not valid, the result isUNPRE-
DICTABLE .

The result of this instruction isUNPREDICTABLE if the processor is executing in 16 FP registers mode.

Operation:

StoreFPR(fd, PS, ValueFPR(fs, PS) 63..32 || ValueFPR(ft, PS) 63..32)

Exceptions:

Coprocessor Unusable, Reserved Instruction

31 26 25 21 20 16 15 11 10 6 5 0

COP1

010001

fmt

10110
ft fs fd

PUU

101111

6 5 5 5 5 6

Pair Upper Upper PUU.PS

by privi-
RDHWR

Format: RDHWR rt,rd MIPS32 Release 2

Purpose:

To move the contents of a hardware register to a general purpose register (GPR) if that operation is enabled
leged software.

Description: rt ← HWR[rd]

If access is allowed to the specified hardware register, the contents of the register specified byrd is loaded into gen-
eral registerrt. Access control for each register is selected by the bits in the coprocessor 0HWREna register.

The available hardware registers, and the encoding of therd field for each, are shown in Table 3-31.

31 26 25 21 20 16 15 11 10 6 5 0

SPECIAL3

0111 11

0

00 000
rt rd

0

000 00

RDHWR

11 1011

6 5 5 5 2 3 6

Table 3-31 Hardware Register List

Register Number
(rd Value)

Register
Name Contents

0 CPUNum Number of the CPU on which the program is currently running.
This comes directly from the coprocessor 0 EBaseCPUNum field.

1 SYNCI_Step Address step size to be used with the SYNCI instruction. See that
instruction’s description for the use of this value.

2 CC High-resolution cycle counter. This comes directly from the
coprocessor 0Count register.

3 CCRes

Resolution of the CC register. This value denotes the number of
cycles between update of the register. For example:

All others Access results in a Reserved Instruction Exception

Read Hardware Register RDHWR

CCRes Value Meaning

1 CC register increments every CPU cycle

2 CC register increments every second CPU cycle

3 CC register increments every third CPU cycle

etc.
MIPS32™ Architecture For Programmers Volume II, Revision 2.00 229

Copyright © 2001-2003 MIPS Technologies Inc. All rights reserved.

tion.
Restrictions:

In implementations of Release 1 of the Architecture, this instruction resulted in a Reserved Instruction Excep

Operation:
case rd

16#00: temp ← EBase CPUNum
16#01: temp ← SYNCI_StepSize()
16#02: temp ← Count

16#03: temp ← CountResolution()
otherwise: SignalException(ReservedInstruction)

endcase
GPR[rt] ← temp

Exceptions:

Reserved Instruction

Read Hardware Register, cont. RDHWR
230 MIPS32™ Architecture For Programmers Volume II, Revision 2.00

Copyright © 2001-2003 MIPS Technologies Inc. All rights reserved.

MIPS32™ Architecture For Programmers Volume II, Revision 2.00 231

Copyright © 2001-2003 MIPS Technologies Inc. All rights reserved.

RDPGPR

Format: RDPGPR rd, rt MIPS32 Release 2

Purpose:

To move the contents of a GPR from the previous shadow set to a current GPR.

Description: rd ← SGPR[SRSCtl PSS, rt]

The contents of the shadow GPR register specified by SRSCtlPSS(signifying the previous shadow set number) andrt

(specifying the register number within that set) is moved to the current GPRrd.

Restrictions:

In implementations prior to Release 2 of the Architecture, this instruction resulted in a Reserved Instruction Excep-
tion.

Operation:

GPR[rd] ← SGPR[SRSCtl PSS, rt]

Exceptions:

Coprocessor Unusable

Reserved Instruction

31 26 25 21 20 16 15 11 10 0

COP0
0100 00

RDPGPR
01 010 rt rd 0

000 0000 0000

6 5 5 5 11

Read GPR from Previous Shadow Set RDPGPR

n

d by the
ndated
RECIP.fmt

Format: RECIP.S fd, fs MIPS64
MIPS32 Release 2

RECIP.D fd, fs MIPS64
MIPS32 Release 2

Purpose:

To approximate the reciprocal of an FP value (quickly)

Description: fd ← 1.0 / fs

The reciprocal of the value in FPRfs is approximated and placed into FPRfd. The operand and result are values i
formatfmt.

The numeric accuracy of this operation is implementation dependent; it does not meet the accuracy specifie
IEEE 754 Floating Point standard. The computed result differs from the both the exact result and the IEEE-ma
representation of the exact result by no more than one unit in the least-significant place (ULP).

It is implementation dependent whether the result is affected by the current rounding mode inFCSR.

Restrictions:

The fieldsfs and fd must specify FPRs valid for operands of typefmt; if they are not valid, the result isUNPRE-
DICTABLE .

The operand must be a value in formatfmt; if it is not, the result isUNPREDICTABLE and the value of the operand
FPR becomesUNPREDICTABLE .

The result of RECIP.D isUNPREDICTABLE if the processor is executing in 16 FP registers mode.

Operation:

StoreFPR(fd, fmt, 1.0 / valueFPR(fs, fmt))

31 26 25 21 20 16 15 11 10 6 5 0

COP1

010001
fmt

0

00000
fs fd

RECIP

010101

6 5 5 5 5 6

Reciprocal Approximation RECIP.fmt
232 MIPS32™ Architecture For Programmers Volume II, Revision 2.00

Copyright © 2001-2003 MIPS Technologies Inc. All rights reserved.

Exceptions:

Coprocessor Unusable, Reserved Instruction

Floating Point Exceptions:

Inexact, Division-by-zero, Unimplemented Op, Invalid Op, Overflow, Underflow

Reciprocal Approximation (cont.) RECIP.fmt
MIPS32™ Architecture For Programmers Volume II, Revision 2.00 233

Copyright © 2001-2003 MIPS Technologies Inc. All rights reserved.

234 MIPS32™ Architecture For Programmers Volume II, Revision 2.00

Copyright © 2001-2003 MIPS Technologies Inc. All rights reserved.

ROTR

Format: ROTR rd, rt, sa SmartMIPS Crypto
MIPS32 Release 2

Purpose:

To execute a logical right-rotate of a word by a fixed number of bits

Description: rd ← rt ↔(right) sa

The contents of the low-order 32-bit word of GPRrt are rotated right; the word result is placed in GPRrd. The
bit-rotate amount is specified bysa.

Restrictions:

Operation:

if ((ArchitectureRevision() < 2) and (Config3 SM = 0)) then
UNPREDICTABLE

endif
s ← sa
temp ← GPR[rt] s-1..0 || GPR[rt] 31..s
GPR[rd] ← temp

Exceptions:

Reserved Instruction

31 26 25 22 21 20 16 15 11 10 6 5 0

SPECIAL

000000
0000 R

1 rt rd sa
SRL

000010

6 4 1 5 5 5 6

Rotate Word Right ROTR

MIPS32™ Architecture For Programmers Volume II, Revision 2.00 235

Copyright © 2001-2003 MIPS Technologies Inc. All rights reserved.

ROTRV

Format: ROTRV rd, rt, rs SmartMIPS Crypto
MIPS32 Release 2

Purpose:

To execute a logical right-rotate of a word by a variable number of bits

Description: rd ← rt ↔(right) rs

The contents of the low-order 32-bit word of GPRrt are rotated right; the word result is placed in GPRrd. The
bit-rotate amount is specified by the low-order 5 bits of GPRrs.

Restrictions:

Operation:

if ((ArchitectureRevision() < 2) and (Config3 SM = 0)) then
UNPREDICTABLE

endif
s ← GPR[rs] 4..0
temp ← GPR[rt] s-1..0 || GPR[rt] 31..s
GPR[rd] ← temp

Exceptions:

Reserved Instruction

31 26 25 21 20 16 15 11 10 7 6 5 0

SPECIAL

000000
rs rt rd 0000 R

1

SRLV

000110

6 5 5 5 4 1 6

Rotate Word Right Variable ROTRV

ar-

set in

t

ROUND.L.fmt

Format: ROUND.L.S fd, fs MIPS64
MIPS32 Release 2

ROUND.L.D fd, fs MIPS64
MIPS32 Release 2

Purpose:

To convert an FP value to 64-bit fixed point, rounding to nearest

Description: fd ← convert_and_round(fs)

The value in FPRfs, in format fmt, is converted to a value in 64-bit long fixed point format and rounded to ne
est/even (rounding mode 0). The result is placed in FPRfd.

When the source value is Infinity, NaN, or rounds to an integer outside the range -263 to 263-1, the result cannot be
represented correctly and an IEEE Invalid Operation condition exists. In this case the Invalid Operation flag is
theFCSR. If the Invalid OperationEnablebit is set in theFCSR, no result is written tofd and an Invalid Operation

exception is taken immediately. Otherwise, the default result, 263–1, is written tofd.

Restrictions:

The fieldsfsandfd must specify valid FPRs;fs for typefmtandfd for long fixed point; if they are not valid, the resul
is UNPREDICTABLE .

The operand must be a value in formatfmt; if it is not, the result isUNPREDICTABLE and the value of the operand
FPR becomesUNPREDICTABLE .

The result of this instruction isUNPREDICTABLE if the processor is executing in 16 FP registers mode.

Operation:

StoreFPR(fd, L, ConvertFmt(ValueFPR(fs, fmt), fmt, L))

31 26 25 21 20 16 15 11 10 6 5 0

COP1

010001
fmt

0

00000
fs fd

ROUND.L

001000

6 5 5 5 5 6

Floating Point Round to Long Fixed Point ROUND.L.fmt
236 MIPS32™ Architecture For Programmers Volume II, Revision 2.00

Copyright © 2001-2003 MIPS Technologies Inc. All rights reserved.

Exceptions:

Coprocessor Unusable, Reserved Instruction

Floating Point Exceptions:

Inexact, Unimplemented Operation, Invalid Operation, Overflow

Floating Point Round to Long Fixed Point (cont.) ROUND.L.fmt
MIPS32™ Architecture For Programmers Volume II, Revision 2.00 237

Copyright © 2001-2003 MIPS Technologies Inc. All rights reserved.

ven

set in

t

ROUND.W.fmt

Format: ROUND.W.S fd, fs MIPS32
ROUND.W.D fd, fs MIPS32

Purpose:

To convert an FP value to 32-bit fixed point, rounding to nearest

Description: fd ← convert_and_round(fs)

The value in FPRfs, in format fmt, is converted to a value in 32-bit word fixed point format rounding to nearest/e
(rounding mode 0). The result is placed in FPRfd.

When the source value is Infinity, NaN, or rounds to an integer outside the range -231 to 231-1, the result cannot be
represented correctly and an IEEE Invalid Operation condition exists. In this case the Invalid Operation flag is
theFCSR. If the Invalid OperationEnablebit is set in theFCSR, no result is written tofd and an Invalid Operation

exception is taken immediately. Otherwise, the default result, 231–1, is written tofd.

Restrictions:

The fieldsfsandfd must specify valid FPRs;fs for typefmtandfd for word fixed point; if they are not valid, the resul
is UNPREDICTABLE .

The operand must be a value in formatfmt; if it is not, the result isUNPREDICTABLE and the value of the operand
FPR becomesUNPREDICTABLE .

Operation:

StoreFPR(fd, W, ConvertFmt(ValueFPR(fs, fmt), fmt, W))

31 26 25 21 20 16 15 11 10 6 5 0

COP1

010001
fmt

0

00000
fs fd

ROUND.W

001100

6 5 5 5 5 6

Floating Point Round to Word Fixed Point ROUND.W.fmt
238 MIPS32™ Architecture For Programmers Volume II, Revision 2.00

Copyright © 2001-2003 MIPS Technologies Inc. All rights reserved.

Exceptions:

Coprocessor Unusable, Reserved Instruction

Floating Point Exceptions:

Inexact, Unimplemented Operation, Invalid Operation, Overflow

Floating Point Round to Word Fixed Point (cont). ROUND.W.fmt
MIPS32™ Architecture For Programmers Volume II, Revision 2.00 239

Copyright © 2001-2003 MIPS Technologies Inc. All rights reserved.

d by the
ndated
RSQRT.fmt

Format: RSQRT.S fd, fs MIPS64
MIPS32 Release 2

RSQRT.D fd, fs MIPS64
MIPS32 Release 2

Purpose:

To approximate the reciprocal of the square root of an FP value (quickly)

Description: fd ← 1.0 / sqrt(fs)

The reciprocal of the positive square root of the value in FPRfs is approximated and placed into FPRfd. The operand
and result are values in formatfmt.

The numeric accuracy of this operation is implementation dependent; it does not meet the accuracy specifie
IEEE 754 Floating Point standard. The computed result differs from both the exact result and the IEEE-ma
representation of the exact result by no more than two units in the least-significant place (ULP).

The effect of the currentFCSR rounding mode on the result is implementation dependent.

Restrictions:

The fieldsfs and fd must specify FPRs valid for operands of typefmt; if they are not valid, the result isUNPRE-
DICTABLE .

The operand must be a value in formatfmt; if it is not, the result isUNPREDICTABLE and the value of the operand
FPR becomesUNPREDICTABLE .

The result of RSQRT.D isUNPREDICTABLE if the processor is executing in 16 FP registers mode.

Operation:

StoreFPR(fd, fmt, 1.0 / SquareRoot(valueFPR(fs, fmt)))

31 26 25 21 20 16 15 11 10 6 5 0

COP1

010001
fmt

0

00000
fs fd

RSQRT

010110

6 5 5 5 5 6

Reciprocal Square Root Approximation RSQRT.fmt
240 MIPS32™ Architecture For Programmers Volume II, Revision 2.00

Copyright © 2001-2003 MIPS Technologies Inc. All rights reserved.

Exceptions:

Coprocessor Unusable, Reserved Instruction

Floating Point Exceptions:

Inexact, Division-by-zero, Unimplemented Operation, Invalid Operation, Overflow, Underflow

Reciprocal Square Root Approximation (cont.) RSQRT.fmt
MIPS32™ Architecture For Programmers Volume II, Revision 2.00 241

Copyright © 2001-2003 MIPS Technologies Inc. All rights reserved.

242 MIPS32™ Architecture For Programmers Volume II, Revision 2.00

Copyright © 2001-2003 MIPS Technologies Inc. All rights reserved.

SB

Format: SB rt, offset(base) MIPS32

Purpose:

To store a byte to memory

Description: memory[base+offset] ← rt

The least-significant 8-bit byte of GPRrt is stored in memory at the location specified by the effective address. The
16-bit signedoffsetis added to the contents of GPRbaseto form the effective address.

Restrictions:

None

Operation:
vAddr ← sign_extend(offset) + GPR[base]
(pAddr, CCA) ← AddressTranslation (vAddr, DATA, STORE)
pAddr ← pAddr PSIZE-1..2 || (pAddr 1..0 xor ReverseEndian 2)
bytesel ← vAddr 1..0 xor BigEndianCPU 2

dataword ← GPR[rt] 31–8*bytesel..0 || 0 8*bytesel

StoreMemory (CCA, BYTE, dataword, pAddr, vAddr, DATA)

Exceptions:

TLB Refill, TLB Invalid, TLB Modified, Bus Error, Address Error, Watch

31 26 25 21 20 16 15 0

SB

101000
base rt offset

6 5 5 16

Store Byte SB

syn-

ress.

omplete

able
, but it

il; the

.

s

me
oherence
SC

Format: SC rt, offset(base) MIPS32

Purpose:

To store a word to memory to complete an atomic read-modify-write

Description: if atomic_update then memory[base+offset] ← rt, rt ← 1 else rt ← 0

The LL and SC instructions provide primitives to implement atomic read-modify-write (RMW) operations for
chronizable memory locations.

The 32-bit word in GPRrt is conditionally stored in memory at the location specified by the aligned effective add
The 16-bit signedoffset is added to the contents of GPRbaseto form an effective address.

The SC completes the RMW sequence begun by the preceding LL instruction executed on the processor. To c
the RMW sequence atomically, the following occur:

• The 32-bit word of GPRrt is stored into memory at the location specified by the aligned effective address.

• A 1, indicating success, is written into GPRrt.

Otherwise, memory is not modified and a 0, indicating failure, is written into GPRrt.

If either of the following events occurs between the execution of LL and SC, the SC fails:

• A coherent store is completed by another processor or coherent I/O module into the block of synchroniz
physical memory containing the word. The size and alignment of the block is implementation dependent
is at least one word and at most the minimum page size.

• An ERET instruction is executed.

If either of the following events occurs between the execution of LL and SC, the SC may succeed or it may fa
success or failure is not predictable. Portable programs should not cause one of these events.

• A memory access instruction (load, store, or prefetch) is executed on the processor executing the LL/SC

• The instructions executed starting with the LL and ending with the SC do not lie in a 2048-byte contiguou
region of virtual memory. (The region does not have to be aligned, other than the alignment required for
instruction words.)

The following conditions must be true or the result of the SC isUNPREDICTABLE :

• Execution of SC must have been preceded by execution of an LL instruction.

• An RMW sequence executed without intervening events that would cause the SC to fail must use the sa
address in the LL and SC. The address is the same if the virtual address, physical address, and cache-c
algorithm are identical.

31 26 25 21 20 16 15 0

SC

111000
base rt offset

6 5 5 16

Store Conditional Word SC
MIPS32™ Architecture For Programmers Volume II, Revision 2.00 243

Copyright © 2001-2003 MIPS Technologies Inc. All rights reserved.

that
ation is
d for the

 be

made

de
en

ero, an
Atomic RMW is provided only for synchronizable memory locations. A synchronizable memory location is one
is associated with the state and logic necessary to implement the LL/SC semantics. Whether a memory loc
synchronizable depends on the processor and system configurations, and on the memory access type use
location:

• Uniprocessor atomicity: To provide atomic RMW on a single processor, all accesses to the location must
made with memory access type of eithercached noncoherentor cached coherent. All accesses must be to one or
the other access type, and they may not be mixed.

• MP atomicity: To provide atomic RMW among multiple processors, all accesses to the location must be
with a memory access type ofcached coherent.

• I/O System: To provide atomic RMW with a coherent I/O system, all accesses to the location must be ma
with a memory access type ofcached coherent. If the I/O system does not use coherent memory operations, th
atomic RMW cannot be provided with respect to the I/O reads and writes.

Restrictions:

The addressed location must have a memory access type ofcached noncoherentor cached coherent; if it does not, the
result isUNPREDICTABLE .

The effective address must be naturally-aligned. If either of the 2 least-significant bits of the address is non-z
Address Error exception occurs.

Operation:

vAddr ← sign_extend(offset) + GPR[base]
if vAddr 1..0 ≠ 0 2 then

SignalException(AddressError)
endif
(pAddr, CCA) ← AddressTranslation (vAddr, DATA, STORE)
dataword ← GPR[rt]
if LLbit then

StoreMemory (CCA, WORD, dataword, pAddr, vAddr, DATA)
endif
GPR[rt] ← 0 31 || LLbit

Store Conditional Word (cont.) SC
244 MIPS32™ Architecture For Programmers Volume II, Revision 2.00

Copyright © 2001-2003 MIPS Technologies Inc. All rights reserved.

mples of
re emu-

n

Exceptions:

TLB Refill, TLB Invalid, TLB Modified, Address Error, Watch

Programming Notes:

LL and SC are used to atomically update memory locations, as shown below.

L1:
LL T1, (T0) # load counter
ADDI T2, T1, 1 # increment
SC T2, (T0) # try to store, checking for atomicity
BEQ T2, 0, L1 # if not atomic (0), try again
NOP # branch-delay slot

Exceptions between the LL and SC cause SC to fail, so persistent exceptions must be avoided. Some exa
these are arithmetic operations that trap, system calls, and floating point operations that trap or require softwa
lation assistance.

LL and SC function on a single processor forcached noncoherentmemory so that parallel programs can be run o
uniprocessor systems that do not supportcached coherent memory access types.

Store Conditional Word (cont.) SC
MIPS32™ Architecture For Programmers Volume II, Revision 2.00 245

Copyright © 2001-2003 MIPS Technologies Inc. All rights reserved.

246 MIPS32™ Architecture For Programmers Volume II, Revision 2.00

Copyright © 2001-2003 MIPS Technologies Inc. All rights reserved.

SDBBP

Format: SDBBP code EJTAG

Purpose:

To cause a debug breakpoint exception

Description:

This instruction causes a debug exception, passing control to the debug exception handler. If the processor is execut-
ing in Debug Mode when the SDBBP instruction is executedthe exception is a Debug Mode Exception, which sets
the DebugDExcCodefield to the value 0x9 (Bp). The code field can be used for passing information to the debug
exception handler, and is retrieved by the debug exception handler only by loading the contents of the memory word
containing the instruction, using the DEPC register. The CODE field is not used in any way by the hardware.

Restrictions:

Operation:

If Debug DM = 0 then
SignalDebugBreakpointException()

else
SignalDebugModeBreakpointException()

endif

Exceptions:

Debug Breakpoint Exception
Debug Mode Breakpoint Exception

31 26 25 6 5 0

SPECIAL2

011100
code

SDBBP

111111

6 20 6

Software Debug Breakpoint SDBBP

MIPS32™ Architecture For Programmers Volume II, Revision 2.00 247

Copyright © 2001-2003 MIPS Technologies Inc. All rights reserved.

SDC1

Format: SDC1 ft, offset(base) MIPS32

Purpose:

To store a doubleword from an FPR to memory

Description: memory[base+offset] ← ft

The 64-bit doubleword in FPRft is stored in memory at the location specified by the aligned effective address. The
16-bit signedoffsetis added to the contents of GPRbaseto form the effective address.

Restrictions:

An Address Error exception occurs if EffectiveAddress2..0≠ 0 (not doubleword-aligned).

Operation:

vAddr ← sign_extend(offset) + GPR[base]
if vAddr 2..0 ≠ 0 3 then

SignalException(AddressError)
endif
(pAddr, CCA) ← AddressTranslation(vAddr, DATA, STORE)
lsw ← ValueFPR(ft, UNINTERPRETED_WORD)
msw ← ValueFPR(ft+1, UNINTERPRETED_WORD)
paddr ← paddr xor ((BigEndianCPU xor ReverseEndian) || 0 2)

paddr ← paddr xor 2#100

Exceptions:

Coprocessor Unusable, Reserved Instruction, TLB Refill, TLB Invalid, TLB Modified, Address Error, Watch

31 26 25 21 20 16 15 0

SDC1

111101
base ft offset

6 5 5 16

Store Doubleword from Floating Point SDC1

248 MIPS32™ Architecture For Programmers Volume II, Revision 2.00

Copyright © 2001-2003 MIPS Technologies Inc. All rights reserved.

SDC2

Format: SDC2 rt, offset(base) MIPS32

Purpose:

To store a doubleword from a Coprocessor 2 register to memory

Description: memory[base+offset] ← rt

The 64-bit doubleword in Coprocessor 2 registerrt is stored in memory at the location specified by the aligned effec-
tive address. The 16-bit signedoffsetis added to the contents of GPRbaseto form the effective address.

Restrictions:

An Address Error exception occurs if EffectiveAddress2..0≠ 0 (not doubleword-aligned).

Operation:
vAddr ← sign_extend(offset) + GPR[base]
if vAddr 2..0 ≠ 0 3 then

SignalException(AddressError)
endif
(pAddr, CCA) ← AddressTranslation(vAddr, DATA, STORE)
lsw ← CPR[2,rt,0]
msw ← CPR[2,rt+1,0]
paddr ← paddr xor ((BigEndianCPU xor ReverseEndian) || 0 2)

paddr ← paddr xor 2#100

Exceptions:

Coprocessor Unusable, Reserved Instruction, TLB Refill, TLB Invalid, TLB Modified, Address Error, Watch

31 26 25 21 20 16 15 0

SDC2

111110
base rt offset

6 5 5 16

Store Doubleword from Coprocessor 2 SDC2

MIPS32™ Architecture For Programmers Volume II, Revision 2.00 249

Copyright © 2001-2003 MIPS Technologies Inc. All rights reserved.

SDXC1

Format: SDXC1 fs, index(base) MIPS64
MIPS32 Release 2

Purpose:

To store a doubleword from an FPR to memory (GPR+GPR addressing)

Description: memory[base+index] ← fs

The 64-bit doubleword in FPRfs is stored in memory at the location specified by the aligned effective address. The
contents of GPRindex and GPRbaseare added to form the effective address.

Restrictions:

An Address Error exception occurs if EffectiveAddress2..0≠ 0 (not doubleword-aligned).

Operation:

vAddr ← GPR[base] + GPR[index]
if vAddr 2..0 ≠ 0 3 then

SignalException(AddressError)
endif
(pAddr, CCA) ← AddressTranslation(vAddr, DATA, STORE)
lsw ← ValueFPR(ft, UNINTERPRETED_WORD)
msw ← ValueFPR(ft+1, UNINTERPRETED_WORD)
paddr ← paddr xor ((BigEndianCPU xor ReverseEndian) || 0 2)

paddr ← paddr xor 2#100

Exceptions:

TLB Refill, TLB Invalid, TLB Modified, Coprocessor Unusable, Address Error, Reserved Instruction, Watch.

31 26 25 21 20 16 15 11 10 6 5 0

COP1X

010011
base index fs

0

00000

SDXC1

001001

6 5 5 5 5 6

Store Doubleword Indexed from Floating Point SDXC1

250 MIPS32™ Architecture For Programmers Volume II, Revision 2.00

Copyright © 2001-2003 MIPS Technologies Inc. All rights reserved.

SEB

Format: seb rd, rt MIPS32 Release 2

Purpose:

To sign-extend the least significant byte of GPRrt and store the value into GPRrd.

Description: rd ← SignExtend(rt 7..0)

The least significant byte from GPRrt is sign-extended and stored in GPRrd.

Restrictions:

In implementations prior to Release 2 of the architecture, this instruction resulted in a Reserved Instruction Excep-
tion.

Operation:
GPR[rd] ←sign _extend(GPR[rt] 7..0)

Exceptions:

Reserved Instruction

Programming Notes:

For symmetry with the SEB and SEH instructions, one would expect that there would be ZEB and ZEH instructions
that zero-extend the source operand. Similarly, one would expect that the SEW and ZEW instructions would exist to
sign- or zero-extend a word to a doubleword. These instructions do not exist because there are functionally-equiva-
lent instructions already in the instruction set. The following table shows the instructions providing the equivalent
functions.

31 26 25 21 20 16 15 11 10 6 5 0

SPECIAL3

011111

0

00000
rt rd

SEB

10000

BSHFL

100000

6 5 5 5 5 6

Expected Instruction Function Equivalent Instruction

ZEB rx,ry Zero-Extend Byte ANDI rx,ry,0xFF

ZEH rx,ry Zero-Extend Halfword ANDI rx,ry,0xFFFF

Sign-Extend Byte SEB

Excep-

nstruc-

ctions,
SEH

Format: seh rd, rt MIPS32 Release 2

Purpose:

To sign-extend the least significant halfword of GPRrt and store the value into GPRrd.

Description: rd ← SignExtend(rt 15..0)

The least significant halfword from GPRrt is sign-extended and stored in GPRrd.

Restrictions:

In implementations prior to Release 2 of the architecture, this instruction resulted in a Reserved Instruction
tion.

Operation:
GPR[rd] ←sign _extend(GPR[rt] 15..0)

Exceptions:

Reserved Instruction

Programming Notes:

The SEH instruction can be used to convert two contiguous halfwords to sign-extended word values in three i
tions. For example:

lw t0, 0(a1) /* Read two contiguous halfwords */
seh t1, t0 /* t1 = lower halfword sign-extended to word */
sra t0, t0, 16 /* t0 = upper halfword sign-extended to word */

Zero-extended halfwords can be created by changing the SEH and SRA instructions to ANDI and SRL instru
respectively.

31 26 25 21 20 16 15 11 10 6 5 0

SPECIAL3

011111

0

00000
rt rd

SEH

11000

BSHFL

100000

6 5 5 5 5 6

Sign-Extend Halfword SEH
MIPS32™ Architecture For Programmers Volume II, Revision 2.00 251

Copyright © 2001-2003 MIPS Technologies Inc. All rights reserved.

ctions
xist to

equiva-
valent
For symmetry with the SEB and SEH instructions, one would expect that there would be ZEB and ZEH instru
that zero-extend the source operand. Similarly, one would expect that the SEW and ZEW instructions would e
sign- or zero-extend a word to a doubleword. These instructions do not exist because there are functionally-
lent instructions already in the instruction set. The following table shows the instructions providing the equi
functions.

Expected Instruction Function Equivalent Instruction

ZEB rx,ry Zero-Extend Byte ANDI rx,ry,0xFF

ZEH rx,ry Zero-Extend Halfword ANDI rx,ry,0xFFFF

Sign-Extend Halfword, cont. SEH
252 MIPS32™ Architecture For Programmers Volume II, Revision 2.00

Copyright © 2001-2003 MIPS Technologies Inc. All rights reserved.

MIPS32™ Architecture For Programmers Volume II, Revision 2.00 253

Copyright © 2001-2003 MIPS Technologies Inc. All rights reserved.

SH

Format: SH rt, offset(base) MIPS32

Purpose:

To store a halfword to memory

Description: memory[base+offset] ← rt

The least-significant 16-bit halfword of registerrt is stored in memory at the location specified by the aligned effec-
tive address. The 16-bit signedoffsetis added to the contents of GPRbaseto form the effective address.

Restrictions:

The effective address must be naturally-aligned. If the least-significant bit of the address is non-zero, an Address
Error exception occurs.

Operation:

vAddr ← sign_extend(offset) + GPR[base]
if vAddr 0 ≠ 0 then

SignalException(AddressError)
endif
(pAddr, CCA) ← AddressTranslation (vAddr, DATA, STORE)
pAddr ← pAddr PSIZE-1..2 || (pAddr1 1..0 xor (ReverseEndian || 0))
bytesel ← vAddr1 1..0 xor (BigEndianCPU || 0)
dataword ← GPR[rt] 31–8*bytesel..0 || 0 8*bytesel

StoreMemory (CCA, HALFWORD, dataword, pAddr, vAddr, DATA)

Exceptions:

TLB Refill, TLB Invalid, TLB Modified, Address Error, Watch

31 26 25 21 20 16 15 0

SH

101001
base rt offset

6 5 5 16

Store Halfword SH

254 MIPS32™ Architecture For Programmers Volume II, Revision 2.00

Copyright © 2001-2003 MIPS Technologies Inc. All rights reserved.

SLL

Format: SLL rd, rt, sa MIPS32

Purpose:

To left-shift a word by a fixed number of bits

Description: rd ← rt << sa

The contents of the low-order 32-bit word of GPRrt are shifted left, inserting zeros into the emptied bits; the word
result is placed in GPRrd. The bit-shift amount is specified bysa.

Restrictions:

None

Operation:
s ← sa
temp ← GPR[rt] (31-s)..0 || 0 s

GPR[rd] ← temp

Exceptions:

None

Programming Notes:

SLL r0, r0, 0, expressed as NOP, is the assembly idiom used to denote no operation.

SLL r0, r0, 1, expressed as SSNOP, is the assembly idiom used to denote no operation that causes an issue break on
superscalar processors.

31 26 25 21 20 16 15 11 10 6 5 0

SPECIAL

000000

0

00000
rt rd sa

SLL

000000

6 5 5 5 5 6

Shift Word Left Logical SLL

MIPS32™ Architecture For Programmers Volume II, Revision 2.00 255

Copyright © 2001-2003 MIPS Technologies Inc. All rights reserved.

SLLV

Format: SLLV rd, rt, rs MIPS32

Purpose: To left-shift a word by a variable number of bits

Description: rd ← rt << rs

The contents of the low-order 32-bit word of GPRrt are shifted left, inserting zeros into the emptied bits; the result
word is placed in GPRrd. The bit-shift amount is specified by the low-order 5 bits of GPRrs.

Restrictions: None

Operation:
s ← GPR[rs] 4..0
temp ← GPR[rt] (31-s)..0 || 0 s

GPR[rd] ← temp

Exceptions: None

Programming Notes:

None

31 26 25 21 20 16 15 11 10 6 5 0

SPECIAL

000000
rs rt rd

0

00000

SLLV

000100

6 5 5 5 5 6

Shift Word Left Logical Variable SLLV

256 MIPS32™ Architecture For Programmers Volume II, Revision 2.00

Copyright © 2001-2003 MIPS Technologies Inc. All rights reserved.

SLT

Format: SLT rd, rs, rt MIPS32

Purpose:

To record the result of a less-than comparison

Description: rd ← (rs < rt)

Compare the contents of GPRrs and GPRrt as signed integers and record the Boolean result of the comparison in
GPRrd. If GPRrs is less than GPRrt, the result is 1 (true); otherwise, it is 0 (false).

The arithmetic comparison does not cause an Integer Overflow exception.

Restrictions:

None

Operation:

if GPR[rs] < GPR[rt] then
GPR[rd] ← 0 GPRLEN-1 || 1

else
GPR[rd] ← 0 GPRLEN

endif

Exceptions:

None

31 26 25 21 20 16 15 11 10 6 5 0

SPECIAL

000000
rs rt rd

0

00000

SLT

101010

6 5 5 5 5 6

Set on Less Than SLT

MIPS32™ Architecture For Programmers Volume II, Revision 2.00 257

Copyright © 2001-2003 MIPS Technologies Inc. All rights reserved.

SLTI

Format: SLTI rt, rs, immediate MIPS32

Purpose:

To record the result of a less-than comparison with a constant

Description: rt ← (rs < immediate)

Compare the contents of GPRrs and the 16-bit signedimmediateas signed integers and record the Boolean result of
the comparison in GPRrt. If GPRrs is less thanimmediate,the result is 1 (true); otherwise, it is 0 (false).

The arithmetic comparison does not cause an Integer Overflow exception.

Restrictions:

None

Operation:

if GPR[rs] < sign_extend(immediate) then
GPR[rt] ← 0 GPRLEN-1|| 1

else
GPR[rt] ← 0 GPRLEN

endif

Exceptions:

None

31 26 25 21 20 16 15 0

SLTI

001010
rs rt immediate

6 5 5 16

Set on Less Than Immediate SLTI

258 MIPS32™ Architecture For Programmers Volume II, Revision 2.00

Copyright © 2001-2003 MIPS Technologies Inc. All rights reserved.

SLTIU

Format: SLTIU rt, rs, immediate MIPS32

Purpose:

To record the result of an unsigned less-than comparison with a constant

Description: rt ← (rs < immediate)

Compare the contents of GPRrs and the sign-extended 16-bitimmediateas unsigned integers and record the Boolean
result of the comparison in GPRrt. If GPRrs is less thanimmediate, the result is 1 (true); otherwise, it is 0 (false).

Because the 16-bitimmediateis sign-extended before comparison, the instruction can represent the smallest or largest
unsigned numbers. The representable values are at the minimum [0, 32767] or maximum [max_unsigned-32767,
max_unsigned] end of the unsigned range.

The arithmetic comparison does not cause an Integer Overflow exception.

Restrictions:

None

Operation:

if (0 || GPR[rs]) < (0 || sign_extend(immediate)) then
GPR[rt] ← 0 GPRLEN-1 || 1

else
GPR[rt] ← 0 GPRLEN

endif

Exceptions:

None

31 26 25 21 20 16 15 0

SLTIU

001011
rs rt immediate

6 5 5 16

Set on Less Than Immediate Unsigned SLTIU

MIPS32™ Architecture For Programmers Volume II, Revision 2.00 259

Copyright © 2001-2003 MIPS Technologies Inc. All rights reserved.

SLTU

Format: SLTU rd, rs, rt MIPS32

Purpose:

To record the result of an unsigned less-than comparison

Description: rd ← (rs < rt)

Compare the contents of GPRrs and GPRrt as unsigned integers and record the Boolean result of the comparison in
GPRrd. If GPRrs is less than GPRrt, the result is 1 (true); otherwise, it is 0 (false).

The arithmetic comparison does not cause an Integer Overflow exception.

Restrictions:

None

Operation:

if (0 || GPR[rs]) < (0 || GPR[rt]) then
GPR[rd] ← 0 GPRLEN-1 || 1

else
GPR[rd] ← 0 GPRLEN

endif

Exceptions:

None

31 26 25 21 20 16 15 11 10 6 5 0

SPECIAL

000000
rs rt rd

0

00000

SLTU

101011

6 5 5 5 5 6

Set on Less Than Unsigned SLTU

260 MIPS32™ Architecture For Programmers Volume II, Revision 2.00

Copyright © 2001-2003 MIPS Technologies Inc. All rights reserved.

SQRT.fmt

Format: SQRT.S fd, fs MIPS32
SQRT.D fd, fs MIPS32

Purpose:

To compute the square root of an FP value

Description: fd ← SQRT(fs)

The square root of the value in FPRfs is calculated to infinite precision, rounded according to the current rounding
mode inFCSR, and placed into FPRfd. The operand and result are values in formatfmt.

If the value in FPRfs corresponds to – 0, the result is – 0.

Restrictions:

If the value in FPRfs is less than 0, an Invalid Operation condition is raised.

The fieldsfs and fd must specify FPRs valid for operands of typefmt; if they are not valid, the result isUNPRE-
DICTABLE .

The operand must be a value in formatfmt; if it is not, the result isUNPREDICTABLE and the value of the operand
FPR becomesUNPREDICTABLE .

Operation:

StoreFPR(fd, fmt, SquareRoot(ValueFPR(fs, fmt)))

Exceptions:

Coprocessor Unusable, Reserved Instruction

Floating Point Exceptions:

Invalid Operation, Inexact, Unimplemented Operation

31 26 25 21 20 16 15 11 10 6 5 0

COP1

010001
fmt

0

00000
fs fd

SQRT

000100

6 5 5 5 5 6

Floating Point Square Root SQRT.fmt

MIPS32™ Architecture For Programmers Volume II, Revision 2.00 261

Copyright © 2001-2003 MIPS Technologies Inc. All rights reserved.

SRA

Format: SRA rd, rt, sa MIPS32

Purpose:

To execute an arithmetic right-shift of a word by a fixed number of bits

Description: rd ← rt >> sa (arithmetic)

The contents of the low-order 32-bit word of GPRrt are shifted right, duplicating the sign-bit (bit 31) in the emptied
bits; the word result is placed in GPRrd. The bit-shift amount is specified bysa.

Restrictions:

None

Operation:

s ← sa
temp ← (GPR[rt] 31) s || GPR[rt] 31..s
GPR[rd] ← temp

Exceptions: None

31 26 25 21 20 16 15 11 10 6 5 0

SPECIAL

000000

0

00000
rt rd sa

SRA

000011

6 5 5 5 5 6

Shift Word Right Arithmetic SRA

262 MIPS32™ Architecture For Programmers Volume II, Revision 2.00

Copyright © 2001-2003 MIPS Technologies Inc. All rights reserved.

SRAV

Format: SRAV rd, rt, rs MIPS32

Purpose:

To execute an arithmetic right-shift of a word by a variable number of bits

Description: rd ← rt >> rs (arithmetic)

The contents of the low-order 32-bit word of GPRrt are shifted right, duplicating the sign-bit (bit 31) in the emptied
bits; the word result is placed in GPRrd. The bit-shift amount is specified by the low-order 5 bits of GPRrs.

Restrictions:

None

Operation:

s ← GPR[rs] 4..0
temp ← (GPR[rt] 31) s || GPR[rt] 31..s
GPR[rd] ← temp

Exceptions:

None

31 26 25 21 20 16 15 11 10 6 5 0

SPECIAL

000000
rs rt rd

0

00000

SRAV

000111

6 5 5 5 5 6

Shift Word Right Arithmetic Variable SRAV

MIPS32™ Architecture For Programmers Volume II, Revision 2.00 263

Copyright © 2001-2003 MIPS Technologies Inc. All rights reserved.

SRL

Format: SRL rd, rt, sa MIPS32

Purpose:

To execute a logical right-shift of a word by a fixed number of bits

Description: rd ← rt >> sa (logical)

The contents of the low-order 32-bit word of GPRrt are shifted right, inserting zeros into the emptied bits; the word
result is placed in GPRrd. The bit-shift amount is specified bysa.

Restrictions:

None

Operation:

s ← sa
temp ← 0 s || GPR[rt] 31..s
GPR[rd] ← temp

Exceptions:

None

31 26 25 22 21 20 16 15 11 10 6 5 0

SPECIAL

000000
0000 R

0 rt rd sa
SRL

000010

6 4 1 5 5 5 6

Shift Word Right Logical SRL

264 MIPS32™ Architecture For Programmers Volume II, Revision 2.00

Copyright © 2001-2003 MIPS Technologies Inc. All rights reserved.

SRLV

Format: SRLV rd, rt, rs MIPS32

Purpose:

To execute a logical right-shift of a word by a variable number of bits

Description: rd ← rt >> rs (logical)

The contents of the low-order 32-bit word of GPRrt are shifted right, inserting zeros into the emptied bits; the word
result is placed in GPRrd. The bit-shift amount is specified by the low-order 5 bits of GPRrs.

Restrictions:

None

Operation:

s ← GPR[rs] 4..0
temp ← 0 s || GPR[rt] 31..s
GPR[rd] ← temp

Exceptions:

None

31 26 25 21 20 16 15 11 10 7 6 5 0

SPECIAL

000000
rs rt rd 0000 R

0

SRLV

000110

6 5 5 5 4 1 6

Shift Word Right Logical Variable SRLV

MIPS32™ Architecture For Programmers Volume II, Revision 2.00 265

Copyright © 2001-2003 MIPS Technologies Inc. All rights reserved.

SSNOP

Format: SSNOP MIPS32

Purpose:

Break superscalar issue on a superscalar processor.

Description:

SSNOP is the assembly idiom used to denote superscalar no operation. The actual instruction is interpreted by the
hardware as SLL r0, r0, 1.

This instruction alters the instruction issue behavior on a superscalar processor by forcing the SSNOP instruction to
single-issue. The processor must then end the current instruction issue between the instruction previous to the SSNOP
and the SSNOP. The SSNOP then issues alone in the next issue slot.

On a single-issue processor, this instruction is a NOP that takes an issue slot.

Restrictions:

None

Operation:

None

Exceptions:

None

Programming Notes:

SSNOP is intended for use primarily to allow the programmer control over CP0 hazards by converting instructions
into cycles in a superscalar processor. For example, to insert at least two cycles between an MTC0 and an ERET, one
would use the following sequence:

mtc0 x,y
ssnop
ssnop
eret

Based on the normal issues rules of the processor, the MTC0 issues in cycle T. Because the SSNOP instructions must
issue alone, they may issue no earlier than cycle T+1 and cycle T+2, respectively. Finally, the ERET issues no earlier
than cycle T+3. Note that although the instruction after an SSNOP may issue no earlier than the cycle after the
SSNOP is issued, that instruction may issue later. This is because other implementation-dependent issue rules may
apply that prevent an issue in the next cycle. Processors should not introduce any unnecessary delay in issuing
SSNOP instructions.

31 26 25 21 20 16 15 11 10 6 5 0

SPECIAL

000000

0

00000

0

00000

0

00000

1

00001

SLL

000000

6 5 5 5 5 6

Superscalar No Operation SSNOP

266 MIPS32™ Architecture For Programmers Volume II, Revision 2.00

Copyright © 2001-2003 MIPS Technologies Inc. All rights reserved.

SUB

Format: SUB rd, rs, rt MIPS32

Purpose:

To subtract 32-bit integers. If overflow occurs, then trap

Description: rd ← rs - rt

The 32-bit word value in GPRrt is subtracted from the 32-bit value in GPRrs to produce a 32-bit result. If the sub-
traction results in 32-bit 2’s complement arithmetic overflow, then the destination register is not modified and an Inte-
ger Overflow exception occurs. If it does not overflow, the 32-bit result is placed into GPRrd.

Restrictions:

None

Operation:

temp ← (GPR[rs] 31||GPR[rs] 31..0) − (GPR[rt] 31||GPR[rt] 31..0)
if temp 32 ≠ temp 31 then

SignalException(IntegerOverflow)
else

GPR[rd] ← temp 31..0
endif

Exceptions:

Integer Overflow

Programming Notes:

SUBU performs the same arithmetic operation but does not trap on overflow.

31 26 25 21 20 16 15 11 10 6 5 0

SPECIAL

000000
rs rt rd

0

00000

SUB

100010

6 5 5 5 5 6

Subtract Word SUB

MIPS32™ Architecture For Programmers Volume II, Revision 2.00 267

Copyright © 2001-2003 MIPS Technologies Inc. All rights reserved.

SUB.fmt

[c

Format: SUB.S fd, fs, ft MIPS32
SUB.D fd, fs, ft MIPS32
SUB.PS fd, fs, ft MIPS64

MIPS32 Release 2

Purpose:

To subtract FP values

Description: fd ← fs - ft

The value in FPRft is subtracted from the value in FPRfs. The result is calculated to infinite precision, rounded
according to the current rounding mode inFCSR, and placed into FPRfd. The operands and result are values in for-
mat fmt. SUB.PS subtracts the upper and lower halves of FPRfs and FPRft independently, and ORs together any
generated exceptional conditions.

Restrictions:

The fieldsfs, ft, andfd must specify FPRs valid for operands of typefmt. If they are not valid, the result isUNPRE-
DICTABLE .

The operands must be values in formatfmt; if they are not, the result isUNPREDICTABLE and the value of the
operand FPRs becomesUNPREDICTABLE .

The result of SUB.PS isUNPREDICTABLE if the processor is executing in 16 FP registers mode.

Operation:

StoreFPR (fd, fmt, ValueFPR(fs, fmt) – fmt ValueFPR(ft, fmt))

CPU Exceptions:

Coprocessor Unusable, Reserved Instruction

FPU Exceptions:

Inexact, Overflow, Underflow, Invalid Op, Unimplemented Op

31 26 25 21 20 16 15 11 10 6 5 0

COP1

010001
fmt ft fs fd

SUB

000001

6 5 5 5 5 6

Floating Point Subtract SUB.fmt

268 MIPS32™ Architecture For Programmers Volume II, Revision 2.00

Copyright © 2001-2003 MIPS Technologies Inc. All rights reserved.

SUBU

Format: SUBU rd, rs, rt MIPS32

Purpose:

To subtract 32-bit integers

Description: rd ← rs - rt

The 32-bit word value in GPRrt is subtracted from the 32-bit value in GPRrs and the 32-bit arithmetic result is and
placed into GPRrd.

No integer overflow exception occurs under any circumstances.

Restrictions:

None

Operation:

temp ← GPR[rs] - GPR[rt]
GPR[rd] ← temp

Exceptions:

None

Programming Notes:

The term “unsigned” in the instruction name is a misnomer; this operation is 32-bit modulo arithmetic that does not
trap on overflow. It is appropriate for unsigned arithmetic, such as address arithmetic, or integer arithmetic environ-
ments that ignore overflow, such as C language arithmetic.

31 26 25 21 20 16 15 11 10 6 5 0

SPECIAL

000000
rs rt rd

0

00000

SUBU

100011

6 5 5 5 5 6

Subtract Unsigned Word SUBU

MIPS32™ Architecture For Programmers Volume II, Revision 2.00 269

Copyright © 2001-2003 MIPS Technologies Inc. All rights reserved.

SUXC1

Format: SUXC1 fs, index(base) MIPS64
MIPS32 Release 2

Purpose:

To store a doubleword from an FPR to memory (GPR+GPR addressing) ignoring alignment

Description: memory[(base+index) PSIZE-1..3] ← fs

The contents of the 64-bit doubleword in FPRfs is stored at the memory location specified by the effective address.
The contents of GPRindexand GPRbaseare added to form the effective address. The effective address is double-
word-aligned; EffectiveAddress2..0 are ignored.

Restrictions:

The result of this instruction isUNPREDICTABLE if the processor is executing in 16 FP registers mode.

Operation:

vAddr ← (GPR[base]+GPR[index]) 63..3 || 0 3

(pAddr, CCA) ← AddressTranslation(vAddr, DATA, STORE)
lsw ← ValueFPR(ft, UNINTERPRETED_WORD)
msw ← ValueFPR(ft+1, UNINTERPRETED_WORD)
paddr ← paddr xor ((BigEndianCPU xor ReverseEndian) || 0 2)

paddr ← paddr xor 2#100

Exceptions:

Coprocessor Unusable, Reserved Instruction, TLB Refill, TLB Invalid, TLB Modified, Watch

31 26 25 21 20 16 15 11 10 6 5 0

COP1X

010011
base index fs

0

00000

SUXC1

001101

6 5 5 5 5 6

Store Doubleword Indexed Unaligned from Floating Point SUXC1

270 MIPS32™ Architecture For Programmers Volume II, Revision 2.00

Copyright © 2001-2003 MIPS Technologies Inc. All rights reserved.

SW

Format: SW rt, offset(base) MIPS32

Purpose:

To store a word to memory

Description: memory[base+offset] ← rt

The least-significant 32-bit word of registerrt is stored in memory at the location specified by the aligned effective
address. The 16-bit signedoffsetis added to the contents of GPRbaseto form the effective address.

Restrictions:

The effective address must be naturally-aligned. If either of the 2 least-significant bits of the address is non-zero, an
Address Error exception occurs.

Operation:

vAddr ← sign_extend(offset) + GPR[base]
if vAddr 1..0 ≠ 0 2 then

SignalException(AddressError)
endif
(pAddr, CCA) ← AddressTranslation (vAddr, DATA, STORE)
dataword ← GPR[rt]
StoreMemory (CCA, WORD, dataword, pAddr, vAddr, DATA)

Exceptions:

TLB Refill, TLB Invalid, TLB Modified, Address Error, Watch

31 26 25 21 20 16 15 0

SW

101011
base rt offset

6 5 5 16

Store Word SW

MIPS32™ Architecture For Programmers Volume II, Revision 2.00 271

Copyright © 2001-2003 MIPS Technologies Inc. All rights reserved.

SWC1

Format: SWC1 ft, offset(base) MIPS32

Purpose:

To store a word from an FPR to memory

Description: memory[base+offset] ← ft

The low 32-bit word from FPRft is stored in memory at the location specified by the aligned effective address. The
16-bit signedoffsetis added to the contents of GPRbaseto form the effective address.

Restrictions:

An Address Error exception occurs if EffectiveAddress1..0≠ 0 (not word-aligned).

Operation:

vAddr ← sign_extend(offset) + GPR[base]
if vAddr 1..0 ≠ 0 3 then

SignalException(AddressError)
endif
(pAddr, CCA) ← AddressTranslation(vAddr, DATA, STORE)
dataword ← ValueFPR(ft, UNINTERPRETED_WORD)
StoreMemory(CCA, WORD, dataword, pAddr, vAddr, DATA)

Exceptions:

Coprocessor Unusable, Reserved Instruction, TLB Refill, TLB Invalid, TLB Modified, Address Error, Watch

31 26 25 21 20 16 15 0

SWC1

111001
base ft offset

6 5 5 16

Store Word from Floating Point SWC1

272 MIPS32™ Architecture For Programmers Volume II, Revision 2.00

Copyright © 2001-2003 MIPS Technologies Inc. All rights reserved.

SWC2

Format: SWC2 rt, offset(base) MIPS32

Purpose:

To store a word from a COP2 register to memory

Description: memory[base+offset] ← rt

The low 32-bit word from COP2 (Coprocessor 2) registerrt is stored in memory at the location specified by the
aligned effective address. The 16-bit signedoffsetis added to the contents of GPRbaseto form the effective address.

Restrictions:

An Address Error exception occurs if EffectiveAddress1..0≠ 0 (not word-aligned).

Operation:

vAddr ← sign_extend(offset) + GPR[base]
if vAddr 2..0 ≠ 0 3 then

SignalException(AddressError)
endif
(pAddr, CCA) ← AddressTranslation(vAddr, DATA, STORE)
dataword ← CPR[2,rt,0]
StoreMemory(CCA, WORD, dataword, pAddr, vAddr, DATA)

Exceptions:

Coprocessor Unusable, Reserved Instruction, TLB Refill, TLB Invalid, TLB Modified, Address Error, Watch

31 26 25 21 20 16 15 0

SWC2

111010
base rt offset

6 5 5 16

Store Word from Coprocessor 2 SWC2

he 4

from
aligned

ithin an
or
ering.
SWL

Format: SWL rt, offset(base) MIPS32

Purpose:

To store the most-significant part of a word to an unaligned memory address

Description: memory[base+offset] ← rt

The 16-bit signedoffsetis added to the contents of GPRbaseto form an effective address(EffAddr). EffAddr is the
address of the most-significant of 4 consecutive bytes forming a word(W) in memory starting at an arbitrary byte
boundary.

A part of W, the most-significant 1 to 4 bytes, is in the aligned word containingEffAddr. The same number of the
most-significant (left) bytes from the word in GPRrt are stored into these bytes ofW.

The following figure illustrates this operation using big-endian byte ordering for 32-bit and 64-bit registers. T
consecutive bytes in 2..5 form an unaligned word starting at location 2. A part ofW, 2 bytes, is located in the aligned
word containing the most-significant byte at 2. First, SWL stores the most-significant 2 bytes of the low word
the source register into these 2 bytes in memory. Next, the complementary SWR stores the remainder of the un
word.

Figure 3-9 Unaligned Word Store Using SWL and SWR

The bytes stored from the source register to memory depend on both the offset of the effective address w
aligned word—that is, the low 2 bits of the address (vAddr1..0)—and the current byte-ordering mode of the process
(big- or little-endian). The following figure shows the bytes stored for every combination of offset and byte ord

31 26 25 21 20 16 15 0

SWL

101010
base rt offset

6 5 5 16

Word at byte 2 in memory, big-endian byte order; each memory byte contains its own address

most — significance — least

0 1 2 3 4 5 6 7 8 ... Memory: Initial contents

GPR 24 E F G H

0 1 E F 4 5 6 ... After executingSWL $24,2($0)

0 1 E F G H 6 ... Then afterSWR $24,5($0)

Store Word Left SWL
MIPS32™ Architecture For Programmers Volume II, Revision 2.00 273

Copyright © 2001-2003 MIPS Technologies Inc. All rights reserved.

Figure 3-10 Bytes Stored by an SWL Instruction

Restrictions:

None

Operation:

vAddr ← sign_extend(offset) + GPR[base]
(pAddr, CCA) ← AddressTranslation (vAddr, DATA, STORE)
pAddr ← pAddr PSIZE-1..2 || (pAddr 1..0 xor ReverseEndian 2)
If BigEndianMem = 0 then

pAddr ← pAddr PSIZE-1..2 || 0 2

endif
byte ← vAddr 1..0 xor BigEndianCPU 2

dataword ← 0 24–8*byte || GPR[rt] 31..24–8*byte
StoreMemory(CCA, byte, dataword, pAddr, vAddr, DATA)

Exceptions:

TLB Refill, TLB Invalid, TLB Modified, Bus Error, Address Error , Watch

Memory contents and byte offsets Initial contents of Dest Register

0 1 2 3 ←big-endian 64-bit register

i j k l offset (vAddr1..0) A B C D E F G H

3 2 1 0 ←little-endian most — significance — least

most least 32-bit register E F G H

— significance —

Memory contents after instruction (shaded is unchanged)

Big-endian
byte ordering vAddr1..0

Little-endian
byte ordering

E F G H 0 i j k E

i E F G 1 i j E F

i j E F 2 i E F G

i j k E 3 E F G H

Store Word Left (cont.) SWL
274 MIPS32™ Architecture For Programmers Volume II, Revision 2.00

Copyright © 2001-2003 MIPS Technologies Inc. All rights reserved.

he 4

word
r of the
SWR

Format: SWR rt, offset(base) MIPS32

Purpose:

To store the least-significant part of a word to an unaligned memory address

Description: memory[base+offset] ← rt

The 16-bit signedoffsetis added to the contents of GPRbaseto form an effective address(EffAddr). EffAddr is the
address of the least-significant of 4 consecutive bytes forming a word(W) in memory starting at an arbitrary byte
boundary.

A part of W, the least-significant 1 to 4 bytes, is in the aligned word containingEffAddr. The same number of the
least-significant (right) bytes from the word in GPRrt are stored into these bytes ofW.

The following figure illustrates this operation using big-endian byte ordering for 32-bit and 64-bit registers. T
consecutive bytes in 2..5 form an unaligned word starting at location 2. A part ofW, 2 bytes, is contained in the
aligned word containing the least-significant byte at 5. First, SWR stores the least-significant 2 bytes of the low
from the source register into these 2 bytes in memory. Next, the complementary SWL stores the remainde
unaligned word.

Figure 3-11 Unaligned Word Store Using SWR and SWL

31 26 25 21 20 16 15 0

SWR

101110
base rt offset

6 5 5 16

Word at byte 2 in memory, big-endian byte order, each mem byte contains its address

least — significance — least

0 1 2 3 4 5 6 7 8 ... Memory: Initial contents

GPR 24 E F G H

0 1 2 3 G H 6 ... After executingSWR $24,5($0)

0 1 E F G H 6 ... Then afterSWL $24,2($0)

Store Word Right SWR
MIPS32™ Architecture For Programmers Volume II, Revision 2.00 275

Copyright © 2001-2003 MIPS Technologies Inc. All rights reserved.

ithin an
or
ering.
The bytes stored from the source register to memory depend on both the offset of the effective address w
aligned word—that is, the low 2 bits of the address (vAddr1..0)—and the current byte-ordering mode of the process
(big- or little-endian). The following figure shows the bytes stored for every combination of offset and byte-ord

Figure 3-12 Bytes Stored by SWR Instruction

Restrictions:

None

Operation:
vAddr ← sign_extend(offset) + GPR[base]
(pAddr, CCA) ← AddressTranslation (vAddr, DATA, STORE)
pAddr ← pAddr PSIZE-1..2 || (pAddr 1..0 xor ReverseEndian 2)
If BigEndianMem = 0 then

pAddr ← pAddr PSIZE-1..2 || 0 2

endif
byte ← vAddr 1..0 xor BigEndianCPU 2

dataword ← GPR[rt] 31–8*byte || 0 8*byte

StoreMemory(CCA, WORD-byte, dataword, pAddr, vAddr, DATA)

Exceptions:

TLB Refill, TLB Invalid, TLB Modified, Bus Error, Address Error, Watch

Memory contents and byte offsets Initial contents of Dest Register

0 1 2 3 ← big-endian 64-bit register

i j k l offset (vAddr1..0) A B C D E F G H

3 2 1 0 ← little-endian most — significance — least

most least 32-bit register E F G H

— significance —

Memory contents after instruction (shaded is unchanged)

Big-endian
byte ordering vAddr1..0

Little-endian byte
ordering

H j k l 0 E F G H

G H k l 1 F G H l

F G H l 2 G H k l

E F G H 3 H j k l

Store Word Right (cont.) SWR
276 MIPS32™ Architecture For Programmers Volume II, Revision 2.00

Copyright © 2001-2003 MIPS Technologies Inc. All rights reserved.

MIPS32™ Architecture For Programmers Volume II, Revision 2.00 277

Copyright © 2001-2003 MIPS Technologies Inc. All rights reserved.

SWXC1

Format: SWXC1 fs, index(base) MIPS64
MIPS32 Release 2

Purpose:

To store a word from an FPR to memory (GPR+GPR addressing)

Description: memory[base+index] ← fs

The low 32-bit word from FPRfs is stored in memory at the location specified by the aligned effective address. The
contents of GPRindex and GPRbaseare added to form the effective address.

Restrictions:

An Address Error exception occurs if EffectiveAddress1..0≠ 0 (not word-aligned).

Operation:

vAddr ← GPR[base] + GPR[index]
if vAddr 1..0 ≠ 0 3 then

SignalException(AddressError)
endif
(pAddr, CCA) ← AddressTranslation(vAddr, DATA, STORE)
dataword ← ValueFPR(ft, UNINTERPRETED_WORD)
StoreMemory(CCA, WORD, dataword, pAddr, vAddr, DATA)

Exceptions:

TLB Refill, TLB Invalid, TLB Modified, Address Error, Reserved Instruction, Coprocessor Unusable, Watch

31 26 25 21 20 16 15 11 10 6 5 0

COP1X

010011
base index fs

0

00000

SWXC1

001000

6 5 5 5 5 6

Store Word Indexed from Floating Point SWXC1

NC

isible to

ible
 exit

eam
ter the

ed
s such,
SYNC

Format: SYNC (stype = 0 implied) MIPS32

Purpose:

To order loads and stores.

Description:

Simple Description:

• SYNC affects onlyuncachedandcached coherentloads and stores. The loads and stores that occur before the SY
must be completed before the loads and stores after the SYNC are allowed to start.

• Loads are completed when the destination register is written. Stores are completed when the stored value is v
every other processor in the system.

• SYNC is required, potentially in conjunction with SSNOP, to guarantee that memory reference results are vis
across operating mode changes. For example, a SYNC is required on some implementations on entry to and
from Debug Mode to guarantee that memory affects are handled correctly.

Detailed Description:

• When thestype field has a value of zero, every synchronizable load and store that occurs in the instruction str
before the SYNC instruction must be globally performed before any synchronizable load or store that occurs af
SYNC can be performed, with respect to any other processor or coherent I/O module.

• SYNC does not guarantee the order in which instruction fetches are performed. Thestype values 1-31 are reserved
for future extensions to the architecture. A value of zero will always be defined such that it performs all defin
synchronization operations. Non-zero values may be defined to remove some synchronization operations. A
software should never use a non-zero value of thestype field, as this may inadvertently cause future failures if
non-zero values remove synchronization operations.

31 26 25 21 20 16 15 11 10 6 5 0

SPECIAL

000000

0

00 0000 0000 0000 0
stype

SYNC

001111

6 15 5 6

Synchronize Shared Memory SYNC
278 MIPS32™ Architecture For Programmers Volume II, Revision 2.00

Copyright © 2001-2003 MIPS Technologies Inc. All rights reserved.

n

sult
uent

emory

e value

rs

ect
ds and
Terms:

Synchronizable: A load or store instruction issynchronizableif the load or store occurs to a physical location i
shared memory using a virtual location with a memory access type of eitheruncachedor cached coherent. Shared
memory is memory that can be accessed by more than one processor or by a coherent I/O system module.

Performed load:A load instruction isperformedwhen the value returned by the load has been determined. The re
of a load on processor A has beendeterminedwith respect to processor or coherent I/O module B when a subseq
store to the location by B cannot affect the value returned by the load. The store by B must use the same m
access type as the load.

Performed store:A store instruction isperformedwhen the store is observable. A store on processor A isobservable
with respect to processor or coherent I/O module B when a subsequent load of the location by B returns th
written by the store. The load by B must use the same memory access type as the store.

Globally performed load:A load instruction isglobally performedwhen it is performed with respect to all processo
and coherent I/O modules capable of storing to the location.

Globally performed store:A store instruction isglobally performedwhen it is globally observable. It isglobally
observable when it is observable by all processors and I/O modules capable of loading from the location.

Coherent I/O module:A coherent I/O moduleis an Input/Output system component that performs coherent Dir
Memory Access (DMA). It reads and writes memory independently as though it were a processor doing loa
stores to locations with a memory access type ofcached coherent.

Synchronize Shared Memory (cont.) SYNC
MIPS32™ Architecture For Programmers Volume II, Revision 2.00 279

Copyright © 2001-2003 MIPS Technologies Inc. All rights reserved.

e mem-

mul-
ors—the
ms.

, SYNC

ocessor
explicit

uction
e proces-
ffect of

xecuting

strongly
ms that

ram that
hat does
reliably

een the
Restrictions:

The effect of SYNC on the global order of loads and stores for memory access types other thanuncachedandcached
coherent is UNPREDICTABLE .

Operation:
SyncOperation(stype)

Exceptions:

None

Programming Notes:

A processor executing load and store instructions observes the order in which loads and stores using the sam
ory access type occur in the instruction stream; this is known asprogram order.

A parallel programhas multiple instruction streams that can execute simultaneously on different processors. In
tiprocessor (MP) systems, the order in which the effects of loads and stores are observed by other process
global order of the loads and store—determines the actions necessary to reliably share data in parallel progra

When all processors observe the effects of loads and stores in program order, the system isstrongly ordered. On such
systems, parallel programs can reliably share data without explicit actions in the programs. For such a system
has the same effect as a NOP. Executing SYNC on such a system is not necessary, but neither is it an error.

If a multiprocessor system is not strongly ordered, the effects of load and store instructions executed by one pr
may be observed out of program order by other processors. On such systems, parallel programs must take
actions to reliably share data. At critical points in the program, the effects of loads and stores from an instr
stream must occur in the same order for all processors. SYNC separates the loads and stores executed on th
sor into two groups, and the effect of all loads and stores in one group is seen by all processors before the e
any load or store in the subsequent group. In effect, SYNC causes the system to be strongly ordered for the e
processor at the instant that the SYNC is executed.

Many MIPS-based multiprocessor systems are strongly ordered or have a mode in which they operate as
ordered for at least one memory access type. The MIPS architecture also permits implementation of MP syste
are not strongly ordered; SYNC enables the reliable use of shared memory on such systems. A parallel prog
does not use SYNC generally does not operate on a system that is not strongly ordered. However, a program t
use SYNC works on both types of systems. (System-specific documentation describes the actions needed to
share data in parallel programs for that system.)

The behavior of a load or store using one memory access type isUNPREDICTABLE if a load or store was previ-
ously made to the same physical location using a different memory access type. The presence of a SYNC betw
references does not alter this behavior.

Synchronize Shared Memory (cont.) SYNC
280 MIPS32™ Architecture For Programmers Volume II, Revision 2.00

Copyright © 2001-2003 MIPS Technologies Inc. All rights reserved.

gener-
g. The
, is not
struc-

erations

rate writer
treams
tore of
sures
SYNC affects the order in which the effects of load and store instructions appear to all processors; it does not
ally affect the physical memory-system ordering or synchronization issues that arise in system programmin
effect of SYNC on implementation-specific aspects of the cached memory system, such as writeback buffers
defined. The effect of SYNC on reads or writes to memory caused by privileged implementation-specific in
tions, such as CACHE, also is not defined.

Processor A (writer)
Conditions at entry:
The value 0 has been stored in FLAG and that value is observable by B
SW R1, DATA # change shared DATA value
LI R2, 1
SYNC # Perform DATA store before performing FLAG store
SW R2, FLAG # say that the shared DATA value is valid

Processor B (reader)
LI R2, 1

1: LW R1, FLAG # Get FLAG
BNE R2, R1, 1B# if it says that DATA is not valid, poll again
NOP
SYNC # FLAG value checked before doing DATA read
LW R1, DATA # Read (valid) shared DATA value

Prefetch operations have no effect detectable by User-mode programs, so ordering the effects of prefetch op
is not meaningful.

The code fragments above shows how SYNC can be used to coordinate the use of shared data between sepa
and reader instruction streams in a multiprocessor environment. The FLAG location is used by the instruction s
to determine whether the shared data item DATA is valid. The SYNC executed by processor A forces the s
DATA to be performed globally before the store to FLAG is performed. The SYNC executed by processor B en
that DATA is not read until after the FLAG value indicates that the shared data is valid.

Synchronize Shared Memory (cont.) SYNC
MIPS32™ Architecture For Programmers Volume II, Revision 2.00 281

Copyright © 2001-2003 MIPS Technologies Inc. All rights reserved.

to an
, as

in an

ss. The
write of
s. One

truc-
LBS.

tects a
imilarly,

rtion of
hether

hes the

ine
instruc-

f cor-
nize the

ors in a
e case if
SYNCI

Format: SYNCI offset(base) MIPS32 Release 2

Purpose:

To synchronize all caches to make instruction writes effective.

Description:

This instruction is used after a new instruction stream is written to make the new instructions effective relative
instruction fetch, when used in conjunction with the SYNC and JALR.HB, JR.HB, or ERET instructions
described below. Unlike the CACHE instruction, the SYNCI instruction is available in all operating modes
implementation of Release 2 of the architecture.

The 16-bit offset is sign-extended and added to the contents of the base register to form an effective addre
effective address is used to address the cache line in all caches which may need to be synchronized with the
the new instructions. The operation occurs only on the cache line which may contain the effective addres
SYNCI instruction is required for every cache line that was written. See the Programming Notes below.

A TLB Refill and TLB Invalid (both with cause code equal TLBL) exception can occur as a byproduct of this ins
tion. This instruction never causes TLB Modified exceptions nor TLB Refill exceptions with a cause code of T

A Cache Error exception may occur as a byproduct of this instruction. For example, if a writeback operation de
cache or bus error during the processing of the operation, that error is reported via a Cache Error exception. S
a Bus Error Exception may occur if a bus operation invoked by this instruction is terminated in an error.

An Address Error Exception (with cause code equal AdEL) may occur if the effective address references a po
the kernel address space which would normally result in such an exception. It is implementation dependent w
such an exception does occur.

It is implementation dependent whether a data watch is triggered by a SYNCI instruction whose address matc
Watch register address match conditions.

Restrictions:

The operation of the processor isUNPREDICTABLE if the effective address references any instruction cache l
that contains instructions to be executed between the SYNCI and the subsequent JALR.HB, JR.HB, or ERET
tion required to clear the instruction hazard.

The SYNCI instruction has no effect on cache lines that were prevsiously locked with the CACHE instruction. I
rect software operation depends on the state of a locked line, the CACHE instruction must be used to synchro
caches.

The SYNCI instruction acts only on the current processor. It doesn’t not affect the caches on other process
multi-processor system, except as required to perform the operation on the current processor (as might be th
multiple processors share an L2 or L3 cache).

31 26 25 21 20 16 15 0

REGIMM

000001
base

SYNCI

11111
offset

6 5 5 16

Synchronize Caches to Make Instruction Writes Effective SYNCI
282 MIPS32™ Architecture For Programmers Volume II, Revision 2.00

Copyright © 2001-2003 MIPS Technologies Inc. All rights reserved.

Operation:

vaddr ← GPR[base] + sign_extend(offset)
SynchronizeCacheLines(vaddr)/* Operate on all caches */

Exceptions:

Reserved Instruction Exception (Release 1 implementations only)
TLB Refill Exception
TLB Invalid Exception
Address Error Exception
Cache Error Exception
Bus Error Exception

Synchronize Caches to Make Instruction Writes Effective, cont. SYNCI
MIPS32™ Architecture For Programmers Volume II, Revision 2.00 283

Copyright © 2001-2003 MIPS Technologies Inc. All rights reserved.

tions
after

uld be
le), and
Programming Notes:

When the instruction stream is written, the SYNCI instruction should be used in conjunction with other instruc
to make the newly-written instructions effective. The following example shows a routine which can be called
the new instruction stream is written to make those changes effective. Note that the SYNCI instruction co
replaced with the corresponding sequence of CACHE instructions (when access to Coprocessor 0 is availab
that the JR.HB instruction could be replaced with JALR.HB, ERET, or DERET instructions, as appropriate.

/*
 * This routine makes changes to the instruction stream effective to the
 * hardware. It should be called after the instruction stream is written.
 * On return, the new instructions are effective.
 *
 * Inputs:
 * a0 = Start address of new instruction stream
 * a1 = Size, in bytes, of new instruction stream
 */

addu a1, a0, a1 /* Calculate end address + 1 */
rdhwr v0, HW _SYNCI_Step /* Get step size for SYNCI from new */

/* Release 2 instruction */
beq v0, zero, 20f /* If no caches require synchronization, */
nop /* branch around */

10: synci 0(a0) /* Synchronize all caches around address */
sltu v1, a0, a1 /* Compare current with end address */
bne v1, zero, 10b /* Branch if more to do */
addu a0, a0, v0 /* Add step size in delay slot */
sync /* Clear memory hazards */

20: jr.hb ra /* Return, clearing instruction hazards */
nop

Synchronize Caches to Make Instruction Writes Effective, cont. SYNCI
284 MIPS32™ Architecture For Programmers Volume II, Revision 2.00

Copyright © 2001-2003 MIPS Technologies Inc. All rights reserved.

MIPS32™ Architecture For Programmers Volume II, Revision 2.00 285

Copyright © 2001-2003 MIPS Technologies Inc. All rights reserved.

SYSCALL

Format: SYSCALL MIPS32

Purpose:

To cause a System Call exception

Description:

A system call exception occurs, immediately and unconditionally transferring control to the exception handler.

Thecodefield is available for use as software parameters, but is retrieved by the exception handler only by loading
the contents of the memory word containing the instruction.

Restrictions:

None

Operation:

SignalException(SystemCall)

Exceptions:

System Call

31 26 25 6 5 0

SPECIAL

000000
code

SYSCALL

001100

6 20 6

System Call SYSCALL

286 MIPS32™ Architecture For Programmers Volume II, Revision 2.00

Copyright © 2001-2003 MIPS Technologies Inc. All rights reserved.

TEQ

Format: TEQ rs, rt MIPS32

Purpose:

To compare GPRs and do a conditional trap

Description: if rs = rt then Trap

Compare the contents of GPRrs and GPRrt as signed integers; if GPRrs is equal to GPRrt, then take a Trap excep-
tion.

The contents of thecodefield are ignored by hardware and may be used to encode information for system software.
To retrieve the information, system software must load the instruction word from memory.

Restrictions:

None

Operation:

if GPR[rs] = GPR[rt] then
SignalException(Trap)

endif

Exceptions:

Trap

31 26 25 21 20 16 15 6 5 0

SPECIAL

000000
rs rt code

TEQ

110100

6 5 5 10 6

Trap if Equal TEQ

MIPS32™ Architecture For Programmers Volume II, Revision 2.00 287

Copyright © 2001-2003 MIPS Technologies Inc. All rights reserved.

TEQI

Format: TEQI rs, immediate MIPS32

Purpose:

To compare a GPR to a constant and do a conditional trap

Description: if rs = immediate then Trap

Compare the contents of GPRrs and the 16-bit signedimmediateas signed integers; if GPRrs is equal toimmediate,
then take a Trap exception.

Restrictions:

None

Operation:

if GPR[rs] = sign_extend(immediate) then
SignalException(Trap)

endif

Exceptions:

Trap

31 26 25 21 20 16 15 0

REGIMM

000001
rs

TEQI

01100
immediate

6 5 5 16

Trap if Equal Immediate TEQI

288 MIPS32™ Architecture For Programmers Volume II, Revision 2.00

Copyright © 2001-2003 MIPS Technologies Inc. All rights reserved.

TGE

Format: TGE rs, rt MIPS32

Purpose:

To compare GPRs and do a conditional trap

Description: if rs ≥ rt then Trap

Compare the contents of GPRrs and GPRrt as signed integers; if GPRrs is greater than or equal to GPRrt, then take
a Trap exception.

The contents of thecodefield are ignored by hardware and may be used to encode information for system software.
To retrieve the information, system software must load the instruction word from memory.

Restrictions:

None

Operation:

if GPR[rs] ≥ GPR[rt] then
SignalException(Trap)

endif

Exceptions:

Trap

31 26 25 21 20 16 15 6 5 0

SPECIAL

000000
rs rt code

TGE

110000

6 5 5 10 6

Trap if Greater or Equal TGE

MIPS32™ Architecture For Programmers Volume II, Revision 2.00 289

Copyright © 2001-2003 MIPS Technologies Inc. All rights reserved.

TGEI

Format: TGEI rs, immediate MIPS32

Purpose:

To compare a GPR to a constant and do a conditional trap

Description: if rs ≥ immediate then Trap

Compare the contents of GPRrs and the 16-bit signedimmediateas signed integers; if GPRrs is greater than or equal
to immediate, then take a Trap exception.

Restrictions:

None

Operation:

if GPR[rs] ≥ sign_extend(immediate) then
SignalException(Trap)

endif

Exceptions:

Trap

31 26 25 21 20 16 15 0

REGIMM

000001
rs

TGEI

01000
immediate

6 5 5 16

Trap if Greater or Equal Immediate TGEI

290 MIPS32™ Architecture For Programmers Volume II, Revision 2.00

Copyright © 2001-2003 MIPS Technologies Inc. All rights reserved.

TGEIU

Format: TGEIU rs, immediate MIPS32

Purpose:

To compare a GPR to a constant and do a conditional trap

Description: if rs ≥ immediate then Trap

Compare the contents of GPRrs and the 16-bit sign-extendedimmediateas unsigned integers; if GPRrs is greater
than or equal toimmediate, then take a Trap exception.

Because the 16-bitimmediateis sign-extended before comparison, the instruction can represent the smallest or largest
unsigned numbers. The representable values are at the minimum [0, 32767] or maximum [max_unsigned-32767,
max_unsigned] end of the unsigned range.

Restrictions:

None

Operation:

if (0 || GPR[rs]) ≥ (0 || sign_extend(immediate)) then
SignalException(Trap)

endif

Exceptions:

Trap

31 26 25 21 20 16 15 0

REGIMM

000001
rs

TGEIU

01001
immediate

6 5 5 16

Trap if Greater or Equal Immediate Unsigned TGEIU

MIPS32™ Architecture For Programmers Volume II, Revision 2.00 291

Copyright © 2001-2003 MIPS Technologies Inc. All rights reserved.

TGEU

Format: TGEU rs, rt MIPS32

Purpose:

To compare GPRs and do a conditional trap

Description: if rs ≥ rt then Trap

Compare the contents of GPRrs and GPRrt as unsigned integers; if GPRrs is greater than or equal to GPRrt, then
take a Trap exception.

The contents of thecodefield are ignored by hardware and may be used to encode information for system software.
To retrieve the information, system software must load the instruction word from memory.

Restrictions:

None

Operation:

if (0 || GPR[rs]) ≥ (0 || GPR[rt]) then
SignalException(Trap)

endif

Exceptions:

Trap

31 26 25 21 20 16 15 6 5 0

SPECIAL

000000
rs rt code

TGEU

110001

6 5 5 10 6

Trap if Greater or Equal Unsigned TGEU

292 MIPS32™ Architecture For Programmers Volume II, Revision 2.00

Copyright © 2001-2003 MIPS Technologies Inc. All rights reserved.

TLBP

Format: TLBP MIPS32

Purpose:

To find a matching entry in the TLB.

Description:

TheIndexregister is loaded with the address of the TLB entry whose contents match the contents of theEntryHi reg-
ister. If no TLB entry matches, the high-order bit of theIndexregister is set. In Release 1 of the Architecture, it is
implementation dependent whether multiple TLB matches are detected on a TLBP. However, implementations are
strongly encouraged to report multiple TLB matches only on a TLB write. In Release 2 of the Architecture, multiple
TLB matches may only be reported on a TLB write.

Restrictions:

If access to Coprocessor 0 is not enabled, a Coprocessor Unusable Exception is signaled.

Operation:

Index ← 1 || UNPREDICTABLE31

for i in 0...TLBEntries-1
if ((TLB[i] VPN2 and not (TLB[i] Mask)) =

(EntryHi VPN2 and not (TLB[i] Mask))) and
((TLB[i] G = 1) or (TLB[i] ASID = EntryHi ASID))then
Index ← i

endif
endfor

Exceptions:

Coprocessor Unusable

Machine Check

31 26 25 24 6 5 0

COP0

010000

CO

1

0

000 0000 0000 0000 0000

TLBP

001000

6 1 19 6

Probe TLB for Matching Entry TLBP

to
atches
nly on
that

e

the
cant
TLB

nds to
d or

TLB
TLBR

Format: TLBR MIPS32

Purpose:

To read an entry from the TLB.

Description:

TheEntryHi, EntryLo0, EntryLo1, andPageMaskregisters are loaded with the contents of the TLB entry pointed
by the Index register. In Release 1 of the Architecture, it is implementation dependent whether multiple TLB m
are detected on a TLBR. However, implementations are strongly encouraged to report multiple TLB matches o
a TLB write. In Release 2 of the Architecture, multiple TLB matches may only be reported on a TLB write. Note
the value written to theEntryHi, EntryLo0, andEntryLo1registers may be different from that originally written to th
TLB via these registers in that:

• The value returned in the VPN2 field of theEntryHi register may havethose bits set to zero corresponding to
one bits in the Mask field of the TLB entry (the least significant bit of VPN2 corresponds to the least signifi
bit of the Mask field). It is implementation dependent whether these bits are preserved or zeroed after a
entry is written and then read.

• The value returned in the PFN field of theEntryLo0 andEntryLo1 registers may havethose bits set to zero
corresponding to the one bits in the Mask field of the TLB entry (the least significant bit of PFN correspo
the least significant bit of the Mask field). It is implementation dependent whether these bits are preserve
zeroed after a TLB entry is written and then read.

• The value returned in the G bit in both theEntryLo0 andEntryLo1 registers comes from the single G bit in the
TLB entry. Recall that this bit was set from the logical AND of the two G bits inEntryLo0 andEntryLo1 when
the TLB was written.

Restrictions:

The operation isUNDEFINED if the contents of the Index register are greater than or equal to the number of
entries in the processor.

If access to Coprocessor 0 is not enabled, a Coprocessor Unusable Exception is signaled.

31 26 25 24 6 5 0

COP0

010000

CO

1

0

000 0000 0000 0000 0000

TLBR

000001

6 1 19 6

Read Indexed TLB Entry TLBR
MIPS32™ Architecture For Programmers Volume II, Revision 2.00 293

Copyright © 2001-2003 MIPS Technologies Inc. All rights reserved.

Operation:

i ← Index
if i > (TLBEntries - 1) then

UNDEFINED
endif
PageMaskMask ← TLB[i] Mask
EntryHi ←

(TLB[i] VPN2 and not TLB[i] Mask) || # Masking implementation dependent
05 || TLB[i] ASID

EntryLo1 ← 0 2 ||
(TLB[i] PFN1 and not TLB[i] Mask) || # Masking mplementation dependent
TLB[i] C1 || TLB[i] D1 || TLB[i] V1 || TLB[i] G

EntryLo0 ← 0 2 ||
(TLB[i] PFN0 and not TLB[i] Mask) || # Masking mplementation dependent
TLB[i] C0 || TLB[i] D0 || TLB[i] V0 || TLB[i] G

Exceptions:

Coprocessor Unusable

Machine Check

Read Indexed TLB Entry TLBR
294 MIPS32™ Architecture For Programmers Volume II, Revision 2.00

Copyright © 2001-2003 MIPS Technologies Inc. All rights reserved.

I. In
atches
the

 one

ed

ing to

ed

TLB
TLBWI

Format: TLBWI MIPS32

Purpose:

To write a TLB entry indexed by theIndex register.

Description:

The TLB entry pointed to by the Index register is written from the contents of theEntryHi, EntryLo0, EntryLo1, and
PageMaskregisters. It is implementation dependent whether multiple TLB matches are detected on a TLBW
such an instance, a Machine Check Exception is signaled. In Release 2 of the Architecture, multiple TLB m
may only be reported on a TLB write. The information written to the TLB entry may be different from that in
EntryHi, EntryLo0, andEntryLo1 registers, in that:

• The value written to the VPN2 field of the TLB entry may have those bits set to zero corresponding to the
bits in the Mask field of thePageMask register (the least significant bit of VPN2 corresponds to the least
significant bit of the Mask field). It is implementation dependent whether these bits are preserved or zero
during a TLB write.

• The value written to the PFN0 and PFN1 fields of the TLB entry may have those bits set to zero correspond
the one bits in the Mask field ofPageMask register (the least significant bit of PFN corresponds to the least
significant bit of the Mask field). It is implementation dependent whether these bits are preserved or zero
during a TLB write.

• The single G bit in the TLB entry is set from the logical AND of the G bits in theEntryLo0 andEntryLo1
registers.

Restrictions:

The operation isUNDEFINED if the contents of the Index register are greater than or equal to the number of
entries in the processor.

If access to Coprocessor 0 is not enabled, a Coprocessor Unusable Exception is signaled.

31 26 25 24 6 5 0

COP0

010000

CO

1

0

000 0000 0000 0000 0000

TLBWI

000010

6 1 19 6

Write Indexed TLB Entry TLBWI
MIPS32™ Architecture For Programmers Volume II, Revision 2.00 295

Copyright © 2001-2003 MIPS Technologies Inc. All rights reserved.

Operation:

i ← Index
TLB[i] Mask ← PageMaskMask
TLB[i] VPN2 ← EntryHi VPN2 and not PageMask Mask # Implementation dependent
TLB[i] ASID ← EntryHi ASID
TLB[i] G ← EntryLo1 G and EntryLo0 G
TLB[i] PFN1 ← EntryLo1 PFN and not PageMask Mask # Implementation dependent
TLB[i] C1 ← EntryLo1 C
TLB[i] D1 ← EntryLo1 D
TLB[i] V1 ← EntryLo1 V
TLB[i] PFN0 ← EntryLo0 PFN and not PageMask Mask # Implementation dependent
TLB[i] C0 ← EntryLo0 C
TLB[i] D0 ← EntryLo0 D
TLB[i] V0 ← EntryLo0 V

Exceptions:

Coprocessor Unusable

Machine Check

Write Indexed TLB Entry TLBWI
296 MIPS32™ Architecture For Programmers Volume II, Revision 2.00

Copyright © 2001-2003 MIPS Technologies Inc. All rights reserved.

WR.
atches
the

 one

ed

ing to

ed
TLBWR

Format: TLBWR MIPS32

Purpose:

To write a TLB entry indexed by theRandom register.

Description:

The TLB entry pointed to by theRandomregister is written from the contents of theEntryHi, EntryLo0, EntryLo1,
andPageMaskregisters. It is implementation dependent whether multiple TLB matches are detected on a TLB
In such an instance, a Machine Check Exception is signaled. In Release 2 of the Architecture, multiple TLB m
may only be reported on a TLB write. The information written to the TLB entry may be different from that in
EntryHi, EntryLo0, andEntryLo1 registers, in that:

• The value written to the VPN2 field of the TLB entry may have those bits set to zero corresponding to the
bits in the Mask field of thePageMask register (the least significant bit of VPN2 corresponds to the least
significant bit of the Mask field). It is implementation dependent whether these bits are preserved or zero
during a TLB write.

• The value written to the PFN0 and PFN1 fields of the TLB entry may have those bits set to zero correspond
the one bits in the Mask field ofPageMask register (the least significant bit of PFN corresponds to the least
significant bit of the Mask field). It is implementation dependent whether these bits are preserved or zero
during a TLB write.

• The single G bit in the TLB entry is set from the logical AND of the G bits in theEntryLo0 andEntryLo1
registers.

Restrictions:

If access to Coprocessor 0 is not enabled, a Coprocessor Unusable Exception is signaled.

31 26 25 24 6 5 0

COP0

010000

CO

1

0

000 0000 0000 0000 0000

TLBWR

000110

6 1 19 6

Write Random TLB Entry TLBWR
MIPS32™ Architecture For Programmers Volume II, Revision 2.00 297

Copyright © 2001-2003 MIPS Technologies Inc. All rights reserved.

Operation:

i ← Random
TLB[i] Mask ← PageMaskMask
TLB[i] VPN2 ← EntryHi VPN2 and not PageMask Mask # Implementation dependent
TLB[i] ASID ← EntryHi ASID
TLB[i] G ← EntryLo1 G and EntryLo0 G
TLB[i] PFN1 ← EntryLo1 PFN and not PageMask Mask # Implementation dependent
TLB[i] C1 ← EntryLo1 C
TLB[i] D1 ← EntryLo1 D
TLB[i] V1 ← EntryLo1 V
TLB[i] PFN0 ← EntryLo0 PFN and not PageMask Mask # Implementation dependent
TLB[i] C0 ← EntryLo0 C
TLB[i] D0 ← EntryLo0 D
TLB[i] V0 ← EntryLo0 V

Exceptions:

Coprocessor Unusable

Machine Check

Write Random TLB Entry TLBWR
298 MIPS32™ Architecture For Programmers Volume II, Revision 2.00

Copyright © 2001-2003 MIPS Technologies Inc. All rights reserved.

MIPS32™ Architecture For Programmers Volume II, Revision 2.00 299

Copyright © 2001-2003 MIPS Technologies Inc. All rights reserved.

TLT

Format: TLT rs, rt MIPS32

Purpose:

To compare GPRs and do a conditional trap

Description: if rs < rt then Trap

Compare the contents of GPRrs and GPRrt as signed integers; if GPRrs is less than GPRrt, then take a Trap excep-
tion.

The contents of thecodefield are ignored by hardware and may be used to encode information for system software.
To retrieve the information, system software must load the instruction word from memory.

Restrictions:

None

Operation:

if GPR[rs] < GPR[rt] then
SignalException(Trap)

endif

Exceptions:

Trap

31 26 25 21 20 16 15 6 5 0

SPECIAL

000000
rs rt code

TLT

110010

6 5 5 10 6

Trap if Less Than TLT

300 MIPS32™ Architecture For Programmers Volume II, Revision 2.00

Copyright © 2001-2003 MIPS Technologies Inc. All rights reserved.

TLTI

Format: TLTI rs, immediate MIPS32

Purpose:

To compare a GPR to a constant and do a conditional trap

Description: if rs < immediate then Trap

Compare the contents of GPRrs and the 16-bit signedimmediateas signed integers; if GPRrs is less thanimmediate,
then take a Trap exception.

Restrictions:

None

Operation:

if GPR[rs] < sign_extend(immediate) then
SignalException(Trap)

endif

Exceptions:

Trap

31 26 25 21 20 16 15 0

REGIMM

000001
rs

TLTI

01010
immediate

6 5 5 16

Trap if Less Than Immediate TLTI

MIPS32™ Architecture For Programmers Volume II, Revision 2.00 301

Copyright © 2001-2003 MIPS Technologies Inc. All rights reserved.

TLTIU

Format: TLTIU rs, immediate MIPS32

Purpose:

To compare a GPR to a constant and do a conditional trap

Description: if rs < immediate then Trap

Compare the contents of GPRrs and the 16-bit sign-extendedimmediateas unsigned integers; if GPRrs is less than
immediate, then take a Trap exception.

Because the 16-bitimmediateis sign-extended before comparison, the instruction can represent the smallest or largest
unsigned numbers. The representable values are at the minimum [0, 32767] or maximum [max_unsigned-32767,
max_unsigned] end of the unsigned range.

Restrictions:

None

Operation:

if (0 || GPR[rs]) < (0 || sign_extend(immediate)) then
SignalException(Trap)

endif

Exceptions:

Trap

31 26 25 21 20 16 15 0

REGIMM

000001
rs

TLTIU

01011
immediate

6 5 5 16

Trap if Less Than Immediate Unsigned TLTIU

302 MIPS32™ Architecture For Programmers Volume II, Revision 2.00

Copyright © 2001-2003 MIPS Technologies Inc. All rights reserved.

TLTU

Format: TLTU rs, rt MIPS32

Purpose:

To compare GPRs and do a conditional trap

Description: if rs < rt then Trap

Compare the contents of GPRrs and GPRrt as unsigned integers; if GPRrs is less than GPRrt, then take a Trap
exception.

The contents of thecodefield are ignored by hardware and may be used to encode information for system software.
To retrieve the information, system software must load the instruction word from memory.

Restrictions:

None

Operation:

if (0 || GPR[rs]) < (0 || GPR[rt]) then
SignalException(Trap)

endif

Exceptions:

Trap

31 26 25 21 20 16 15 6 5 0

SPECIAL

000000
rs rt code

TLTU

110011

6 5 5 10 6

Trap if Less Than Unsigned TLTU

MIPS32™ Architecture For Programmers Volume II, Revision 2.00 303

Copyright © 2001-2003 MIPS Technologies Inc. All rights reserved.

TNE

Format: TNE rs, rt MIPS32

Purpose:

To compare GPRs and do a conditional trap

Description: i f rs ≠ rt then Trap

Compare the contents of GPRrs and GPRrt as signed integers; if GPRrs is not equal to GPRrt, then take a Trap
exception.

The contents of thecodefield are ignored by hardware and may be used to encode information for system software.
To retrieve the information, system software must load the instruction word from memory.

Restrictions:

None

Operation:

if GPR[rs] ≠ GPR[rt] then
SignalException(Trap)

endif

Exceptions:

Trap

31 26 25 21 20 16 15 6 5 0

SPECIAL

000000
rs rt code

TNE

110110

6 5 5 10 6

Trap if Not Equal TNE

304 MIPS32™ Architecture For Programmers Volume II, Revision 2.00

Copyright © 2001-2003 MIPS Technologies Inc. All rights reserved.

TNEI

Format: TNEI rs, immediate MIPS32

Purpose:

To compare a GPR to a constant and do a conditional trap

Description: if rs ≠ immediate then Trap

Compare the contents of GPRrs and the 16-bit signedimmediateas signed integers; if GPRrs is not equal toimme-
diate, then take a Trap exception.

Restrictions:

None

Operation:

if GPR[rs] ≠ sign_extend(immediate) then
SignalException(Trap)

endif

Exceptions:

Trap

31 26 25 21 20 16 15 0

REGIMM

000001
rs

TNEI

01110
immediate

6 5 5 16

Trap if Not Equal Immediate TNEI

ero

set in

t

TRUNC.L.fmt

Format: TRUNC.L.S fd, fs MIPS64
MIPS32 Release 2

TRUNC.L.D fd, fs MIPS64
MIPS32 Release 2

Purpose:

To convert an FP value to 64-bit fixed point, rounding toward zero

Description: fd ← convert_and_round(fs)

The value in FPRfs, in format fmt, is converted to a value in 64-bit long fixed point format and rounded toward z
(rounding mode 1). The result is placed in FPRfd.

When the source value is Infinity, NaN, or rounds to an integer outside the range -263 to 263-1, the result cannot be
represented correctly and an IEEE Invalid Operation condition exists. In this case the Invalid Operation flag is
theFCSR. If the Invalid OperationEnablebit is set in theFCSR, no result is written tofd and an Invalid Operation

exception is taken immediately. Otherwise, the default result, 263-1, is written tofd.

Restrictions:

The fieldsfsandfd must specify valid FPRs;fs for typefmtandfd for long fixed point; if they are not valid, the resul
is UNPREDICTABLE .

The operand must be a value in formatfmt; if it is not, the result isUNPREDICTABLE and the value of the operand
FPR becomesUNPREDICTABLE .

The result of this instruction isUNPREDICTABLE if the processor is executing in 16 FP registers mode.

Operation:

StoreFPR(fd, L, ConvertFmt(ValueFPR(fs, fmt), fmt, L))

31 26 25 21 20 16 15 11 10 6 5 0

COP1

010001
fmt

0

00000
fs fd

TRUNC.L

001001

6 5 5 5 5 6

Floating Point Truncate to Long Fixed Point TRUNC.L.fmt
MIPS32™ Architecture For Programmers Volume II, Revision 2.00 305

Copyright © 2001-2003 MIPS Technologies Inc. All rights reserved.

Exceptions:

Coprocessor Unusable, Reserved Instruction

Floating Point Exceptions:

Unimplemented Operation, Invalid Operation, Overflow, Inexact

Floating Point Truncate to Long Fixed Point (cont.) TRUNC.L.fmt
306 MIPS32™ Architecture For Programmers Volume II, Revision 2.00

Copyright © 2001-2003 MIPS Technologies Inc. All rights reserved.

rd

set in

t

TRUNC.W.fmt

Format: TRUNC.W.S fd, fs MIPS32
TRUNC.W.D fd, fs MIPS32

Purpose:

To convert an FP value to 32-bit fixed point, rounding toward zero

Description: fd ← convert_and_round(fs)

The value in FPRfs, in format fmt, is converted to a value in 32-bit word fixed point format using rounding towa
zero (rounding mode 1). The result is placed in FPRfd.

When the source value is Infinity, NaN, or rounds to an integer outside the range -231 to 231-1, the result cannot be
represented correctly and an IEEE Invalid Operation condition exists. In this case the Invalid Operation flag is
theFCSR. If the Invalid OperationEnablebit is set in theFCSR, no result is written tofd and an Invalid Operation

exception is taken immediately. Otherwise, the default result, 231–1, is written tofd.

Restrictions:

The fieldsfsandfd must specify valid FPRs;fs for typefmtandfd for word fixed point; if they are not valid, the resul
is UNPREDICTABLE .

The operand must be a value in formatfmt; if it is not, the result isUNPREDICTABLE and the value of the operand
FPR becomesUNPREDICTABLE .

Operation:

StoreFPR(fd, W, ConvertFmt(ValueFPR(fs, fmt), fmt, W))

31 26 25 21 20 16 15 11 10 6 5 0

COP1

010001
fmt

0

00000
fs fd

TRUNC.W

001101

6 5 5 5 5 6

Floating Point Truncate to Word Fixed Point TRUNC.W.fmt
MIPS32™ Architecture For Programmers Volume II, Revision 2.00 307

Copyright © 2001-2003 MIPS Technologies Inc. All rights reserved.

Exceptions:

Coprocessor Unusable, Reserved Instruction

Floating Point Exceptions:

Inexact, Invalid Operation, Overflow, Unimplemented Operation

Floating Point Truncate to Word Fixed Point (cont.) TRUNC.W.fmt
308 MIPS32™ Architecture For Programmers Volume II, Revision 2.00

Copyright © 2001-2003 MIPS Technologies Inc. All rights reserved.

ode.
roces-
must

nter-
request
dent
e cause
ust be

n and

a

WAIT

Format: WAIT MIPS32

Purpose:

Wait for Event

Description:

The WAIT instruction performs an implementation-dependent operation, usually involving a lower power m
Software may use bits 24:6 of the instruction to communicate additional information to the processor, and the p
sor may use this information as control for the lower power mode. A value of zero for bits 24:6 is the default and
be valid in all implementations.

The WAIT instruction is typically implemented by stalling the pipeline at the completion of the instruction and e
ing a lower power mode. The pipeline is restarted when an external event, such as an interrupt or external
occurs, and execution continues with the instruction following the WAIT instruction. It is implementation-depen
whether the pipeline restarts when a non-enabled interrupt is requested. In this case, software must poll for th
of the restart.The assertion of any reset or NMI must restart the pipeline and the corresponding exception m
taken.

If the pipeline restarts as the result of an enabled interrupt, that interrupt is taken between the WAIT instructio
the following instruction (EPC for the interrupt points at the instruction following the WAIT instruction).

Restrictions:

The operation of the processor isUNDEFINED if a WAIT instruction is placed in the delay slot of a branch or
jump.

If access to Coprocessor 0 is not enabled, a Coprocessor Unusable Exception is signaled.

31 26 25 24 6 5 0

COP0

010000

CO

1
Implementation-Dependent Code

WAIT

100000

6 1 19 6

Enter Standby Mode WAIT
MIPS32™ Architecture For Programmers Volume II, Revision 2.00 309

Copyright © 2001-2003 MIPS Technologies Inc. All rights reserved.

Operation:

I: Enter implementation dependent lower power mode
I+1:/* Potential interrupt taken here */

Exceptions:

Coprocessor Unusable Exception

Enter Standby Mode (cont.) WAIT
310 MIPS32™ Architecture For Programmers Volume II, Revision 2.00

Copyright © 2001-2003 MIPS Technologies Inc. All rights reserved.

MIPS32™ Architecture For Programmers Volume II, Revision 2.00 311

Copyright © 2001-2003 MIPS Technologies Inc. All rights reserved.

WRPGPR

Format: WRPGPR rd, rt MIPS32 Release 2

Purpose:

To move the contents of a current GPR to a GPR in the previous shadow set.

Description: SGPR[SRSCtl PSS, rd] ← rt

The contents of the current GPRrt is moved to the shadow GPR register specified by SRSCtlPSS(signifying the pre-
vious shadow set number) andrd (specifying the register number within that set).

Restrictions:

In implementations prior to Release 2 of the Architecture, this instruction resulted in a Reserved Instruction Excep-
tion.

Operation:

SGPR[SRSCtl PSS, rd] ← GPR[rt]

Exceptions:

Coprocessor Unusable

Reserved Instruction

31 26 25 21 20 16 15 11 10 0

COP0
0100 00

WRPGPR
01 110 rt rd 0

000 0000 0000

6 5 5 5 11

Write to GPR in Previous Shadow Set WRPGPR

312 MIPS32™ Architecture For Programmers Volume II, Revision 2.00

Copyright © 2001-2003 MIPS Technologies Inc. All rights reserved.

WSBH

Format: wsbh rd, rt MIPS32 Release 2

Purpose:

To swap the bytes within each halfword of GPRrt and store the value into GPRrd.

Description: rd ← SwapBytesWithinHalfwords(rt)

Within each halfword of GPRrt the bytes are swapped, and stored in GPRrd.

Restrictions:

In implementations prior to Release 2 of the architecture, this instruction resulted in a Reserved Instruction Excep-
tion.

Operation:
GPR[rd] ←GPR[rt] 23..16 || GPR[rt] 31..24 || GPR[rt] 7..0 || GPR[rt] 15..8

Exceptions:

Reserved Instruction

Programming Notes:

The WSBH instruction can be used to convert halfword and word data of one endianness to another endianness. The
endianness of a word value can be converted using the following sequence:

lw t0, 0(a1) /* Read word value */
wsbh t0, t0 /* Convert endiannes of the halfwords */
rotr t0, t0, 16 /* Swap the halfwords within the words */

Combined with SEH and SRA, two contiguous halfwords can be loaded from memory, have their endianness con-
verted, and be sign-extended into two word values in four instructions. For example:

lw t0, 0(a1) /* Read two contiguous halfwords */
wsbh t0, t0 /* Convert endiannes of the halfwords */
seh t1, t0 /* t1 = lower halfword sign-extended to word */
sra t0, t0, 16 /* t0 = upper halfword sign-extended to word */

Zero-extended words can be created by changing the SEH and SRA instructions to ANDI and SRL instructions,
respectively.

31 26 25 21 20 16 15 11 10 6 5 0

SPECIAL3

011111

0

00000
rt rd

WSBH

00010

BSHFL

100000

6 5 5 5 5 6

Word Swap Bytes Within Halfwords WSBH

MIPS32™ Architecture For Programmers Volume II, Revision 2.00 313

Copyright © 2001-2003 MIPS Technologies Inc. All rights reserved.

XOR

Format: XOR rd, rs, rt MIPS32

Purpose:

To do a bitwise logical Exclusive OR

Description: rd ← rs XOR rt

Combine the contents of GPRrs and GPRrt in a bitwise logical Exclusive OR operation and place the result into
GPRrd.

Restrictions:

None

Operation:

GPR[rd] ← GPR[rs] xor GPR[rt]

Exceptions:

None

31 26 25 21 20 16 15 11 10 6 5 0

SPECIAL

000000
rs rt rd

0

00000

XOR

100110

6 5 5 5 5 6

Exclusive OR XOR

314 MIPS32™ Architecture For Programmers Volume II, Revision 2.00

Copyright © 2001-2003 MIPS Technologies Inc. All rights reserved.

XORI

Format: XORI rt, rs, immediate MIPS32

Purpose:

To do a bitwise logical Exclusive OR with a constant

Description: rt ← rs XOR immediate

Combine the contents of GPRrs and the 16-bit zero-extendedimmediatein a bitwise logical Exclusive OR operation
and place the result into GPRrt.

Restrictions:

None

Operation:

GPR[rt] ← GPR[rs] xor zero_extend(immediate)

Exceptions:

None

31 26 25 21 20 16 15 0

XORI

001110
rs rt immediate

6 5 5 16

Exclusive OR Immediate XORI

 are

f
ree bits

tance,
 the
Appendix A

Instruction Bit Encodings

A.1 Instruction Encodings and Instruction Classes

Instruction encodings are presented in this section; field names are printed here and throughout the book initalics.

When encoding an instruction, the primaryopcode field is encoded first. Mostopcode values completely specify an
instruction that has animmediate value or offset.

Opcode values that do not specify an instruction instead specify an instruction class. Instructions within a class
further specified by values in other fields. For instance,opcode REGIMM specifies theimmediate instruction class,
which includes conditional branch and trapimmediate instructions.

A.2 Instruction Bit Encoding Tables

This section provides various bit encoding tables for the instructions of the MIPS32 ISA.

Figure A-1shows a sample encoding table and the instructionopcodefield this table encodes. Bits 31..29 of theopcode
field are listed in the leftmost columns of the table. Bits 28..26 of theopcode field are listed along the topmost rows o
the table. Both decimal and binary values are given, with the first three bits designating the row, and the last th
designating the column.

An instruction’s encoding is found at the intersection of a row (bits 31..29) and column (bits 28..26) value. For ins
theopcode value for the instruction labelled EX1 is 33 (decimal, row and column), or 011011 (binary). Similarly,
opcode value for EX2 is 64 (decimal), or 110100 (binary).
MIPS32™ Architecture For Programmers Volume II, Revision 2.00 315

Copyright © 2001-2003 MIPS Technologies Inc. All rights reserved.

Appendix A Instruction Bit Encodings
TablesA-2 through A-20 describe the encoding used for the MIPS32 ISA.Table A-1 describes the meaning of the
symbols used in the tables.

Table A-1 Symbols Used in the Instruction Encoding Tables

Symbol Meaning

∗ Operation or field codes marked with this symbol are reserved for future use. Executing such an
instruction must cause a Reserved Instruction Exception.

δ
(Also italic field name.) Operation or field codes marked with this symbol denotes a field class.
The instruction word must be further decoded by examining additional tables that show values for
another instruction field.

β
Operation or field codes marked with this symbol represent a valid encoding for a higher-order
MIPS ISA level or a new revision of the Architecture. Executing such an instruction must cause a
Reserved Instruction Exception.

∇

Operation or field codes marked with this symbol represent instructions which were only legal if
64-bit operations were enabled on implementations of Release 1 of the Architecture. In Release 2
of the architecture, operation or field codes marked with this symbol represent instructions which
are legal if 64-bit floating point operations are enabled. In other cases, executing such an
instruction must cause a Reserved Instruction Exception (non-coprocessor encodings or
coprocessor instruction encodings for a coprocessor to which access is allowed) or a Coprocessor
Unusable Exception (coprocessor instruction encodings for a coprocessor to which access is not
allowed).

31 26 25 21 20 16 15 0

opcode rs rt immediate

6 5 5 16

opcode bits 28..26

0 1 2 3 4 5 6 7

bits 31..29 000 001 010 011 100 101 110 111

0 000

1 001

2 010

3 011 EX1

4 100

5 101

6 110 EX2

7 111

Decimal encoding of
opcode (28..26)

Binary encoding of
opcode (28..26)

Decimal encoding of
opcode (31..29)

Binary encoding of
opcode (31..29)

Figure A-1 Sample Bit Encoding Table
316 MIPS32™ Architecture For Programmers Volume II, Revision 2.00

Copyright © 2001-2003 MIPS Technologies Inc. All rights reserved.

A.2 Instruction Bit Encoding Tables
θ

Operation or field codes marked with this symbol are available to licensed MIPS partners. To
avoid multiple conflicting instruction definitions, MIPS Technologies will assist the partner in
selecting appropriate encodings if requested by the partner. The partner is not required to consult
with MIPS Technologies when one of these encodings is used. If no instruction is encoded with
this value, executing such an instruction must cause a Reserved Instruction Exception (SPECIAL2
encodings or coprocessor instruction encodings for a coprocessor to which access is allowed) or
a Coprocessor Unusable Exception (coprocessor instruction encodings for a coprocessor to which
access is not allowed).

σ
Field codes marked with this symbol represent an EJTAG support instruction and implementation
of this encoding is optional for each implementation. If the encoding is not implemented,
executing such an instruction must cause a Reserved Instruction Exception. If the encoding is
implemented, it must match the instruction encoding as shown in the table.

ε
Operation or field codes marked with this symbol are reserved for MIPS Application Specific
Extensions. If the ASE is not implemented, executing such an instruction must cause a Reserved
Instruction Exception.

φ Operation or field codes marked with this symbol are obsolete and will be removed from a future
revision of the MIPS32 ISA. Software should avoid using these operation or field codes.

⊕
Operation or field codes marked with this symbol are valid for Release 2 implementations of the
architecture. Executing such an instruction in a Release 1 implementation must cause a Reserved
Instruction Exception.

Table A-2 MIPS32 Encoding of the Opcode Field

opcode bits 28..26

0 1 2 3 4 5 6 7

bits 31..29 000 001 010 011 100 101 110 111

0 000 SPECIALδ REGIMMδ J JAL BEQ BNE BLEZ BGTZ

1 001 ADDI ADDIU SLTI SLTIU ANDI ORI XORI LUI

2 010 COP0δ COP1δ COP2θδ COP1X1 δ

1. In Release 1 of the Architecture, the COP1X opcode was called COP3, and was available as another user-available coprocessor. In
Release 2 of the Architecture, a full 64-bit floating point unit is available with 32-bit CPUs, and the COP1X opcode is reserved for
that purpose on all Release 2 CPUs. 32-bit implementations of Release 1 of the architecture are strongly discouraged from using
this opcode for a user-available coprocessor as doing so will limit the potential for an upgrade path to a 64-bit floating point unit.

BEQL φ BNEL φ BLEZL φ BGTZL φ

3 011 β β β β SPECIAL2δ JALX ε ε SPECIAL32

δ⊕

2. Release 2 of the Architecture added the SPECIAL3 opcode. Implementations of Release 1 of the Architecture signaled a Reserved
Instruction Exception for this opcode.

4 100 LB LH LWL LW LBU LHU LWR β
5 101 SB SH SWL SW β β SWR CACHE

6 110 LL LWC1 LWC2θ PREF β LDC1 LDC2 θ β
7 111 SC SWC1 SWC2θ * β SDC1 SDC2θ β

Table A-1 Symbols Used in the Instruction Encoding Tables

Symbol Meaning
MIPS32™ Architecture For Programmers Volume II, Revision 2.00 317

Copyright © 2001-2003 MIPS Technologies Inc. All rights reserved.

Appendix A Instruction Bit Encodings
Table A-3 MIPS32SPECIAL Opcode Encoding of Function Field

function bits 2..0

0 1 2 3 4 5 6 7

bits 5..3 000 001 010 011 100 101 110 111

0 000 SLL1

1. Specific encodings of thert, rd, andsa fields are used to distinguish among the SLL, NOP, SSNOP and EHB functions.

MOVCI δ SRLδ SRA SLLV * SRLVδ SRAV

1 001 JR2

2. Specific encodings of the hint field are used to distinguish JR from JR.HB and JALR from JALR.HB

JALR2 MOVZ MOVN SYSCALL BREAK * SYNC

2 010 MFHI MTHI MFLO MTLO β * β β
3 011 MULT MULTU DIV DIVU β β β β
4 100 ADD ADDU SUB SUBU AND OR XOR NOR

5 101 * * SLT SLTU β β β β
6 110 TGE TGEU TLT TLTU TEQ * TNE *

7 111 β * β β β * β β

Table A-4 MIPS32REGIMM Encoding of rt Field

rt bits 18..16

0 1 2 3 4 5 6 7

bits 20..19 000 001 010 011 100 101 110 111

0 00 BLTZ BGEZ BLTZL φ BGEZL φ * * * *

1 01 TGEI TGEIU TLTI TLTIU TEQI * TNEI *

2 10 BLTZAL BGEZAL BLTZALL φ BGEZALL φ * * * *

3 11 * * * * * * * SYNCI ⊕

Table A-5 MIPS32SPECIAL2 Encoding of Function Field

function bits 2..0

0 1 2 3 4 5 6 7

bits 5..3 000 001 010 011 100 101 110 111

0 000 MADD MADDU MUL θ MSUB MSUBU θ θ
1 001 θ θ θ θ θ θ θ θ
2 010 θ θ θ θ θ θ θ θ
3 011 θ θ θ θ θ θ θ θ
4 100 CLZ CLO θ θ β β θ θ
5 101 θ θ θ θ θ θ θ θ
6 110 θ θ θ θ θ θ θ θ
7 111 θ θ θ θ θ θ θ SDBBPσ

Table A-6 MIPS32SPECIAL31 Encoding of Function Field for Release 2 of the Architecture

function bits 2..0

0 1 2 3 4 5 6 7

bits 5..3 000 001 010 011 100 101 110 111

0 000 EXT⊕ β β β INS ⊕ β β β
1 001 * * * * * * * *

2 010 * * * * * * * *

3 011 * * * * * * * *

4 100 BSHFL⊕δ * * * β * * *

5 101 * * * * * * * *

6 110 * * * * * * * *

7 111 * * * RDHWR ⊕ * * * *
318 MIPS32™ Architecture For Programmers Volume II, Revision 2.00

Copyright © 2001-2003 MIPS Technologies Inc. All rights reserved.

A.2 Instruction Bit Encoding Tables
1. Release 2 of the Architecture added the SPECIAL3 opcode. Implementations of Release 1 of the Architecture signaled a Reserved
Instruction Exception for this opcode and all function field values shown above.

Table A-7 MIPS32MOVCI Encoding of tf Bit

tf bit 16

0 1

MOVF MOVT

Table A-8 MIPS321 SRL Encoding of Shift/Rotate

1. Release 2 of the Architecture added the
ROTR instruction. Implementations
of Release 1 of the Architecture ig-
nored bit 21 and treated the instruc-
tion as an SRL

R bit 21

0 1

SRL ROTR

Table A-9 MIPS321 SRLV Encoding of Shift/Rotate

1. Release 2 of the Architecture added the
ROTRV instruction. Implementa-
tions of Release 1 of the Architecture
ignored bit 6 and treated the instruc-
tion as an SRLV

R bit 6

0 1

SRLV ROTRV

Table A-10 MIPS32BSHFL Encoding of sa Field1

1. The sa field is sparsely decoded to identify the final instructions. Entries in this table with no mnemonic are reserved for future use
by MIPS Technologies and may or may not cause a Reserved Instruction exception.

sa bits 8..6

0 1 2 3 4 5 6 7

bits 10..9 000 001 010 011 100 101 110 111

0 00 WSBH

1 01

2 10 SEB

3 11 SEH

Table A-11 MIPS32COP0 Encoding of rs Field

rs bits 23..21

0 1 2 3 4 5 6 7

bits 25..24 000 001 010 011 100 101 110 111

0 00 MFC0 β * * MTC0 β * *

1 01 * * RDPGPR⊕ MFMC01 δ⊕ * * WRPGPR⊕ *

2 10
C0 δ

3 11
MIPS32™ Architecture For Programmers Volume II, Revision 2.00 319

Copyright © 2001-2003 MIPS Technologies Inc. All rights reserved.

Appendix A Instruction Bit Encodings
1. Release 2 of the Architecture added the MFMC0 function, which is further decoded as the DI and EI instructions.

Table A-12 MIPS32COP0 Encoding of Function Field When rs=CO

function bits 2..0

0 1 2 3 4 5 6 7

bits 5..3 000 001 010 011 100 101 110 111

0 000 * TLBR TLBWI * * * TLBWR *

1 001 TLBP * * * * * * *

2 010 * * * * * * * *

3 011 ERET * * * * * * DERET σ
4 100 WAIT * * * * * * *

5 101 * * * * * * * *

6 110 * * * * * * * *

7 111 * * * * * * * *

Table A-13 MIPS32COP1 Encoding of rs Field

rs bits 23..21

0 1 2 3 4 5 6 7

bits 25..24 000 001 010 011 100 101 110 111

0 00 MFC1 β CFC1 MFHC1⊕ MTC1 β CTC1 MTHC1⊕
1 01 BC1δ BC1ANY2δε∇ BC1ANY4δε∇ * * * * *

2 10 Sδ D δ * * W δ L δ PSδ *

3 11 * * * * * * * *

Table A-14 MIPS32COP1 Encoding of Function Field When rs=S

function bits 2..0

0 1 2 3 4 5 6 7

bits 5..3 000 001 010 011 100 101 110 111

0 000 ADD SUB MUL DIV SQRT ABS MOV NEG

1 001 ROUND.L∇ TRUNC.L ∇ CEIL.L ∇ FLOOR.L∇ ROUND.W TRUNC.W CEIL.W FLOOR.W

2 010 * MOVCFδ MOVZ MOVN * RECIP ∇ RSQRT∇ *

3 011 * * * * RECIP2 ε∇ RECIP1ε∇ RSQRT1ε∇ RSQRT2 ε∇
4 100 * CVT.D * * CVT.W CVT.L ∇ CVT.PS∇ *

5 101 * * * * * * * *

6 110 C.F
CABS.Fε∇

C.UN
CABS.UNε∇

C.EQ
CABS.EQε∇

C.UEQ
CABS.UEQε∇

C.OLT
CABS.OLTε∇

C.ULT
CABS.ULT ε∇

C.OLE
CABS.OLEε∇

C.ULE
CABS.ULEε∇

7 111 C.SF
CABS.SFε∇

C.NGLE
CABS.NGLEε∇

C.SEQ
CABS.SEQε∇

C.NGL
CABS.NGLε∇

C.LT
CABS.LT ε∇

C.NGE
CABS.NGEε∇

C.LE
CABS.LEε∇

C.NGT
CABS.NGTε∇
320 MIPS32™ Architecture For Programmers Volume II, Revision 2.00

Copyright © 2001-2003 MIPS Technologies Inc. All rights reserved.

A.2 Instruction Bit Encoding Tables
Table A-15 MIPS32COP1 Encoding of Function Field When rs=D

function bits 2..0

0 1 2 3 4 5 6 7

bits 5..3 000 001 010 011 100 101 110 111

0 000 ADD SUB MUL DIV SQRT ABS MOV NEG

1 001 ROUND.L∇ TRUNC.L ∇ CEIL.L ∇ FLOOR.L∇ ROUND.W TRUNC.W CEIL.W FLOOR.W

2 010 * MOVCFδ MOVZ MOVN * RECIP ∇ RSQRT∇ *

3 011 * * * * RECIP2 ε∇ RECIP1ε∇ RSQRT1ε∇ RSQRT2ε∇
4 100 CVT.S * * * CVT.W CVT.L ∇ * *

5 101 * * * * * * * *

6 110 C.F
CABS.Fε∇

C.UN
CABS.UNε∇

C.EQ
CABS.EQε∇

C.UEQ
CABS.UEQε∇

C.OLT
CABS.OLTε∇

C.ULT
CABS.ULT ε∇

C.OLE
CABS.OLEε∇

C.ULE
CABS.ULEε∇

7 111 C.SF
CABS.SFε∇

C.NGLE
CABS.NGLEε∇

C.SEQ
CABS.SEQε∇

C.NGL
CABS.NGLε∇

C.LT
CABS.LT ε∇

C.NGE
CABS.NGEε∇

C.LE
CABS.LEε∇

C.NGT
CABS.NGTε∇

Table A-16 MIPS32COP1 Encoding of Function Field When rs=W or L1

1. Format type L is legal only if 64-bit floating point operations are enabled.

function bits 2..0

0 1 2 3 4 5 6 7

bits 5..3 000 001 010 011 100 101 110 111

0 000 * * * * * * * *

1 001 * * * * * * * *

2 010 * * * * * * * *

3 011 * * * * * * * *

4 100 CVT.S CVT.D * * * * CVT.PS.PWε∇ *

5 101 * * * * * * * *

6 110 * * * * * * * *

7 111 * * * * * * * *

Table A-17 MIPS64COP1 Encoding of Function Field When rs=PS1

1. Format type PS is legal only if 64-bit floating point operations are enabled.

function bits 2..0

0 1 2 3 4 5 6 7

bits 5..3 000 001 010 011 100 101 110 111

0 000 ADD∇ SUB ∇ MUL ∇ * * ABS ∇ MOV ∇ NEG ∇
1 001 * * * * * * * *

2 010 * MOVCFδ∇ MOVZ ∇ MOVN ∇ * * * *

3 011 ADDRε∇ * MULR ε∇ * RECIP2ε∇ RECIP1ε∇ RSQRT1ε∇ RSQRT2ε∇
4 100 CVT.S.PU∇ * * * CVT.PW.PS ε∇ * * *

5 101 CVT.S.PL∇ * * * PLL.PS ∇ PLU.PS∇ PUL.PS∇ PUU.PS∇

6 110 C.F∇
CABS.Fε∇

C.UN ∇
CABS.UNε∇

C.EQ∇
CABS.EQε∇

C.UEQ∇
CABS.UEQε∇

C.OLT ∇
CABS.OLTε∇

C.ULT ∇
CABS.ULT ε∇

C.OLE ∇
CABS.OLEε∇

C.ULE ∇
CABS.ULEε∇

7 111 C.SF∇
CABS.SFε∇

C.NGLE∇
CABS.NGLEε∇

C.SEQ∇
CABS.SEQε∇

C.NGL ∇
CABS.NGLε∇

C.LT ∇
CABS.LT ε∇

C.NGE∇
CABS.NGEε∇

C.LE ∇
CABS.LEε∇

C.NGT∇
CABS.NGTε∇

Table A-18 MIPS32COP1 Encoding of tf Bit When rs=S, D, or PS,Function=MOVCF

tf bit 16

0 1

MOVF.fmt MOVT.fmt
MIPS32™ Architecture For Programmers Volume II, Revision 2.00 321

Copyright © 2001-2003 MIPS Technologies Inc. All rights reserved.

Appendix A Instruction Bit Encodings

r

A.3 Floating Point Unit Instruction Format Encodings

Instruction format encodings for the floating point unit are presented in this section. This information is a tabula
presentation of the encodings described in tables Table A-13 and Table A-20 above.

Table A-19 MIPS32COP2 Encoding of rs Field

rs bits 23..21

0 1 2 3 4 5 6 7

bits 25..24 000 001 010 011 100 101 110 111

0 00 MFC2θ β CFC2θ MFHC2 θ⊕ MTC2 θ β CTC2θ MTHC2 θ⊕
1 01 BC2θ * * * * * * *

2 10
C2 θδ

3 11

Table A-20 MIPS64COP1X Encoding of Function Field1

1. COP1X instructions are legal only if 64-bit floating point operations are enabled.

function bits 2..0

0 1 2 3 4 5 6 7

bits 5..3 000 001 010 011 100 101 110 111

0 000 LWXC1∇ LDXC1 ∇ * * * LUXC1 ∇ * *

1 001 SWXC1∇ SDXC1∇ * * * SUXC1 ∇ * PREFX ∇
2 010 * * * * * * * *

3 011 * * * * * * ALNV.PS ∇ *

4 100 MADD.S∇ MADD.D ∇ * * * * MADD.PS ∇ *

5 101 MSUB.S∇ MSUB.D ∇ * * * * MSUB.PS ∇ *

6 110 NMADD.S∇ NMADD.D ∇ * * * * NMADD.PS ∇ *

7 111 NMSUB.S∇ NMSUB.D ∇ * * * * NMSUB.PS ∇ *

Table A-21 Floating Point Unit Instruction Format Encodings

fmt field
(bits 25..21 of
COP1 opcode)

fmt3 field
(bits 2..0 of

COP1X opcode)

Mnemonic Name Bit Width Data TypeDecimal Hex Decimal Hex

0..15 00..0F — — Used to encode Coprocessor 1 interface instructions (MFC1,
CTC1, etc.). Not used for format encoding.

16 10 0 0 S Single 32 Floating
Point

17 11 1 1 D Double 64 Floating
Point

18..19 12..13 2..3 2..3 Reserved for future use by the architecture.

20 14 4 4 W Word 32 Fixed Point

21 15 5 5 L Long 64 Fixed Point

22 16 6 6 PS Paired
Single 2 × 32 Floating

Point

23 17 7 7 Reserved for future use by the architecture.
322 MIPS32™ Architecture For Programmers Volume II, Revision 2.00

Copyright © 2001-2003 MIPS Technologies Inc. All rights reserved.

A.3 Floating Point Unit Instruction Format Encodings
24..31 18..1F — — Reserved for future use by the architecture. Not available for
fmt3 encoding.

Table A-21 Floating Point Unit Instruction Format Encodings

fmt field
(bits 25..21 of
COP1 opcode)

fmt3 field
(bits 2..0 of

COP1X opcode)

Mnemonic Name Bit Width Data TypeDecimal Hex Decimal Hex
MIPS32™ Architecture For Programmers Volume II, Revision 2.00 323

Copyright © 2001-2003 MIPS Technologies Inc. All rights reserved.

Appendix A Instruction Bit Encodings
324 MIPS32™ Architecture For Programmers Volume II, Revision 2.00

Copyright © 2001-2003 MIPS Technologies Inc. All rights reserved.

ant
e note of

change

ge bars
Appendix B

Revision History

In the left hand page margins of this document you may find vertical change bars to note the location of signific
changes to this document since its last release. Significant changes are defined as those which you should tak
as you use the MIPS IP. Changes to correct grammar, spelling errors or similar may or may not be noted with
bars. Change bars will be removed for changes which are more than one revision old.

Please note: Limitations on the authoring tools make it difficult to place change bars on changes to figures. Chan
on figure titles are used to denote a potential change in the figure itself.

Revision Date Description

0.90 November 1, 2000 Internal review copy of reorganized and updated architecture documentation.

0.91 November 15, 2000 External review copy of reorganized and updated architecture documentation.

0.92 December 15, 2000

Changes in this revision:

• Correct sign in description of MSUBU.

• Update JR and JALR instructions to reflect the changes required by
MIPS16.

0.95 March 12, 2001 Update for second external review release.

1.00 August 29, 2002

Updated based on feedback from all reviews.

• Add missing optional select field syntax in mtc0/mfc0 instruction
descriptions.

• Correct the PREF instruction description to acknowledge that the
PrepareForStore function does, in fact, modify architectural state.

• To provide additional flexibility for Coprocessor 2 implementations, extend
thesel field for DMFC0, DMTC0, MFC0, and MTC0 to be 8 bits.

• Update the PREF instruction to note that it may not update the state of a
locked cache line.

• Remove obviously incorrect documentation in DIV and DIVU with regard
to putting smaller numbers in registerrt.

• Fix the description for MFC2 to reflect data movement from the
coprocessor 2 register to the GPR, rather than the other way around.

• Correct the pseudo code for LDC1, LDC2, SDC1, and SDC2 for a MIPS32
implementation to show the required word swapping.

• Indicate that the operation of the CACHE instruction is UNPREDICTABLE
if the cache line containing the instruction is the target of an invalidate or
writeback invalidate.

• Indicate that an Index Load Tag or Index Store Tag operation of the
CACHE instruction must not cause a cache error exception.

• Make the entire right half of the MFC2, MTC2, CFC2, CTC2, DMFC2, and
DMTC2 instructions implementation dependent, thereby acknowledging
that these fields can be used in any way by a Coprocessor 2 implementation.

• Clean up the definitions of LL, SC, LLD, and SCD.

• Add a warning that software should not use non-zero values of the stype
field of the SYNC instruction.

• Update the compatibility and subsetting rules to capture the current
requirements.
MIPS32™ Architecture For Programmers Volume II, Revision 2.00 325

Copyright © 2001-2003 MIPS Technologies Inc. All rights reserved.

Appendix B Revision History
1.90 September 1, 2002

Merge the MIPS Architecture Release 2 changes in for the first release of a
Relesae 2 processor. Changes in this revision include:

• All new Release 2 instructions have been included: DI, EHB, EI, EXT, INS,
JALR.HB, JR.HB, MFHC1, MFHC2, MTHC1, MTHC2, RDHWR,
RDPGPR, ROTR, ROTRV, SEB, SEH, SYNCI, WRPGPR, WSBH.

• The following instruction definitions changed to reflect Release 2 of the
Architecture: DERET, ERET, JAL, JALR, JR, SRL, SRLV

• With support for 64-bit FPUs on 32-bit CPUs in Release 2, all floating point
instructions that were previously implemented by MIPS64 processors have
been modified to reflect support on either MIPS32 or MIPS64 processors in
Release 2.

• All pseudo-code functions have been udpated, and the
Are64bitFPOperationsEnabled function was added.

• Update the instruction encoding tables for Release 2.

2.00 June 9, 2003

Continue with updates to merge Release 2 changes into the document. Changes
in this revision include:

• Correct the target GPR (from rd to rt) in the SLTI and SLTIU instructions.
This appears to be a day-one bug.

• Correct CPR number, and missing data movement in the pseudocode for the
MTC0 instruction.

• Add note to indicate that the CACHE instruction does not take Address
Error Exceptions due to mis-aligned effective addresses.

• Update SRL, ROTR, SRLV, ROTRV, DSRL, DROTR, DSRLV,
DROTRV, DSRL32, and DROTR32 instructions to reflect a 1-bit, rather
than a 4-bit decode of shift vs. rotate function.

• Add programming note to the PrepareForStore PREF hint to indicate that it
can not be used alone to create a bzero-like operation.

• Add note to the PREF and PREFX instruction indicating that they may
cause Bus Error and Cache Error exceptions, although this is typically
limited to systems with high-reliability requirements.

• Update the SYNCI instruction to indicate that it should not modify the state
of a locked cache line.

• Establish specific rules for when multiple TLB matches can be reported (on
writes only). This makes software handling easier.

Revision Date Description
326 MIPS32™ Architecture For Programmers Volume II, Revision 2.00

Copyright © 2001-2003 MIPS Technologies Inc. All rights reserved.

	MIPS32™ Architecture For Programmers Volume II: The MIPS32™ Instruction Set
	Table of Contents
	List of Figures
	List of Tables
	About This Book
	1.1� Typographical Conventions
	1.1.1� Italic Text
	1.1.2� Bold Text
	1.1.3� Courier Text

	1.2� UNPREDICTABLE and UNDEFINED
	1.2.1� UNPREDICTABLE
	1.2.2� UNDEFINED

	1.3� Special Symbols in Pseudocode Notation
	1.4� For More Information

	Guide to the Instruction Set
	2.1� Understanding the Instruction Fields
	2.1.1� Instruction Fields
	2.1.2� Instruction Descriptive Name and Mnemonic
	2.1.3� Format Field
	2.1.4� Purpose Field
	2.1.5� Description Field
	2.1.6� Restrictions Field
	2.1.7� Operation Field
	2.1.8� Exceptions Field
	2.1.9� Programming Notes and Implementation Notes Fields

	2.2� Operation Section Notation and Functions
	2.2.1� Instruction Execution Ordering
	2.2.2� Pseudocode Functions
	2.2.2.1� Coprocessor General Register Access Functions
	COP_LW
	COP_LD
	COP_SW
	COP_SD

	2.2.2.2� Load Memory and Store Memory Functions
	AddressTranslation
	LoadMemory
	StoreMemory
	Prefetch

	2.2.2.3� Access Functions for Floating Point Registers
	ValueFPR
	StoreFPR

	2.2.2.4� Miscellaneous Functions
	SyncOperation
	SignalException
	SignalDebugBreakpointException
	SignalDebugModeBreakpointException
	NullifyCurrentInstruction
	CoprocessorOperation
	JumpDelaySlot
	FPConditionCode
	SetFPConditionCode

	2.3� Op and Function Subfield Notation
	2.4� FPU Instructions

	The MIPS32™ Instruction Set
	3.1� Compliance and Subsetting
	3.2� Alphabetical List of Instructions
	ABS.fmt
	ADD
	ADD.fmt
	ADDI
	ADDIU
	ADDU
	ALNV.PS
	AND
	ANDI
	B
	BAL
	BC1F
	BC1FL
	BC1T
	BC1TL
	BC2F
	BC2FL
	BC2T
	BC2TL
	BEQ
	BEQL
	BGEZ
	BGEZAL
	BGEZALL
	BGEZL
	BGTZ
	BGTZL
	BLEZ
	BLEZL
	BLTZ
	BLTZAL
	BLTZALL
	BLTZL
	BNE
	BNEL
	BREAK
	C.cond.fmt
	CACHE
	CEIL.L.fmt
	CEIL.W.fmt
	CFC1
	CFC2
	CLO
	CLZ
	COP2
	CTC1
	CTC2
	CVT.D.fmt
	CVT.L.fmt
	CVT.PS.S
	CVT.S.fmt
	CVT.S.PL
	CVT.S.PU
	CVT.W.fmt
	DERET
	DI
	DIV
	DIV.fmt
	DIVU
	EHB
	EI
	ERET
	EXT
	FLOOR.L.fmt
	FLOOR.W.fmt
	INS
	J
	JAL
	JALR
	JALR.HB
	JR
	JR.HB
	LB
	LBU
	LDC1
	LDC2
	LDXC1
	LH
	LHU
	LL
	LUI
	LUXC1
	LW
	LWC1
	LWC2
	LWL
	LWR
	LWXC1
	MADD
	MADD.fmt
	MADDU
	MFC0
	MFC1
	MFC2
	MFHC1
	MFHC2
	MFHI
	MFLO
	MOV.fmt
	MOVF
	MOVF.fmt
	MOVN
	MOVN.fmt
	MOVT
	MOVT.fmt
	MOVZ
	MOVZ.fmt
	MSUB
	MSUB.fmt
	MSUBU
	MTC0
	MTC1
	MTC2
	MTHC1
	MTHC2
	MTHI
	MTLO
	MUL
	MUL.fmt
	MULT
	MULTU
	NEG.fmt
	NMADD.fmt
	NMSUB.fmt
	NOP
	NOR
	OR
	ORI
	PLL.PS
	PLU.PS
	PREF
	PREFX
	PUL.PS
	PUU.PS
	RDHWR
	RDPGPR
	RECIP.fmt
	ROTR
	ROTRV
	ROUND.L.fmt
	ROUND.W.fmt
	RSQRT.fmt
	SB
	SC
	SDBBP
	SDC1
	SDC2
	SDXC1
	SEB
	SEH
	SH
	SLL
	SLLV
	SLT
	SLTI
	SLTIU
	SLTU
	SQRT.fmt
	SRA
	SRAV
	SRL
	SRLV
	SSNOP
	SUB
	SUB.fmt
	SUBU
	SUXC1
	SW
	SWC1
	SWC2
	SWL
	SWR
	SWXC1
	SYNC
	SYNCI
	SYSCALL
	TEQ
	TEQI
	TGE
	TGEI
	TGEIU
	TGEU
	TLBP
	TLBR
	TLBWI
	TLBWR
	TLT
	TLTI
	TLTIU
	TLTU
	TNE
	TNEI
	TRUNC.L.fmt
	TRUNC.W.fmt
	WAIT
	WRPGPR
	WSBH
	XOR
	XORI

	Instruction Bit Encodings
	A.1� Instruction Encodings and Instruction Classes
	A.2� Instruction Bit Encoding Tables
	A.3� Floating Point Unit Instruction Format Encodings

	Revision History

