
File Formats

© 1998 Sony Computer Entertainment Inc.

Publication date: November 1998

Sony Computer Entertainment America
919 E. Hillsdale Blvd., 2nd floor
Foster City, CA 94404

Sony Computer Entertainment Europe
Waverley House
7-12 Noel Street
London W1V 4HH, England

The File Formats manual is supplied pursuant to and subject to the terms of the Sony Computer
Entertainment PlayStation® License and Development Tools Agreements, the Licensed Publisher
Agreement and/or the Licensed Developer Agreement.

The File Formats manual is intended for distribution to and use by only Sony Computer Entertainment
licensed Developers and Publishers in accordance with the PlayStation® License and Development Tools
Agreements, the Licensed Publisher Agreement and/or the Licensed Developer Agreement.

Unauthorized reproduction, distribution, lending, rental or disclosure to any third party, in whole or in part,
of this book is expressly prohibited by law and by the terms of the Sony Computer Entertainment
PlayStation® License and Development Tools Agreements, the Licensed Publisher Agreement and/or the
Licensed Developer Agreement.

Ownership of the physical property of the book is retained by and reserved by Sony Computer
Entertainment. Alteration to or deletion, in whole or in part, of the book, its presentation, or its contents is
prohibited.

The information in the File Formats manual is subject to change without notice. The content of this book is
Confidential Information of Sony Computer Entertainment.

PlayStation and PlayStation logos are registered trademarks of Sony Computer Entertainment Inc. All other
trademarks are property of their respective owners and/or their licensors.

File Formats

Table of Contents

List of Figures iii
List of Tables vii

About This Manual ix
Changes Since Last Release ix
Related Documentation ix
Manual Structure ix
Developer Reference Series x
Typographic Conventions xi
Developer Support xi

Chapter 1: Streaming Audio and Video Data
STR: Streaming (Movie) Data 1-3
BS: MDEC Bitstream Data 1-8
XA: CD-ROM Voice Data 1-31

Chapter 2: 3D Graphics
RSD: 3D Model Data 2-3
TMD: Modeling Data for OS Library 2-24
PMD: High-Speed Modeling Data 2-35
TOD: Animation Data 2-40
HMD: Hierarchical 3D Model, Animation and Other Data 2-49

Chapter 3: 2D Graphics
TIM: Screen Image Data 3-3
SDF: Sprite Editor Project File 3-8
PXL: Pixel Image Data 3-11
CLT: Palette Data 3-14
ANM: Animation Information 3-16
TSQ: Animation Time Sequence 3-22
CEL: Cell Data 3-23
BGD: BG Map Data 3-27

Chapter 4: Sound
SEQ: PS Sequence Data 4–3
SEP: PS Multi-Track Sequence Data 4–3
VAG: PS Single Waveform Data 4–5
VAB: PS Sound Source Data 4–5
DA: CD-DA Data 4–7

Chapter 5: PDA and Memory Card
FAT: Memory Card File System Specification 5–3

List of Figures
Figure 1: Streaming data 1-3
Figure 2: Frame data elements 1-4
Figure 3: Sector header 1-4
Figure 4: Streaming data with header frame 1-5
Figure 5: MDEC animation sector header 1-6
Figure 6: Arrangement of data on CD-ROM for XA-ADPCM audio 1-7
Figure 7: Streaming data with audio 1-7
Figure 8: Data sector in streaming data with audio 1-7
Figure 9: XA-ADPCM audio sectors for streaming data with audio 1-8
Figure 10: Original MDEC Image Data 1-8
Figure 11: Macroblock Arrangement 1-11
Figure 12: Runlevel Code Format 1-18
Figure 13: Quantization Step Placement 1-18

iv Table of Contents

File Formats

Figure 14: Runlevel Pairs 1-18
Figure 15: Header Word Format 1-19
Figure 16: BS Header Format 1-21
Figure 17: BS Blocks 1-22
Figure 18: Overall structure of an RSD file 2-4
Figure 19: Sample RSD file 2-5
Figure 20: Overall structure of a PLY file 2-6
Figure 21: Data length record in a PLY file 2-6
Figure 22: VERTEX descriptor in a PLY file 2-6
Figure 23: NORMAL descriptor in a PLY file 2-6
Figure 24: POLYGON descriptor in a PLY file 2-7
Figure 25: POLYGON descriptor for triangular/quadrangular polygons 2-7
Figure 26: POLYGON descriptor for straight lines 2-7
Figure 27: Polygon descriptor for sprites 2-7
Figure 28: Sample PLY file 2-8
Figure 29: Overall structure of a MAT file 2-8
Figure 30: MATERIAL descriptor for a MAT file 2-9
Figure 31: No texture (colored polygons/lines) 2-10
Figure 32: No texture (Gouraud-colored polygons/lines) 2-10
Figure 33: Textured polygons/sprites 2-10
Figure 34: Polygons with colored textures 2-11
Figure 35: Polygons with gradation texture 2-11
Figure 36: Polygons/sprites with repeating textures 2-11
Figure 37: Polygons with repeating colored textures 2-12
Figure 38: Polygons with repeating gradation textures 2-12
Figure 39: Sample MAT file 2-12
Figure 40: Overall structure of a GRP file 2-13
Figure 41: GROUP descriptor for GRP file 2-13
Figure 42: Following Lines 2-13
Figure 43: Sample GRP file 2-14
Figure 44: Overall structure of a MSH file 2-14
Figure 45: Sample MSH file 2-15
Figure 46: Overall structure of a PVT file 2-15
Figure 47: Sample PVT file 2-15
Figure 48: Overall structure of a COD file 2-16
Figure 49: Sample COD files 2-17
Figure 50: Overall structure of an OGP file 2-18
Figure 51: Sample OGP file 2-18
Figure 52: Overall structure of a MOT file 2-19
Figure 53: Sample MOT file 2-22
Figure 54: TMD File Format 2-24
Figure 55: Structure of Header 2-25
Figure 56: OBJ TABLE structure 2-25
Figure 57: Drawing Packet General Structure 2-26
Figure 58: Mode 2-26
Figure 59: Flag 2-26
Figure 60: Vertex Structure 2-27
Figure 61: Normal Structure 2-27
Figure 62: Fixed-Point Format 2-27
Figure 63: TSB 2-28
Figure 64: CBA 2-28
Figure 65: Mode Value of 3 Vertex Polygon with Light Source Calculation 2-29
Figure 66: Packet Configuration of 3 Vertex Polygon with Light Source Calculation 2-30
Figure 67: Mode Value of 4 Vertex Polygon with Light Source Calculation 2-30
Figure 68: Packet Configuration for 4 Vertex Polygon with Light Source Calculation 2-31
Figure 69: Mode Value of 3 Vertex Polygon with No Light Source Calculation 2-32
Figure 70: Packet configuration for 3 Vertex Polygon with No Light Source Calculation 2-32

Table of Contents v

File Formats

Figure 71: Mode Value of 4 Vertex Polygon with No Light Source Calculation 2-32
Figure 72: Packet Configuration for 4 Vertex Polygon with No Light Source Calculation 2-33
Figure 73: Mode Value of Straight Line 2-33
Figure 74: Packet Configuration for “Straight Line” 2-34
Figure 75: Mode Value of 3D Sprite 2-34
Figure 76: Packet Configuration for Sprites 2-34
Figure 77: Overall structure of PMD files 2-35
Figure 78: OBJECT Structure 2-36
Figure 79: Packet Gp structure 2-37
Figure 80: VERTEX structure 2-39
Figure 81: TOD file format 2-40
Figure 82: Frame 2-41
Figure 83: PACKET 2-42
Figure 84: packet type values and packet data contents 2-42
Figure 85: Packet Data Configuration when Attribute 2-43
Figure 86: Packet data when forced light-source calculation is switched ON 2-44
Figure 87: Flag when Coordinate (RST) 2-44
Figure 88: Packet Data Configuration when Coordinate (RST) 2-45
Figure 89: Packet Data Configuration when TMD Data ID 2-46
Figure 90: Packet Data Configuration when Parent Object 2-46
Figure 91: Packet Data Configuration when Matrix Value 2-46
Figure 92: Flag when Light Source Packet 2-46
Figure 93: Packet Data when Light Source Packet 2-47
Figure 94: Flag for Camera 2-47
Figure 95: Composition of packet data with camera (part 1) 2-48
Figure 96: Composition of packet data with camera (part 2) 2-48
Figure 97: The meanings and values of the flag when object control is set 2-48
Figure 98: HMD Structure 2-50
Figure 99: HMD Header section 2-50
Figure 100: One primitive block which has been primitive chained 2-51
Figure 101: Primitive Structure 2-51
Figure 102: Primitive Header 2-52
Figure 103: Primitive Structure 2-53
Figure 104: HMD Header Section 2-57
Figure 105: Variable transfer area transferred to the primitive driver 2-58
Figure 106: One Primitive 2-59
Figure 107: Type Field 2-60
Figure 108: Polygon Primitive Driver 2-61
Figure 109: Primitive Type of Polygon Primitive 2-62
Figure 110: Number and Size of Polygons 2-62
Figure 111: Shared Primitive Driver 2-91
Figure 112: Primitive Type of Shared Primitive 2-91
Figure 113: Shared Polygon Processing Flow 2-92
Figure 114: Parameter Memory Area of Image Primitive Driver 2-94
Figure 115: Image Primitive Type Field 2-94
Figure 116: Animation Structure 2-96
Figure 117: Diagram Showing Correlation of All Animation Sections 2-97
Figure 118: Animation Primitive Type Field 2-98
Figure 119: Type Field when TGT=0 2-99
Figure 120: Type Field when TGT=1 2-100
Figure 121: LENGTH=16 bit, WRITE=0x1 2-100
Figure 122: LENGTH=16bit, WRITE=0x7 2-100
Figure 123: LENGTH=8bit, WRITE=0x1 2-100
Figure 124: LENGTH=8bit, WRITE=0x7 2-100
Figure 125: Sequence Header 2-101
Figure 126: Sequence Pointer 2-101
Figure 127: Setting Update Location 2-102

vi Table of Contents

File Formats

Figure 128: Sequence Count and Size 2-102
Figure 129: Fixed Point Format Used in SPEED Specification 2-103
Figure 130: Sequence Management Data 2-104
Figure 131: Sequence Descriptor (Normal) 2-104
Figure 132: Sequence Descriptor (Jump) 2-105
Figure 133: Sequence Descriptor (Control) 2-105
Figure 134: Format of Parameters in the Argument Area 2-107
Figure 135: Bezier Interpolation 2-109
Figure 136: BSPLINE Work Area 2-109
Figure 137: BSPLINE Interpolation 2-110
Figure 138: Primitive Type Field 2-119
Figure 139: MIMe Primitive DRIVER 2-119
Figure 140: Primitive Type of MIMe Primitive 2-119
Figure 141: dflags Example 2-121
Figure 142: Ground Primitive Type Field 2-125
Figure 143: Type fields for device primitives 2-129
Figure 144: Sequence Management Construction 2-132
Figure 145: Sequence With No Jumps 2-134
Figure 146: Sequence With Jumps 2-134
Figure 147: Loop Sequence 2-134
Figure 148: Immediate Sequence Switching 1 2-135
Figure 149: Immediate Sequence Switching 2 2-135
Figure 150: TIM File Format 3-3
Figure 151: The order of bytes in a file 3-3
Figure 152: Structure of TIM File Header 3-3
Figure 153: Flag Word 3-4
Figure 154: CLUT 3-4
Figure 155: A CLUT entry 3-5
Figure 156: Pixel data 3-6
Figure 157: Frame buffer data (pixel data) 3-6
Figure 158: SDF File Structure 3-8
Figure 159: PXL File Structure 3-11
Figure 160: Byte Order in File 3-11
Figure 161: Structure of PXL File Header 3-11
Figure 162: FLAG Bit Configuration 3-12
Figure 163: Configuration of Pixel Data Section 3-12
Figure 164: VRAM Data (Pixel Data) 3-13
Figure 165: CLT File Structure 3-14
Figure 166: Byte Order in File 3-14
Figure 167: Structure of CLT File Header 3-14
Figure 168: FLAG Bit Configuration 3-15
Figure 169: Structure of CLUT Section 3-15
Figure 170: CLUT Entry 3-16
Figure 171: ANM file format 3-16
Figure 172: File Header 3-16
Figure 173: FLAG 3-17
Figure 174: Sequence 3-17
Figure 175: SPRITEGp 3-18
Figure 176: FLAG 3-19
Figure 177: CBA 3-19
Figure 178: FLAG2 3-20
Figure 179: CLUTGp 3-21
Figure 180: SEQ Data Structure 3-22
Figure 181: HEADER 3-22
Figure 182: SEQUENCE 3-22
Figure 183: CEL file format 3-23
Figure 184: HEADER 3-23

Table of Contents vii

File Formats

Figure 185: FLAG 3-23
Figure 186: CELL Data Section 3-24
Figure 187: CBA 3-24
Figure 188: TSB 3-25
Figure 189: FLAG 3-26
Figure 190: ATTR Format (8 Bit) 3-26
Figure 191: ATTR Format (16 Bit) 3-26
Figure 192: BG file format 3-27
Figure 193: HEADER 3-27
Figure 194: FLAG 3-27
Figure 195: Cell Arrangement in MAP (when 8 x 8) 3-28
Figure 196: MAP 3-28
Figure 197: ATTR (8 bit) 3-28
Figure 198: ATTR (16 bit) 3-28
Figure 199: SEQ Format 4–3
Figure 200: SEP Format 4–4
Figure 201: VAG Format 4–5
Figure 202: VAB Format 4–6
Figure 203: DA Format 4–7

List of Tables
Table 1-1: XA-ADPCM audio data types supported by PlayStation 1-6
Table 1-2: Data/gap ratios 1-7
Table 1-3: BS Format Versions 1-23
Table 1-4: DC Codebook 1-24
Table 1-5: Decompression Speed 1-24
Table 1-6: Transfer Speed 1-24
Table 1-7: AC Code Book 1-26
Table 1-8: Fixed Code (run) 1-31
Table 1-9: Fixed Code (Level) 1-31
Table 2-1: Polygon Numbers 2-9
Table 2-2: TYPE bit layout 2-37
Table 2-3: Packet data bit-by-bit breakdown 2-43
Table 2-4 : Primitive Pointer Table 2-57
Table 3-1: STP Bit Function in Combination with R, G, B Data 3-5
Table 3-2: Display 3-10
Table 3-3: Color 3-10
Table 3-4: Role of STP Bit 3-16
Table 4-1: VAG Offset Table 4–7
Table 5-1: Layout of Memory Card blocks 5–3
Table 5-2: FAT block memory map 5–3
Table 5-3: Structure of block information sector 5–4
Table 5-4: Meaning of block list information 5–4
Table 5-5: State of formatted FAT 5–5

viii Table of Contents

File Formats

File Formats

About This Manual

This manual is the latest release of the PlayStation® file format specifications as of Run-Time Library
release 4.4. The purpose of this manual is to provide a detailed reference to all native PlayStation file
formats. Other documents in the Developer Reference Series provide overview-level information regarding
these formats (see "Related Documentation" below).

Changes Since Last Release

• A description of the FAT (Memory Card File System Specification) format has been added in Chapter 5:
PDA and Memory Card formats.

• The primitive type list which formerly appeared in the HMD section has been deleted. It has been
replaced with links to an Excel spreadsheet within the HMD library chapter of the Library Overview
(Chapter 18).

• Minor revisions have been made to the BS, PMD and HMD sections.

Related Documentation

The following volumes in the Developer Reference Series also contain file format information:

• PlayStation Operating System
• Run-Time Library Overview
• 3D Graphics Tools
• Sprite Editor
• Sound Artist Tool

Manual Structure

Section Description

Ch. 1: Streaming Audio and Video Data Describes various file formats for video and
audio.

Ch. 2: 3D Graphics Describes the following file formats: RSD, TMD,
PMD, TOD, HMD.

Ch. 3: 2D Graphics Describes the following file formats: TIM, SDF,
PXL, CLT, ANM, TSQ, CEL, BGD.

Ch. 4: Sound Describes the following file formats: SEQ, SEP,
VAG, VAB, DA.

Ch. 5: PDA and Memory Card Describes the FAT format.

x About This Manual

File Formats

Developer Reference Series

This manual is part of the Developer Reference Series, a series of technical reference volumes covering all
aspects of PlayStation development. The complete series is listed below:

Manual Description

PlayStation Hardware Describes the PlayStation hardware architecture
and overviews its subsystems.

PlayStation Operating System Describes the PlayStation operating system and
related programming fundamentals.

Run-Time Library Overview Describes the structure and purpose of the
run-time libraries provided for PlayStation
software development.

Run-Time Library Reference Defines all available PlayStation run-time library
functions, macros and structures.

Inline Programming Reference Describes in-line programming using DMPSX,
GTE inline macro and GTE register information.

SDevTC Development Environment Describes the SDevTC (formerly "Psy-Q")
Development Environment for PlayStation
software development.

3D Graphics Tools Describes how to use the PlayStation 3D
Graphics Tools, including the animation and
material editors.

Sprite Editor Describes the Sprite Editor tool for creating
sprite data and background picture
components.

Sound Artist Tool Provides installation and operation instructions
for the DTL-H800 Sound Artist Board and
explains how to use the Sound Artist Tool
software.

File Formats Describes all native PlayStation data formats.
Data Conversion Utilities Describes all available PlayStation data

conversion utilities, including both stand-alone
and plug-in programs.

CD Emulator Provides installation and operation instructions
for the CD Emulator subsystem and related
software.

CD-ROM Generator Describes how to use the CD-ROM Generator
software to write CD-R discs.

Performance Analyzer User Guide Provides general instructions for using the
Performance Analyzer software.

Performance Analyzer Technical Reference Describes how to measure software
performance and interpret the results using the
Performance Analyzer.

DTL-H2000 Installation and Operation Provides installation and operation instructions
for the DTL-H2000 Development System.

DTL-H2500/2700 Installation and Operation Provides installation and operation instructions
for the DTL-H2500/H2700 Development
Systems.

About This Manual xi

File Formats

Typographic Conventions

Certain Typographic Conventions are used through out this manual to clarify the meaning of the text. The
following conventions apply to all narrative text except for structure and function descriptions:

Convention Meaning

courier Indicates literal program code.

Bold Indicates a document, chapter or section title.

The following conventions apply within structure and function descriptions only:

Convention Meaning

Medium Bold Denotes structure or function types and names.

Italic Denotes function arguments and structure members.

Developer Support

Sony Computer Entertainment America (SCEA)

SCEA developer support is available to licensees in North America only. You may obtain developer support
or additional copies of this documentation by contacting the following addresses:

Order Information Developer Support

In North America: In North America:
Attn: Developer Tools Coordinator E-mail: DevTech_Support@playstation.sony.com
Sony Computer Entertainment America Web: http://www.scea.sony.com/dev
919 East Hillsdale Blvd., 2nd floor Developer Support Hotline: (650) 655-8181
Foster City, CA 94404 (Call Monday through Friday, 8 a.m. to 5 p.m.,
Tel: (650) 655-8000 PST/PDT)

Sony Computer Entertainment Europe (SCEE)

SCEE developer support is available to licensees in Europe only. You may obtain developer support or
additional copies of this documentation by contacting the following addresses:

Order Information Developer Support

In Europe: In Europe:
Attn: Production Coordinator E-mail: dev_support@playstation.co.uk
Sony Computer Entertainment Europe Web: https://www-s.playstation.co.uk
Waverley House Developer Support Hotline:
7-12 Noel Street +44 (0) 171 447 1680
London W1V 4HH (Call Monday through Friday, 9 a.m. to 6 p.m.,
Tel: +44 (0) 171 447 1600 GMT or BST/BDT)

https://www-s.playstation.co.uk
http://www.scea.sony.com/dev

xii About This Manual

File Formats

File Formats

Chapter 1:
Streaming Audio and Video Data

1-2 Streaming Audio and Video Data

File Formats

Streaming Audio and Video Data 1-3

File Formats

STR: Streaming (Movie) Data

"Streaming" refers to a processing format for successive reading and processing of data from a CD-ROM.
STR format is a CD-ROM data format defined to enable streaming for the PlayStation.

Although streaming is generally used to successively read and play back animation or audio data, it is not
limited to such applications. Streaming can also be used for various other kinds of time-series data
processing that involves continuous changes.

Continuously reading data from a CD-ROM is called "streaming". The streaming library is used separately
from other CD-ROM functions. The bitstream used for animation and movie playback is obtained via this
streaming mechanism. Image size and other such supplemental information are not included in the
bitstream. For this reason, the supplemental data format (STR format) separately defines information
required for animation playback in the header.

Streaming data

As shown in Figure 1, streaming data in an STR file is represented as a continuous array of frame data
elements. Frame data is used to represent a location for streaming. The frame contents differ depending
on what kind of data is used for streaming. For example, in animation, each element of frame data may
contain one of the still images that makes up the animation sequence. If the application is animation of 3D
modeling data, each element of frame data will contain one unit of the modeling data that makes up the
animation sequence.

The type of data within each frame is not specified by the STR format, so it can be freely defined in various
ways as needed. The data length and type is specified independently for each frame, so it is possible to
mix various types and sizes of frame data within an STR file as needed. Continuously reading data from a
CD-ROM is called "streaming". The streaming library is used separately from other CD-ROM functions.

Figure 1: Streaming data

frame data

frame data

frame data

frame data

Frame data

Frame data in an STR file is divided into 2048-byte sectors, corresponding to CD-ROM data sectors. Each
sector starts with a 32-byte header with information about the sector data, followed by 2016 bytes of data.
Each frame must begin on a sector boundary. When necessary, the last sector of data for a frame should
be padded with filler to reach the 2048-byte boundary, as shown in Figure 2.

1-4 Streaming Audio and Video Data

File Formats

Figure 2: Frame data elements

Sector header (32 bytes)

Data (2016 bytes)
Sector header (32 bytes) Sector boundary

Data (2016 bytes)
Sector header (32 bytes) Sector boundary

Data
↑

↑
(2016 bytes)

Dummy data
↓

↓

Sector headers

A sector header, located at the start of each sector, is divided into fields as shown in Figure 3.

StSTATUS

The StSTATUS is the STR format identifier and version information.

StTYPE

StTYPE indicates the frame data's data type: if the MSB is a 1, the data type is a system-defined format; if
the MSB is 0 it is a user-defined format.

After setting the MSB to 0, the user can set the other 15 bits as desired. This enables other frame formats
to be incorporated into the STR format.

StSECTOR_OFFSET

StSECTOR_OFFSET is the sector number in the frame, StSECTOR_SIZE is the number of sectors in the
frame, and StFRAME_NO is the frame number of the streaming data.

These values are used to ensure that the streaming library reads the frame data consecutively without
missing any sectors.

StUSER

StUSER is the user-defined field, which can be used as needed for various data types.

Figure 3: Sector header

a: StSTATUS: Status (2 bytes)

s s s s v v v v 0 1 1 0 s s s s

format idversion

S: Reserved for system

Streaming Audio and Video Data 1-5

File Formats

b: StTYPE: data type (2 bytes)

s = 1 indicates system-defined format
 0 indicates user-defined format

c: StSECTOR_OFFSET: sector number in frame (2 bytes)
d: StSECTOR_SIZE: number of sectors in the frame (2 bytes)
e: StFRAME_NO: Frame number of streaming data (4 bytes, starting from 1)
f: StFRAME_SIZE: Frame size (in long words, 4 bytes)
g: StUSER: User-defined area (16 bytes)

Note: All are little endian

User-defined frame data

The user can set the MSB of the sector header's StTYPE field to 0 to enable streaming of user-defined data.

If the entire run of streaming data uses the same attribute values, it is possible to use just one header (header
frame) for the entire run instead of for each element of frame data, thereby reducing the total amount of data.

In streaming data that has a header frame, the StTYPE field in the header frame may be changed to a Data
field (see Figure 4).

Figure 4: Streaming data with header frame

StTYPE: 0x0003
Header

StTYPE: 0x0002
Frame0

StTYPE: 0x0002
Frame1

StTYPE: 0x0002
Frame3

In the example shown in the figure, the LSB in the StTYPE field is used to distinguish frame data in a
header frame from other non-header frame data.

When reading data from a CD-ROM, the StTYPE field in the frame data read by the application can be
freely accessed. This allows the interpretation of the data in the frame to change according to the type of
frame.

Examples of the types of data saved in the header frame are: CLUT data that is not saved in each frame
(for animation), a table of jumps to certain frames, and so on.

1-6 Streaming Audio and Video Data

File Formats

System-defined frame data

The following is currently provided as system-defined frame data.

MDEC animation (Type: 0x8001)

Figure 5 shows an MDEC animation sector header.

Figure 5: MDEC animation sector header

a b c d e f g h i j

32bytes

a: StSTATUS (2 bytes)
b: StTYPE: data type (2 bytes)

s: Reserved for system
c: Channel number (for multi-channel streaming); for ordinary streaming this number is 0.

c: StSECTOR_OFFSET: sector number in frame (2 bytes)
d: StSECTOR_SIZE: number of sectors in the frame (2 bytes)
e: StFRAME_NO: Frame number of streaming data (4 bytes, starting from 1)
f: StFRAME_SIZE: Frame size (in long words, 4 bytes)
g: StMOVIE_WIDTH: Width (2 bytes)
h: StMOVIE_HEIGHT: Height (2 bytes)
i: StMOVIE_HEADM: Reserved for system (4 bytes)
j: StMOVIE_HEADV: Reserved for system (4 bytes)

Streaming data with audio

Successive audio playback

The PlayStation plays back ADPCM (Adaptive Differential Pulse Code Modulation) audio data as specified in
the CD-ROM XA (eXtended Audio) standard (this is hereafter abbreviated as XA-ADPCM audio).

The PlayStation supports the following four types of XA-ADPCM audio:

Table 1-1: XA-ADPCM audio data types supported by PlayStation

Sampling frequency Stereo/monaural

37.8 Khz Stereo
37.8 Khz Monaural
18.9 Khz Stereo
18.9 Khz Monaural

XA-ADPCM audio is sent directly from the CD-ROM decoder to the SPU without using main memory.

The streaming format described above is used to read CD-ROM data into main memory. Consequently, it
cannot be used for playing back XA-ADPCM audio.

When playing back XA-ADPCM audio, the data sectors on the CD-ROM must be arranged (interleaved) as
shown in Figure 6. Figure 7 shows an example of this structure for streaming data with audio.

Streaming Audio and Video Data 1-7

File Formats

Figure 6: Arrangement of data on CD-ROM for XA-ADPCM audio

The ratio of data sector size to gap size depends on the type of XA-ADPCM audio data and the CD-ROM's
playback speed, as shown below.

Table 1-2: Data/gap ratios

CD-ROM playback speed Type Data/gap ratio

Double speed 37.8 kHz, stereo 1 sector/7 sectors

Double speed 37.8 kHz, monaural 1 sector/15 sectors

Double speed 18.9 kHz, stereo 1 sector/15 sectors

Double speed 18.9 kHz, monaural 1 sector/31 sectors

Standard speed 37.8 kHz, stereo 1 sector/3 sectors

Standard speed 37.8 kHz, monaural 1 sector/7 sectors

Standard speed 18.9 kHz, stereo 1 sector/7 sectors

Standard speed 18.9 kHz, monaural 1 sector/15 sectors

Streaming data with audio

Streaming data with audio means ordinary (non-audio) streaming data is interleaved with XA-ADPCM
audio.

This kind of interleaved XA-ADPCM audio data must use the structure shown in Figure 6 above.

Accordingly, the structure of streaming data with audio has streaming data inserted in the "gap" sections
shown in Figure 6. Figure 7 shows an example of this structure for streaming data with audio.

Figure 7: Streaming data with audio

Frame 1 Frame 2 Frame 3

Streaming data: 30 fps (5 sectors/frame)
XA-ADPCM audio: 37.8 KHz, stereo
CD-ROM playback speed: Double speed

Note that the size of a sector of streaming data with audio is different from that of ordinary streaming data.

1-8 Streaming Audio and Video Data

File Formats

Figure 8: Data sector in streaming data with audio

Subheader
(8 bytes)

Sector header
(32 bytes)

Data
(2016 bytes) 2336 bytes

Dummy data
(280 bytes)

The sector size is 2048 bytes for ordinary (non-audio) streaming data, and 2336 bytes for streaming data
with audio.

Figure 8 and Figure 9 show sectors used for streaming data with audio.

Figure 9: XA-ADPCM audio sectors for streaming data with audio

Subheader
(8 bytes)

XA-ADPCM audio
(2324 bytes) 2336 bytes

Dummy data
(4 bytes)

Note that the sector header and data areas in Figure 8 are exactly identical to their counterparts in
Figure 2.

The subheader size is specified by the CD-ROM XA standard. This subheader contains information such as
flags for distinguishing data sectors from audio sectors.

A dummy data section is added to the end of the sector to make the sector size for XA-ADPCM audio
sectors the same as for non-XADPCM audio sectors.

BS: MDEC Bitstream Data

This section discusses the image data format used in MDEC and libpress, as well as how to create data in
this format.

Original Image Data

Original MDEC image data consists of a series of 24-bit RGB images arranged over time, where each
image is a multiple of 16 pixels wide by a multiple of 16 pixels tall. Each of these images is called a frame.
Because correlations between frames are not used in MDEC, each frame can be processed independently.

MDEC treats each frame as a collection of small regions of 16x16 pixels. These small regions are called
macroblocks. MDEC takes the decoded results and rewrites these to main memory as macroblocks. The
reconstruction of these into a single frame is performed by the CPU and the GPU.

For example, data for a 320x240 image is split up into a number of 16x16 macroblocks, and each
macroblock is then compressed.

Streaming Audio and Video Data 1-9

File Formats

Figure 10: Original MDEC Image Data

Macroblock Playback image

320

240

R

G

B
16

16

The vertical and horizontal frame sizes should both be multiples of 16. If this is not the case, some
additional processing is necessary.

Splitting into Macroblocks

The pixels in a frame are generally ordered from top left to bottom right. When encoding, the pixels are re-
ordered so that they can be unified in a macroblock.

#define WIDTH 320
#define HEIGHT 160

typedef struct
{

u_char r, g, b, pad;
} PIXEL

make_macro_block(frame, macroblock)
PIXEL frame[HEIGHT][WIDTH];
PIXEL macroblck[][16][16];
{
int ox, oy, x, y, i = 0;

for (ox = 0; ox < WIDTH; ox += 16)
{

for (oy = 0; oy < HEIGHT; oy += 16, i++)
{

for (y = 0; y < 16; y++)
{

for (x = 0; x < 16; x++)
{

macroblock[i][y][x] =
frame[oy+y][ox+x];

}
}

}
}

}

In this case, the macroblock is ordered vertically from the top left. This makes it possible to reduce the
number of times the frame buffer transfer command (LoadImage) is executed.

1-10 Streaming Audio and Video Data

File Formats

If the macroblocks are to be ordered from left to right:

for (y = 0; y < HEIGHT; y += 16)
{

for (x = 0; y < WIDTH; x += 16)
{

setRECT(&rect, x, y, 16, 16);
LoadImage(&rect, p);
p += 16 * 16;

}
}

If the macroblocks are to be ordered from top to bottom:

for (y = 0; y < HEIGHT; y += 16)
{

setRECT(&rect, x, 0, 16, HEIGHT);
LoadImage(&rect, p);
p += 16 * HEIGHT;

}

RGB-YCbCr Conversion

MDEC performs its internal processing using the YCbCr color system. Macroblocks in the RGB color
system (RGB macroblocks) must be converted to the YCbCr color system. This process is called CSC
(Color Space Conversion). The luminance values of the pixels can be expressed as a point in the three-
dimensional space formed by the R,G,B components. CSC can be understood as a coordinate
transformation for this coordinate system (color space).

In MDEC, the conversion formula below is used to convert the luminance of a pixel to the RGB color
system.

































++

++
=

















Cr

Cb

Y

x

B

G

R

01.7721.0

0.7143-0.3437-1.0

1.40200.1

The inverse of this matrix is generally used to convert from the RGB system to the YCbCr system. The
MOVCONV encoder uses this matrix.
































++

++
=

















B

G

R

x

Cr

Cb

Y

0.0813-0.4187-0.5

0.50.33130-0.16871-

0.1140.587299.0

Physically, the Y signal is the luminance signal, and Cb, Cr are the color-difference signals. A black-and-
white TV set uses only the Y signal. For a black-and-white screen, the Cb and Cr components are all 0.

The luminance values, recorded in the frame buffers according to the RGB system, are converted in the
PlayStation to the YCbCr system and are output from the video terminal (the S terminal). The receiver (TV
monitor) receives this video signal and converts it back into RGB. Voltages corresponding to the separate
RGB components are sent to the electron beam, which lights up the phosphors arranged on the picture
tube. This creates the final image seen by the user.

Because numerous color space conversions are performed, the color shade of the final output can
sometimes differ from the expected color. These variations can be due to shifts caused by gamma
correction coefficients, or they can be due to shifts caused by the conversion matrices.

Electron beam voltages and luminance values are generally not directly proportional, so some correction is
made to luminance ahead of time. This is known as gamma correction. The luminance B of the phosphors
on the monitor and the input voltage E have the exponential relationship shown below.

B = pow(aE, gamma);

Streaming Audio and Video Data 1-11

File Formats

Thus, the signal source raises the RGB signals to the power of (1/gamma) beforehand. The value of
gamma varies slightly from monitor to monitor.

For images composed with computer graphics (CG), gamma correction may be set for a high-definition
computer monitor, or the file on a hard disk may have no correction at all. If gamma correction is improper
or not present, proper correction must be performed at this encoding stage. If the luminance of the final CG
image is darker (or brighter) than expected, improper gamma correction could be the problem.

The characteristics of the phosphors used in a monitor can also vary from monitor to monitor.
Characteristics may also vary from country to country based on the users' tastes.

These factors in a video monitor's handling of video signals can be evaluated to some extent by comparing
the image from the PlayStation’s RGB analog output to the image from the video output.

Differences in color shade can be due to the image source, but if this difference is noticeable enough, some
sort of counter-correction needs to be applied at the encoding stage. Differences in the displayed color
system and the color system used during encoding can result in mishandling of errors (noise) during the
encoding. This could be the problem if the image quality changes only for image sources having a specific
color shade. A minor discrepancy in the color space used in encoding could come out as a significant color
difference on the display.

Creation of Macroblocks

Since the luminance signal (Y) generally does not require as high a resolution as the color-difference
signals, its data is reduced by 1/4 (1/2 in the x direction and 1/2 in the y direction) relative to the Cb and Cr
elements. At the same time, the Y element is split into four 8x8 blocks. Thus, a 16x16 macroblock is split
into two color-difference blocks (Cb,Cr) and four luminance blocks (Y0,Y1,Y2,Y3). This collection of small
8x8 units is called a block. A macroblock is arranged in the following order, beginning with a color-
difference block.

Figure 11: Macroblock Arrangement

8x88x816x16

CbY1Y0

Y2

RGB
macroblock

Y3

Cr
CSC

Color-
difference blockLuminance block

The following methods are possible ways to reduce color-difference blocks by 1/4:

a) Make the block using only even-numbered x,y points from the original 16x16 blocks.
b) Use the average of four adjacent points from the original block as one point in the block.

In a) elements at or over 1/4 of the sampling frequency (fs) are carried over as noise (aliasing noise).

In b) the processing used to determine the average acts as a sort of two-dimensional lowpass filter (LPF),
and so provides better results than a). This method is used in MOVCONV. This method is still unable to
completely eliminate elements over 1/4 fs, however, so some aliasing remains. To improve on this a filter
having more dimensions and better cut-off properties would be needed, but this would require greater
encoding time. Use a filter having a number of dimensions suited to the application.

1-12 Streaming Audio and Video Data

File Formats

Block Offset

A color space expressed in 8-bit (0-255) RGB values would have the following range in the YCbCr color
space:

Y 0 ~ 255
Cb -128 ~ +127
Cr -128 ~ +127

In order to unify the ranges for the luminance blocks and the color-difference blocks, -128 is added to all
the luminance values in the luminance block. This allows all internal processing to be performed using
unsigned chars. During decoding in MDEC, a block is checked to see if it is a luminance block or a color-
difference block. If it is a luminance block, a value of +128 is added, which returns the value to its original
mode.

DCT

DCT (Discrete Cosine Transformation) is applied to the blocks making up the macroblock. DCT is generally
a type of similarity transformation called an orthogonal transformation. Taking an 8x8 matrix X, where the
elements are the luminance values in a block, the transformation defined by

Y = P y X y Pi

is called a similarity transformation (P is a matrix having an inverse matrix, and Pi is the inverse of P). When
Pt is the transpose of matrix P (Pt(x,y)=P(y,x)), and

Pi = Pt

then this matrix is called an orthogonal matrix, and this transformation is called an orthogonal
transformation. Using orthogonal matrix P, the orthogonal transformation can be written as

Y = P y X y Pt

DCT is this orthogonal transformation, where P has the values shown below.

1/64 x

11303218481656815681481632181130

22175352535222172217535253522217

32185681113048164816113056813218

40964096409640964096409640964096

48161130568132183218568111304816

53522217221755325532221722175352

56814816321811301130321848165681

40964096409640964096409640964096

 P

































−−−−
−−−−

−−−−
−−−−

−−−−
−−−−

−−−−

=

In this case, Pt is as follows, so that P y Pt = E (E: unit matrix).

1/64 x

11302217321840964816535256814096

32185352568140961130221748164096

48165352113040965681221732184096

56812217481640963218535211304096

56812217481640963218535211304096

48165352113040965681221732184096

32185352568140961130221748164096

11302217321840964816535256814096

 Pt

































−−−−
−−−

−−−−−
−−−−

−−−−
−−−

−−−−−

=

Based on P y Pt = E, the inverse transformation of DCT can be expressed as

X = Pt y Y y P

Thus, it can be seen that IDCT is simply DCT with matrix P replaced by the transpose matrix of P.

Streaming Audio and Video Data 1-13

File Formats

Physical Significance of DCT

Physically, DCT signifies a frequency transformation. The upper left element (element (0,0)) of the 8x8
matrix obtained from a DCT transformation expresses the DC (direct current) element of the original image
block X, and is equivalent to the average of all the elements in image block X. The other elements express
the AC (alternating current) elements, and the frequency elements increase to the right and down in the
matrix.

In natural images, the frequency elements are generally concentrated in the lower regions. Thus, performing
a DCT transformation results in smaller values toward the bottom right. Compression using DCT takes
advantage of this tendency in the elements.

Quantization

After DCT transformation, each element in a block is quantized according to different resolutions. A
quantization table (Q table) is used to indicate the quantization widths (steps) for each element.

MDEC uses the quantization table shown below. The same table is currently used for both the luminance
blocks and the color-difference blocks.

Luminance block:

1/16 x

8369564638352927
6956463834292726

5848403532292726
4840353229272622

4037342927262222
3834342927262219
3734292724221616

342927262219162

 Qtab

































=

Color-difference block:

1/16 x

8369564638352927
6956463834292726

5848403532292726
4840353229272622

4037342927262222
3834342927262219
3734292724221616

342927262219162

 Qtab

































=

The actual quantization is performed for each element by dividing it by the product of the corresponding
Q table value and QUANT, which determines the quantization step for the entire block. DC elements are
not affected by QUANT.

y[0] = x[0] y 16/(iqtab[0] y 8);

for (i = 1; i < 64; i++)

y[i] = x[i]/(QUANT y Qtable[i]);

Q table values increase toward the bottom right of the matrix. This is because the higher frequency
elements of the image do not need as much accuracy as the lower frequency elements.

1-14 Streaming Audio and Video Data

File Formats

Making the QUANT (the overall quantization step) value large increases the amount of lost data, thus
decreasing image quality after decoding. However, since the number of 0 elements in the block is
increased, the size of the data used in the run-level transformation is decreased.

Zig-zag Transformation

The quantized block is numbered one-dimensionally in a type of ordering called zig-zag ordering.
Quantization and zig-zag transformation are performed together in the following manner.

static int zscan[] = {
 0 ,1 ,8 ,16,9 ,2 ,3 ,10,
 17,24,32,25,18,11,4 ,5 ,
 12,19,26,33,40,48,41,34,
 27,20,13,6 ,7 ,14,21,28,
 35,42,49,56,57,50,43,36,
 29,22,15,23,30,37,44,51,
 58,59,52,45,38,31,39,46,
 53,60,61,54,47,55,62,63,
};
static block_t iqtab[] = {
 2,16,19,22,26,27,29,34,
 16,16,22,24,27,29,34,37,
 19,22,26,27,29,34,34,38,
 22,22,26,27,29,34,37,40,
 22,26,27,29,32,35,40,48,
 26,27,29,32,35,40,48,58,
 26,27,29,34,38,46,56,69,
 27,29,35,38,46,56,69,83,}
blk_zig[0] = blk_dct[0]*16/(iqtab[0]*8);
for (i = 1; i < 64; i++) {
 j = zscan[i];
 blk_zig[i] = blk_dct[j]*16/(iqtab[j]*q_scale);
}

By arranging the blocks in zig-zag order, the elements (coefficients) in the block are arranged starting from
the elements corresponding to lower frequency elements. There are more 0 elements further back in the
series to make run-level compression easier.

The example below shows a macroblock going from DCT transformation to zig-zag transformation. These
transformations are for a 16x16 black-and-white block. Because the data is black and white, the elements
in the color-difference block are all zero.

Streaming Audio and Video Data 1-15

File Formats

(QUANT = 8)

Cb
src:
 0 0 0 0 0 0 0 0
 0 0 0 0 0 0 0 0
 0 0 0 0 0 0 0 0
 0 0 0 0 0 0 0 0
 0 0 0 0 0 0 0 0
 0 0 0 0 0 0 0 0
 0 0 0 0 0 0 0 0
 0 0 0 0 0 0 0 0
 dct:
 0 0 0 0 0 0 0 0
 0 0 0 0 0 0 0 0
 0 0 0 0 0 0 0 0
 0 0 0 0 0 0 0 0
 0 0 0 0 0 0 0 0
 0 0 0 0 0 0 0 0
 0 0 0 0 0 0 0 0
 0 0 0 0 0 0 0 0
 zig:
 0 0 0 0 0 0 0 0
 0 0 0 0 0 0 0 0
 0 0 0 0 0 0 0 0
 0 0 0 0 0 0 0 0
 0 0 0 0 0 0 0 0
 0 0 0 0 0 0 0 0
 0 0 0 0 0 0 0 0
 0 0 0 0 0 0 0 0

Cr
src:
 0 0 0 0 0 0 0 0
 0 0 0 0 0 0 0 0
 0 0 0 0 0 0 0 0
 0 0 0 0 0 0 0 0
 0 0 0 0 0 0 0 0
 0 0 0 0 0 0 0 0
 0 0 0 0 0 0 0 0
 0 0 0 0 0 0 0 0
dct:
 0 0 0 0 0 0 0 0
 0 0 0 0 0 0 0 0
 0 0 0 0 0 0 0 0
 0 0 0 0 0 0 0 0
 0 0 0 0 0 0 0 0
 0 0 0 0 0 0 0 0
 0 0 0 0 0 0 0 0
 0 0 0 0 0 0 0 0
zig:
 0 0 0 0 0 0 0 0
 0 0 0 0 0 0 0 0
 0 0 0 0 0 0 0 0
 0 0 0 0 0 0 0 0
 0 0 0 0 0 0 0 0
 0 0 0 0 0 0 0 0
 0 0 0 0 0 0 0 0
 0 0 0 0 0 0 0 0

1-16 Streaming Audio and Video Data

File Formats

Y0
src:
 -128 -128 -128 -128 -128 -128 -128 -128
 -128 -128 -128 -128 -128 -68 -51 -39
 -128 -128 -128 -83 -59 -42 -28 -17
 -128 -128 -83 -56 -38 -23 -11 0
 -128 -128 -59 -38 -22 -8 5 14
 -128 -68 -42 -23 -8 6 18 28
 -128 -51 -28 -11 5 18 30 40
 -128 -39 -17 0 14 28 40 51
dct:
 -229 -155 -23 -21 -10 -4 -1 -4
 -155 42 34 23 12 12 7 0
 -23 34 7 -6 -13 -10 -7 -5
 -21 23 -6 -5 -2 1 3 3
 -10 12 -13 -2 5 4 5 6
 -4 12 -10 1 4 -4 -4 1
 -1 7 -7 3 5 -4 -6 -1
 -4 0 -5 3 6 1 -1 2
zig:
 -229 -19 -19 -2 5 -2 -2 3
 3 -2 -1 2 1 2 -1 0
 1 0 0 1 0 0 1 -1
 0 -1 1 0 0 0 -1 0
 0 -1 1 0 0 -1 0 0
 0 0 0 0 0 0 0 0
 0 0 0 0 0 0 0 0
 0 0 0 0 0 0 0 0

Y1
src:
 -128 -128 -128 -128 -128 -128 -128 -128
 -29 -21 -16 -15 -128 -128 -128 -128
 -7 1 7 11 12 5 -128 -128
 10 18 25 30 33 32 23 -128
 25 33 40 45 49 50 46 -128
 38 46 53 59 63 65 64 56
 50 58 65 71 74 78 78 73
 60 69 75 82 86 89 89 85
dct:
 -1 55 -57 20 -23 16 -5 -4
 -263 57 -8 -7 2 2 6 -9
 -57 -34 48 -40 26 -14 10 -8
 -38 -35 22 -5 -2 7 -9 8
 -22 -18 -10 27 -20 14 -16 14
 -3 -30 -2 14 2 -11 3 5
 1 -19 -6 9 12 -23 13 -1
 -12 8 -19 17 -1 -9 6 0
zig:
 -1 7 -33 -6 7 -6 2 -1
 -3 -3 -2 -3 4 -1 -2 1
 0 -3 2 -1 0 0 -2 -1
 0 2 0 0 0 0 -1 0
 2 0 -1 -1 1 0 1 -1
 0 1 0 0 0 1 0 1
 -1 1 1 -1 -1 0 1 0
 -1 0 0 0 0 0 0 0

Streaming Audio and Video Data 1-17

File Formats

Y2
src:
 -128 -29 -7 10 25 38 50 60
 -128 -21 1 18 33 46 58 69
 -128 -16 7 25 40 53 65 75
 -128 -15 11 30 45 59 71 82
 -128 -128 12 33 49 63 74 86
 -128 -128 5 32 50 65 78 89
 -128 -128 -128 23 46 64 78 89
 -128 -128 -128 -128 -128 56 73 85
dct:
 -1 -263 -57 -38 -22 -3 1 -12
 55 57 -34 -35 -18 -30 -19 8
 -57 -8 48 22 -10 -2 -6 -19
 20 -7 -40 -5 27 14 9 17
 -23 2 26 -2 -20 2 12 -1
 16 2 -14 7 14 -11 -23 -9
 -5 6 10 -9 -16 3 13 6
 -4 -9 -8 8 14 5 -1 0
zig:
 -1 -33 7 -6 7 -6 -3 -3
 -1 2 -2 -1 4 -3 -2 0
 -1 2 -3 0 1 0 0 2
 0 -1 -2 0 -1 -1 0 2
 0 -1 0 0 -1 1 0 -1
 1 0 0 -1 0 0 1 -1
 0 0 -1 -1 1 1 0 -1
 0 1 0 0 0 0 0 0

Y3
src:
 70 78 85 91 96 99 99 94
 78 86 94 99 104 106 106 103
 85 94 101 106 110 112 112 107
 91 99 106 112 115 118 117 109
 96 104 110 115 120 120 118 -128
 99 106 112 118 120 120 112 -128
 99 106 112 117 118 112 -128 -128
 94 103 107 109 -128 -128 -128 -128
dct:
 300 109 -84 28 -33 26 -6 -10
 109 -150 53 -7 14 -18 -5 20
 -84 53 23 -52 28 -11 21 -26
 28 -7 -52 65 -32 8 -14 19
 -33 14 28 -32 -1 22 -12 -3
 26 -18 -11 8 22 -39 27 -8
 -6 -5 21 -14 -12 27 -21 7
 -10 20 -26 19 -3 -8 7 -1
zig:
 300 14 14 -9 -19 -9 3 5
 5 3 -3 -1 2 -1 -3 2
 1 -4 -4 1 2 0 -1 2
 5 2 -1 0 -1 0 -1 -2
 -2 -1 0 -1 1 1 0 0
 0 1 1 -1 -1 1 1 -1
 -1 1 -1 -2 -1 1 0 1
 1 0 0 -1 0 0 0 0

1-18 Streaming Audio and Video Data

File Formats

Runlevel Conversion

Because there tend to be sequences of zeros in zigzag ordered blocks, data is compressed by combining
two or more continuous zeros. This is called runlevel conversion. Runlevel codes consist of the following
two-dimensional data:

(run,level) = (the number of zeros preceding level, value of the element)

An actual runlevel code has 16 bits and is in the following format:

Figure 12: Runlevel Code Format

9 01015

RUN LEVEL

RUN the number of zeros preceding a non-zero coefficient (unsigned, 6 bits)
LEVEL the non-zero coefficient (signed, 10 bits)

A runlevel code at the beginning of a block always has a run field of 0. (The runlevel is (0,0) even if the DC
element is 0.) Therefore, the quantization step (QUANT) is always placed in the run field of the first runlevel
code in a block.

Figure 13: Quantization Step Placement

QUANT DC-LEVEL

15 10 9 0

QUANT quantization step (unsigned, 6 bits)
LEVEL DC coefficient (signed, 10 bits)

A runlevel pair RL is transferred as a two-set 32-bit pack.

Figure 14: Runlevel Pairs

31 23 15 7 0

RL(N)

RL(4)

RL(2)

RL(5)

RL(3)

RL(1)

RL(N-1)

...

QL

Streaming Audio and Video Data 1-19

File Formats

The number of run-level pairs varies from block to block, so a (run,level)=(63,128)=0xfe00 is inserted as a
termination code after the final run-level pair in a block.

For example,

-229 -19 -19 -2 5 -2 -2 3 3 -2 -1 2 1 2 -1 0 1 0 0
1 0 0 1 -1 0 -1 1 0 0 0 -1 0 0 -1 1 0 0 -1
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0

A matrix having this data would be organized as follows:

(0,-229)(0,-19)(0,-19)(0,-2)(0,5)(0,-2)(0,-2)(0,3)(0,3)(0,-2)(0,-1)
(0,2)(0,1)(0,2)(0,-1)(1,1)(2,1)(2,1)(0,-1)(1,-1)(0,1)(3,-1)(2,-1)
(0,1)(2,-1)(NOP)

A NOP: (run,level)=(63,128)=0xfe00 is inserted at the end of the block as a delimiter. This indicates the end
of the block and also indicates that the subsequent block elements will be a string of zeros. For details, see
the next section.

The previous block would be converted as follows (QUANT=8):

0x03ED231B,0x03FE03ED,0x03FE0005,0x000303FE,0x03FE0003,0x000203FF,0x00020001
,0x040103FF,0x08010801,0x07FF03FF,0x0FFF0001,0x00010BFF,0xFE000000,

The RL Data Format

RL data combines all the runlevel transformed block data required for decoding. RL data includes a one-
word (32-bit) header and a footer for maintaining 32-word boundaries.

Each runlevel making up a block is delimited with a NOP (0xfe00). NOPs indicate the following:

1. When a NOP appears at a position other than between blocks: That block is ended and the
subsequent block elements are filled with 0.

2. When a NOP appears between blocks: The NOP is skipped.

3. When two NOPs appear in the middle of a block, the first NOP functions as a delimiter and the second
NOP is simply skipped.

The blocks are assumed to be in the following order: Cb, Cr, Y0, Y1, Y2, Y3. Six blocks make a single
macroblock. The number of blocks in an RL must be a multiple of a macroblock unit (6).

A header word has the following format:

Figure 15: Header Word Format

MAGIC SIZE

01531

MAGIC magic number (constant 0x3800)

SIZE data size (word), not including header

The data size must be a multiple of 32. Consequently, a footer containing an appropriate number of NOPs
is added as padding to make the data a fixed length.

The results of a runlevel transformation of the previous macroblock is shown below. Because all the
elements in the Cb and Cr blocks are 0, it can be seen that both blocks are contained in one word that
includes the delimiter.

0x38000060, 0xFE002000, 0xFE002000, 0x03ED231B,
0x03FE03ED, 0x03FE0005, 0x000303FE, 0x03FE0003,
0x000203FF, 0x00020001, 0x040103FF, 0x08010801,
0x07FF03FF, 0x0FFF0001, 0x00010BFF, 0xFE000BFF,
0x000723FF, 0x03FA03DF, 0x03FA0007, 0x03FF0002,
0x03FD03FD, 0x03FD03FE, 0x03FF0004, 0x000103FE,

1-20 Streaming Audio and Video Data

File Formats

0x000207FD, 0x0BFE03FF, 0x040203FF, 0x040213FF,
0x03FF07FF, 0x04010001, 0x040103FF, 0x04010C01,
0x000103FF, 0x03FF0001, 0x040103FF, 0xFE0007FF,
0x03DF23FF, 0x03FA0007, 0x03FA0007, 0x03FD03FD,
0x000203FF, 0x03FF03FE, 0x03FD0004, 0x07FF03FE,
0x03FD0002, 0x08020401, 0x03FE07FF, 0x03FF07FF,
0x07FF0402, 0x00010BFF, 0x000107FF, 0x08010BFF,
0x0BFF03FF, 0x000103FF, 0x07FF0001, 0xFE000401,
0x000E212C, 0x03F7000E, 0x03F703ED, 0x00050003,
0x00030005, 0x03FF03FD, 0x03FF0002, 0x000203FD,
0x03FC0001, 0x000103FC, 0x07FF0002, 0x00050002,
0x03FF0002, 0x07FF07FF, 0x03FE03FE, 0x07FF03FF,
0x00010001, 0x00010C01, 0x03FF03FF, 0x00010001,
0x03FF03FF, 0x03FF0001, 0x03FF03FE, 0x04010001,
0x0BFF0001, 0xFE00FE00, 0xFE00FE00, 0xFE00FE00,
0xFE00FE00, 0xFE00FE00, 0xFE00FE00, 0xFE00FE00,
0xFE00FE00, 0xFE00FE00, 0xFE00FE00, 0xFE00FE00,
0xFE00FE00, 0xFE00FE00, 0xFE00FE00, 0xFE00FE00,
0xFE00FE00,

The syntax for RL data is as follows:

RL data header

macroblock

...

macroblock

footer

Header 16bit: MAGIC (0x3800)

16bit: SIZE

Macroblock Cb block

Cr block

Y0 block

Y1 block

Y2 block

Y3 block

Block 5-bit: QUANT, 10-bit: DC

5-bit: RUN, 10-bit: LEVEL

...

5-bit: RUN, 10-bit: LEVEL

NOP

NOP

 ...

Header

VLC

VLC (Variable Length Coding) is based on Huffman coding theory with reversible data compression using a
fixed dictionary (code book). Huffman coding takes advantage of the probabilities of occurrence of data

Streaming Audio and Video Data 1-21

File Formats

(known as a word, in this case, a runlevel code). Data is compressed by assigning the shorter codes to
words having higher probabilities of occurrence.

For example, the word (run,level) = (0, 1) has a high frequency of occurrence, and so is assigned the code
01 (2 bits). On the other hand, (run,level) = (23,1) has a low frequency of occurrence and so it is assigned a
code of 00000000111101 (14 bits).

The look-up table for words and codes is called a dictionary (code book). Huffman coding assumes that
the probabilities of occurrence of data is known ahead of time, and that these probabilities do not change
over time (non-memory data source). In this case, the code book is established in the beginning, and this
code book is called a static dictionary.

Code books vary according to the characteristics of the image source. For this reason, to achieve optimum
compression ratios, code books should actually be prepared for each image according to the specific
characteristics of that image. However, to simplify things, libpress prepares a single standard code book
that is applied to standard images. This code book is based on a runlevel code distribution in a typical
natural image. Different code books should be used for applications such as animation, where the
probability distribution in the runlevel codes is different from that of natural images.

The contents of the standard code book are appended at the end of this text. The bit sequences in the left-
hand column correspond to the runlevel codes in the right-hand column. EOB is an abbreviation of
EndOfBlock and represents an NOP (0xfe00).

Word (32-bit) boundaries are not significant in the coded data. Because byte ordering in the PlayStation is
little-endian, coded bit sequences are ordered starting with low-order bits. Code sequences packed in this
way are called bitstreams.

If a runlevel code that is not in the code book appears, an escape code 000001 followed by an FLC (fixed-
length code) is used. The (run, level) of an FLC are described at the end of this section.

VLC transformation during decoding is performed with software. Decoding operations for the rest of the
runlevel, encoded data are performed with hardware by MDEC. Thus, VLC decoding and runlevel decoding
are generally performed with pipelines in order to decrease processing time. In the library, the DecDCTvlc()
function performs VLC decoding, and the DecDCTin()/DecDCTout() functions perform DCT processing for
runlevel and after.

BS Format

RL format data on which VLC transformation has been performed is called BS data. The BS format is made
up of bitstreams in which headers and blocks are coded.

The header is made up of two words and has the format shown below. In the current BS format, it is
assumed that all the blocks contained have identical quantization steps (QUANT). Consequently, QUANT is
stored only once in the header.

Figure 16: BS Header Format

MAGIC

VER

RLSIZE

QUANT

31 015

QUANT quantization step

MAGIC magic number (constant 0x3800)

RLSIZE data size (word) of runlevel, not including header

VER version number (constant 2)

A block contains a 10-bit DC element followed by a bitstream converted from a runlevel representing the
AC element. The block boundaries are not necessarily at the word boundaries.

1-22 Streaming Audio and Video Data

File Formats

Figure 17: BS Blocks

31 16 015

MAGIC RLSIZE

VER QUANT

Cb

Cr

Y2

Y1

Y0

Y3

The RL data footer padding (0xfe00) is not included in BS data. So when BS decoding is performed,
DecDCTvlc() automatically adds footers to maintain 32-word boundaries.

The BS format does not contain data for the frame size or frame rate to be used in the final playback.
These settings need to be indicated to the program in other ways.

The VLC transformation of the runlevel from the previous example is shown below.

0x38000060, 0x00020008, 0x02C60020, 0x8039C01C,
0x29284931, 0x6476A4F4, 0xE3D752BB, 0xE050977F,
0x860500BC, 0xE5960868, 0x3A7192C3, 0x278C2D1C,
0xFCDD3463, 0xB7EC8E6F, 0x005EF7FE, 0x60500508,
0x7D098659, 0xA5D0E185, 0x3A5F5B04, 0xE7CB8C75,
0xD9DA575F, 0x30004B00, 0x200EC006, 0x51304062,
0x7D1C9851, 0xD0DCB460, 0x311D8741, 0xEFB1DD29,
0xBFDDDBFD, 0x5CFF3F36, 0x00008000,

Actual VLC Decoding

After the header section, the block data which makes up each macro block is Huffman coded and stored.
An outline of VLC code decoding is described here.

It is assumed that the block start word is the decoding of the

0x061FF0D1

block. The DC (direct current) component is registered at the start of the block data. Generally, the value of
the element at the upper left corner of the block (0,0) is called the DC component and other elements are
called AC (alternating current) components.

Since MPEG bit streams are stipulated by short word big-endian, they are converted to:

0x061FF0D1 = 1111 0000 1101 0001 0000 0110 0001 1111

F 0 D 1 0 6 1 F

DC is registered as fixed code, so the head 10bit (1111 0000 11) becomes the DC value. In such a case,
since MSB is 1, note that DC will be a negative value and

1111 0000 11 = -60

DC will have a 10bit code.

Streaming Audio and Video Data 1-23

File Formats

When the block is a color difference block (Cb/Cr), it will become the DC value as is. However, when the
block is a luminance block (Y0, Y1, Y2, Y3), a 128 offset will be added to the DC component. In this
example, the DC component is:

-60 + 128 = 68

This is the actual start block DC level. With a luminance block, it can be seen that the average luminance
value of the encoded image (upper right 8x8 area) start block is 68. The purpose of this offset is to set the
dynamic range between the luminance (Y) block and the color difference block (Cb, Cr) to (-128, 128). Note
that the offset is not added in the color difference block (Cb, Cr).

The run level format AC component is coded and then follows after the DC component.

In 0x061FF0D1 = 1111 0000 1101 0001 0000 0110 0001 1111

the 01000 bitstream following 1111000011 indicates

(run,level)=0, +2).

This can be decoded by referring to the bit stream entered last and the run level compatibility (codebook).

The decoding block run level from the above is:

(run, level) = (QUANT, -60), (0,2)

The QUANT value BS header section is used as is.

BS Format Version

Versions 2 and 3 of the current bs format have different DC component decoding methods.

Table 1-3: BS Format Versions

version Block DC component

2 FLC (Fixed Length Code)
3 VLC (Variable Length Code)

As described above, the DC section is coded as is (fixed code format) and no variable coding is performed.
The forecasted DC coding and Huffman coding are packaged in version 3.

DC forecasts in version 3 are carried out as follows:

(1) Codes the difference from the DC component in the previous block.

(2) VLC encodes the differential value bit width.

(3) Registers the bit width of the VLC encoded differential value + the differential value

The luminance block (Y0, Y1, Y2, Y3) and color difference block (Cb, Cr) use a different VLC table (Huffman
table) than that used in (2).

1-24 Streaming Audio and Video Data

File Formats

The table is:

Table 1-4: DC Codebook

Differential value Luminance Block Color Difference Block
bit width

0 100 00
1 00 01
2 01 10
3 101 110
4 110 1110
5 1110 11110
6 11110 111110
7 111110 1111110
8 1111110 11111110

In other words, with Y block, when 111110 comes to the header, the DC value which follows next will have
coding and will be an 8bit width. This is actually shifted 1 bit to the left. For example,

111110 11111111

indicates -255.

In version 3 encoding, the Huffman coding of the DC component improves the compression ratio, but this
also increases the processing time. Version 2 should be used in applications where CPU processing time
can be a bottleneck.

In both versions 2 and 3, the DC value 511(1ff) is used as END_OF_FRAME.

Decoding Speed

The maximum MDEC decompression speed is 9000 macroblocks/second. This is equivalent to a rate of 30
frames of 320x240 images decompressed in a second. This decompression speed has no relation to the
compression ratio. Of course, the resolution of the images is in inverse proportion to the playback frame
rate. In other words, 320x240 images can be played back at 30 frames/second, and 640x240 images can
be played back at 15 frames/second.

Table 1-5: Decompression Speed

Resolution 160x240 320x240 640x240 640x480

Frames/second 60 30 15 7.5

In practice, the CPU performs VLC decoding through DCT decompression in the background. If the CPU
is performing other compute-intensive processing, VLC decoding can become a bottleneck.

The transfer rate for the CD-ROM can be selected as either 150KB/sec (standard speed) or 300KB/sec
(double speed). With double-speed playback, data can be read from the CD-ROM at a rate of 30
frames/second if the bitstream for one frame is compressed to 10KB (=300KB/30) or less.

Table 1-6: Transfer Speed

Data size 5KB 10KB 20KB 40KB

Frames/second 60 30 15 7.5

The playback rate for animation is determined by these two factors. For example, double-speed playback
can be performed if the bitstream for one frame (320x240) recorded on a CD-ROM is compressed to 10KB
or less. As long as this condition is met, the frame rate, the image resolution and the compression ratio can
be set as desired..

Streaming Audio and Video Data 1-25

File Formats

Improving Image Quality

The following methods are possible ways to improve the image quality in MDEC animations.

Preprocessing

Image noise at the initial stage, i.e. the image input stage, is the biggest factor in image quality during
playback. For this reason, very high quality images should be used. Image sources need to be at least 24-
bit images.

The signal to noise (S/N) ratio for image sources can be decreased by horizontal filtering as well as filtering
over time.

If a high-resolution image capturing system can be used, sampling should be done at a high resolution
(high sampling rate), and then a lowpass filter should be applied for down-conversion. If 2x oversampling
can be performed, then random noise (white noise) can be reduced by up to 1/2.

If possible, a 60 frames/second image source should be used in creating images for 15 frames/second
playback, and one frame should be created from four sequential frames. Simply creating new frames from
the average of four frames can reduce noise by up to 1/4.

When macroblocks are to be created by compressing 16x16 pixel Cb, Cr (color data) blocks to 8x8 pixels,
raising the filtering coefficient to a higher dimension can eliminate aliasing. Block noise (noise that appears
in a 16x16 pixel unit) during decoding is due to the Cb, Cr blocks. Block noise in an image source can be
reduced by taking advantage of the correlation between adjacent blocks during Cb, Cr block creation.

Block noise is visually conspicuous when the encoded noise takes on different values between frames. This
can occur when there are large changes in the quantization steps between adjacent frames. When BS data
is recorded by interleaving with audio sectors, the audio sectors and the movie sectors are asynchronous,
and the data sizes assigned to each frame vary. This leads to variations in the quantization steps and
appears as noise. Noise caused by variation in quantization can often be seen in cases where the image
source has a lot of static areas (animation backgrounds). In these cases, encoding must always be
performed with fixed sectors.

Evaluation during Encoding

The displays of some home televisions and monitors give more emphasis than necessary to the color-
difference signal. In addition, there are cases where gamma correction is not performed correctly. This
means that the error in the color-difference component during calculations is evaluated as being lower than
it actually is, depending on the situation. There are also cases where the color-difference signal does not
have a resolution of 1/4 to start with, and this can cause the playback image to appear deteriorated on
specific TV sets. In these cases, the evaluation functions used in encoding must be modified. The current
code book is based on natural images. The compression ratio is lower for images such as animation which
have a probability distribution different from natural images.

Correlation between Frames

In encoding that takes advantage of frame correlations, the benefits are outweighed by the penalties, such
as the need for processing dropped frames and the CPU load during decoding. However, for image
sources that obviously have a lot of fixed scenes, it would be possible to take solely 0-degree correlations.
In such cases, it would be necessary to have data indicating correlation in addition to the BS format data.

1-26 Streaming Audio and Video Data

File Formats

Processing during Playback

In general, better results are obtained by playing back in 24-bit mode compared to playing back in 16-bit
mode. This is because a standard encoder truncates the low-order bits when going from 24 bits to 16 bits,
and quantization errors are not taken into consideration in the evaluation functions. When playing back at
16 bits, the input image source should be rounded off to 16 bits in the manner shown below, rather than
simply truncating to 16 bits.

pix16 = (pix24 + 0 x 10) & 0xfe

Codes

The VLC Code Book

The VLC code book is shown below. This code book is compatible with the one used in MPEG
microlayers.

Table 1-7: AC Code Book

bit pattern (run,level)
10 (EOB)
110 0 +1
111 0 -1
0110 1 +1
0111 1 -1
01000 0 +2
01001 0 -2
01010 2 +1
01011 2 -1
001010 0 +3
001011 0 -3
001110 3 +1
001111 3 -1
001100 4 +1
001101 4 -1
0001100 1 +2
0001101 1 -2
0001110 5 +1
0001111 5 -1
0001010 6 +1
0001011 6 -1
0001000 7 +1
0001001 7 -1
000001 (ESCAPE)
00001100 0 +4
00001101 0 -4
00001000 2 +2
00001001 2 -2
00001110 8 +1
00001111 8 -1
00001010 9 +1
00001011 9 -1

Streaming Audio and Video Data 1-27

File Formats

001001100 0 +5
001001101 0 -5
001000010 0 +6
001000011 0 -6
001001010 1 +3
001001011 1 -3
001001000 3 +2
001001001 3 -2
001001110 10 +1
001001111 10 -1
001000110 11 +1
001000111 11 -1
001000100 12 +1
001000101 12 -1
001000000 13 +1
001000001 13 -1
00000010100 0 +7
00000010101 0 -7
00000011000 1 +4
00000011001 1 -4
00000010110 2 +3
00000010111 2 -3
00000011110 4 +2
00000011111 4 -2
00000010010 5 +2
00000010011 5 -2
00000011100 14 +1
00000011101 14 -1
00000011010 15 +1
00000011011 15 -1
00000010000 16 +1
00000010001 16 -1
0000000111010 0 +8
0000000111011 0 -8
0000000110000 0 +9
0000000110001 0 -9
0000000100110 0 +10
0000000100111 0 -10
0000000100000 0 +11
0000000100001 0 -11
0000000110110 1 +5
0000000110111 1 -5
0000000101000 2 +4
0000000101001 2 -4
0000000111000 3 +3
0000000111001 3 -3
0000000100100 4 +3
0000000100101 4 -3

1-28 Streaming Audio and Video Data

File Formats

0000000111100 6 +2
0000000111101 6 -2
0000000101010 7 +2
0000000101011 7 -2
0000000100010 8 +2
0000000100011 8 -2
0000000111110 17 +1
0000000111111 17 -1
0000000110100 18 +1
0000000110101 18 -1
0000000110010 19 +1
0000000110011 19 -1
0000000101110 20 +1
0000000101111 20 -1
0000000101100 21 +1
0000000101101 21 -1
00000000110100 0 +12
00000000110101 0 -12
00000000110010 0 +13
00000000110011 0 -13
00000000110000 0 +14
00000000110001 0 -14
00000000101110 0 +15
00000000101111 0 -15
00000000101100 1 +6
00000000101101 1 -6
00000000101010 1 +7
00000000101011 1 -7
00000000101000 2 +5
00000000101001 2 -5
00000000100110 3 +4
00000000100111 3 -4
00000000100100 5 +3
00000000100101 5 -3
00000000100010 9 +2
00000000100011 9 -2
00000000100000 10 +2
00000000100001 10 -2
00000000111110 22 +1
00000000111111 22 -1
00000000111100 23 +1
00000000111101 23 -1
00000000111010 24 +1
00000000111011 24 -1
00000000111000 25 +1
00000000111001 25 -1
00000000110110 26 +1
00000000110111 26 -1

Streaming Audio and Video Data 1-29

File Formats

000000000111110 0 +16
000000000111111 0 -16
000000000111100 0 +17
000000000111101 0 -17
000000000111010 0 +18
000000000111011 0 -18
000000000111000 0 +19
000000000111001 0 -19
000000000110110 0 +20
000000000110111 0 -20
000000000110100 0 +21
000000000110101 0 -21
000000000110010 0 +22
000000000110011 0 -22
000000000110000 0 +23
000000000110001 0 -23
000000000101110 0 +24
000000000101111 0 -24
000000000101100 0 +25
000000000101101 0 -25
000000000101010 0 +26
000000000101011 0 -26
000000000101000 0 +27
000000000101001 0 -27
000000000100110 0 +28
000000000100111 0 -28
000000000100100 0 +29
000000000100101 0 -29
000000000100010 0 +30
000000000100011 0 -30
000000000100000 0 +31
000000000100001 0 -31
0000000000110000 0 +32
0000000000110001 0 -32
0000000000101110 0 +33
0000000000101111 0 -33
0000000000101100 0 +34
0000000000101101 0 -34
0000000000101010 0 +35
0000000000101011 0 -35
0000000000101000 0 +36
0000000000101001 0 -36
0000000000100110 0 +37
0000000000100111 0 -37
0000000000100100 0 +38
0000000000100101 0 -38
0000000000100010 0 +39
0000000000100011 0 -39

1-30 Streaming Audio and Video Data

File Formats

0000000000100000 0 +40
0000000000100001 0 -40
0000000000111110 1 +8
0000000000111111 1 -8
0000000000111100 1 +9
0000000000111101 1 -9
0000000000111010 1 +10
0000000000111011 1 -10
0000000000111000 1 +11
0000000000111001 1 -11
0000000000110110 1 +12
0000000000110111 1 -12
0000000000110100 1 +13
0000000000110101 1 -13
0000000000110010 1 +14
0000000000110011 1 -14
00000000000100110 1 +15
00000000000100111 1 -15
00000000000100100 1 +16
00000000000100101 1 -16
00000000000100010 1 +17
00000000000100011 1 -17
00000000000100000 1 +18
00000000000100001 1 -18
00000000000101000 6 +3
00000000000101001 6 -3
00000000000110100 11 +2
00000000000110101 11 -2
00000000000110010 12 +2
00000000000110011 12 -2
00000000000110000 13 +2
00000000000110001 13 -2
00000000000101110 14 +2
00000000000101111 14 -2
00000000000101100 15 +2
00000000000101101 15 -2
00000000000101010 16 +2
00000000000101011 16 -2
00000000000111110 27 +1
00000000000111111 27 -1
00000000000111100 28 +1
00000000000111101 28 -1
00000000000111010 29 +1
00000000000111011 29 -1
00000000000111000 30 +1
00000000000111001 30 -1
00000000000110110 31 +1
00000000000110111 31 -1

Streaming Audio and Video Data 1-31

File Formats

EOB: End Of Block

ESC: Escape

FLC Code

ESC is followed by a FLC(fixed-length code). The (run, level) of an FLC is defined as follows:

Table 1-8: Fixed Code (run)

Fixed Length Code run
000000 0
000001 1
000010 2
.....
111111 63

Table 1-9: Fixed Code (Level)

Fixed Length Code level
1000 0000 0000 0001 -256
1000 0000 0000 0010 -255
1000 0000 0000 0011 -254
.....
1000 0000 0111 1111 -129
1000 0000 1000 0000 -128
1000 0001 -127
1000 0010 -126
.....
1111 1110 -2
1111 1111 -1
0000 0001 1
0000 0010 2
.....
0111 1111 127
0000 0000 1000 0000 128
0000 0000 1000 0001 129
.....
0000 0000 1111 1111 255

XA: CD-ROM Voice Data

XA is the PlayStation CD-ROM XA voice data format. The typical extension in DOS is “.XA”.

The XA format is based on the following specifications. The XA file output by RAW2XA has a sub-header.

CD-ROM XA

SYSTEM DESCRIPTION CD-ROM XA

Copyright May 1991

1-32 Streaming Audio and Video Data

File Formats

File Formats

Chapter 2:
3D Graphics

2-2 3D Graphics

File Formats

3D Graphics 2-3

File Formats

RSD: 3D Model Data

Overview

The RSD format is a data format that is used to represent 3D models. The PlayStation artist tools are
designed to work with RSD-formatted models.

RSD-formatted models are represented as four separate files. These files are sometimes referred to
collectively as "RSD" or "RSD data".

The four files comprising an RSD-formatted model are:

• RSD File
The RSD file describes relationships between PLY/MAT/GRP files, texture files and extended files.

• PLY File
The PLY file contains positional information about the vertices of polygons.

• MAT File
The MAT file contains material information on polygons.

• GRP File
The GRP file contains grouping information on polygons.

Starting with this version, four types of extended files and one type of sub-extended file have been added
to the RSD format. These files were added to provide support for HMD.

The new extended file types are:

• MSH File
The MSH file contains information on how polygons are linked.

• PVT File
The PVT file contains information on offsets for centers of rotation.

• COD File
The COD file contains information on COORDINATE for VERTEX.

• MOT File
The MOT file contains animation information.

The sub-extended file type is:

• OGP File
The OGP file contains grouping information for VERTEX.

The RSD file contains information describing the relationships among all of the other files. Thus, the
collection of files that describe the structure of an object can be determined from the RSD file. (Since an
OGP file is a sub-extended file, it can only be specified from within a COD file.)

When all of the RSD files are located in a single directory, they can be specified by their filenames alone. If
the files are in separate directories they must be referenced using their relative (or absolute) pathnames.
(Note: This is the same convention as a TIM file.)

All files in RSD are text files with individual lines delimited by newline characters (either LF or CR/LF). Lines
beginning with '#' are treated as comments.

2-4 3D Graphics

File Formats

Each of the files described in this manual is based on the following versions.

• RSD
Version 3.0

• PLY
Version 3.0

• MAT
Version 3.0

• GRP
Version 3.0

• MSH
Version 1.0

• PVT
Version 1.0

• COD
Version 1.0

• OGP
Version 1.0

• MOT
Version 1.0

RSD File

The RSD file contains information on how the PLY/MAT/GRP files, texture files and extended files are
combined for a given object.

Beginning with this version, extended files can be used to represent multiple objects with a single set of
RSD files, allowing data to be managed in character units.

Overall structure

Figure 18: Overall structure of an RSD file

ID

File Specifications

ID

The ID is a string of the form "@RSDnnnnnn" (where nnnnnn is a number) indicating the RSD file format
version number. For example, version 3.0 would be specified with the string "@RSD970401".

File Specifications

• PLY File specification
PLY=PLY filename

• MAT File specification
MAT=MAT filename

• GRP File specification
GRP=GRP filename

• MSH File specification

3D Graphics 2-5

File Formats

MSH=MSH filename

• PVT File specification
PVT=PVT filename

• COD File specification
COD=COD filename

• MOT File specification
NMOT= number of MOT files
MOT[n]= filename of nth MOT file
 :
 :

• TIM(texture) File specification
NTEX= number of TIM (texture) files
TEX[n]= filename of nth TIM (texture) file
 :
 :

Sample file

The following is a simple example of an RSD file

Figure 19: Sample RSD file
@RSD970401
PLY=sample.ply
MAT=sample.mat
GRP=sample.grp
MSH=sample.msh
PVT=sample.pvt
COD=sample.cod
NMOT=1
MOT[0]=anim.mot
NTEX=3
TEX[0]=texture.tim
TEX[1]=texture2.tim
TEX[2]=texture3.tim

PLY File

The PLY file contains positional information about the vertices of polygons and related objects.

If extended files are not used, the coordinate system of a PLY file is the same as the coordinate system of
the extended PlayStation library (libgs). In other words, the X axis is oriented (increases) in the horizontal
direction towards the right side of the screen, the Y axis is oriented in the vertical direction towards the
bottom of the screen, and the Z axis is oriented into the screen.

When extended files are used during HMD conversion, each vertex contained in the COD file is converted
into the coordinate system of the extended PlayStation library (libgs), taking into account the rotations and
translations specified in the PVT file.

The direction (obverse or reverse) of a single-faced polygon is determined by the order in which the vertices
are described in a POLYGON descriptor. The obverse of the polygon is defined as the plane for which the
vertices of a polygon are described clockwise (CW).

2-6 3D Graphics

File Formats

Overall structure

Figure 20: Overall structure of a PLY file

ID

VERTEX
descriptor

:

NORMAL
descriptor

:

Data length record

POLYGON
descriptor

:

ID

The ID is a string of the form "@PLYnnnnnn" (where nnnnnn is a number) indicating the PLY file format
version number. For example, version 3.0 would be specified with the string "@PLY970401".

Data length record

The data length record describes the number of data lines for each of the data blocks which follow. The
items on each line are delimited by a space or tab.

Figure 21: Data length record in a PLY file

VERTEX
count

NORMAL
count

POLYGON
count

VERTEX descriptor

The VERTEX descriptor consists of three floating point values which represent the coordinates of a vertex.
There is one vertex per line.

Figure 22: VERTEX descriptor in a PLY file

X coord Y coord Z coord

NORMAL descriptor

The NORMAL descriptor consists of three floating point values which represent the elements of a normal
vector.

Figure 23: NORMAL descriptor in a PLY file

X element Y element Z element

POLYGON descriptor

The POLYGON descriptor consists of a flag that indicates the type of polygon together with nine
parameters that describe the polygon. The meaning of the parameters varies according to the value of the
TYPE field in the flag.

3D Graphics 2-7

File Formats

Figure 24: POLYGON descriptor in a PLY file

Flag
Parameter

#1
Parameter

#2
Parameter

#9

TYPE

Bit7(MSB) 0(LSB)

TYPE: Polygon Types
000: Triangle
001: Quadrangle
010: Straight line
011: Sprite
1XX: reserved

(Flag bits)

The flag is a hexadecimal integer that indicates the type of polygon. The '0x' prefix is not used.

[Triangular and Quadrangular Polygons]

The parameter section describes the vertices (VERTEX) and normals (NORMAL) of a polygon. Vertices and
normals are represented as integers with values in the range from 0 to 3, where the value indicates the
location of the data within the group (0 represents the start of the group).

When flat shading is to be applied to a polygon, the normals for all the vertices are identical, and the value
of the first vertex is used. When Gouraud shading is to be applied, the normals have different values.

For triangles, the data corresponding to the fourth vertex (vertex 3 and normal 3) is set to 0.

For quadrangular polygons, vertices 1, 2 and 3 form one triangle, and vertices 2, 3 and 4 form a second
triangle.

Figure 25: POLYGON descriptor for triangular/quadrangular polygons

 Flag Vertex
0

Vertex
1

Vertex
2

Vertex
3

Normal

0
Normal

1
Normal

2
Normal

3

[Straight Lines]

The parameter section contains the VERTEX numbers of the two endpoints of the line.

Figure 26: POLYGON descriptor for straight lines

Flag Vertex
0

Vertex
1

0 0 0 0 0 0

[Sprites]

In modeling data, sprites are rectangular images located in 3D space. They can be viewed as textured
polygons that are always oriented toward the viewpoint.

The parameter section contains VERTEX data which represents the sprite position along with the width and
height of the sprite image (also known as the sprite pattern).

Figure 27: Polygon descriptor for sprites

Flag
Vertex

0
Height 0 0 0 0 0Width

2-8 3D Graphics

File Formats

Example

The following is a simple example of a PLY file.

Figure 28: Sample PLY file
@PLY970401
Number of Items
8 12 12
Vertex
0 0 0
0 0 100
0 100 0
0 100 100
100 0 0
100 0 100
100 100 0
100 100 100
Normal
0.000000E+00 0.000000E+00 -1.000000E+00
0.000000E+00 0.000000E+00 -1.000000E+00
1.000000E+00 0.000000E+00 -0.000000E+00
1.000000E+00 0.000000E+00 0.000000E+00
0.000000E+00 0.000000E+00 1.000000E+00
0.000000E+00 0.000000E+00 1.000000E+00
-1.000000E+00 -0.000000E+00 -0.000000E+00
-1.000000E+00 0.000000E+00 0.000000E+00
-0.000000E+00 1.000000E+00 0.000000E+00
0.000000E+00 1.000000E+00 0.000000E+00
0.000000E+00 -1.000000E+00 0.000000E+00
0.000000E+00 -1.000000E+00 0.000000E+00
Polygon
0 6 2 0 0 0 0 0 0
0 6 0 4 0 1 1 1 0
0 7 6 4 0 2 2 2 0
0 7 4 5 0 3 3 3 0
0 3 7 5 0 4 4 4 0
0 3 5 1 0 5 5 5 0
0 2 3 1 0 6 6 6 0
0 2 1 0 0 7 7 7 0
0 7 3 2 0 8 8 8 0
0 7 2 6 0 9 9 9 0
0 4 0 1 0 10 10 10 0
0 4 1 5 0 11 11 11 0

MAT File

Overall structure

Figure 29: Overall structure of a MAT file

MATERIAL
descriptor

:
:

MATERIAL
descriptor count

ID

ID

The ID is a string of the form "@MATnnnnnn" (where nnnnnn is a number) indicating the MAT file format
version number. For example, version 3.0 would be specified with the string "@MAT970401".

3D Graphics 2-9

File Formats

MATERIAL descriptor count

The MATERIAL descriptor count contains the number of MATERIAL descriptors which follow (i.e. number
of lines).

MATERIAL descriptor

The MATERIAL descriptor contains the material information for a specific polygon.

Figure 30: MATERIAL descriptor for a MAT file

Polygon No. Flag Shading Material Info...

[Polygon No.]

A polygon number is an index into a POLYGON group in the PLY file. The polygon number is used to
represent a particular polygon. Multiple polygons can be included by specifying a range on a single line.

Table 2-1: Polygon Numbers

Values Specified polygons

1 1 only
0-5 0 1 2 3 4 5
2,4,6 2 4 6

[Flag]

The flag is a hexadecimal integer which represents the material attributes of a polygon. The '0x' prefix is not
used. The meaning of the bits in the flag are as follows.

Bit0: Light-source calculation mode
0: Light-source calculations performed
1: Fixed color

When light-source calculations are performed, the rendering color is determined by the orientation of the
light source relative to the polygon. When a fixed color is used, the color is constant regardless of
orientation.

Bit 1: Back face
0: Single-faced polygon
1: Double-faced polygon

Bit 2: Semitransparency flag
0: Semitransparency OFF
1: Semitransparency ON

When semitransparency is ON, untextured polygons are always made to be semitransparent. Polygons
with semitransparent textures are made semitransparent/opaque/transparent depending on the STP bit of
the texture data.

Bits 3-5: Semitransparency rate
000:50% back + 50% polygon
001:100% back + 100% polygon
010:100% back - 100% polygon
011:100% back + 25% polygon
1XX:reserved

The current library does not permit semitransparency rates to be changed for individual polygons.

2-10 3D Graphics

File Formats

bit6 Reserved (must be 0)

bit7 Preset HMD generation switch (used only for generating HMD data)

0:OFF
1:ON

[Shading]

A single character indicating the shading mode.

"F": Flat

"G": Gouraud (smooth)

For flat shading, shading is based on the normal of the first vertex specified in the PLY file.

[Material information]

The format of this section depends on the material type, such as whether there are textures, and so on.

Figure 31: No texture (colored polygons/lines)

TYPE R G B

TYPE: Material type, value is "C"
R, G, B: Polygon color, RGB component (0-255)

Figure 32: No texture (Gouraud-colored polygons/lines)

TYPE R0 G0 B0 R1 G1 B1 ... R3 G3 B3

TYPE: Material type, value is "G"
Rn, Gn, Bn: RGB component of the nth vertex (n = 0-3)
 (4th vertex is 0,0,0 for triangles)

Figure 33: Textured polygons/sprites

TYPE TNO U0 V0 U1 V1 U2 V2 U3 V3

TYPE: Material type, value is "T"
TNO: Specifies the TIM data file to use
 (The texture number of the descripto r in the RSD file)
Un, Vn: Location of the texture space for vertex n.
 The values of the 4th vertex (U3, V3) are (0,0) for a triangle.

3D Graphics 2-11

File Formats

Figure 34: Polygons with colored textures

TYPE TNO U0 V0 U1 V1 U2 V2 U3 V3 R G B

TYPE: Material type, value is "D"
TNO: Specifies the TIM data file to use
 (The texture number of the descriptor in the RSD file)
Un, Vn: Location of the texture space for vertex n.
 The values of the 4th vertex (U3, V3) are (0,0) for a triangle.
R, G, B: Polygon color, RGB component (0-255)

* Polygons with colored textures are used to apply brightness to individual polygon textures,
without the use of light-source calculations. This allows a textured polygon to be rendered
three-dimensionally without performing any light-source calculation. The colored-texture
material type is valid only when the light-source calculation mode is set to fixed color.

Figure 35: Polygons with gradation texture

TYPE TNO U0 V0 U1 V1 U2 V2 U3 V3

R0 B0G0 B1R1 G1 ... R3 G3 B3

TYPE: Material type, value is "H"
TNO: Specifies the TIM data file to use
 (The texture number of the descriptor in the RSD file)
Un, Vn: Location of the texture space for vertex n.
 The values of the 4th vertex (U3, V3) are (0,0) for a triangle.
Rn, Gn, Bn: RGB component of vertex n (n = 0-3)
 For triangles, the RGB value of the 4th vertex is 0,0,0.

* Polygons with gradation textures provide the same effect as textured Gouraud-shading but
without using light-source calculations. The gradation-texture material type is valid only when
the light-source calculation mode is set to fixed color.

Figure 36: Polygons/sprites with repeating textures

TYPE TNO U0 V0 U1 V1 U2 V2 U3 V3

TYPE: Material type, value is "W"
TNO: Specifies the TIM data file to use
 (The texture number of the descriptor in the RSD file)
TUM,TVM: UV coordinate of the repeating mask of the texture pattern.
TUA,TVA: UV upper address of the repeating texture pattern.
Un, Vn: Location of the texture space for vertex n.
 The values of the 4th vertex (U3, V3) are (0,0) for a triangle.

TUM TVM TUA TVA

2-12 3D Graphics

File Formats

Figure 37: Polygons with repeating colored textures

TYPE TNO TUM TVM TUA TVA U0 V0 U1 V1 U2 V2 U3 V3

R G B

TYPE: Material type, value is "S"
TNO: Specifies the TIM data file to use
 (The texture number of the descriptor in the RSD file)
TUM,TVM: UV coordinate of the repeating mask of the texture pattern.
TUA,TVA: UV upper address of the repeating texture pattern.
Un, Vn: Location of the texture space for vertex n.
 The values of the 4th vertex (U3, V3) are (0,0) for a triangle.
R, G, B: Polygon color, RGB component (0-255)

* Polygons with repeating colored textures are used to apply brightness to individual polygon
textures without using light-source calculations. This allows a textured polygon to be rendered
three-dimensionally without performing any light-source calculation. The repeating-colored-
texture material type is valid only when the light-source calculation mode is set to fixed color.

Figure 38: Polygons with repeating gradation textures

TYPE: Material type, value is "N"
TNO: Specifies the TIM data file to use
 (The texture number of the descriptor in the RSD file)
TUM,TVM: UV coordinate of the repeating mask of the texture pattern.
TUA,TVA: UV upper address of the repeating texture pattern.
Un, Vn: Location of the texture space for vertex n.
 The values of the 4th vertex (U3, V3) are (0,0) for a triangle.
R, G, B: Polygon color, RGB component (0-255)

TYPE TNO TUM TVM TUA TVA U0 V0 U1 V1 U2 V2 U3 V3

R0 G0 B0 R1 G1 B1 ... R3 G3 B3

* Polygons with gradation textures provide the same effect as textured Gouraud shading but
without using light-source calculations. The repeating-gradation texture material type is valid
only when the light-source calculation mode is set to fixed color.

Sample file

The following is an example of a simple MAT file.

Figure 39: Sample MAT file
@MAT970401
Number of Items
10
Materials
0-5 0 F C 255 255 255
6 0 G T 1 10 0 25 71 40 25 0 0
7 0 G T 1 10 30 20 75 40 25 0 0
8 0 G T 1 18 73 30 79 40 25 0 0
9 0 G T 1 12 23 29 77 40 25 0 0
10 0 F T 1 18 13 75 72 40 25 0 0
11 0 F T 0 22 10 24 74 40 25 0 0
12 0 F T 0 30 39 41 79 40 25 0 0
13 1 F D 0 116 47 118 77 69 46 69 77 30 187 187
14 1 F H 0 69 46 69 77 17 45 15 77 101 210 138 52 211 188 101 210

3D Graphics 2-13

File Formats

GRP File

The GRP file allows a name to be assigned to all of the polygons in a PLY file. With a group name, multiple
polygons can be easily selected with the material editor.

Overall structure

Figure 40: Overall structure of a GRP file

GROUP
descriptor

:
:

GROUP
descriptor count

ID

ID

The ID is a string of the form "@GRPnnnnnn" (where nnnnnn is a number) indicating the GRP file format
version number. For example, version 3.0 would be specified with the string "@GRP970401".

GROUP descriptor count

The number of GROUP descriptors which follow is specified in this field.

GROUP descriptor

A GROUP descriptor defines the structure of a group. A GROUP descriptor consists of two or more lines
as indicated below.

[First line]

Figure 41: GROUP descriptor for GRP file

Group name Polygon No. line count No. of polygons

Group name : Name of the associated group.
Polygon No. line count : Number of following lines that contain the

descriptor associated with this polygon no.
No. of polygons : Number of polygons belonging to this group.

[Following lines (Polygon Nos.)]

Specifies the polygon numbers that belong to the group. The values represent the polygon index number
within the PLY file. Multiple polygons can be included on a single line if a range is specified.

Figure 42: Following Lines

Values Specified Polygons

1 1 only
3-7 3 4 5 6 7
2,4,6 2 4 6

2-14 3D Graphics

File Formats

Sample file

A simple example of a GRP file is shown below.

Figure 43: Sample GRP file
@GRP970401
Number of Group
2
Group list
upper_part 2 5
10-13
25
lower_part 3 3
3
5
7

MSH File

The MSH file is an extended RSD file that contains linkage information. The MSH file permits HMD data
with linkage information to be generated from RSD-formatted data.

Overall structure

Figure 44: Overall structure of a MSH file

ID

No. of linked polygon entities

Linkage information

ID

The ID is a string of the form "@MSHnnnnnn" (where nnnnnn is a number) indicating the MSH file format
version number. For example, version 1.0 would be specified with the string "@MSH970401".

Number of linked polygon entities

The number of linked polygon entities which follow (number of mesh groups) is specified in this field.

Linkage information

This field defines the number and sequence of links in a linked polygon entity. The link sequence is defined
by the order of the polygon indexes specified in the PLY file. Line breaks are optional.

No. of links Link sequence (order of polygon indexes)...

3D Graphics 2-15

File Formats

Sample file

A simple example of a MSH file is shown below.

Figure 45: Sample MSH file
#ID
@MSH970401
#Number of Mesh Grupe
5
#Mesh Information
5 0 1 2 3 4
10 5 6 7 8 9 10 11 12 13 14
5 15 16 17 18 19
1 20
1 21

PVT File

The PVT file is an extended RSD file that contains offsets for the centers of rotation. This information is
used when VERTEX values are rewritten using the coordinate system of the extended PlayStation library
(libgs).

Overall structure

Figure 46: Overall structure of a PVT file

ID

Number of elements

COORDINATE INDEX
& offset

ID

The ID is a string of the form "@PVTnnnnnn" (where nnnnnn is a number) indicating the PVT file format
version number. For example, version 1.0 would be specified with the string "@PVT970401".

Number of elements

This field specifies the number of COORDINATE INDEXes and offsets which follow.

COORDINATE INDEX & offset

This field contains the offset value of the specified COORDINATE index.

XCOORDINATE INDEX ZY

Sample file

A simple example of a PVT file is shown below.

Figure 47: Sample PVT file
#ID
@PVT970401
#Number of Items
5
#Pivot Information
0 100 -100 100
1 50 50 50
3 0 0 -100
4 200 1000 -1000
5 100 100 100

2-16 3D Graphics

File Formats

COD File

The COD file is an extended RSD file that allows COORDINATE attributes to be applied to VERTEXes in a
PLY file. The COD file permits HMD data containing multiple MATRIXes to be generated from RSD-
formatted data.

Overall structure

Figure 48: Overall structure of a COD file

ID

OGP Filename

No. of COORDINATEs

COORDINATE

Object group or

VERTEX which belongs to

the COORDINATE

ID

The ID is a string of the form "@CODnnnnnn" (where nnnnnn is a number) indicating the COD file format
version number. For example, version 1.0 would be specified with the string "@COD970401".

OGP Filename

This field specifies the filename of an OGP file. The format is OGP=OGP filename. Specifying OGP=NULL
means that there is no OGP file.

Number of COORDINATEs

This field specifies the number of COORDINATEs which follow.

COORDINATE

This field describes the COORDINATE structure. The COORDINATE structure is defined across multiple
lines in the file as shown below.

[Lines 1 - 3]

These lines contain the matrix coefficients. Values are represented as decimal numbers.

m[0][0] m[0][1] m[0][2]
m[1][0] m[1][1] m[1][2]
m[2][0] m[2][1] m[2][2]

[Line 4]

This line specifies the amount of translation. Values are represented as decimal numbers.

t[0] t[1] t[2]

[Line 5]

This line specifies the elements of the rotation vector that are used to generate the matrix coefficients.
Values are represented as decimal numbers.

vx vy vz

3D Graphics 2-17

File Formats

[Line 6]

This line specifies an index for the parent COORDINATE. Indexes are entered in order beginning with 0. If
the parent is the world coordinate system, the index refers to itself.

super

Object group or VERTEX which belongs to the COORDINATE

When an OGP file is specified in the object name section, an object group which belongs to the
COORDINATE is specified here.

When there is no OGP file specified in the object name section, a VERTEX which belongs to the
COORDINATE is specified here.

When object groups are specified

Object groups are represented as object group names specified within the OGP file. Multiple object groups
can be represented in a list by specifying the number of object groups. Line breaks are optional.

Object group name...No. of object groupsCOORDINATE index

When VERTEXes are specified

VERTEXes are represented as index numbers in the PLY file. Multiple VERTEXes can be represented in a
list by specifying the number of VERTEXes. Line breaks are optional.

 Index of VERTEX...No. of VERTEXesCOORDINATE index

Note: The two methods described above cannot be mixed in a single COD file. If an OGP file is specified,
only object groups can be included. Otherwise, only VERTEXes can be included.

Sample files

Simple examples of COD files are shown below.

[Object file specified]

Figure 49: Sample COD files
#ID
@COD970401
#OGP File
OGP=test.ogp
#Number of COORDINATE
2
#COORDINATE
4096 0 0
0 4096 0
0 0 4096
0 0 0
0 0 0
0
-4096 0 0
0 -4096 0
0 0 -4096
0 0 0
0 0 0
0
#COORDINATE of Object Grupe
0 1 body
1 2 hand head

[Object file not specified]

#ID
@COD970401
#OGP File

2-18 3D Graphics

File Formats

OGP=NULL
#Number of COORDINATE
2
#COORDINATE
4096 0 0
0 4096 0
0 0 4096
0 0 0
0 0 0
0
-4096 0 0
0 -4096 0
0 0 -4096
0 0 0
0 0 0
0
#COORDINATE of Object Grupe
0 5 0 1 2 3 4
1 5 5-9

Spaces or '-' are used as delimiters.

OGP File

The OGP file is a sub-extended RSD file that allows a group of VERTEXes to be defined as a single object
group. The OGP file makes it easier to manage attributes for an entire object group.

Overall structure

Figure 50: Overall structure of an OGP file

ID

Number of object groups

Object groups

ID

The ID is a string of the form "@OGPnnnnnn" (where nnnnnn is a number) indicating the OGP file format
version number. For example, version 1.0 would be specified with the string "@OGP970401".

Number of object groups

This field specifies the number of object groups which follow.

Object groups

This field describes the object group structures. A VERTEX which belongs to an object group is
represented by its index which is specified in the PLY file. Multiple VERTEXes can be included in a list by
specifying the number of VERTEXes. Line breaks are optional.

Index of VERTEX...No.of VERTEXesObject group name

Sample file

A simple example of an OGP file is shown below.

Figure 51: Sample OGP file
#ID
@OGP970401

3D Graphics 2-19

File Formats

#Number of Object Grupe
2
#Object Grupe
head 10 0 1 2 3 4 5 6 7 8 9
body 10 10-19

Spaces or '-' are used as delimiters.

MOT File

A MOT file is an extended RSD file that contains animation information.

Overall structure

Figure 52: Overall structure of a MOT file

ID

Animation type

INDEX count

INDEX & sequence count & WORK TOP

Sequence header information

Sequence control information

Parameter information

ID

The ID is a string of the form "@MOTnnnnnn" (where nnnnnn is a number) indicating the MOT file format
version number. For example, version 1.0 would be specified with the string "@MOT970401".

Animation type

This field indicates the type of animation. Currently, the only supported type is COORDINATE
transformation.

(When COORDINATE is used)

COORDINATE

INDEX count

This field specifies the number of sets of INDEX, sequence count, and WORK TOP (described below). Each
set together with the sequence header information is repeated INDEX count times.

INDEX count

INDEX & sequence count & WORK TOP

This information specifies the index of the original data which is to be transformed, the number of sequence
groups, and the name of the TOP point for the WORK sequence.

2-20 3D Graphics

File Formats

For example, if the animation type is COORDINATE, then the original data index refers to the index of
COORDINATE in the COD file and the sequence group count refers to the number of animation patterns
(described below). If a WORK sequence does not exist, a string that has not been used for a sequence
point name is assigned to WORK TOP.

WORK TOPSequence countINDEX

Sequence header information

This field contains header information for an animation pattern (described below).

The following is a description of the reserved words.

Stream IDStart point nameSTART

START
Reserved word indicating the start point for an animation sequence.

Start point name
Describes the start point name indicated in the sequence control information section. The start
point name is a string with a maximum length of 256.

Stream ID
Represented as a hexadecimal value in 0x?? (7-bit) notation. The stream ID is a bit pattern that
is used when comparing with another sequence factor.

SEQ TOP2SEQ TOP1KEY2

KEY2
Reserved word indicating the top point of a key frame. Up to two KEY2s can be specified.

SEQ TOP1,2
Indicates the top point of the key frame in the sequence control information section. TOP1 is
used in the lower 16 bits in the sequence header data when converting to HMD. TOP2 is used
in the upper 16 bits. If a specified point does not exist, a string that has not been used as a
point name is assigned. Point names are expressed as strings of up to 256 characters.

3D Graphics 2-21

File Formats

Sequence control information

This field describes the actual animation motion. The contents depend on the type of reserved word.

A start point of an arbitrary string of 256 characters or less can be inserted as positional information. The
start point indicates the animation position beginning with the next line.

The following is a description of the reserved words.

Animation packet type indexFrame countSEQ Animation packet type

SEQ
Reserved word which represents a sequence.

Frame count
Number of frames up to this key frame.

Animation packet type
Type of interpolation used in animation. (A detailed description can be found in the section on
parameter data)

Animation packet type index
Index of the animation packet in the animation packet section.

Stream ID
(before jump)Jump point nameGOTO

Stream ID
(after jump)

GOTO
Reserved word which allows branching within a sequence flow.

Jump point name
Target sequence position to which to jump to, represented by a string of 256 characters or
less.

Stream ID
Represented as a hexadecimal value in 0x?? (7-bit) notation. The stream ID is a bit pattern that
is used when comparing with another sequence factor.

Stream IDEND

END
Reserved word which ends a sequence flow.

Stream ID
Represented as a hexadecimal value in 0x?? (7-bit) notation. The stream ID is a bit pattern that
is used when comparing with another sequence factor.

2-22 3D Graphics

File Formats

Parameter information

This information describes the value of parameters such as the translation amount. The packet type for the
parameter is the same as that defined for HMD. The packet type is given following the TYPE keyword. A
sample packet type is shown below.

TYPE ps0r0t0

p Indicates parameter. This is the only type currently available.

s?r?t? The packet type for the parameter varies according to the '?'. If 0, that parameter is
assumed to be absent.

12 packet types are currently supported. Individual packet types are shown below.

Scale Ratio: 1 = 4096
Rotation Unit: Degree, 360 degrees = 4096

(ps0r0t0) Dumy Matrix
Dx Dy

(ps0r0t1) Translation Linear
Tx Ty Tz

(ps0r0t9) Translation(short) Linear
Tx Ty Tz

(ps9r0t9) Scale(one) Translation(short) Linear
Tx Ty Tz Scale

(ps1r0t0) Scale Linear
Sx Sy Sz

(ps0r1t0) Rotation linear
Rx Ry Rz

(ps9r1t0) Scale(one) Rotation Linear
Rx Ry Rz Scale

(ps0r1t1) Rotation Translation Linear
Tx Ty Tz Rx Ry Rz

(ps9r1t1) Scale(one) Rotation Translation Linear
Tx Ty Tz Rx Ry Rz Scale

(ps1r1t1) Scale Rotation Translation Linear
Tx Ty Tz Rx Ry Rz Sx Sy Sz

(ps0r1t9) Rotation Translation(short) Linear
Tx Ty Tz Rx Ry Rz

(ps1r1t9) Scale Rotation Translation(short) Linear
Tx Ty Tz Rx Ry Rz Sx Sy Sz

Sample file

A simple example of an MOT file is shown below.

Figure 53: Sample MOT file
#ID
@MOT970401
#Animation Type
COORDINATE
#Number of Index
2
#Index, Number of Sequence
0 4 WORK

3D Graphics 2-23

File Formats

#Sequence Header
START TOP11 0x01
KEY2 TOP11A TOP11B
START TOP12 0x01
START TOP13 0x01
#Index, Number of Sequence
0 3 DUMY
#Sequence Header
START TOP21 0x01
START TOP22 0x01
START TOP23 0x01
#Sequence
WORK
SEQ 0 ps0r0t0 0
SEQ 0 ps0r0t0 1
TOP11
SEQ 250 ps0r0t1 0
TOP11A
SEQ 250 ps0r0t1 1
TOP11B
GOTO TOP11 0x02 0x01
END 0x02
TOP12
SEQ 250 ps0r0t1 2
SEQ 250 ps0r0t1 3
GOTO TOP12 0x02 0x01
END 0x02
TOP13
SEQ 250 ps0r0t1 4
SEQ 250 ps0r0t1 5
GOTO TOP13 0x02 0x01
END 0x02
TOP21
SEQ 250 ps0r1t0 0
SEQ 250 ps0r1t0 1
GOTO TOP21 0x02 0x01
END 0x02
TOP22
SEQ 250 ps0r1t0 2
SEQ 250 ps0r1t0 3
GOTO TOP22 0x02 0x01
END 0x02
TOP23
SEQ 250 ps0r1t0 4
SEQ 250 ps0r1t0 5
GOTO TOP23 0x02 0x01
END 0x02
#Animation Packet Type
TYPE ps0r0t0
0 0
0 0
TYPE ps0r0t1
-400 -400 2000
400 400 2000
-50 -50 1500
50 50 1500
100 100 1000
-100 -100 1000
TYPE ps0r1t0
0 0 0
4096 0 0
0 0 0
0 4096 0
0 0 0
0 0 4096

2-24 3D Graphics

File Formats

TMD: Modeling Data for OS Library

The TMD format contains 3D modeling data which is compatible with the PlayStation expanded graphics
library (libgs). TMD data is downloaded to memory and may be passed as an argument to functions
provided by LIBGS. TMD files are created using the RSDLINK utility, which reads an RSD file created by the
SCE 3D Graphics Tool or a comparable program.

The data in a TMD file is a set of graphics primitives—polygons, lines, etc.—that make up a 3D object. A
single TMD file can contain data for one or more 3D objects.

Coordinate Values

Coordinate values in the TMD file follow the 3D coordinate space handled by the 3D graphics library. The
positive direction of the X axis represents the right, the Y axis the bottom, and the Z axis the depth. The
spatial coordinate value of each object is a signed 16-bit integer value ranging from -32768 to +32767.

In the 3D object design phase and within the RSD format, the vertex information is stored as a floating
point value. Conversion from RSD into TMD involves converting and scaling vertex values as needed. The
scale used is reflected in the object structure, described later, as the reference value. This value can
provide an index for mapping from object to world coordinates. The current version of LIBGS ignores the
scale value.

File Format

TMD files are configured by 4 blocks. They have 3 dimensional object tables, and 3 types of data entities—
PRIMITIVE, VERTEX, and NORMAL—which configure these.

Figure 54: TMD File Format

3D Graphics 2-25

File Formats

Header

The header section is composed of three word (12 bytes) data carrying information on data structure.

Figure 55: Structure of Header

ID

FLAGS

NOBJ

ID: Data having 32 bits (one word). Indicates the version of a TMD file. The current version
is 0x00000041.

FLAGS: Data having 32 bits (one word). Carries information on TIM data configuration. The
least significant bit is FIXP. The other bits are reserved and their values are all zero.
The FIXP bit indicates whether the pointer value of the OBJECT structure described
later is a real address. A value of one means a real address. A value of zero indicates
the offset from the start.

NOBJ: Integral value indicating the number of objects

Obj Table

The OBJ TABLE block is a table of structures holding pointer information indicating where the substance of
each object is stored. Its structure is as shown below.

Figure 56: OBJ TABLE structure

OBJECT #1
OBJECT #2

:
:

The object structure has the following configuration:

struct object
{

u_long *vert_top;
u_long n_vert;
u_long *normal top;
u_long n_normal;
u_long *primitive top;
u_long n_primitive;
long scale;

}

(Explanation of members)

vert_top: Start address of a vertex
n_vert: Number of vertices
normal_top: Start address of a normal
n_normal: Number of normals
primitive_top: Start address of a primitive
n_primitive: Number of primitives

Among the members of the structure, the meanings of the pointer values (vert_top, normal_top,
primitive_top) change according to the value of the FIXP bit in the HEADER section. If the FIXP bit is 1, they
indicate the actual address, and if the FIXP bit is 0, they indicate a relative address taking the top of the
OBJECT block as the 0 address.

2-26 3D Graphics

File Formats

The type of the scaling factor is "signed long", and its value raised to the second power is the scale value.
That is to say, if the scaling factor is 0, the scale value is an equimultiple; if the scaling factor is 2, the scale
value is 4; if the scaling factor is -1, the scale value is 1/2. Using this value, it is possible to return to the
scale value at the time of design.

Primitive

The PRIMITIVE section is an arrangement of the drawing packets of the structural elements (primitives) of
the object. One packet stands for one primitive (see Figure below).

The primitives defined in TMD are different from the drawing primitives handled by libgpu. A TMD primitive
is converted to a drawing primitive by undergoing perspective transformation processing performed by the
libgs functions.

Each packet is of variable length, and its size and structure vary according to the primitive type.

Figure 57: Drawing Packet General Structure

Each item in the figure above is as follows:

Mode (8 bit)

Mode indicates the type of primitive and added attributes. They have the following bit structure:

Figure 58: Mode

CODE: 3 bit code expressing entities
001 = Polygon (triangle, quadrilateral)
010 = Straight line
011 = Sprite

OPTION: Varies with the option, bit and CODE values
(Listed with the list of packet data configurations described later)

Flag (8 bit)

Flag indicates option information when rendering and has the following bit configuration:

Figure 59: Flag

MSB LSB

G
R
D

F
C
E

L
G
T

0 0000

GRD: Valid only for the polygon not textured, subjected to light source calculation
1: Gradation polygon
0: Single-color polygon

3D Graphics 2-27

File Formats

FCE: 1: Double-faced polygon
0: Single-faced polygon
(Valid, only when the CODE value refers to a polygon.)

LGT: 1: Light source calculation not carried out
0: Light source calculation carried out

Ilen (8 bit)

Indicates the length, in words, of the packet data section.

Olen (8 bit)

Indicates the word length of the 2D drawing primitives that are generated by intermediate processing.

Packet Data

Parameters for vertices and normals. Content varies depending on type of primitive. Please refer to “Packet
data configuration” which will be discussed later.

Vertex

The vertex section is composed of a set of structures representing vertices. The following gives the format
of one structure.

Figure 60: Vertex Structure

VXVY

VZ--

MSB LSB

VX, VY, XZ: x, y and z values of vertex coordinates (16-bit integer)

Normal

The normal section is composed of a set of structures representing normals. The following gives the format
of one structure.

Figure 61: Normal Structure

NXNY

NZ--

MSB LSB

NX, NY, NZ: x, y and z components of a normal (16-bit fixed-point value)

NX, NY and NZ values are signed 16-bit fixed-point values where 4096 is considered to be 1.0.

Figure 62: Fixed-Point Format

14 1112 0

+

/

-

bit 15

Sign: 1 bit

Integral part: 3 bits

Decimal part: 12 bits

2-28 3D Graphics

File Formats

Packet Data Composition Table

This section lists packet data configurations for each primitive type.

The following parameters are contained in the packet data section:

Vertex(n)

Index value of 16-bit length pointing to a vertex. Indicates the position of the element from the start of the
vertex section for an object covering the polygon.

Normal(n)

Index value of 16-bit length pointing to a normal. Same as Vertex.

Un, Vn

X and Y coordinate values on the texture source space for each vertex

Rn, Gn, Bn

RGB value representing polygon color being an unsigned 8-bit integer. Without light source calculation, the
predetermined brightness value must be entered.

TSB

Carries information on a texture/sprite pattern.

Figure 63: TSB

TPAGE: Texture page number (0 to 31)

ABR: Semi-transparency rate (Mixture rate).
Valid, only when ABE is 1.
00 50%back + 50%polygon
01 100%back + 100%polygon
10 100%back - 100%polygon
11 100%back + 25%polygon

TPF: Color mode
00 4 bit
01 8 bit
10 15 bit

CBA

Indicates the position where CLUT is stored in the VRAM.

Figure 64: CBA

15 0

CLY CLX

14 6

CLX: Upper six bits of 10 bits of X coordinate value for CLUT on the VRAM

CLY: Nine bits of Y coordinate value for CLUT on the VRAM

3D Graphics 2-29

File Formats

3 Vertex Polygon with Light Source Calculation

Bit Configuration of Mode Value

The primitive section mode value bit configuration is shown below. For the value of each bit please refer to
“3 vertex polygon with light source calculation.”

Figure 65: Mode Value of 3 Vertex Polygon with Light Source Calculation

0

IIP

T
G

E

A
B

E

T
M

E

MSB LSB

100

IIP: Shading mode
0: Flat shading
1: Gouraud shading

TME: Texture specification
0: Off
1: On

ABE: Translucency processing
0: Off
1: On

TGE: Brightness calculation at time of texture mapping
0: On
1: Off (Draws texture as is)

2-30 3D Graphics

File Formats

Packet Configuration

Figure 66: Packet Configuration of 3 Vertex Polygon with Light Source Calculation

0x20 0x00 0x040x03

0x20* B G R

Vertex 0 Normal 0

Vertex 2 Vertex 1

0x30 0x00 0x060x04

0x30* B G R

Vertex 0 Normal 0

Vertex 2

Vertex 1 Normal 1

Normal 2

Flat, No-Texture (solid) Gouraud, No-Texture (solid)

0x20 0x04 0x05 0x06

0x20* B0 G0 R0

B1 G1 R1

B2 G2 R2

Vertex 0 Normal 0

Vertex 2 Vertex 1

Flat, No-Texture (gradation)

0x30 0x04 0x06 0x06

0x30* B0 G0 R0

B1 G1 R1

B2 G2 R2

Vertex 0 Normal 0

Vertex 2

Vertex 1

Gouraud, No-Texture (gradation)

Normal 1

Normal 2

Flat, Texture

0x24 0x00 0x05 0x07

CBA V0 U0

TSB V1 U1

V2 U2

Vertex 0 Normal 0

Vertex 2 Vertex 1

Gouraud, Texture

0x34 0x00 0x06 0x09

CBA V0 U0

TSB V1 U1

V2 U2

Vertex 0 Normal 0

Vertex 2

Vertex 1 Normal 1

Normal 2

* same value as mode

In the above example, the values of mode and flag indicate a single-faced polygon and semi-transparency
processing not carried out.

4 Vertex polygon with Light Source Calculation

Bit Configuration of Mode Value

The primitive section mode value bit configuration is shown below. For the value of each bit please refer to
“3 vertex polygon with light source calculation.”

Figure 67: Mode Value of 4 Vertex Polygon with Light Source Calculation

1

IIP

T
G

E

A
B

E

T
M

E

MSB LSB

100

 (bit 3 is set to designate a 4-vertex primitive)

3D Graphics 2-31

File Formats

Packet Configuration

Figure 68: Packet Configuration for 4 Vertex Polygon with Light Source Calculation

0x28 0x00 0x050x04

0x28* B G R

Vertex 0 Normal 0

Vertex 2 Vertex 1

0x38 0x00 0x080x05

0x38* B G R

Vertex 0 Normal 0

Vertex 2

Vertex 1 Normal 1

Normal 2

Flat, No-Texture (solid) Gouraud, No-Texture (solid)

Vertex 3

Vertex 3 Normal 3

0x28 0x04 0x07 0x08

0x28* B0 G0 R0

B1 G1 R1

B2 G2 R2

Vertex 0 Normal 0

Vertex 2 Vertex 1

Flat, No-Texture (gradation)

0x38 0x04 0x08 0x08

0x38* B0 G0 R0

B1 G1 R1

B2 G2 R2

Vertex 0 Normal 0

Vertex 2

Vertex 1

Gouraud, No-Texture (gradation)

Normal 1

Normal 2

B3 G3 R3

Vertex 3

Vertex 3 Normal 3

B3 G3 R3

Flat, Texture

0x2c 0x00 0x07 0x09

CBA V0 U0

TSB V1 U1

V2 U2

Vertex 0 Normal 0

Vertex 2 Vertex 1

Gouraud, Texture

0x3c 0x00 0x08 0x0c

CBA V0 U0

TSB V1 U1

V2 U2

Vertex 0 Normal 0

Vertex 2

Vertex 1 Normal 1

Normal 2Vertex 3

V3 U3

Vertex 3 Normal 3

V3 U3

* same value as mode

3 Vertex Polygon with No Light Source Calculation

Bit Configuration of Mode Value

The primitive section mode value bit configuration is shown below. For the value of each bit please refer to
“3 vertex polygon with light source calculation.”

2-32 3D Graphics

File Formats

Figure 69: Mode Value of 3 Vertex Polygon with No Light Source Calculation

0

IIP

T
G

E

A
B

E

T
M

E

MSB LSB

100

 (bit 3 is set to designate a 4-vertex primitive)

Packet Configuration

Figure 70: Packet configuration for 3 Vertex Polygon with No Light Source Calculation

0x21 0x01 0x040x03

0x21* B G R

Vertex 0

Vertex 2

Vertex 1

0x31 0x01 0x060x05

0x31* B0 G0 R0

Vertex 0

Vertex 2

Vertex 1

Flat, No-Texture Gradation, No-Texture

B1 G1 R1

B2 G2 R2

Flat, Texture

0x25 0x01 0x06 0x07

CBA V0 U0

TSB V1 U1

V2 U2

Vertex 0

Vertex 2

Vertex 1

Gradation, Texture

0x35 0x01 0x08 0x09

CBA V0 U0

TSB V1 U1

V2 U2

Vertex 0

Vertex 2

Vertex 1

G R G0 R0B B0

G1 R1B1

G2 R2B2

* same value as mode

4 Vertex Polygon with No Light Source Calculation

Bit Configuration of Mode Value

The primitive section mode value bit configuration is shown below. For the value of each bit please refer to
“3 vertex polygon with light source calculation.”

Figure 71: Mode Value of 4 Vertex Polygon with No Light Source Calculation

1

IIP

T
G

E

A
B

E

T
M

E

MSB LSB

100

 (bit 3 is set to designate a 4-vertex primitive)

3D Graphics 2-33

File Formats

Packet Configuration

Figure 72: Packet Configuration for 4 Vertex Polygon with No Light Source Calculation

0x29 0x01 0x050x03

0x29* B G R

Vertex 0

Vertex 2

Vertex 1

0x39 0x01 0x080x06

0x39* B0 G0 R0

Vertex 0

Vertex 2

Vertex 1

Flat, No-Texture Gradation, No-Texture

B1 G1 R1

B2 G2 R2Vertex 3

Vertex 3

B3 G3 R3

Flat, Texture

0x2d 0x01 0x07 0x09

CBA V0 U0

TSB V1 U1

V2 U2

Vertex 0

Vertex 2

Vertex 1

Gradation, Texture

0x3d 0x01 0x0a 0x0c

CBA V0 U0

TSB V1 U1

V2 U2

Vertex 0

Vertex 2

Vertex 1

G R G0 R0B B0

G1 R1B1

G2 R2B2Vertex 3

V3 U3

G3 R3B3

V3 U3

Vertex 3

* same value as mode

Straight Line

Bit Configuration of Mode Value

The primitive section mode value bit configuration is as follows:

Figure 73: Mode Value of Straight Line

0

IIP

A
B

E

MSB LSB

010 0 0

IIP: With or without gradation
0: Gradation off (Monochrome)
1: Gradation on

ABE: Translucency processing on/off
0: off
1: on

2-34 3D Graphics

File Formats

Packet Configuration

Figure 74: Packet Configuration for “Straight Line”

0x40 0x01 0x030x02

0x40* B G R

Vertex 0Vertex 1

0x50 0x01 0x040x03

0x50* B0 G0 R0

Vertex 0Vertex 1

Gradation OFF Gradation ON

B1 G1 R1

* same value as mode

3 Dimensional Sprite

A 3 dimensional sprite is a sprite with 3-D coordinates and the drawing content is the same as a normal
sprite.

Bit Configuration of Mode Value

Figure 75: Mode Value of 3D Sprite

01

A
B

E

MSB LSB

110 SIZ

SIZ: Sprite size
00: Free size (Specified by W, H)
01: 1 x 1
10: 8 x 8
11: 16 x 16

ABE: Translucency processing
0: Off
1: On

Packet Data Configuration

Figure 76: Packet Configuration for Sprites

3D Graphics 2-35

File Formats

PMD: High-Speed Modeling Data

The PMD format is used for modeling data supported by the extended graphics library (libgs). The PMD
format has a narrower range of functions than the TMD format, but this smaller scope enables faster
processing.

PMD format handles the following kinds of objects.

• Triangular and rectangular polygons only
• Packet creation areas contained in the data
• Groups of polygons having the same attributes

The PMD file format consists of a table of 3D objects along with their PRIMITIVE and VERTEX descriptions.

Figure 77: Overall structure of PMD files

VERTEX Gp.

PRIMITIVE Gp.

:

OBJ TABLE

VERT POINT

PRIM POINT

ID

:

:

ID: 32-bit word containing the version of the PMD file.

For the current version, this is 0x00000042.

PRIM POINT: A 32-bit integer indicating the offset from the start of the PRIMITIVE Gp section
of the file.

VERT POINT: A 32-bit integer indicating the offset from the start of the VERTEX Gp section
of the file.

Enter "0" for an independent vertex.

OBJ TABLE: The array of objects.

PRIMITIVE Gp: A collection (primitive group) of polygons having the same attributes.

VERTEX Gp: An array of vertex coordinates. VERTEX groups exist only in the case of shared
vertices.

2-36 3D Graphics

File Formats

Coordinate Values

Coordinate values in the PMD file follow the 3D coordinate space handled by the 3D graphics library. The
positive direction of the X axis represents the right, the Y axis the bottom, and the Z axis the depth. The
spatial coordinate value of each object is a signed 16-bit integer value ranging from -32768 to +32767.

In the 3D object design phase and within the RSD format, the vertex information is stored as a floating
point value. Conversion from RSD into PMD involves converting and scaling vertex values as needed. The
scale used is reflected in the object structure, described later, as the reference value. This value can
provide an index for mapping from object to world coordinates. The current version of LIBGS ignores the
scale value.

OBJ TABLE

OBJ TABLE is a table that contains pointer information regarding the PRIMITIVE Gp for a particular object.

A single object is composed of primitive groups.

Figure 78: OBJECT Structure

NO BJ

NPTR(#0)

PO INTER 0

PO INTER 1

PO INTER 2

:
:

PO INTER(nptr-1)

NPTR(#1)

PO INTER 0

PO INTER 1

PO INTER 2

:
:

PO INTER(nptr-1)

:
:

OBJECT #1

OBJECT #0

NOBJ: Number of objects in OBJ TABLE

NPTR: Number of pointers in a single object

POINTER: Pointer to a primitive group

PRIMITIVE Group

A PRIMITIVE Gp is a group of object structural element (primitive) graphics packets; a single packet
contains one primitive.

Primitives defined by PMD are different from drawing primitives handled by libgpu. When PMD primitives
undergo perspective transformation by libgs functions, they are converted to drawing primitives.

Each PRIMITIVE Gp has the following structure.

3D Graphics 2-37

File Formats

Figure 79: Packet Gp structure

Packet Data #0

Packet Data #1

Packet Data #2

:

TYPE NPACKET

bit31(MSB) bit0(LSB)

TYPE: Packet type (see Table 2-2)

NPACKET: Number of packets

Table 2-2: TYPE bit layout

Bit no. When 0 When 1

16 Triangle Quadrilateral
17 Flat Gouraud
18 Texture-On Texture-Off
19 Independent vertex Shared vertex
20 Light source calculation Off Light source calculation On
21 Back clip No back clip
22-31 (Reserved for system)

Packet Data structures change with the value of TYPE. Packet Data structure are broken down by type.

The POLY_. . . primitive group structure comes in a set of two which corresponds to a double buffer The
contents of both of these must be initialized in advance. Bits 20 and 21 have no effect on packet data
structure.

The pkt in each structure indicates a corresponding drawing primitive packet, the vertex coordinate value of
v1~v4, and the values of vp1~vp4 offset from the start of the shared vertex row.

2-38 3D Graphics

File Formats

TYPE=00 (Triangle/Flat/Texture-On/Independent vertex)

struct _poly_ft3 {
POLY_FT3 pkt[2];
SVECTOR v1, v2, v3;

}

TYPE=01 (Quadrangle/Flat/Texture-On/Independent vertex)
struct _poly_ft4 {
Å@POLY_FT4 pkt[2];
Å@SVECTOR v1, v2, v3, v4;
}

TYPE=02 (Triangle/Gouraud/Texture-On/Independent vertex)
struct _poly_gt3 {

POLY_GT3 pkt[2];
SVECTOR v1, v2, v3;

}

TYPE=03 (Quadrangle/Gouraud/Texture-On/Independent vertex)
struct _poly_gt4 {

POLY_GT4 pkt[2];
SVECTOR v1, v2, v3, v4;

}

TYPE=04 (Triangle/Flat/Texture-Off/Independent vertex)
struct _poly_f3 {

POLY_F3 pkt[2];
SVECTOR v1, v2, v3;

}

TYPE=05 (Quadrangle/Flat/Texture-Off/Independent vertex)

struct _poly_f4 {
POLY_F4 pkt[2];
SVECTOR v1, v2, v3, v4;

}

TYPE=06 (Triangle/Gouraud/Texture-Off/Independent vertex)

struct _poly_g3 {
POLY_G3 pkt[2];
SVECTOR v1, v2, v3;

}

TYPE=07 (Quadrangle/Gouraud/Texture-Off/Independent vertex)

struct _poly_g4 {
POLY_G4 pkt[2];
SVECTOR v1, v2, v3, v4;

}

TYPE=08 (Triangle/Flat/Texture-On/Shared vertex)

struct _poly_ft3c {
POLY_FT3 pkt[2];
long vp1, vp2, vp3;

}

TYPE=09 (Quadrangle/Flat/Texture-On/Shared vertex)

struct _poly_ft4c {
POLY_FT4 pkt[2];
long vp1, vp2, vp3, vp4;

}

3D Graphics 2-39

File Formats

TYPE=0a (Triangle/Gouraud/Texture-On/Shared vertex)

struct _poly_gt3c {
POLY_GT3 pkt[2];
long vp1, vp2, vp3;

}

TYPE=0b (Quadrangle/Gouraud/Texture-On/Shared vertex)
struct _poly_gt4c {

POLY_GT4 pkt[2];
long vp1, vp2, vp3, vp4;

}

TYPE=0c (Triangle/Flat/Texture-Off/Shared vertex)
struct _poly_f3c {

POLY_F3 pkt[2];
long vp1, vp2, vp3;

}

TYPE=0d (Quadrangle/Flat/Texture-Off/Shared vertex)
struct _poly_f4c {

POLY_F4 pkt[2];
long vp1, vp2, vp3, vp4;

}

TYPE=0e (Triangle/Gouraud/Texture-Off/Shared vertex)
struct _poly_g3c {

POLY_G3 pkt[2];
long vp1, vp2, vp3;

}

TYPE=0f (Quadrangle/Gouraud/Texture-Off/Shared vertex)

struct _poly_g4c {
POLY_G4 pkt[2];
long vp1, vp2, vp3, vp4;

}

pkt[] indicates the corresponding rendering primitive packet.
v1 to v4 indicates coordinate values of vertices.
vp1 to vp4 indicate offsets from the start of a row of shared vertices.

VERTEX

The VERTEX group is an SVECTOR structure array with shared vertices. The format of one of these
structures is shown below.

Figure 80: VERTEX structure

MSB LSB

VY VX

-- VZ

VX, VY, VZ: The X, Y, and Z values of the vertex coordinates (16 bit integers)

2-40 3D Graphics

File Formats

TOD: Animation Data

TOD format is used for specifying information along the flow of time, relative to a 3-dimensional object. It
corresponds to the extended graphics library (libgs).

To be more precise, for each frame in a 3-dimensional animation (or frame sequence), the TOD file
describes the required data relating to the 3-dimensional objects to be created, modified, or erased, and
arranges the data for each frame along the flow of time.

A TOD file, as shown below, consists of a file header followed by frame data.

Figure 81: TOD file format

resolution version file ID

number of frames

Frame1

Frame2

Frame3

:
:

file header

Bit31(MSB) Bit0(LSB)

Header

At the top of the TOD file, there is a 2-word (64-bit) HEADER, in which the following four kinds of
information are described.

(a) File ID (8 bits)
This identifies the file as an animation file. Its value is 0x50.

(b) Version (8 bits)
Animation version. Its value starts at 0x00.

(c) Resolution (16 bits)
This is the time in which 1 frame is displayed (in units of ticks (1 tick = 1/60 seconds)).

(d) Number of frames (32 bits)
This is the number of frames described in the file.

3D Graphics 2-41

File Formats

Frame

Following the header the frame is described. Frames are arranged chronologically.

Each FRAME consists of a frame header followed by a PACKET, as shown below.

Figure 82: Frame

number of packets frame size

frame number

packet header

packet data

packet header

packet data

frame
header

 1packet

1frame

Bit31(MSB) Bit0(LSB)

Frame Header

There is a 2 word frame header at the beginning of each frame. The following information is described in a
frame header.

• Frame size (16 bits)
Frame length (including header) in words.

• Number of packets (16 bits)
Number of packets.

• Frame numbers (32 bits)
Frame number.

PACKET

After the frame header come the PACKETS. Each PACKET consists of a one-word packet header at the
top, followed by the packet data (see Figure 83). There are several different kinds of PACKETS.

The size of the packet data in each PACKET will of course be different if the PACKETS are of different
kinds; even if the PACKETS are of the same kind, the size of the packet data may be different.

A PACKET consists of a packet header and packet data, as shown below.

2-42 3D Graphics

File Formats

Figure 83: PACKET

packet data

packet
length flag

packet
type object ID packet

 header

Bit31(MSB) Bit0(LSB)

Packet Header

The PACKET header contains the following information.

• Object ID (16 bits)
The identification of the object to be handled.

• Packet type (4 bits)
The type of packet data.

• Flag (4 bits)
The meaning of the flag varies from packet to packet.

• Packet length (8 bits)
This is the size of the packet (including the header) in units of words (4 bytes).

Object refers to a 3-dimensional object (a GsDOBJ2 structure) handled by libgs (the extended graphics
library) which is to be made to reflect the packet data.

Packet type contains the classification of the data stored in the packet data. The significance of the flag
varies according to the packet type.

Packet length indicates the length of the packet in units of words (4 bytes).

Packet Data

Several kinds of data, such as the GsCOORDINATE2 structure RST value and the TMD data ID (the
modeling data ID), are stored in the packet data.

The packet type slot in the header indicates which type the PACKET is. The relationship between the
packet type value and the type of data is as follows:

Figure 84: packet type values and packet data contents

0000 Attribute
0001 Coordinate (RST)
0010 TMD data ID
0011 Parent object ID
0100 Matrix value
0101 TMD data
0110 Light source
0111 Camera
1000 Object control

1001 – 1101 User defined
1110 System reserved
1111 Special commands

The different kinds of data are explained below.

3D Graphics 2-43

File Formats

Packet Data - Attribute

When packet type is 0000, the data that designates attribute of the GsDOBJ structure in the packet data is
stored. In this case a flag is not used.

Packet data is composed of 2 words as follows:

Figure 85: Packet Data Configuration when Attribute

31 30 29 28 8 7 6 5 4 3 2 1 0

31 30 29 28 8 7 6 5 4 3 2 1 0

reserved

 mask

 new value

(MSB) (LSB)

The first word is a mask which indicates the section which changes value and the section which does not
change value. 0 is set in the bit which corresponds to the item which will change and 1 is set in the bit for
the value which will not change.

In the second word, new data is input to the bits corresponding to items which are going to change, and
the other bits are set to 0.

Note that the first and second words differ in the following respect: in the first word, the default value for the
bits which are not going to be changed is 1, while in the second word, this default value is 0.

The breakdown of the bits of the second word packet data shown in Figure 85 is described below.

Table 2-3: Packet data bit-by-bit breakdown

Bit (0) - bit (2) Material damping

00: Material damping 0
01: Material damping 1
02: Material damping 2
03: Material damping 3

Bit (3) Lighting mode, part 1

0: Fog off (no fog)
1: Fog on (fog)

Bit (4) Lighting mode, part 2

0: Material on (material)
1: Material off (no material)

Bit (5) Lighting mode, part 3

0: Use lighting mode
1: Use default lighting mode

Bit (6) Light source

0: Light-source calculation off
1: Forced light-source calculation on

Bit (7) NearZ overflow handling

0: z overflow clip
1: z overflow not clip

2-44 3D Graphics

File Formats

Bit (8) Back clipping status

0: Valid
1: Invalid

Bit (9) - bit (27) Reserved (initialized at 0)

Bit (28) - bit (29) Semi-transparency rate

00: 50% back + 50% polygon
01: 100% back + 100% polygon
10: 100% back - 100% polygon
11: 50% back + 25% polygon

Bit (30) Semi-transparency rate

0: Off
1: On

Bit (31) Display

0: Display
1: No display

For example, to switch forced light-source calculation ON, the packet data bits should be set as shown in
Figure 86.

Bit (6) of the first word is given the value 0, showing that the light source is to be changed. The other bits
are given the value 1, showing that they are not going to be changed. Accordingly, the first word is 0xffbf.

Bit (6) of the second word is given the value 1 to indicate that forced light-source calculation is ON, and the
other bits, which correspond to items which are not going to be changed, are given the default value 0. The
second word is therefore 0x0040.

Figure 86: Packet data when forced light-source calculation is switched ON

1 1 1 1 1 1 0 1 1 1 1 1 1

10 0 0 0 0 0 0 0 0 0 0 0

MSB LSB

 mask

 new value

Packet Data - Coordinate (RST)

When packet type is 0001, data that sets the coordinates of the GsDOBJ structure is stored in packet
data.

In this case the flag will have the following meaning.

Figure 87: Flag when Coordinate (RST)

translation scaling rotation matrix type

Matrix type: RST matrix type
0: Absolute value
1: Differential matrix from preceding frame

Rotation: Rotation (R) flag
0: None
1: Has

Scaling Screening (S) flag
0: None
1: Has

3D Graphics 2-45

File Formats

Translation Parallel movement (T) flag
0: None
1: Has

The configuration of packet data will differ according to the values of the flag rotation bit, the scaling bit,
and the translation bit as per Figure 87.

In Figure 88, Rx, Ry and Rz indicate one degree as 4096, with a fixed point decimal value (1, 19, 12) that
indicate the X axis component, the Y axis component, and the Z axis component of the angle of rotation. In
the same way, Sx, Sy and Sz indicate the X axis component, the Y axis component, and the Z axis
component of the scaling as a fixed point decimal (1, 3, 12), while Tx, Ty and Tz respectively indicate the X
axis component, the Y axis component, and the Z axis component of the translation as an integer (1, 31, 0)
that signals 32 bits.

Figure 88: Packet Data Configuration when Coordinate (RST)

Rx

Ry

Rz

Tx

Ty

Tz

(c)flag: 1010 1011

Rx

Ry

Rz

Sy Sx

Sz

Tx

Ty

Tz

Rx

Ry

Rz

Sy Sx

Sz**********

(a)flag: 1110 1111 (b)flag: 0110 0111

Tx

Ty

Tz

Sy Sx

Sz*****

(d)flag: 1100 1101

Rx

Ry

Rz

Sy Sx

Sz*****

(e)flag: 0010 0011 (f)flag: 0100 0101

Tx

Ty

Tz

(g)flag: 1000 1001

Packet Data - TMD Data ID

When packet type is 0010, the modeling data ID (TMD data) of the real object is stored in the packet data
(See Figure 89). The TMD data ID is composed of 2 bytes. In this case no flag is used.

2-46 3D Graphics

File Formats

Figure 89: Packet Data Configuration when TMD Data ID

Packet Data - Parent Object ID

When packet type is 0011, the parent object ID of the object specified is stored in packet data (see
Figure 90). The parent object ID is composed of 2 bytes. In this case no flag is used.

Figure 90: Packet Data Configuration when Parent Object

Packet Data - MATRIX Value

When the packet type is 0100, the data which designates coord members of the GsCOORDINATE2
structure to which GsDOBJ2 structure points is stored in packet data. In this case a flag is not used.

Figure 91: Packet Data Configuration when Matrix Value

Packet Data - TMD Data Body

When packet type is 0101, TMD data is stored. This is not presently supported.

Packet Data - Light Source

When packet type is 0110, the data that designates light source is stored in packet data. When this is the
case, the object ID is separate from the normal object ID and becomes the light source ID. Flags have the
following meanings:

Figure 92: Flag when Light Source Packet

********** Color Direction Data type

Data type: Data type
0: Absolute value
1: Difference from preceding frame

Direction: Direction flag
0: None
1: Has

Color: Color flag
0: None
1: Has

The configuration of packet data will differ according to the value of the flag direction bit and the color bit.

3D Graphics 2-47

File Formats

Figure 93: Packet Data when Light Source Packet

X

Y

Z

** B G R

** B G RX

Y

Z

(a)flag: 0110 0111 (b)flag: 0010 0011 (c)flag: 0100 0101

Packet Data-Camera

When packet type is 0111, data which designates viewpoint location information is stored in the packet.
When this is the case, the object ID is separate from the normal object ID and becomes the camera ID.
Flags have the meaning indicated in Figure 94. Please be careful to note that the meaning of other bits will
change depending on the type bit.

Figure 94: Flag for Camera

z angle position &
reference

data type camera type
= 0

(1) camera type: 0

translation rotation data type camera type
= 1

(2) camera type: 1

When camera type bit is 0 other bits are:

Data type: Data type
0: Absolute value
1: Difference from preceding frame

Position & reference Position and reference position flag
0: None
1: Has

z angle Reference angle flag from level
0: None
1: Has

When camera type bit is 1 other bits are:

Data type: Data type
0: Absolute value
1: Difference from preceding frame

Rotation: Rotation (R) flag
0: None
1: Has

Translation: Horizontal movement (T) flag
0: None
1: Has

The structure of packet data differs according to the flag content, as shown in Figure 95 and Figure 96.

2-48 3D Graphics

File Formats

Figure 95: Composition of packet data with camera (part 1)

(a) flag: 1100 or 1110 (b) flag: 0100 or 0110
Tx Tx
Ty Ty
Tz Tz

TRx TRx
TRy TRy
TRz TRz
Z

(c) flag: 1000 or 1010
Z

Tx, Ty, Tz: camera position

TRx, TRy, TRz: camera close-up position

Figure 96: Composition of packet data with camera (part 2)

(a) flag: 1101 or 1111 (b) flag: 0101 or 0111
Rx Rx
Ry Ry
Rz Rz
Tx
Ty
Tz

(c) flag: 1001 or 1011
Tx
Ty
Tz

Rx, Ry, Rz: Rotation

Tx, Ty, Tz: Translation

Packet Data-Object Control

If the packet type is 1000, object control is not set. In this case, there is no packet data. The flag has the
meanings shown below.

Figure 97: The meanings and values of the flag when object control is set

0 create

1 kill

0010-
1111

system
reserved

Packet Data-Extended Commands

If the packet type is 1110, it shows the extended commands.

Packet Data-Special Commands

If the packet type is 1111, animation control is performed. Details of these special commands have not yet
been finalized.

3D Graphics 2-49

File Formats

HMD: Hierarchical 3D Model, Animation and Other Data

Some of the descriptions in this section use HMD Assembler (labp) format. Refer to the labp section of the
Data Conversion Manual.

HMD is a generic graphics format that allows model data, texture data, and animation data to be handled
all within an integrated framework.

HMD can be easily extended to handle additional kinds of data with a unique identification code known as
a type.

HMD data can be easily played back on the PlayStation using libgs. A program that is used to playback
HMD-formatted data is referred to as a primitive driver. Primitive drivers are linked to HMD data through
their type.

Sony Computer Entertainment has created a set of standard primitive drivers for libgs. These primitive
drivers have standardized interfaces or APIs, so end users and middleware companies can also build their
own primitive drivers.

The HMD format is supported by Library Version 4.0 and later.

In previous versions, libhmd was provided as part of the libgs and libgte libraries, but it is now offered as a
separate library. HMD-related functions, which were part of libgs and libgte in PlayStation library 4.2 and
earlier, are now available separately. Consequently, HMD-related functions and declarations have been
removed from the libgs and libgte libraries, and from the corresponding header files. The HMD library
(libhmd) should now be used along with libhmd.h for HMD-related functions.

The environment map is provided only as a Beta version with this release. This is because future releases
may introduce format changes that are not compatible with the current release. The Beta version primitives
are currently not supported by SCE and should be used only at the licensee's discretion.

Abstract of the HMD (for All categories)

The HMD format supports several categories of data. Examples of categories include model data and
image data. Each category can have its own individual data format. This chapter describes the HMD
structures that are the same across all categories of data.

HMD data is divided into the following two main parts.

1. The HMD header
2. The HMD body

The HMD body is made up of areas known as sections. Two sections, one called the primitive section and
the other known as the primitive header section, are always required. Other sections are included only if
required by the specific type.

2-50 3D Graphics

File Formats

Figure 98: HMD Structure

HMD header

Primitive header
section

Coordinate section

Primitive section

HMD header

HMD body

In the example shown above, a coordinate section is included in addition to the required sections.

The following is a detailed description of the HMD format.

Notations

In this discussion, pointer values, which represent addresses, are converted at runtime into real addresses
in memory. The process of converting pointer values to real addresses is known as mapping and is
performed by the GsMapUnit() function.

HMD data can be used only after addresses are mapped.

Pointers are shown highlighted in the figures. The initial value of a pointer is the number of words from the
top of HMD data, where one word is equal to 32 bits.

HMD Header

The HMD header contains the version ID, MAP FLAG, the starting address of the primitive header section,
and the number of primitive blocks. Primitive blocks and the primitive header section will be described in
more detail later. The HMD header also contains a list of pointers to the primitive blocks.

Figure 99: HMD Header section

Number of blocks

Pointer to the primitive block 0

Pointer to the primitive block 1

Pointer to the primitive block 2

Pointer to the primitive block 3

Primitive header section pointer

MAP FLAG

Version ID

Version ID: 0x00000050

3D Graphics 2-51

File Formats

MAP FLAG: A flag that is used to indicate if the GsMapUnit() function has been called or
not. The GsMapUnit() references this field and changes it. This value is 1 if
mapped, otherwise 0.

Number of blocks: The number of primitive blocks pointers.

HMD Data

Primitive Section

A primitive section is defined to be a collection of primitive blocks.

Primitive Block

A primitive block is defined to be a chain of one or more primitives linked together by pointers. HMD data
consists of one or more primitive blocks.

Figure 100: One primitive block which has been primitive chained

Primitive

Primitive

Primitive

The Structure of a Primitive

Primitives consist of a control section and one or more data sections.

Figure 101: Primitive Structure

Next Prim pointer

Primitive header pointer

type count

type

Data count / size

Data

type

Data count / size

Data

Control section

Data section 1

Data section 2

Control Section

Next Prim pointer: Pointer to the header of the next primitive, thus forming the primitives chain.
A value of 0xFFFFFFFF indicates that this is the last primitive in the chain.

Primitive header pointer: Pointer to the primitive header. Primitive headers will be described later.

2-52 3D Graphics

File Formats

Number of types: Number of data sections. The MSB serves as a flag indicating whether the
NextPrim pointer and the primitive header pointer have been mapped. The MSB
of the type count is 1 if UNMAPped, and 0 if MAPped.

Data Section

type: Identifier of the data. Type is overwritten during a SCAN operation with the
starting address of the driver used to process the data. Each type is unique
within HMD. If the value of type is changed, the contents of the data and its driver
can also be changed. SCAN and type will each be described in more detail later.

Number of data / Size: The upper 16 bits of this field contain the data count for a single data section.
A single type generally processes multiple sets of data. The data count indicates
how many sets of data there are to process. In other words, how many times the
data process will be repeated. The lower 16 bits contain the size of one data
section in words.

Data: The actual data is placed here. The data format depends on the value of the type
field.

Primitive header

Primitive headers are grouped together and placed in the primitive header section. A pointer to the
primitive header section is saved in the HMD header.

The first word of the primitive header structure is the size of the primitive header in words. Pointers to each
of the sections follow. There is one primitive header for each primitive block. Within the primitive header are
pointers to the sections referred to by the primitive block.

Setting the MSB of its data word to 1 identifies a pointer to a section. When the MSB is 0, the data is
interpreted as a numeric value rather than as an address pointer. These unmapped values can be used as
parameters for a primitive driver.

Figure 102: Primitive Header

Section 3 pointer

Section 2 pointer

Section 1 pointer

Primitive header size

Parameter

Basic structure of a primitive

A primitive is made up of three components: the primitive header, the primitive driver, and its data. The
figure below shows the relationship between these components. The primitive header contains pointers to
the beginning of the corresponding data sections. The data sections, which the pointers refer to depend
on the type of primitive.

The primitive data and its corresponding sections are evaluated together by the primitive driver. The
primitive driver is identified by the type field, which is overwritten, with the starting address of the driver.
This process is known as a SCAN. SCAN uses the GsScanUnit() function to extract the address of the
type field and its value for each primitive. Then it can be replaced with the starting address of the primitive
driver into the type field for each primitive.

3D Graphics 2-53

File Formats

Figure 103: Primitive Structure

NextPrimP

PrimHeader

Type count

type

DATA count

DATA

Primitive header

Section 1

Section 2

Section 3

Primitive

Primitive driver
Primitive

Section count

Section1 Pointer

Section2 Pointer

Section3 Pointer

The following sections give examples of each of the data categories for use with HMD.

HMD Model Data (Category 0)

The model data must contain the following sections:

1. HMD header section
2. Primitive header section
3. Coordinate section
4. Primitive section
5. Polygon section
6. Vertex section

The following sections can also be included:

1. Normal section
2. Image section

In HMD, model data consists of multiple coordinate systems and each coordinate system is assigned to a
separate primitive block.

The HMD primitive header section contains a primitive header for each primitive block.

The following description is an example of the HMD format for model data.

2-54 3D Graphics

File Formats

Overall Structure

The structure of shared vertices HMD

POLYGON section pointer

Primitive header section pointer

Version ID

Coordinate count

COORDINATE 1

COORDINATE 2

Primitive header section count

Calculated-shared Normal TOP pointer

Shared NORMAL section pointer

Calculated-shared section pointer

Shared Vertex section pointer

Shared header size

Shared POLYGON section pointer

(Coordinate section pointer)

Non-shared header size

Vertex section pointer

NORMAL section pointer

Coordinate section pointer

Pointer to primitive 2

Pointer to primitive 3

Pointer to primitive 1

Pointer to PRE-PROCESS primitive

Pointer to POST-PROCESS primitive

Block count

MAP FLAG

COORDINATE 0

HMD header ID

Number of coordinates

Number of elements in the primitive header for the
shared primitive block

Block count is coordinate count + 2

Value is 0 if PRE-PROCESS is not performed
Pointer to primitive of coordinate 0
Pointer to primitive of coordinate 1
Pointer to primitive of coordinate 2
Pointer to primitive if POST-PROCESS
is performed

Pointer to the primitive header section

Flag indicating mapping was perfomed by GsMapUnit()

Number of elements in the primitive header for the
non-shared primitive block

Number of header sections

In GsCOORDUNIT format

Coordinate section pointer when there is
no non-shared header

3D Graphics 2-55

File Formats

Non-shared header pointer

NEXT Prim pointer

Shared header pointer

Shared VERTEX offset (src)

Shared NORMAL count

Shared NORMAL offset (src)

Shared NORMAL offset (dst)

type count

POLYGON IDX

TERMINATE

The number of polygons and size for this type

Shared VERTEX offset (dst)

Shared header pointer

type count

Polygon count / size

TERMINATE indicates that this is the last primitive

Shared VERTEX count

Polygon count / size

Polygon count / size

Polygon count / size

POLYGON IDX

type count

TERMINATE

Shared POLYGON IDX

type

Pointer to the next primitive.
The calculation process for the shared primitive’s
VERTEX and NORMAL is defined by the next chain of
the non-shared primitive.

type

This shared primitive is defined as the POST-PROCESS
primitive.
The header is the same as that for the shared primitive.

TYPE

Offset specifies the number of words from the start of the
shared VERTEX.
Two buffers for input and output are independently
defined allowing shared primitives to be reused.

Number of types

Pointer to primitive header of non-shared vertex

Shared primitive type

MSB of the type count is a flag indicating map completed

Index into the primitive type’s polygon section

type

type

2-56 3D Graphics

File Formats

Shared VERTEX

Calculated shared NORMAL

Shared POLYGON-2 IDX

Polygon count / size

NORMAL section

Non-shared VERTEX

Non-shared NORMAL

Shared NORMAL

Calculated-shared VERTEX

Polygon section
Connectivity data for POLYGONs (known as a
PACKET) is placed here. The format (PACKET
FORMAT) is described below.

Vertex section
The VERTEX and NORMAL sections are positioned
such that non-shared, shared, and calculated-shared
entities are arranged continuously.
This arrangement means a non-shared primitive can
also scope a shared vertex.

Non-shared POLYGON

type

Shared POLYGON

3D Graphics 2-57

File Formats

HMD Header Section

Figure 104: HMD Header Section

Block count

PRIM TOP0

PRIM TOP1

PRIM TOP2

PRIM TOP3

Primitive header pointer

MAP FLAG

Version ID

Version ID: Version number of the HMD format. Currently 0x00000050.

MAP FLAG: Flag indicating whether mapping was performed. This flag is accessed
and updated by GsMapUnit(). This value is 0x00000000 if MAPped,
and 0x00000001 if UNMAPped.

Primitive header top: Pointer to primitive header section (offset value from top, in words)
MSB is 1 when data in the primitive header section has been mapped
using GsMapUnit().

Block count: Number of blocks. There is 1 block per coordinate as well as a PRE-
PROCESS block and a POST-PROCESS block. Therefore the block
count is equal to the number of coordinates + 2.

Primitive pointer table: Contains a pointer to the primitive in each block. The first block is used
for PRE-PROCESS and does not have a coordinate. The next blocks
correspond to indexes from the coordinate tops. The last block is
used for POST-PROCESS and does not have a coordinate.

Table 2-4 : Primitive Pointer Table

Block Coordinate Primitive Process

BLOCK 0 PRIM 0 PRE-PROCESS
BLOCK 1 COORDINATE0 PRIM 1 Block 1 process
BLOCK 2 COORDINATE1 PRIM 2 Block 2 process
BLOCK 3 COORDINATE2 PRIM 3 Block 3 process
BLOCK N COORDINATE N-1 PRIM N Block N process
BLOCK N+1 PRIM N+1 POST-PROCESS

2-58 3D Graphics

File Formats

COORDINATE Section

The coordinate section contains coordinate system data for each block.

The first word of the coordinate section indicates the number of coordinates.

Coordinates are represented in GsCOORDUNIT format as shown below.

GsCOORDUNIT {
unsigned long flg;
MATRIX matrix;
MATRIX workm;
SVECTOR rot;
struct GsCOORDUNIT *super;
}

The consistency between rot and matrix must be maintained during construction of HMD data.

Primitive Header Section

The primitive header section contains a collection of primitive headers and global data for the primitive
block. When a primitive driver is called, GsSortUnit() copies the data shown below to a variable transfer
area. The size of the copied data is saved in the header size.

This process enables the primitive driver to access data in the primitive header. Since the primitive header
contains pointers to normal and vertex section headers, the driver is able to access data in these sections.

The MSB of the data denotes whether or not the value will be mapped. If the value will not be mapped
(MSB = 0), it is considered to be an ordinary number. If it will be mapped (MSB = 1), the value is treated as
a pointer.

Figure 105: Variable transfer area transferred to the primitive driver

primtop

:
:

Primitive Header

OUTP(packet area)

Offset(OT)

Shift(OT)

Tag(OT)

3D Graphics 2-59

File Formats

Primitive Section

The primitive section contains one or more primitive blocks. Each block corresponds to one coordinate. For
model data, the first primitive is used for non-shared vertex data and the next block is a primitive that is
used for shared vertex data. If non-shared vertex primitives and shared vertex primitives are not present in
the model data, this section can be omitted.

Primitives

As shown below, primitives consist of several types of data.

Figure 106: One Primitive

Polygon count / size

Primitive header pointer

NEXT Prim pointer

s

POLYGON IDX

type

type countm

The first three words in a primitive specify the control section. This section is made up of a NextPrim
pointer, a primitive header pointer, and a type count. The MSB of the type count(m) serves as a flag
indicating whether or not the NextPrim pointer and the primitive header pointer have been mapped. If m=1,
the pointers have not been mapped. Conversely, if m=0, the pointers have been mapped.

The data section of a primitive is organized in three-word units. Each unit is made up of a type field, which
serves as an identifying code, the number of polygons in the data for this type, and POLYGON IDX, which
is a pointer to the actual polygon data. These three words are repeated according to the number of types
in the control section.

The MSB of the polygon count is a flag indicating whether a SCAN operation has been performed. The
lower 16 bits indicate the size of the data contained in the type.

The upper 8 bits (n) of POLYGON IDX can be used as a parameter for the primitive driver. In the current
implementation, DIV and ADV in the polygon data DRIVER bits (category 0) are used to control the number
of polygon divisions. DIV stores the actual number of divisions (fixed divisions), while ADV stores the
maximum number of divisions (automatic division). The allowed values of DIV and ADV are defined in libgs.h
as GsUNIT_DIV1 - GsUNIT_DIV5. When using DIV or ADV, it is not advisable to set any other values to n. In
particular, it is important to note that if the value is set to 0, the primitive driver will not function.

2-60 3D Graphics

File Formats

type

The type field consists of 32 bits arranged in four sections. The upper 8 bits contain data that is common to
all categories.

Figure 107: Type Field

DEVE
LOPER

ID

31 16

CATE
GORY

PRIMITIVE

015

DRIVER

T Y P E

Common to all Categories

DEVELOPER ID: Contains the ID of the developer who created this format. If ID is unique, the developer
may use the other bits freely. A total of 16 IDs are available. The value zero is assigned
to Sony Computer Entertainment.

All 16 ID
0x0: SCE
0xf: User defined

CATEGORY: This identifies the category of data such as polygon data or image data.
16 categories are available.

0: Polygon data
1: Shared polygon data
2: Image data
3: Animation data
4: MIMe data
5: Ground data

3D Graphics 2-61

File Formats

Polygon Data (Category 0)

DRIVER

These bits can be used to change the behavior of the primitive driver for a given type of primitive data. For
example, polygon subdivision can be enabled. 8 bits are available.

Figure 108: Polygon Primitive Driver

D
I
V

F
O
G

L
G
T

A
D
V

B
O
T

S
T
P

I
N
I

DIV 0: Disable subdivision
1: Perform subdivision

FOG 0: Turn FOG OFF
1: Turn FOG ON

LGT 0: Perform light-source calculation
1: Disable light-source calculation (forcibly mask off light-source calculation
 during execution)

ADV 0: Do not perform automatic division
1: Perform automatic division

BOT 0: Single-sided polygon
1: Double-sided polygon

STP 0: (Make semi-transparent if already semi-transparent. Make opaque if already opaque)
1: make all polygons semi-transparent

INI 0: Do not initialize
1: Initialize

When initialization is specified, an initialization function is called to set up the environment before
SCAN is performed. In some cases, this bit is set when a type is first used.

2-62 3D Graphics

File Formats

PRIMITIVE TYPE

The value of these bits depends on the type of primitive.

Figure 109: Primitive Type of Polygon Primitive

T
M
E

C
O
L

I
I
PCODE

L
M
D

M
I
P

P
S
T

T
I
L
E

TME 0: Disable texture mapping
1: Perform texture mapping

COL 0: Use one material color for identical polygons
1: Use a separate color for each vertex

IIP 0: Flat-shaded polygon
1: Gouraud-shaded polygon

CODE Describes the shape of the polygon
0: Reserved by the system
1: Triangle
2: Quadrangle
3: Strip mesh
4-7: Reserved by the system

LMD 0: Has normal
1: Does not have normal

MIP (not implemented)
0: Disable MIP-mapping
1: Perform MIP-mapping

PST 0: No presets
1: Preset packet available

TILE 0: No information for tiled textures
1: Information available for tiled textures

MIMe 0: Normal polygon
1: MIMe polygon (not implemented)

Number of polygons / Size

Figure 110: Number and Size of Polygons

Data size (in words)Polygon count
f
l
g

flg flag indicating whether or not SCAN was performed
0: SCAN was performed
1: SCAN was not performed

Number of polygons Number of polygons in type.

Data size_@ Size of data in type (in words)

3D Graphics 2-63

File Formats

Polygon Section

The polygon section contains polygon connection information. PACKETs are used to represent this
information and are classified according to type.

A PACKET has NORMAL and VERTEX fields that are referenced by an index, and an RGB field that
contains actual values.

The polygon type can be one of the following shapes:

1. Triangle
2. Quadrangle
3. MESH

For MESH, the first num field specifies the number of connections.

A list of PACKETs by type is shown below.

The type of polygon is shown at the upper left, and the value of the type field is shown at the upper right.
The contents of the PACKET are drawn as a series of rows, with each row representing one word (32 bits).
The meaning of the symbols shown is basically the same as that for TMD.

Polygon Types

With Light-source Calculation
Flat No-Texture Triangle

0x00000008; DRV(0)|PRIM_TYPE(TRI); GsUF3

B(r); B(g); B(b); B(0x20);

H(norm0); H(vert0);

H(vert1); H(vert2);

Gouraud No-Texture Triangle

0x0000000c; DRV(0)|PRIM_TYPE(TRI|IIP); GsUG3

B(r); B(g); B(b); B(0x30);

H(norm0); H(vert0);

H(norm1); H(vert1);

H(norm2); H(vert2);

Colored Flat No-Texture Triangle

0x0000000a; DRV(0)|PRIM_TYPE(TRI|COL); GsUCF3

B(r0); B(g0); B(b0); B(0x30);

B(r1); B(g1); B(b1); B(0x30);

B(r2); B(g2); B(b2); B(0x30);

H(norm0); H(vert0);

H(vert1); H(vert2);

2-64 3D Graphics

File Formats

Colored Gouraud No-Texture Triangle

0x0000000e; DRV(0)|PRIM_TYPE(TRI|IIP|COL); GsUCG3

B(r0); B(g0); B(b0); B(0x30);

B(r1); B(g1); B(b1); B(0x30);

B(r2); B(g2); B(b2); B(0x30);

H(norm0); H(vert0);

H(norm1); H(vert1);

H(norm2); H(vert2);

Flat Texture Triangle

0x00000009; DRV(0)|PRIM_TYPE(TRI|TME); GsUFT3

B(u0); B(v0); H(cba);

B(u1); B(v1); H(tsb);

B(u2); B(v2); H(0);

H(norm0); H(vert0);

H(vert1); H(vert2);

Gouraud Texture Triangle

0x0000000d; DRV(0)|PRIM_TYPE(TRI|IIP|TME); GsUGT3

B(u0); B(v0); H(cba);

B(u1); B(v1); H(tsb);

B(u2); B(v2); H(0);

H(norm0); H(vert0);

H(norm1); H(vert1);

H(norm2); H(vert2);

Colored Flat Texture Triangle

0x0000000b; DRV(0)|PRIM_TYPE(TRI|COL|TME); GsUCFT3

B(r0); B(g0); B(b0); B(0x34);

B(r1); B(g1); B(b1); B(0x34);

B(r2); B(g2); B(b2); B(0x34);

B(u0); B(v0); H(cba);

B(u1); B(v1); H(tsb);

B(u2); B(v2); H(0);

H(norm0); H(vert0);

H(vert1); H(vert2);

3D Graphics 2-65

File Formats

Colored Gouraud Texture Triangle

0x0000000f; DRV(0)|PRIM_TYPE(TRI|IIP|COL|TME); GsUCGT3

B(r0); B(g0); B(b0); B(0x34);

B(r1); B(g1); B(b1); B(0x34);

B(r2); B(g2); B(b2); B(0x34);

B(u0); B(v0); H(cba);

B(u1); B(v1); H(tsb);

B(u2); B(v2); H(0);

H(norm0); H(vert0);

H(norm1); H(vert1);

H(norm2); H(vert2);

Flat No-Texture Quad

0x00000010; DRV(0)|PRIM_TYPE(QUAD); GsUF4

B(r); B(g); B(b); B(0x28);

H(norm0); H(vert0);

H(vert1); H(vert2);

H(vert3); H(0);

Gouraud No-Texture Quad

0x00000014; DRV(0)|PRIM_TYPE(QUAD|IIP); GsUG4

B(r); B(g); B(b); B(0x38);

H(norm0); H(vert0);

H(norm1); H(vert1);

H(norm2); H(vert2);

H(norm3); H(vert3);

Colored Flat No-Texture Quad

0x00000012; DRV(0)|PRIM_TYPE(QUAD|COL); GsUCF4

B(r0); B(g0); B(b0); B(0x38);

B(r1); B(g1); B(b1); B(0x38);

B(r2); B(g2); B(b2); B(0x38);

B(r3); B(g3); B(b3); B(0x38);

H(norm0); H(vert0);

H(vert1); H(vert2);

H(vert3); H(0);

2-66 3D Graphics

File Formats

Colored Gouraud No-Texture Quad

0x00000016; DRV(0)|PRIM_TYPE(QUAD|IIP|COL); GsUCG4

B(r0); B(g0); B(b0); B(0x38);

B(r1); B(g1); B(b1); B(0x38);

B(r2); B(g2); B(b2); B(0x38);

B(r3); B(g3); B(b3); B(0x38);

H(norm0); H(vert0);

H(norm1); H(vert1);

H(norm2); H(vert2);

H(norm3); H(vert3);

Flat Texture Quad

0x00000011; DRV(0)|PRIM_TYPE(QUAD|TME); GsUFT4

B(u0); B(v0); H(cba);

B(u1); B(v1); H(tsb);

B(u2); B(v2); H(0);

B(u3); B(v3); H(norm0);

H(vert0); H(vert1);

H(vert2); H(vert3);

Gouraud Texture Quad

0x00000015; DRV(0)|PRIM_TYPE(QUAD|IIP|TME); GsUGT4

B(u0); B(v0); H(cba);

B(u1); B(v1); H(tsb);

B(u2); B(v2); H(norm0);

B(u3); B(v3); H(vert0);

H(norm1); H(vert1);

H(norm2); H(vert2);

H(norm3); H(vert3);

Colored Flat Texture Quad

0x00000013; DRV(0)|PRIM_TYPE(QUAD|COL|TME); GsUCFT4

B(r0); B(g0); B(b0); B(0x3c);

B(r1); B(g1); B(b1); B(0x3c);

B(r2); B(g2); B(b2); B(0x3c);

B(r3); B(g3); B(b3); B(0x3c);

B(u0); B(v0); H(cba);

B(u1); B(v1); H(tsb);

B(u2); B(v2); H(0);

B(u3); B(v3); H(norm0);

H(vert0); H(vert1);

H(vert2); H(vert3);

Colored Gouraud Texture Quad

3D Graphics 2-67

File Formats

0x00000017; DRV(0)|PRIM_TYPE(QUAD|IIP|COL|TME); GsUCGT4

B(r0); B(g0); B(b0); B(0x3c);

B(r1); B(g1); B(b1); B(0x3c);

B(r2); B(g2); B(b2); B(0x3c);

B(r3); B(g3); B(b3); B(0x3c);

B(u0); B(v0); H(cba);

B(u1); B(v1); H(tsb);

B(u2); B(v2); H(norm0);

B(u2); B(v2); H(vert0);

H(norm1); H(vert1);

H(norm2); H(vert2);

H(norm3); H(vert3);

Flat No-Texture Mesh

0x00000018; DRV(0)|PRIM_TYPE(MESH); GsUMF3

H(num); H(0);

B(r); B(g); B(b); B(0x20);

H(norm2); H(vert0);

H(vert1); H(vert2);

/*------------------------*/

B(r); B(g); B(b); B(0x20);

H(norm3); H(vert3);

Gouraud No-Texture Mesh

0x0000001c; DRV(0)|PRIM_TYPE(MESH|IIP); GsUMG3

H(num); H(0);

B(r2); B(g2); B(b2); B(0x30);

H(norm0); H(vert0);

H(norm1); H(vert1);

H(norm2); H(vert2);

/*------------------------*/

B(r3); B(g3); B(b3); B(0x30);

H(norm1); H(norm2);

H(norm3); H(vert3);

2-68 3D Graphics

File Formats

Colored Flat No-Texture Mesh

0x0000001a; DRV(0)|PRIM_TYPE(MESH|COL)

H(num); H(0);

B(r0); B(g0); B(b0); B(0x30);

B(r1); B(g1); B(b1); B(0x30);

B(r2); B(g2); B(b2); B(0x30);

H(norm2); H(vert0);

H(vert1); H(vert2);

/*------------------------*/

B(r3); B(g3); B(b3); B(0x30);

H(norm3); H(vert3);

Colored Gouraud No-Texture Mesh

0x0000001e; DRV(0)|PRIM_TYPE(MESH|IIP|COL)

H(num); H(0);

B(r0); B(g0); B(b0); B(0x30);

B(r1); B(g1); B(b1); B(0x30);

B(r2); B(g2); B(b2); B(0x30);

H(norm0); H(vert0);

H(norm1); H(vert1);

H(norm2); H(vert2);

/*------------------------*/

B(r3); B(g3); B(b3); B(0x30);

H(norm1); H(norm2);

H(norm3); H(vert3);

Flat Texture Mesh

0x00000019; DRV(0)|PRIM_TYPE(MESH|TME); GsUMFT3

H(num); H(0);

B(u0); B(v0); H(cba);

B(u1); B(v1); H(tsb);

B(u2); B(v2); H(0);

H(norm2); H(vert0);

H(vert1); H(vert2);

/*------------------------*/

B(u1a); B(v1a); H(cba);

B(u2a); B(v2a); H(tsb);

B(u3); B(v3); H(0);

H(norm3); H(vert3);

3D Graphics 2-69

File Formats

Gouraud Texture Mesh

0x0000001d; DRV(0)|PRIM_TYPE(MESH|IIP|TME); GsUMGT3

H(num); H(0);

B(u0); B(v0); H(cba);

B(u1); B(v1); H(tsb);

B(u2); B(v2); H(0);

H(norm0); H(vert0);

H(norm1); H(vert1);

H(norm2); H(vert2);

/*------------------------*/

B(u1a); B(v1a); H(cba);

B(u2a); B(v2a); H(tsb);

B(u3); B(v3); H(0);

H(norm1); H(norm2);

H(norm3); H(vert3);

Colored Flat Texture Mesh

0x0000001b; DRV(0)|PRIM_TYPE(MESH|COL|TME)

H(num); H(0);

B(r0); B(g0); B(b0); B(0x34);

B(r1); B(g1); B(b1); B(0x34);

B(r2); B(g2); B(b2); B(0x34);

B(u0); B(v0); H(cba);

B(u1); B(v1); H(tsb);

B(u2); B(v2); H(0);

H(norm2); H(vert0);

H(vert1); H(vert2);

/*------------------------*/

B(r1); B(g1); B(b1); B(0x34);

B(r2); B(g2); B(b2); B(0x34);

B(r3); B(g3); B(b3); B(0x34);

B(u1a); B(v1a); H(cba);

B(u2a); B(v2a); H(tsb);

B(u3); B(v3); H(0);

H(norm3); H(vert3);

2-70 3D Graphics

File Formats

Colored Gouraud Texture Mesh

0x0000001f; DRV(0)|PRIM_TYPE(MESH|IIP|COL|TME)

H(num); H(0);

B(r0); B(g0); B(b0); B(0x34);

B(r1); B(g1); B(b1); B(0x34);

B(r2); B(g2); B(b2); B(0x34);

B(u0); B(v0); H(cba);

B(u1); B(v1); H(tsb);

B(u2); B(v2); H(0);

H(norm0); H(vert0);

H(norm1); H(vert1);

H(norm2); H(vert2);

/*------------------------*/

B(r1); B(g1); B(b1); B(0x34);

B(r2); B(g2); B(b2); B(0x34);

B(r3); B(g3); B(b3); B(0x34);

B(u1a); B(v1a); H(cba);

B(u2a); B(v2a); H(tsb);

B(u3); B(v3); H(0);

H(norm1); H(norm2);

H(norm3); H(vert3);

3D Graphics 2-71

File Formats

Without Light-source Calculation (Model Data without Normals)

Flat No-Texture Triangle

0x00040048; DRV(LGT)|PRIM_TYPE(LMD|TRI); GsUNF3

B(r); B(g); B(b); B(0x20);

H(vert0); H(vert1);

H(vert2); H(0);

Gouraud No-Texture Triangle

0x0004004c; DRV(LGT)|PRIM_TYPE(LMD|TRI|IIP); GsUNG3

B(r0); B(g0); B(b0); B(0x30);

B(r1); B(g1); B(b1); B(0x30);

B(r2); B(g2); B(b2); B(0x30);

H(vert0); H(vert1);

H(vert2); H(0);

Flat Texture Triangle

0x00040049; DRV(LGT)|PRIM_TYPE(LMD|TRI|TME); GsUNFT3

B(r); B(g); B(b); B(0x24);

B(u0); B(v0); H(cba);

B(u1); B(v1); H(tsb);

B(u2); B(v2); H(vert0);

H(vert1); H(vert2);

Gouraud Texture Triangle

0x0004004d; DRV(LGT)|PRIM_TYPE(LMD|TRI|IIP|TME); GsUNGT3

B(r0); B(g0); B(b0); B(0x34);

B(r1); B(g1); B(b1); B(0x34);

B(r2); B(g2); B(b2); B(0x34);

B(u0); B(v0); H(cba);

B(u1); B(v1); H(tsb);

B(u2); B(v2); H(vert0);

H(vert1); H(vert2);

Flat No-Texture Quad

0x00040050; DRV(LGT)|PRIM_TYPE(LMD|QUAD); GsUNF4

B(r); B(g); B(b); B(0x28);

H(vert0); H(vert1);

H(vert2); H(vert3);

2-72 3D Graphics

File Formats

Gouraud No-Texture Quad

0x00040054; DRV(LGT)|PRIM_TYPE(LMD|QUAD|IIP); GsUNG4

B(r0); B(g0); B(b0); B(0x38);

B(r1); B(g1); B(b1); B(0x38);

B(r2); B(g2); B(b2); B(0x38);

B(r3); B(g3); B(b3); B(0x38);

H(vert0); H(vert1);

H(vert2); H(vert3);

Flat Texture Quad

0x00040051; DRV(LGT)|PRIM_TYPE(LMD|QUAD|TME); GsUNFT4

B(r); B(g); B(b); B(0x2c);

B(u0); B(v0); H(cba);

B(u1); B(v1); H(tsb);

B(u2); B(v2); H(vert0);

B(u3); B(v3); H(vert1);

H(vert2); H(vert3);

Gouraud Texture Quad

0x00040055; DRV(LGT)|PRIM_TYPE(LMD|QUAD|IIP|TME); GsUNGT4

B(r0); B(g0); B(b0); B(0x3c);

B(r1); B(g1); B(b1); B(0x3c);

B(r2); B(g2); B(b2); B(0x3c);

B(r3); B(g3); B(b3); B(0x3c);

B(u0); B(v0); H(cba);

B(u1); B(v1); H(tsb);

B(u2); B(v2); H(vert0);

B(u3); B(v3); H(vert1);

H(vert2); H(vert3);

Flat No-Texture Mesh

0x00040058; DRV(LGT)|PRIM_TYPE(LMD|MESH); GsUMNF3

H(num); H(0);

B(r2); B(g2); B(b2); B(0x20);

H(vert0); H(vert1);

H(vert2); H(0);

/*------------------------*/

B(r3); B(g3); B(b3); B(0x20);

H(vert3); H(0);

3D Graphics 2-73

File Formats

Gouraud No-Texture Mesh

0x0004005c; DRV(LGT)|PRIM_TYPE(LMD|MESH|IIP); GsUMNG3

H(num); H(0);

B(r0); B(g0); B(b0); B(0x30);

B(r1); B(g1); B(b1); B(0x30);

B(r2); B(g2); B(b2); B(0x30);

H(vert0); H(vert1);

H(vert2); H(0);

/*------------------------*/

B(r1); B(g1); B(b1); B(0x30);

B(r2); B(g2); B(b2); B(0x30);

B(r3); B(g3); B(b3); B(0x30);

H(vert3); H(0);

Flat Texture Mesh

0x00040059; DRV(LGT)|PRIM_TYPE(LMD|MESH|TME); GsUMNFT3

H(num); H(0);

B(r0); B(g0); B(b0); B(0x24);

B(u0); B(v0); H(cba);

B(u1); B(v1); H(tsb);

B(u2); B(v2); H(vert0);

H(vert1); H(vert2);

/*------------------------*/

B(r3); B(g3); B(b3); B(0x24);

B(u1a); B(v1a); H(cba);

B(u2a); B(v2a); H(tsb);

B(u3); B(v3); H(vert3);

Gouraud Texture Mesh

0x0004005d; DRV(LGT)|PRIM_TYPE(LMD|MESH|IIP|TME); GsUMNGT3

H(num); H(0);

B(r0); B(g0); B(b0); B(0x34);

B(r1); B(g1); B(b1); B(0x34);

B(r2); B(g2); B(b2); B(0x34);

B(u0); B(v0); H(cba);

B(u1); B(v1); H(tsb);

B(u2); B(v2); H(vert0);

H(vert1); H(vert2);

/*------------------------*/

B(r1); B(g1); B(b1); B(0x34);

B(r2); B(g3); B(b3); B(0x34);

B(r3); B(g3); B(b3); B(0x34);

B(u1a); B(v1a); H(cba);

B(u2a); B(v2a); H(tsb);

B(u3); B(v3); H(vert3);

2-74 3D Graphics

File Formats

Tiled Textures

Tiled Textures with Light-source Calculation

TUM: Tiling mask for the U coordinate of the texture pattern (5 bits)

TVM: Tiling mask for the V coordinate of the texture pattern (5 bits)

TUA: Upper address of U for tiling the texture pattern (5 bits)

TVA: Upper address of V for tiling the texture pattern (5 bits)

A packet that is used for tiled textures contains a repetition parameter at the beginning of the packet, and a
reset parameter at the end of the packet. This allows tiled and non-tiled textures to coexist.

tum, tvm, tua, tva serve as parameters for calculating UV' from given UV values (u,v) using the following
equation.

UV' = ((~(tum << 3) & u)|((tum << 3) & (tua << 3)),

 (~(tvm << 3) & v)l((tvm << 3) & (tva << 3)));

In the following example, a texture window for tiling is set up in the texture page, with (x, y) representing the
upper left corner, and (w, h) representing the width and height:

tum = (~(w - 1) & 0x0ff) >> 3;

tvm = (~(h - 1) & 0x0ff) >> 3;

tua = (x & 0x0ff) >> 3;

tva = (y & 0x0ff) >> 3;

At reset, all four parameters are set to zero.

Flat Texture Triangle

0x00000209; DRV(0)|PRIM_TYPE(TILE|TRI|TME); GsUTFT3

TUM(tum)|TVM(tvm)|TUA(tua)|TVA(tva)|0xe2000000;

B(u0); B(v0); H(cba);

B(u1); B(v1); H(tsb);

B(u2); B(v2); H(0);

H(norm0); H(vert0);

H(vert1); H(vert2);

Gouraud Texture Triangle

0x0000020d; DRV(0)|PRIM_TYPE(TILE|TRI|IIP|TME); GsUTGT3

TUM(tum)|TVM(tvm)|TUA(tua)|TVA(tva)|0xe2000000;

B(u0); B(v0); H(cba);

B(u1); B(v1); H(tsb);

B(u2); B(v2); H(0);

H(norm0); H(vert0);

H(norm1); H(vert1);

H(norm2); H(vert2);

3D Graphics 2-75

File Formats

Colored Flat Texture Triangle

0x0000020b; DRV(0)|PRIM_TYPE(TILE|TRI|COL|TME)

TUM(tum)|TVM(tvm)|TUA(tua)|TVA(tva)|0xe2000000;

B(r0); B(g0); B(b0); B(0x34);

B(r1); B(g1); B(b1); B(0x34);

B(r2); B(g2); B(b2); B(0x34);

B(u0); B(v0); H(cba);

B(u1); B(v1); H(tsb);

B(u2); B(v2); H(0);

H(norm0); H(vert0);

H(vert1); H(vert2);

Colored Gouraud Texture Triangle

0x0000020f; DRV(0)|PRIM_TYPE(TILE|TRI|IIP|COL|TME)

TUM(tum)|TVM(tvm)|TUA(tua)|TVA(tva)|0xe2000000;

B(r0); B(g0); B(b0); B(0x34);

B(r1); B(g1); B(b1); B(0x34);

B(r2); B(g2); B(b2); B(0x34);

B(u0); B(v0); H(cba);

B(u1); B(v1); H(tsb);

B(u2); B(v2); H(0);

H(norm0); H(vert0);

H(norm1); H(vert1);

H(norm2); H(vert2);

Flat Texture Quad

0x00000211; DRV(0)|PRIM_TYPE(TILE|QUAD|TME); GsUTFT4

TUM(tum)|TVM(tvm)|TUA(tua)|TVA(tva)|0xe2000000;

B(u0); B(v0); H(cba);

B(u1); B(v1); H(tsb);

B(u2); B(v2); H(0);

B(u3); B(v3); H(norm0);

H(vert0); H(vert1);

H(vert2); H(vert3);

2-76 3D Graphics

File Formats

Gouraud Texture Quad

0x00000215; DRV(0)|PRIM_TYPE(TILE|QUAD|IIP|TME); GsUTGT4

TUM(tum)|TVM(tvm)|TUA(tua)|TVA(tva)|0xe2000000;

B(u0); B(v0); H(cba);

B(u1); B(v1); H(tsb);

B(u2); B(v2); H(norm0);

B(u3); B(v3); H(vert0);

H(norm1); H(vert1);

H(norm2); H(vert2);

H(norm3); H(vert3);

Colored Flat Texture Quad

0x00000213; DRV(0)|PRIM_TYPE(TILE|QUAD|COL|TME)

TUM(tum)|TVM(tvm)|TUA(tua)|TVA(tva)|0xe2000000;

B(r0); B(g0); B(b0); B(0x3c);

B(r1); B(g1); B(b1); B(0x3c);

B(r2); B(g2); B(b2); B(0x3c);

B(r3); B(g3); B(b3); B(0x3c);

B(u0); B(v0); H(cba);

B(u1); B(v1); H(tsb);

B(u2); B(v2); H(0);

B(u3); B(v3); H(norm0);

H(vert0); H(vert1);

H(vert2); H(vert3);

Colored Gouraud Texture Quad

0x00000217; DRV(0)|PRIM_TYPE(TILE|QUAD|IIP|COL|TME)

TUM(tum)|TVM(tvm)|TUA(tua)|TVA(tva)|0xe2000000;

B(r0); B(g0); B(b0); B(0x3c);

B(r1); B(g1); B(b1); B(0x3c);

B(r2); B(g2); B(b2); B(0x3c);

B(r3); B(g3); B(b3); B(0x3c);

B(u0); B(v0); H(cba);

B(u1); B(v1); H(tsb);

B(u2); B(v2); H(norm0);

B(u3); B(v3); H(vert0);

H(norm1); H(vert1);

H(norm2); H(vert2);

H(norm3); H(vert3);

3D Graphics 2-77

File Formats

Flat Texture Mesh

0x00000219; DRV(0)|PRIM_TYPE(TILE|MESH|TME)

H(num); H(0);

TUM(tum)|TVM(tvm)|TUA(tua)|TVA(tva)|0xe2000000;

B(u0); B(v0); H(cba);

B(u1); B(v1); H(tsb);

B(u2); B(v2); H(0);

H(norm2); H(vert0);

H(vert1); H(vert2);

/*------------------------*/

TUM(tum)|TVM(tvm)|TUA(tua)|TVA(tva)|0xe2000000;

B(u1a); B(v1a); H(cba);

B(u2a); B(v2a); H(tsb);

B(u3); B(v3); H(0);

H(norm3); H(vert3);

Gouraud Texture Mesh

0x0000021d; DRV(0)|PRIM_TYPE(TILE|MESH|IIP|TME)

H(num); H(0);

TUM(tum)|TVM(tvm)|TUA(tua)|TVA(tva)|0xe2000000;

B(u0); B(v0); H(cba);

B(u1); B(v1); H(tsb);

B(u2); B(v2); H(0);

H(norm0); H(vert0);

H(norm1); H(vert1);

H(norm2); H(vert2);

/*------------------------*/

TUM(tum)|TVM(tvm)|TUA(tua)|TVA(tva)|0xe2000000;

B(u1a); B(v1a); H(cba);

B(u2a); B(v2a); H(tsb);

B(u3); B(v3); H(0);

H(norm1); H(norm2);

H(norm3); H(vert3);

2-78 3D Graphics

File Formats

Colored Flat Texture Mesh

0x0000021b; DRV(0)|PRIM_TYPE(TILE|MESH|COL|TME)

H(num); H(0);

TUM(tum)|TVM(tvm)|TUA(tua)|TVA(tva)|0xe2000000;

B(r0); B(g0); B(b0); B(0x34);

B(r1); B(g1); B(b1); B(0x34);

B(r2); B(g2); B(b2); B(0x34);

B(u0); B(v0); H(cba);

B(u1); B(v1); H(tsb);

B(u2); B(v2); H(0);

H(norm2); H(vert0);

H(vert1); H(vert2);

/*------------------------*/

TUM(tum)|TVM(tvm)|TUA(tua)|TVA(tva)|0xe2000000;

B(r1); B(g1); B(b1); B(0x34);

B(r2); B(g2); B(b2); B(0x34);

B(r3); B(g3); B(b3); B(0x34);

B(u1a); B(v1a); H(cba);

B(u2a); B(v2a); H(tsb);

B(u3); B(v3); H(0);

H(norm3); H(vert3);

Colored Gouraud Texture Mesh

0x0000021f; DRV(0)|PRIM_TYPE(TILE|MESH|IIP|COL|TME)

H(num); H(0);

TUM(tum)|TVM(tvm)|TUA(tua)|TVA(tva)|0xe2000000;

B(r0); B(g0); B(b0); B(0x34);

B(r1); B(g1); B(b1); B(0x34);

B(r2); B(g2); B(b2); B(0x34);

B(u0); B(v0); H(cba);

B(u1); B(v1); H(tsb);

B(u2); B(v2); H(0);

H(norm0); H(vert0);

H(norm1); H(vert1);

H(norm2); H(vert2);

/*------------------------*/

TUM(tum)|TVM(tvm)|TUA(tua)|TVA(tva)|0xe2000000;

B(r1); B(g1); B(b1); B(0x34);

B(r2); B(g2); B(b2); B(0x34);

B(r3); B(g3); B(b3); B(0x34);

B(u1a); B(v1a); H(cba);

B(u2a); B(v2a); H(tsb);

B(u3); B(v3); H(0);

H(norm1); H(norm2);

H(norm3); H(vert3);

3D Graphics 2-79

File Formats

Tiled Textures without Light-source Calculation

Flat Texture Triangle

0x00040249; DRV(LGT)|PRIM_TYPE(TILE|LMD|TRI|TME)

TUM(tum)|TVM(tvm)|TUA(tua)|TVA(tva)|0xe2000000;

B(r); B(g); B(b); B(0x24);

B(u0); B(v0); H(cba);

B(u1); B(v1); H(tsb);

B(u2); B(v2); H(vert0);

H(vert1); H(vert2);

Gouraud Texture Triangle

0x0004024d; DRV(LGT)|PRIM_TYPE(TILE|LMD|TRI|IIP|TME)

TUM(tum)|TVM(tvm)|TUA(tua)|TVA(tva)|0xe2000000;

B(r0); B(g0); B(b0); B(0x34);

B(r1); B(g1); B(b1); B(0x34);

B(r2); B(g2); B(b2); B(0x34);

B(u0); B(v0); H(cba);

B(u1); B(v1); H(tsb);

B(u2); B(v2); H(vert0);

H(vert1); H(vert2);

Flat Texture Quad

0x00040251; DRV(LGT)|PRIM_TYPE(TILE|LMD|QUAD|TME)

TUM(tum)|TVM(tvm)|TUA(tua)|TVA(tva)|0xe2000000;

B(r); B(g); B(b); B(0x2c);

B(u0); B(v0); H(cba);

B(u1); B(v1); H(tsb);

B(u2); B(v2); H(vert0);

B(u3); B(v3); H(vert1);

H(vert2); H(vert3);

2-80 3D Graphics

File Formats

Gouraud Texture Quad

0x00040255; DRV(LGT)|PRIM_TYPE(TILE|LMD|QUAD|IIP|TME)

TUM(tum)|TVM(tvm)|TUA(tua)|TVA(tva)|0xe2000000;

B(r0); B(g0); B(b0); B(0x3c);

B(r1); B(g1); B(b1); B(0x3c);

B(r2); B(g2); B(b2); B(0x3c);

B(r3); B(g3); B(b3); B(0x3c);

B(u0); B(v0); H(cba);

B(u1); B(v1); H(tsb);

B(u2); B(v2); H(vert0);

B(u3); B(v3); H(vert1);

H(vert2); H(vert3);

Flat Texture Mesh

0x00040259; DRV(LGT)|PRIM_TYPE(TILE|LMD|MESH|TME)

H(num); H(0);

TUM(tum)|TVM(tvm)|TUA(tua)|TVA(tva)|0xe2000000;

B(r0); B(g0); B(b0); B(0x24);

B(u0); B(v0); H(cba);

B(u1); B(v1); H(tsb);

B(u2); B(v2); H(vert0);

H(vert1); H(vert2);

/*------------------------*/

TUM(tum)|TVM(tvm)|TUA(tua)|TVA(tva)|0xe2000000;

B(r3); B(g3); B(b3); B(0x24);

B(u1a); B(v1a); H(cba);

B(u2a); B(v2a); H(tsb);

B(u3); B(v3); H(vert3);

3D Graphics 2-81

File Formats

Gouraud Texture Mesh

0x0004025d; DRV(LGT)|PRIM_TYPE(TILE|LMD|MESH|IIP|TME)

H(num); H(0);

TUM(tum)|TVM(tvm)|TUA(tua)|TVA(tva)|0xe2000000;

B(r0); B(g0); B(b0); B(0x35);

B(r1); B(g1); B(b1); B(0x35);

B(r2); B(g2); B(b2); B(0x35);

B(u0); B(v0); H(cba);

B(u1); B(v1); H(tsb);

B(u2); B(v2); H(vert0);

H(vert1); H(vert2);

/*------------------------*/

TUM(tum)|TVM(tvm)|TUA(tua)|TVA(tva)|0xe2000000;

B(r1); B(g1); B(b1); B(0x35);

B(r2); B(g2); B(b2); B(0x35);

B(r3); B(g3); B(b3); B(0x35);

B(u1a); B(v1a); H(cba);

B(u2a); B(v2a); H(tsb);

B(u3); B(v3); H(vert3);

2-82 3D Graphics

File Formats

Preset model data

Flat No-Texture Triangle

0x00040148; DRV(LGT)|PRIM_TYPE(PST|LMD|TRI); GsUPNF3

DMAtag;

B(r); B(g); B(b); B(0x20);

H(x0); H(y0);

H(x1); H(y1);

H(x2); H(y2);

DMAtag;

B(r); B(g); B(b); B(0x20);

H(x0); H(y0);

H(x1); H(y1);

H(x2); H(y2);

H(vert0); H(vert1);

H(vert2); H(0);

Gouraud No-Texture Triangle

0x0004014c; DRV(LGT)|PRIM_TYPE(PST|LMD|TRI|IIP); GsUPNG3

DMAtag;

B(r0); B(g0); B(b0); B(0x30);

H(x0); H(y0);

B(r1); B(g1); B(b1); B(0);

H(x1); H(y1);

B(r2); B(g2); B(b2); B(0);

H(x2); H(y2);

DMAtag;

B(r0); B(g0); B(b0); B(0x30);

H(x0); H(y0);

B(r1); B(g1); B(b1); B(0);

H(x1); H(y1);

B(r2); B(g2); B(b2); B(0);

H(x2); H(y2);

H(vert0); H(vert1);

H(vert2); H(0);

3D Graphics 2-83

File Formats

Flat Texture Triangle

0x00040149; DRV(LGT)|PRIM_TYPE(PST|LMD|TRI|TME); GsUPNFT3

DMAtag;

B(r); B(g); B(b); B(0x24);

H(x0); H(y0);

B(u0); B(v0); H(cba);

H(x1); H(y1);

B(u1); B(v1); H(tsb);

H(x2); H(y2);

B(u2); B(v2); H(0);

DMAtag;

B(r); B(g); B(b); B(0x24);

H(x0); H(y0);

B(u0); B(v0); H(cba);

H(x1); H(y1);

B(u1); B(v1); H(tsb);

H(x2); H(y2);

B(u2); B(v2); H(vert0);

H(vert1); H(vert2);

Gouraud Texture Triangle

0x0004014d; DRV(LGT)|PRIM_TYPE(PST|LMD|TRI|IIP|TME); GsUNGT3

DMAtag;

B(r0); B(g0); B(b0); B(0x34);

H(x0); H(y0);

B(u0); B(v0); H(cba);

B(r1); B(g1); B(b1); B(0);

H(x1); H(y1);

B(u1); B(v1); H(tsb);

B(r2); B(g2); B(b2); B(0);

H(x2); H(y2);

B(u2); B(v2); H(0);

DMAtag;

B(r0); B(g0); B(b0); B(0x34);

H(x0); H(y0);

B(u0); B(v0); H(cba);

B(r1); B(g1); B(b1); B(0);

H(x1); H(y1);

B(u1); B(v1); H(tsb);

B(r2); B(g2); B(b2); B(0);

H(x2); H(y2);

B(u2); B(v2); H(vert0);

H(vert1); H(vert2);

2-84 3D Graphics

File Formats

Flat No-Texture Quad

0x00040150; DRV(LGT)|PRIM_TYPE(PST|LMD|QUAD); GsUPNF4

DMAtag;

B(r); B(g); B(b); B(0x28);

H(x0); H(y0);

H(x1); H(y1);

H(x2); H(y2);

H(x3); H(y3);

DMAtag;

B(r); B(g); B(b); B(0x28);

H(x0); H(y0);

H(x1); H(y1);

H(x2); H(y2);

H(x3); H(y3);

H(vert0); H(vert1);

H(vert2); H(vert3);

Gouraud No-Texture Quad

0x00040154; DRV(LGT)|PRIM_TYPE(PST|LMD|QUAD|IIP); GsUPNG4

DMAtag;

B(r0); B(g0); B(b0); B(0x38);

H(x0); H(y0);

B(r1); B(g1); B(b1); B(0);

H(x1); H(y1);

B(r2); B(g2); B(b2); B(0);

H(x2); H(y2);

B(r3); B(g3); B(b3); B(0);

H(x3); H(y3);

DMAtag;

B(r0); B(g0); B(b0); B(0x38);

H(x0); H(y0);

B(r1); B(g1); B(b1); B(0);

H(x1); H(y1);

B(r2); B(g2); B(b2); B(0);

H(x2); H(y2);

B(r3); B(g3); B(b3); B(0);

H(x3); H(y3);

H(vert0); H(vert1);

H(vert2); H(vert3);

3D Graphics 2-85

File Formats

Flat Texture Quad

0x00040151; DRV(LGT)|PRIM_TYPE(PST|LMD|QUAD|TME); GsUPNFT4

DMAtag;

B(r); B(g); B(b); B(0x2c);

H(x0); H(y0);

B(u0); B(v0); H(cba);

H(x1); H(y1);

B(u1); B(v1); H(tsb);

H(x2); H(y2);

B(u2); B(v2); H(0);

H(x3); H(y3);

B(u3); B(v3); H(0);

DMAtag;

B(r); B(g); B(b); B(0x2c);

H(x0); H(y0);

B(u0); B(v0); H(cba);

H(x1); H(y1);

B(u1); B(v1); H(tsb);

H(x2); H(y2);

B(u2); B(v2); H(0);

H(x3); H(y3);

B(u3); B(v3); H(0);

H(vert0); H(vert1);

H(vert2); H(vert3);

2-86 3D Graphics

File Formats

Gouraud Texture Quad

0x00040155; DRV(LGT)|PRIM_TYPE(PST|LMD|QUAD|IIP|TME); GsUPNGT4

DMAtag;

B(r0); B(g0); B(b0); B(0x3c);

H(x0); H(y0);

B(u0); B(v0); H(cba);

B(r1); B(g1); B(b1); B(0);

H(x1); H(y1);

B(u1); B(v1); H(tsb);

B(r2); B(g2); B(b2); B(0);

H(x2); H(y2);

B(u2); B(v2); H(0);

B(r3); B(g3); B(b3); B(0);

H(x3); H(y3);

B(u3); B(v3); H(0)

DMAtag;

B(r0); B(g0); B(b0); B(0x3c);

H(x0); H(y0);

B(u0); B(v0); H(cba);

B(r1); B(g1); B(b1); B(0);

H(x1); H(y1);

B(u1); B(v1); H(tsb);

B(r2); B(g2); B(b2); B(0);

H(x2); H(y2);

B(u2); B(v2); H(0);

B(r3); B(g3); B(b3); B(0);

H(x3); H(y3);

B(u3); B(v3); H(0)

H(vert0); H(vert1);

H(vert2); H(vert3);

3D Graphics 2-87

File Formats

Flat No-Texture Mesh

0x00040158; DRV(LGT)|PRIM_TYPE(PST|LMD|MESH)

H(num); H(0);

DMAtag;

B(r2); B(g2); B(b2); B(0x20);

H(x0); H(y0);

H(x1); H(y1);

H(x2); H(y2);

DMAtag;

B(r2); B(g2); B(b2); B(0x20);

H(x0); H(y0);

H(x1); H(y1);

H(x2); H(y2);

H(vert0); H(vert1);

H(vert2); H(0);

/*------------------------*/

DMAtag;

B(r3); B(g3); B(b3); B(0x20);

H(x1); H(y1);

H(x2); H(y2);

H(x3); H(y3);

DMAtag;

B(r3); B(g3); B(b3); B(0x20);

H(x1); H(y1);

H(x2); H(y2);

H(x3); H(y3);

H(vert3); H(0);

2-88 3D Graphics

File Formats

Gouraud No-Texture Mesh

0x0004015c; DRV(LGT)|PRIM_TYPE(PST|LMD|MESH|IIP)

H(num); H(0);

DMAtag;

B(r0); B(g0); B(b0); B(0x30);

H(x0); H(y0);

B(r1); B(g1); B(b1); B(0);

H(x1); H(y1);

B(r2); B(g2); B(b2); B(0);

H(x2); H(y2);

DMAtag;

B(r0); B(g0); B(b0); B(0x30);

H(x0); H(y0);

B(r1); B(g1); B(b1); B(0);

H(x1); H(y1);

B(r2); B(g2); B(b2); B(0);

H(x2); H(y2);

H(vert0); H(vert1);

H(vert2); H(0);

/*------------------------*/

DMAtag;

B(r1); B(g1); B(b1); B(0x30);

H(x1); H(y1);

B(r2); B(g2); B(b2); B(0);

H(x2); H(y2);

B(r3); B(g3); B(b3); B(0);

H(x3); H(y3);

DMAtag;

B(r1); B(g1); B(b1); B(0x30);

H(x1); H(y1);

B(r2); B(g2); B(b2); B(0);

H(x2); H(y2);

B(r3); B(g3); B(b3); B(0);

H(x3); H(y3);

H(vert3); H(0);

3D Graphics 2-89

File Formats

Flat Texture Mesh

0x00040159; DRV(LGT)|PRIM_TYPE(PST|LMD|MESH|TME)

H(num); H(0);

DMAtag;

B(r0); B(g0); B(b0); B(0x24);

H(x0); H(y0);

B(u0); B(v0); H(cba);

H(x1); H(y1);

B(u1); B(v1); H(tsb);

H(x2); H(y2);

B(u2); B(v2); H(0);

DMAtag;

B(r0); B(g0); B(b0); B(0x24);

H(x0); H(y0);

B(u0); B(v0); H(cba);

H(x1); H(y1);

B(u1); B(v1); H(tsb);

H(x2); H(y2);

B(u2); B(v2); H(vert0);

H(vert1); H(vert2);

/*------------------------*/

DMAtag;

B(r1); B(g1); B(b1); B(0x24);

H(x1); H(y1);

B(u1a); B(v1a); H(cba);

H(x2); H(y2);

B(u2a); B(v2a); H(tsb);

H(x3); H(y3);

B(u3); B(v3); H(0);

DMAtag;

B(r1); B(g1); B(b1); B(0x24);

H(x1); H(y1);

B(u1a); B(v1a); H(cba);

H(x2); H(y2);

B(u2a); B(v2a); H(tsb);

H(x3); H(y3);

B(u3); B(v3); H(vert3);

2-90 3D Graphics

File Formats

Gouraud Texture Mesh

0x0004015d; DRV(LGT)|PRIM_TYPE(PST|LMD|MESH|IIP|TME)

H(num); H(0);
DMAtag;
B(r0); B(g0); B(b0); B(0x34);
H(x0); H(y0);
B(u0); B(v0); H(cba);
B(r1); B(g1); B(b1); B(0);
H(x1); H(y1);
B(u1); B(v1); H(tsb);
B(r2); B(g2); B(b2); B(0);
H(x2); H(y2);
B(u2); B(v2); H(0);
DMAtag;
B(r0); B(g0); B(b0); B(0x34);
H(x0); H(y0);
B(u0); B(v0); H(cba);
B(r1); B(g1); B(b1); B(0);
H(x1); H(y1);
B(u1); B(v1); H(tsb);
B(r2); B(g2); B(b2); B(0);
H(x2); H(y2);
B(u2); B(v2); H(vert0);
H(vert1); H(vert2);
/*------------------------*/
DMAtag;
B(r1); B(g1); B(b1); B(0x34);
H(x1); H(y1);
B(u1a); B(v1a); H(cba);
B(r2); B(g2); B(b2); B(0);
H(x2); H(y2);
B(u2a); B(v2a); H(tsb);
B(r3); B(g3); B(b3); B(0);
H(x3); H(y3);
B(u3); B(v3); H(0);
DMAtag;
B(r1); B(g1); B(b1); B(0x34);
H(x1); H(y1);
B(u1a); B(v1a); H(cba);
B(r2); B(g2); B(b2); B(0);
H(x2); H(y2);
B(u2a); B(v2a); H(tsb);
B(r3); B(g3); B(b3); B(0);
H(x3); H(y3);
B(u3); B(v3); H(vert3);

Shared Primitives (Category 1)

Two types of primitive drivers are available for shared primitives:

1. PRE-CALCULATION drivers
2. Shared drivers

For VERTEXes, a PRE-CALCULATION driver converts a three-dimensional shared vertex array into a
perspective-transformed two-dimensional vertex array. For NORMALs, a PRE-CALCULATION driver
performs vertex color calculations.

PRE-CALCULATION drivers are chained to each primitive block since they need to be called for each
coordinate.

Shared drivers extract data from vertex arrays on which calculations have already been performed by a
PRE-CALCULATION driver. The data is then used to create a GPU PACKET that is entered into the OT.

Shared drivers must be called last so they are chained to POST-PROCESS primitive blocks.

3D Graphics 2-91

File Formats

TYPE

PRE-CALCULATION driver 0x01000000

Shared Driver

Figure 111: Shared Primitive Driver

DRIVER

All 0

PRIMITIVE TYPE

These bit assignments depend on the primitive type.

Figure 112: Primitive Type of Shared Primitive

CODE
I
I
P

C
O
L

T
M
E

TME 0: Disable texture mapping
1: Perform texture mapping

COL (not implemented)
0: Use one material color for identical polygons
1: Each vertex has its own color

IIP 0: Flat-shaded polygon
1: Gouraud-shaded polygon

CODE Describes shape of polygon

0: Reserved by the system
1: Triangle
2: Quadrangle
3: Strip mesh (not implemented)
4-7: Reserved by the system

The format of the connection data, which a shared driver refers to, is the same as the format for a non-
shared polygon PACKET. The format of the calculated area, which a shared driver refers to, is shown
below:

VERTEX
H(vx); H(vy);

H(otz); H(p);

NORMAL
H(r); H(g);

H(b); H(0);

2-92 3D Graphics

File Formats

Processing Flow for Shared Polygons

Figure 113: Shared Polygon Processing Flow

Calculated-
shared

vertex data

Non-shared
vertex data

Vertex section

Normal section

Connection
information

Shared polygon section

Shared
vertex data

Calculated-
shared

color data

Shared
normal data

Non-shared
normal data

GPU
PACKET

The arrows with the dotted line indicate the processing flow of the PRE-CALCULATION driver. Vertex and
normal calculations are performed for each coordinate.

The arrows with the solid line indicate the processing flow of the shared driver. Pre-calculated vertex data
and color data are used to create a GPU PACKET. The format of the connection data for the shared driver
is the same as that for an independent PACKET and is identified by the type field.

Image Primitive Section (Category 2)

The HMD format is able to represent image data as a primitive. This allows HMD to provide integrated
management of modeling data, image data, and animation data.

3D Graphics 2-93

File Formats

Of course, image data can be set up separately without including it in HMD data. For example, TIM can be
used to represent image data. Conversely, HMD data can be created which contains only image data as
well.

image 3

IMAGE DATA section

CLUT DATA section

image 2

image 1

image 3

image 2

image 1

CLUT TOP pointer

TERMINATE

type count

IMAGE TOP pointer

Image header pointer

HEADER SIZE (2)

type

Image count /size

Header section for the image data

Value depends on whether type has a CLUT

Main image data
(indexed data or RGB data)

CLUT data

type

Image count / size

2-94 3D Graphics

File Formats

Figure 114: Parameter Memory Area of Image Primitive Driver

CLUT top pointer

Image header pointer

OUTP(packet area)

offset(OT)

shift(OT)

tag(OT)

primtop

Parameter Settings

Behavior of the image primitive driver

Image primitives are linked to the PRE-PROCESS at the beginning of HMD's coordinate section. A VRAM
transfer function is called during the SCAN operation. A NULL driver (type=0x00000000, a primitive driver
that does not do anything) can be set in the type field once the transfer is complete so that the transfer to
VRAM will be performed only once.

Image Type

Figure 115: Image Primitive Type Field

DEVE
LOPER

ID

31 16

010 0

015

REVIRD

YTD A T A P E

DRIVER: Currently all 0’s

DATA TYPE: Indicates type of data
0: No CLUT
1: CLUT

3D Graphics 2-95

File Formats

Non-CLUT Primitive
0x02000000; DEV_ID(SCE)|CTG(CTG_IMAGE)|DRV(0)|PRIM_TYPE(NOCLUT); GsUIMG0

H(dx); H(dy);

H(w); H(h);

image_idx;

Primitive with CLUT
0x02000001; DEV_ID(SCE)|CTG(CTG_IMAGE)|DRV(0)|PRIM_TYPE(WITHCLUT); GsUIMG1

H(dx); H(dy);

H(w); H(h);

image_idx;

H(dx); H(dy);

H(w); H(h);

clut_idx;

Run-time Environment for Image Primitive Driver

The image primitive driver is called with the following environment.

The following variables are copied to the parameter memory area.

Animation Primitive Section (Category 3)

An animation primitive section can be divided into the following five subsections:

1. Animation primitive header section
2. Sequence pointer section
3. Interpolation function table section
4. Sequence control section
5. Parameter section

2-96 3D Graphics

File Formats

Figure 116: Animation Structure

M

(type) count

CONTROL SECTION

Information for each sequence

(type)

(type)

(type)

PARAMETER SECTION

S

S

Animation header size(5)

PARAMETER TOP pointer

COORDINATE TOP pointer

TERMINATE

type count

Sequence pointer

Sequence 1

CONTROL TOP pointer

Interpolation function table pointer

Animation header pointer

HEADER SIZE (5)

type

Update count (2) / size

Sequence 2

Sequence 1

Sequence 2

Sequence pointer

Sequence control section pointer

Interpolation function list section

Area where the sequence descriptors are enumerated

Animation primitive header section

Used to call the function which performs a pointer
update for the corresponding type. (Initially the
function performs a SCAN of the type field in the
interpolation table.)

Pointer to animation primitive header

Interpolation function table section
This is where the primitive driver is hooked in that
performs interpolation for the type.

The sequence pointer points to information which
controls the sequence.

Area where the body of data is placed
Various types of parameters can be freely placed
here.

Coordinate pointer

Parameter section pointer

Animation header size (in words)

3D Graphics 2-97

File Formats

Relationships Between Sections in Animation Data

Figure 117: Diagram Showing Correlation of All Animation Sections

sequence 3

sequence 2

sequence 1

ParameterSequence controlSequence pointer

Animation Header Section

The animation header section must contain a pointer to the interpolation function table, a sequence control
section, and a pointer to the start of the parameter section.

Pointers to the sections, which need to be updated, are placed in the corresponding low-order address.
For example, when a COORDINATE is to be rewritten, COORDINATE TOP is saved. If a vertex is to be
rewritten, VERTEX TOP is saved.

Sequence Pointer Section

The sequence pointer section contains the sequence pointer and sequence information for each sequence.
The update index contains separate information for the upper 8 bits and the lower 24 bits.

Interpolation Function Table Section

The interpolation function table section contains the type fields for the interpolation functions referred to by
the sequence descriptors. The type fields are stored in an array and the interpolation method to be used is

2-98 3D Graphics

File Formats

determined from the index of this array. The GsScanAnim() function must first be used to extract the type
field and perform a SCAN to obtain the starting address of the actual primitive driver.

Sequence Control Section

A sequence is represented as an array of sequence descriptors in the sequence control section. A
sequence descriptor accesses the interpolation function table section and the parameter section using an
index in order to specify the interpolation method that will be used between a key frame and the parameter
of a key frame.

Parameter Section

A sequence descriptor accesses an interpolation function and an interpolation parameter using an index.
The parameter section contains an array of interpolation parameters for various formats and interpolation
functions.

Animation Type

Figure 118: Animation Primitive Type Field

DEVE
LOPER

ID

31 16

TGT

015

00 1
I
N
I

1 CAT

INI: Determines whether a SCAN of the interpolation table section will be performed
0: Do not perform SCAN (SCAN already performed)
1: Perform SCAN for interpolation function table

CAT: Indicates category of the frame update driver
0: Standard frame update driver (performs frame updates and calls interpolation
function)

TGT Update target
0: Update the COORDINATE section
1: General update type

3D Graphics 2-99

File Formats

When TGT=0 (Update COORDINATE)

Figure 119: Type Field when TGT=0

DEVE
LOPER

ID

31 16

ROT INTR

015

00 1
I
N
I

1 CAT

TRNS INTRSCAL INTR

0000

ROT ORDER

ROT ORDER Specifies the rotation order. Valid only when ROT INTR is not 0.
The symbol indicates the applicable rotation matrix. When 0:XYZ, rotation is
carried out in the following order: Z axis, Y axis, X axis.
0: XYZ
1: XZY
2: YXZ
3: YZX
4: ZXY
5: ZYX

SCAL INTR Specifies the interpolation method when scaling
0: Do not interpolate
1: LINEAR
2: BEZIER
3: B-SPRINE
4: beta-SPRINE
9: LINEAR (one parameter)
A: BEZIER (one parameter)
B: B-SPRINE (one parameter)

ROT INTR Specifies the interpolation method when rotating
0: Do not interpolate
1: LINEAR
2: BEZIER
3: B-SPRINE

TRNS INTR Specifies the interpolation method when translating
0: Do not interpolate
1: LINEAR
2: BEZIER
3: B-SPRINE
9: LINEAR(short)
A: BEZIER(short)
B: B-SPRINE(short)

2-100 3D Graphics

File Formats

When TGT=1 (General Purpose Update)

Figure 120: Type Field when TGT=1

DEVE
LOPER

ID

31 16

015

00 1
I
N
I

1 CAT

LENGTH

0 100

INTR ALG WRITE

LENGTH: 0: 32bit
1: 16bit
2: 8 bit

WRITE: Specify areas to update.
This field has 4bits, therefore, up to 4 units are allowed to update.

In the examples below, areas to update are colored with gray.

Figure 121: LENGTH=16 bit, WRITE=0x1

Figure 122: LENGTH=16bit, WRITE=0x7

Figure 123: LENGTH=8bit, WRITE=0x1

Figure 124: LENGTH=8bit, WRITE=0x7

INTR ALG: Interpolation algorithm
1. Linear
2. Bezier
3. B-Sprine

3D Graphics 2-101

File Formats

Sequence Header

The sequence header contains information that is used to manage the various sequences.

Figure 125: Sequence Header

-

Start IDXSTREAM IDTRAVELING

Sequence pointer

STREAM ID Start IDX

Sequence Pointer

The sequence pointer holds sequence information during playback. When multiple sequences are set up to
be played back simultaneously, a sequence pointer is assigned to each playback sequence. The
programmer uses the sequence pointers to control the real time playback of sequences. The members of
the sequence pointers are continuously referenced by the interpolation primitive driver, which provides
instantaneous response.

The figure below shows the data format for a sequence pointer. The areas, which have been written with
HMD data, are highlighted. The areas without highlighting are work areas used by the program for replacing
values and controlling the sequence.

Figure 126: Sequence Pointer

INTR IDX

SPEEDSRC INTR IDX

RFRAME

CTR IDXTCTR IDX

START SID START IDX

A FRAME

Sequence count / size

Update index

TRAVELING

TFRAME

STREAM ID

2-102 3D Graphics

File Formats

Update Index

The update index contains the target address to be updated by the sequence. The upper 8 bits hold the
section offset, and the lower 24 bits hold the offset within the section.

Figure 127: Setting Update Location

Section offset Offset within the section

2431 0

The primitive header contains a list of starting addresses, and the "section offset" is an index into that list
specifying which section will be updated. For example, if the index is 0 the interpolation function table
section will be used, and if the index is 1 the CONTROL section will be used.

The "offset within the section" is an index which points to the position within the section specified by the
"section offset" that will be updated. The offset is specified in words. For example, if the second coordinate
is to be rewritten, the offset would be sizeof(GsCOORDUNIT) /4+1. The +1 is included because the word at
the beginning of the coordinate section is included in the coordinate count.

With some types of animation, vertices or normals may be updated instead of coordinates. In such cases, a
pointer to the start of the section to be updated is added to the animation header, and the pointer is
specified from the section offset of the update index. The position of the data to be updated can then be
specified with the offset within the section. The type of data to be updated is identified with the type field.

Sequence Count/Size

The upper 16 bits hold the sequence count and the lower 16 bits hold the size. Sequence count is the
number of sequences that are managed by the sequence pointer.

Size is the number of words remaining until the next sequence pointer.

Figure 128: Sequence Count and Size

Sequence count Size

1631 0

INTR IDX: The value in this field is an index into the key frame containing parameters to be used after
interpolation of the current frame. The application can change this value if the sequence is
to be dynamically switched.

If this field contains the value 0xffff, updates will not be performed.

A FRAME: The total frame count of the sequence. Setting AFRAME to 0 can stop the sequence. If
ENDbit is detected in the sequence control descriptor, AFRAME will be automatically set
to 0. If the value of AFRAME is set to 0xffff, the total frame count will be infinity and the
value will not be decremented.

SRC INTRIDX: Holds the work area to be assigned to INTR IDX.

3D Graphics 2-103

File Formats

SPEED: Specifies the update speed for the sequence pointer.

Figure 129: Fixed Point Format Used in SPEED Specification

Sign Integer Fraction

07

SPEED is a two's complement fixed-point number, with 1 bit for the sign, 3 bits for the
integer part, and 4 bits for the fraction. If the value of SPEED is negative, the sequence
pointer is decremented when it is updated, and animations will be played back in reverse.

• If the sign bit is 1, the sequence pointer is decremented, resulting in the animation
being played back in reverse.

• The integer part has three bits, so animation playback can be sped up by a factor
of 7.

• The fractional part has four bits, so animation playback can be slowed down to 1/15.

• If all 8 bits are 0, the update speed of the sequence pointer is set to the previous
update rate. Note that operation may be unpredictable if 0 is specified as the initial
value.

TFRAME: The time between key frames for the data currently playing. This value is specified as a
frame count and is updated automatically when the key frame is switched. TFRAME is
represented as a fixed-point decimal integer, where the value 0x10 represents one frame.

RFRAME: The time between the motion currently playing and the original key frame. This value is
specified as a frame count and is re-read when the key frame is switched. RFRAME is
represented as a fixed-point decimal integer, where the value 0x10 represents one frame.

STREAM ID: Used for multiply-defined sequences. Sequence jumps take place only when STREAM IDs
match. The STREAM ID can be changed dynamically during execution. This allows the
efficient use of memory during interactive animation.
The STREAM ID has 7 valid bits, ranging from 0 to 127.
STREAM ID 0 has special meaning. This value matches to any SID. We do not
recommend to use STREAM ID 127 as a condition of JUMP sequence. Then, STREAM ID
127 is possible to use with opposite meaning to STREAM ID 0.

TCTR IDX: Holds the index of the target key frame (among the two key frames used for interpolation).
The target key frame is the key frame that is in the direction of convergence. The index is
automatically updated when the key frame is switched. To specify the start of a sequence,
the index of the starting sequence descriptor should be placed in TCTR IDX and RFRAME
should be set to 0.

CTR IDX: Holds the index to the original key frame (among the two key frames used for
interpolation). The original key frame is the key frame that has already passed. The index is
automatically updated when the key frame is switched.

START IDX: Holds the starting index for a sequence. When it is desired to start a sequence, START
IDX should be placed in TCTR IDX, START SID should be placed in SID, and RFRAME
should be set to 0.
START IDX is also can be used as index to refer to control descriptor for sequence
specific parameters. In this case, START IDX must not identical to starting index of
sequence, the next sequence management data is allowed to use.

START SID: Holds the stream ID of the sequence to be started.

TRAVELING: Cleared to 0 when the key frame is switched. The programmer can use this variable freely.
For example, to determine if the current interpolation is finished, a non-zero value can be
entered in this field during key-frame interpolation. When the current interpolation
completes, this field will be cleared to 0.

2-104 3D Graphics

File Formats

Sequence Management Data

A single sequence pointer can be used to define multiple sequences, and the sequences can be played
back selectively. In these cases, the selected sequence data is added after the last sequence pointer.

This information is referred to as sequence management data. It consists of the final word of the sequence
pointer with TRAVELING omitted.

Figure 130: Sequence Management Data

STREAM ID START IDX-

Sequence Index

This field holds the index of the sequence control descriptor at the starting point of the sequence. The
application can start a sequence by copying the sequence index into the sequence pointer's TCTR IDX and
setting RFRAME to 0.

STREAM ID

Holds the STREAM ID for the starting sequence. The application can start a sequence by copying this
value into the STREAM ID of the sequence pointer.

Interpolation Functions Table Section

The interpolation method for key frames can be varied even within a single sequence. The interpolation
method is specified with an index into a type array. All sequence descriptors except jumps have this index,
which can be used to specify the interpolation method.

The interpolation function table section is an area that contains this type array.

The entry in the type array of the interpolation function table is converted beforehand to the starting
address of the primitive driver for that type. This operation is performed by the SCAN function
GsScanAnim(). When a SCAN is required, the INI bit of TYPE should be set to 1.

The SCAN function for the interpolation function table is called when the SCAN operation for the HMD data
is performed. After the SCAN completes, the type is updated with the starting address of the frame update
driver function and the INI bit is set to 0.

The first word of the interpolation function table section contains the number of types. The uppermost bit is
used as a flag indicating whether a SCAN operation (GsScanAnim()) was performed. If the flag is set to 1, a
SCAN has not been performed. 0 indicates that SCAN has been performed.

Sequence Control Section

The actual sequence is represented in the sequence control section as a list. One element of the list is
defined as the sequence descriptor. Sequence descriptors can be classified as one of two types. One type
is the descriptor for a sequential sequence. The other type is the descriptor for a branching sequence. The
uppermost bit of the sequence descriptor determines the type.

MSB: bit31 Identifier that indicates whether or not the sequence control descriptor points to a
normal key frame.

0: PARAMETER IDX
1: SEQUENCE IDX

Figure 131: Sequence Descriptor (Normal)

16

TYPE
IDX PARAMETER IDXTFRAME

2431

0

0

3D Graphics 2-105

File Formats

TYPE IDX: This field is an index into the interpolation function table, which specifies the
interpolation function to be used. Since seven bits are available. Up to 128
interpolation functions can be accessed.

TFRAME: The frame number of the next sequence descriptor (in integer format). When this
value is placed in the TFRAME member of the sequence pointer, it must be
converted to fixed-point decimal format (with base 0x10).

PARAMETER IDX: Index to parameter data for the key frame referred to by the sequence descriptor.

Figure 132: Sequence Descriptor (Jump)

16

SID
DST SEQUENCE IDXSID CND

2331

1

0

0

STREAM ID•@bit16-29 The STREAM ID can be used to define multiple sequence links in a single
sequence. STREAM IDs are divided into a SID DST (upper 7 bits) and a SID CND
(lower 7 bits). SID DST specifies the STREAM ID for the destination of the jump
while SID CND determines whether a jump will be performed when the STREAM
IDs matches.

SID CND 0 matches to any current stream ID. In this case, SID DST will not be
updated.
SID 127 is reserved to use as an ID that never matches to any stream ID except 0.

The Stream ID is updated according to the following rules.

DST = 0 and CND = 0: Unconditional jump. The Stream ID is not updated.

DST = 0 and CND != 0: Jump if the current SID matches CND.

 The Stream ID is set to 0.

DST != 0 and CND = 0: Unconditional jump. The Stream ID is set to DST.

DST != 0 and CND != 0: Jump if the current SID matches CND.

 The stream ID is set to DST.

SID 127 is defined to not match any non-zero stream ID.

SEQUENCE IDX: Contains the index of the control descriptor for the destination of the jump.

Figure 133: Sequence Descriptor (Control)

16

CODE P2P1

2331

1

0

1

The parameters P1 and P2 can take on different values depending on CODE.

CODE: 0x01: END

If P1 matches the current STREAM ID, the sequence is halted.

CODE: 0X02: WORK

This indicates work area for each sequence pointer that is required by BSPLINE interpolation.

P1=127 Fixed

P2: Offset in parameter section indicates work area (in words).

2-106 3D Graphics

File Formats

Notes Regarding Switching of Interpolation Functions During a Sequence

A single interpolation function can be defined for each sequence control descriptor so that the interpolation
function can be switched for each key frame. However, the parameters of the interpolation function must
have the same format. Thus, if the interpolation function is switched, the program must ensure that the
parameter format for the SRC FRAME and the DST FRAME match.

Example:

KEY 0 (parameter format A) TFRAME = 0

KEY 1 (parameter format B) TFRAME = 30

Interpolation cannot be performed here since the SRC FRAME and the DST FRAME has different
parameter formats. In this case, a sequence control descriptor is added to unify the formats.

KEY 0 (parameter format A) TFRAME = 0

KEY 00 (parameter format B) TFRAME = 0

KEY 1 (parameter format B) TFRAME = 30

KEY00 performs parameter format conversion from A to B. The TFRAME of the descriptor must be 0 to
perform this conversion. Note that the sequence will jump if there is a discontinuity between KEY0 and
KEY00.

Behavior of Interpolation Driver When TFRAME is 0

Even if TFRAME is 0, interpolation driver is called. Thus, any interpolation driver should return without
interpolation if TFRAME is 0. It is possible to use TFRAME=0 to change internal status of interpolation
driver. For example, first 3 control points for spline function are written as key frames with TFRAME=0.

While TFRAME is 0 or return value of interpolation driver is 1, interpolation driver is called continuously, and
RFRAME is not updated.

Parameter Section

The parameter section contains the actual parameters and that is referenced by an index in the sequence
control section. The parameters in this section can take on various forms (for example, VECTORs and
MATRIXes). The code, which accesses these parameters, is responsible for their management.

Run-time Environment of the Animation Primitive Driver

The animation frame update primitive driver and the interpolation primitive driver are called with the
following environment.

3D Graphics 2-107

File Formats

Figure 134: Format of Parameters in the Argument Area

COORDINATE TOP pointer

CONTROL TOP pointer

Interpolation function table pointer

Animation header size

tag(OT)

OUTP(packet area)

offset(OT)

shift(OT)

PARAMETER TOP pointer

primtop

intr

dst

src

base

???

The colored areas must always be set. The other areas are copied from the primitive header, so these
areas will be updated if the header format changes.

The animation header size specifies the number of elements after the interpolation function table pointer
exclusive of the last four elements. In the example above, the header size would have a value of "???+4"
with the "???" determined from the element count. The header size is used by the interpolation function to
locate the start of the interpolation function's parameter section (described next).

The last four parameters are the arguments area for the interpolation function.

base: starting address of the sequence pointer

src: starting address of the source key frame to interpolate
dst: starting address of the destination key frame to interpolate

intr: address where parameters will be saved after interpolation (if this value is 0, the parameters will not
be saved)

Behavior of the Primitive Driver

Primitive drivers can be divided into the following two types:

1. Frame update drivers
2. Interpolation drivers

Primitive drivers are called each time GsSortUnit() is called.

Animation primitives are linked in the PRE-PROCESS area at the beginning of HMD's coordinate section.
The animation primitive driver is initialized in the following manner.

1. When HMD initialization is performed with GsScanUnit(), GsScanAnim() should be called to perform a
SCAN operation.

2. The starting address of the frame update driver should be entered in the HMD type field. This ensures
that the frame update driver will be called each time GsSortUnit() is called. The frame update driver will
call the interpolation driver.

2-108 3D Graphics

File Formats

The frame update driver specifies the calling interface for the interpolation driver. Thus, the program must
be aware of the relationship between the interpolation driver and the frame update driver. The three bits in
the type field that identify the frame update driver must be the same for the corresponding interpolation
function.

The calling interface used by the standard frame update driver to call an interpolation function is described
below.

FUNC(sp)

sp is a pointer to the start of the parameter area.

As described above, the parameter area pointed to by sp contains the base, src, dst, and intr parameters.

base: starting address of the sequence pointer corresponding to an update area which begins at the
update index

src: address of the interpolation source

dst: address of the interpolation destination

intr: address for holding interpolated data. Data is not saved if this value is 0. To make interpolation
parameter, intr is allowed to use to indicate destination key frame created previously.

The frame update driver provided by Sony Computer Entertainment Inc., has type set to 0x03000000. The
corresponding interpolation primitive driver needs to have the parameter format described above.

Interpolation Algorithms

The following 3 algorithms are available for interpolation driver.

1. LINEAR
2. BEZIER
3. BSPLINE

LINEAR

This interpolates linear between SRC KEYFRAME and DST KEYFRAME parameters.

T = (TFRAME-RFRAME)/TRFAME

(1-T)*SRC_KEYFRAME + T*DST_KEYFRAME

BEZIER

BEZIER type KEY FRAME has 3 control points.

Interpolation is performed with control point 0, 1 and 2 of SRC KEY FRAME, and control point 0 of DST
KEY FRAME.

3D Graphics 2-109

File Formats

Figure 135: Bezier Interpolation

KEY FRAME SRC

KEY FRAME DST

0

1 2

0

1
2

0

BEZIER interpolation 1

BEZIER interpolation 2

BSPLINE

BSPLINE type KEY FRAME has a control point as same as LINEAR type.

BSPLINE interpolation is performed between SRC-2, SRC-1, SRC and DST KEYFRAME.

The beginning of sequence has no history of previous key frames, thus, 3 key frames are required to
enumerated with TFRAME=0.

To make a history of key frames, 4 words in key frame area of parameter section are required. Sequence
descriptor (control: work) that indexed by START IDX in sequence pointer, indicates this area.

Figure 136: BSPLINE Work Area

Sequence
start

CONTROL (work)

KEYFRAME 0

KEYFRAME 1

KEYFRAME 2

KEYFRAME 3

KEYFRAME 4

KEYFRAME 5

WORK PARAMETER 0

PARAMETER 0

PARAMETER 1

KEYFRAME 2

PARAMETER 3

PARAMETER 4

KEYFRAME 5

tframe = 0

tframe = 0

tframe = 0

tframe = xx

Sequence control section Parameter section

4 word
START IDX

2-110 3D Graphics

File Formats

Figure 137: BSPLINE Interpolation

KEY FRAME SRC

KEY FRAME DST

0

1 2

3

4
5

6

BSPRIN interpolation 1

KEY FRAME DST

KEY FRAME SRC-1

KEY FRAME SRC-2

BSPRIN interpolation 2

3D Graphics 2-111

File Formats

Animation Packets (COORDINATE)

DEV_ID(SCE)|CTG(CTG_ANIM)|DRV(CAT_STD|TGT_COORD)|PRIM_TYPE(x)

PARAMETER
0x03000010; SI_NONE|RI_LINEAR|TI_NONE

H(rx); H(ry); H(rz); H(0);

0x03000910; SI_LINEAR_1|RI_LINEAR|TI_NONE

H(rx); H(ry); H(rz);

H(scale);

0x03000030; SI_NONE|RI_BSPLINE|TI_NONE

H(rx); H(ry); H(rz); H(0);

0x03000001; SI_NONE|RI_NONE|TI_LINEAR

tx; ty; tz;

0x03000901; SI_LINEAR_1|RI_NONE|TI_LINEAR

tx; ty; tz;

H(scale); H(0);

0x03000011; SI_NONE|RI_LINEAR|TI_LINEAR

tx; ty; tz;

H(rx); H(ry); H(rz); H(0);

0x03000111; SI_LINEAR|RI_LINEAR|TI_LINEAR

tx; ty; tz;

H(rx); H(ry); H(rz);

H(sx); H(sy); H(sz);

0x03000911; SI_LINEAR_1|RI_LINEAR|TI_LINEAR

tx; ty; tz;

H(rx); H(ry); H(rz);

H(scale);

0x03000031; SI_NONE|RI_BSPLINE|TI_LINEAR

tx; ty; tz;

H(rx); H(ry); H(rz); H(0);

0x03000002; SI_NONE|RI_NONE|TI_BEZIER

tx0; ty0; tz0;

tx1; ty1; tz1;

tx2; ty2; tz2;

2-112 3D Graphics

File Formats

0x03000902; SI_LINEAR_1|RI_NONE|TI_BEZIER

tx0; ty0; tz0;

tx1; ty1; tz1;

tx2; ty2; tz2;

H(scale); H(0);

0x03000012; SI_NONE|RI_LINEAR|TI_BEZIER

tx0; ty0; tz0;

tx1; ty1; tz1;

tx2; ty2; tz2;

H(rx); H(ry); H(rz); H(0);

0x03000112; SI_LINEAR|RI_LINEAR|TI_BEZIER

tx0; ty0; tz0;

tx1; ty1; tz1;

tx2; ty2; tz2;

H(rx); H(ry); H(rz);

H(sx); H(sy); H(sz);

0x03000912; SI_LINEAR_1|RI_LINEAR|TI_BEZIER

tx0; ty0; tz0;

tx1; ty1; tz1;

tx2; ty2; tz2;

H(rx); H(ry); H(rz);

H(scale);

0x03000032; SI_NONE|RI_BSPLINE|TI_BEZIER

tx0; ty0; tz0;

tx1; ty1; tz1;

tx2; ty2; tz2;

H(rx); H(ry); H(rz); H(0);

0x03000003; SI_NONE|RI_NONE|TI_BSPLINE

tx; ty; tz;

0x03000013; SI_NONE|RI_LINEAR|TI_BSPLINE

tx; ty; tz;

H(rx); H(ry); H(rz); H(0);

0x03000033; SI_NONE|RI_BSPLINE|TI_BSPLINE

tx; ty; tz;

H(rx); H(ry); H(rz); H(0);

3D Graphics 2-113

File Formats

0x03000009; SI_NONE|RI_NONE|TI_LINEAR_S

H(tx); H(ty); H(tz); H(0);

0x03000909; SI_LINEAR_1|RI_NONE|TI_LINEAR_S

H(tx); H(ty); H(tz);

H(scale);

0x03000019; SI_NONE|RI_LINEAR|TI_LINEAR_S

H(tx); H(ty); H(tz);

H(rx); H(ry); H(rz);

0x03000119; SI_LINEAR|RI_LINEAR|TI_LINEAR_S

H(tx); H(ty); H(tz);

H(rx); H(ry); H(rz);

H(sx); H(sy); H(sz); H(0);

0x03000919; SI_LINEAR_1|RI_LINEAR|TI_LINEAR_S

H(tx); H(ty); H(tz);

H(rx); H(ry); H(rz);

H(scale); H(0);

0x03000039; SI_NONE|RI_BSPLINE|TI_LINEAR_S

H(tx); H(ty); H(tz);

H(rx); H(ry); H(rz);

0x0300000a; SI_NONE|RI_NONE|TI_BEZIER_S

H(tx0); H(ty0); H(tz0);

H(tx1); H(ty1); H(tz1);

H(tx2); H(ty2); H(tz2); H(0);

0x0300090a; SI_LINEAR_1|RI_NONE|TI_BEZIER_S

H(tx0); H(ty0); H(tz0);

H(tx1); H(ty1); H(tz1);

H(tx2); H(ty2); H(tz2);

H(scale);

0x0300001a; SI_NONE|RI_LINEAR|TI_BEZIER_S

H(tx0); H(ty0); H(tz0);

H(tx1); H(ty1); H(tz1);

H(tx2); H(ty2); H(tz2);

H(rx); H(ry); H(rz);

2-114 3D Graphics

File Formats

0x0300011a; SI_LINEAR|RI_LINEAR|TI_BEZIER_S

H(tx0); H(ty0); H(tz0);

H(tx1); H(ty1); H(tz1);

H(tx2); H(ty2); H(tz2);

H(rx); H(ry); H(rz);

H(sx); H(sy); H(sz); H(0);

0x0300091a; SI_LINEAR_1|RI_LINEAR|TI_BEZIER_S

H(tx0); H(ty0); H(tz0);

H(tx1); H(ty1); H(tz1);

H(tx2); H(ty2); H(tz2);

H(rx); H(ry); H(rz);

H(scale); H(0);

0x0300003a; SI_NONE|RI_BSPLINE|TI_BEZIER_S

H(tx0); H(ty0); H(tz0);

H(tx1); H(ty1); H(tz1);

H(tx2); H(ty2); H(tz2);

H(rx); H(ry); H(rz);

0x0300000b; SI_NONE|RI_NONE|TI_BSPLINE_S

H(tx); H(ty); H(tz); H(0);

0x0300001b; SI_NONE|RI_LINEAR|TI_BSPLINE_S

H(tx); H(ty); H(tz);

H(rx); H(ry); H(rz);

0x0300003b; SI_NONE|RI_BSPLINE|TI_BSPLINE_S

H(tx); H(ty); H(tz);

H(rx); H(ry); H(rz);

0x03000020; SI_NONE|RI_BEZIER|TI_NONE

H(rx0); H(ry0); H(rz0);

H(rx1); H(ry1); H(rz1);

H(rx2); H(ry2); H(rz2); H(0);

0x03000021; SI_NONE|RI_BEZIER|TI_LINEAR

tx; ty; tz;

H(rx0); H(ry0); H(rz0);

H(rx1); H(ry1); H(rz1);

H(rx2); H(ry2); H(rz2); H(0);

3D Graphics 2-115

File Formats

0x03000022; SI_NONE|RI_BEZIER|TI_BEZIER

tx0; ty0; tz0;

tx1; ty1; tz1;

tx2; ty2; tz2;

H(rx0); H(ry0); H(rz0);

H(rx1); H(ry1); H(rz1);

H(rx2); H(ry2); H(rz2); H(0);

0x03000023; SI_NONE|RI_BEZIER|TI_BSPLINE

tx; ty; tz;

H(rx0); H(ry0); H(rz0);

H(rx1); H(ry1); H(rz1);

H(rx2); H(ry2); H(rz2); H(0);

0x03000029; SI_NONE|RI_BEZIER|TI_LINEAR_S

H(tx); H(ty); H(tz);

H(rx0); H(ry0); H(rz0);

H(rx1); H(ry1); H(rz1);

H(rx2); H(ry2); H(rz2);

0x0300002a; SI_NONE|RI_BEZIER|TI_BEZIER_S

H(tx0); H(ty0); H(tz0);

H(tx1); H(ty1); H(tz1);

H(tx2); H(ty2); H(tz2);

H(rx0); H(ry0); H(rz0);

H(rx1); H(ry1); H(rz1);

H(rx2); H(ry2); H(rz2);

0x0300002b; SI_NONE|RI_BEZIER|TI_BSPLINE_S

H(tx); H(ty); H(tz);

H(rx0); H(ry0); H(rz0);

H(rx1); H(ry1); H(rz1);

H(rx2); H(ry2); H(rz2);

2-116 3D Graphics

File Formats

Animation Packets (General)

DEV_ID(SCE)|CTG(CTG_ANIM)|DRV(CAT_STD|TGT_GENERAL)|PRIM_TYPE(x)

LINEAR

General Single Linear(32bit)

0x03010110; GI_LINEAR|GI_WR(0x1)|GI_32

p0;

General Single Linear(32bit)

0x03010111; GI_LINEAR|GI_WR(0x1)|GI_16

0x03010121; GI_LINEAR|GI_WR(0x2)|GI_16

0x03010141; GI_LINEAR|GI_WR(0x4)|GI_16

H(p0); H(0);

General vector Linear(16bit)

0x03010171; GI_LINEAR|GI_WR(0x7)|GI_16

H(p0); H(p1); H(p2); H(0);

General Single Linear(8bit)

0x03010112; GI_LINEAR|GI_WR(0x1)|GI_8

0x03010122; GI_LINEAR|GI_WR(0x2)|GI_8

0x03010142; GI_LINEAR|GI_WR(0x4)|GI_8

B(p0); B(0); B(0); B(0);

General vector Linear(8bit)

0x03010172; GI_LINEAR|GI_WR(0x7)|GI_8

B(p0); B(p1); B(p2); B(0);

BEZIER

General single Bezier(32bit)

0x03010210; GI_BEZIER|GI_WR(0x1)|GI_32

p00; p10; p20;

General single Bezier(16bit)

0x03010211; GI_BEZIER|GI_WR(0x1)|GI_16

0x03010221; GI_BEZIER|GI_WR(0x2)|GI_16

0x03010241; GI_BEZIER|GI_WR(0x4)|GI_16

H(p00); H(p10); H(p20); H(0);

General vector Bezier(16bit)

0x03010271; GI_BEZIER|GI_WR(0x7)|GI_16

H(p00); H(p01); H(p02);

H(p10); H(p11); H(p12);

H(p20); H(p21); H(p22); H(0);

3D Graphics 2-117

File Formats

General single Bezier(8bit)

0x03010212; GI_BEZIER|GI_WR(0x1)|GI_8

0x03010222; GI_BEZIER|GI_WR(0x1)|GI_8

0x03010242; GI_BEZIER|GI_WR(0x1)|GI_8

B(p00); B(p10); B(p20); B(0);

General vector Bezier(8bit)

0x03010272; GI_BEZIER|GI_WR(0x7)|GI_8

B(p00); B(p01); B(p02); B(0);

B(p10); B(p11); B(p12); B(0);

B(p20); B(p21); B(p22); B(0);

BSPLINE

General Single Bspline(32bit)

0x03010310; GI_BSPLINE|GI_WR(0x1)|GI_32

p0;

General Single Bspline(16bit)

0x03010311; GI_BSPLINE|GI_WR(0x1)|GI_16

0x03010321; GI_BSPLINE|GI_WR(0x2)|GI_16

0x03010341; GI_BSPLINE|GI_WR(0x4)|GI_16

H(p0); H(0);

General vector Bspline(16bit)

0x03010371; GI_BSPLINE|GI_WR(0x7)|GI_16

H(p0); H(p1); H(p2); H(0);

General single Bspline(8bit)

0x03010312; GI_BSPLINE|GI_WR(0x1)|GI_8

0x03010322; GI_BSPLINE|GI_WR(0x2)|GI_8

0x03010342; GI_BSPLINE|GI_WR(0x4)|GI_8

B(p0); B(0); B(0); B(0);

General vector Bspline(8bit)

0x03010372; GI_BSPLINE|GI_WR(0x7)|GI_8

B(p0); B(p1); B(p2); B(0);

2-118 3D Graphics

File Formats

MIMe Primitive (Category 4)

Please refer to the following documents for more information on the MIMe primitive.

• libgs reference, section on the GsARGUNIT_JntMIMe structure
• libgs reference, section on the GsARGUNIT_RstJntMIMe structure
• libgs reference, section on the GsARGUNIT_VNMIMe structure
• libgs reference, section on the GsARGUNIT_RstVNMIMe structure
• libgs reference, section on the GsInitRstVtxMIMe, GsInitRstNrmMIMe function
• libgs reference, section on the GsU_04# function

The following symbols are used to indicate the MIMe type in a MIMe primitive.

• JntMIMe Joint MIMe (common to the following two types)

JntAxesMIMe: Joint-axes MIMe (Joint MIMe using rotation-axes interpolation)

JntRPYMIMe: Joint row-pitch-yaw MIMe (Joint MIMe using RPY interpolation)

• RstJntMIMe (common to the following two types)

RstJntAxesMIMe: Reset MIMe based on rotation-axes interpolation

RstJntRPYMIMe: Reset MIMe based on RPY interpolation

• VNMIMe Vertex / normal MIMe (common to the following two types)

VtxMIMe: Vertex MIMe

NrmMIMe: Normal MIMe

• RstVNMIMe Reset vertex / normal MIMe (common to the following two types)

RstVtxMIMe: Reset vertex MIMe

RstNrmMIMe: Reset normal MIMe

Areas needed specifically for MIMe primitives

• MIMe DIFF section
• ORGSVN section (for VtxMIMe, NrmMIMe)
• MIMEPR area (when HMD contains MIMEPR)

Notes on Formats

• Up to 32 MIMe differences can be used for a single primitive.

• The JntMIMe function uses the same primitive block as the corresponding reset function (RstJntMIMe).
However, VNMIMe and RstVNMIMe do not share this block and use their own primitive.

• When two or more JntMIMe primitives are used for a single joint, the corresponding reset functions
(RstJntMIMe) must be called in reverse order otherwise, the state will not be correct).

3D Graphics 2-119

File Formats

type

Figure 138: Primitive Type Field

DEVE
LOPER

ID

31 16

E
Y

T
R

A
O

C
G

IRP

015

REVIRD

YTM TI I V E P E

DEVELOPER ID: 0: SCE

CATEGORY: 4: MIMe data

DRIVER

In MIMe category, DRIVER bits are defined as below.

Figure 139: MIMe Primitive DRIVER

0 Reserved 1

Always 0x01

PRIMITIVE TYPE

Figure 140: Primitive Type of MIMe Primitive

R
S
T

CODE1CODE0

RST 0: MIMe primitive to do MIMe
1: Reset MIMe primitive

CODE0 Major categorization of interpolation method
0: JntMIMe
1: VNMIMe

CODE1: Minor categorization of interpolation method (depends on value of CODE0)
CODE0=0 (JntMIMe)

0: JntAxesMIMe
1: JntRPYMIMe

CODE0=1(VNMIMe)
0: VtxMIMe
1: NrmMIMe

2-120 3D Graphics

File Formats

Format

Header for MIMe Primitive Block

HEADLEN: Length of primitive header.
This value will be changed by GsMap...MIMe(), GsMapRst....MIMe() functions.

COORD TOP: Starting address of COORDINATE section (the number of long words from start of HMD)

MIMEPR PTR: If HMD contains MIMEPR, the number of long words from start of HMD.
If MIMEPR is outside of HMD, the value is 0.

MIMENUM: The number of the MIMe keys.
reserved(16bit): reserved (0)

MIMEID(16bit): ID of the primitive (this area can be used freely by user and modeler)
MIMe DIFF TOP: starting address of MIME DIFF section (number of long words from start of HMD)

ORGSVN TOP: starting address of ORGSVN section (number of long words from start of HMD)
VERTEX TOP: starting address of VERTEX section (number of long words from start of HMD)

NORMAL TOP: starting address of NORMAL section (number of long words from start of HMD)

MIMeHeader(JntMIMe)

5; /* header size */

M(CoordSect / 4);

M(MIMePr_ptr / 4);

MIMe_num;

H(MIMeID); H(0 /* reserved */);

M(MIMeDiffSect / 4);

MIMeHeader(RstJntMIMe)

3; /* header size */

M(CoordSect / 4);

H(MIMeID); H(0 /* reserved */);

M(MIMeDiffSect / 4);

MIMeHeader(VNMIMe)

7; /* header size */

M(MIMePr_ptr / 4);

MIMe_num;

H(MIMeID); H(0 /* reserved */);

M(MIMeDiffSect / 4);

M(MIMeOrgsVNSect / 4);

M(VertSect / 4);

M(NormSect / 4);

3D Graphics 2-121

File Formats

MIMeHeader(RstVNMIMe)

5; /* header size */

H(MIMeID); H(0 /* reserved */);

M(MIMeDiffSect / 4);

M(MIMeOrgsVNSect / 4);

M(VertSect / 4);

M(NormSect / 4);

MIMe Primitive

TYPE: type of the primitive.

m(1bit): Initial value is 1 (changes to 0 during execution when TYPE is scanned and the function
pointer is embedded)

Num of DIFFs: MIMe DIFF IDX count
MIME DIFF IDX: starting address of MIME DIFF (number of long words from MIMe DIFF TOP)

MIMe primitive

DEV_ID(SCE)|CTG(CTG_MIMe)|DRV(MIMe_PRIM)|PRIM_TYPE(x)

H(size); M(H(num_diffs)); /* size = num_diffs + 1 */

(MIMeDiff0 - MIMeDiffSect) / 4;

:

(MIMeDiff N - MIMeDiffSect) / 4; /* N = num_diffs - 1 */

MIMe DIFF

Data in the MIMe DIFF section related to differences.

DIFFS NUM: number of DIFFS (DIFFS for Rst are not counted)
COORDID: COORDINATE ID (the joint to apply MIMe)

ONUM: Number of RstVNMIMe blocks that correspond to VNMIMe.

dflags: bits with differences (DIFFS) are set to 1, 0 otherwise.

Example: When MIMe-key #0, #1, #3, #8 have differences

Figure 141: dflags Example

0481216202531

1111

->In this case, dflags=0x0000010B

2-122 3D Graphics

File Formats

VNMIMe Changed:

The changed address within RstVNMIMeDiffData of the corresponding RstVNMIMe

MIMeDiffData:

For Rst, original data for resets.

Otherwise, actual difference values for each key. The DIFFS must be ordered in the same sequence as the
dflags bits.

Details of the formats are shown below.

JntMIMeDiff/RstJntMIMeDiff

JntMIMe and RstJntMIMe are paired and use the same MIMeDIFF.

H(coord_ID); H(diffs_num);

dflags;

JntMIMeDiffData0:

: /* Jnt???MIMeDiffData format */

JntMIMeDiffData N:

: /* N = diffs_num - 1 */

RstJntMIMeDiffData:

: /* RstJnt???MIMeDiffData format */

VNMIMeDiff

VNMIMeDiff:

H(onum); H(diffs_num);

dflags;

(VNMIMeDiffData0 - VNMIMeDiff) / 4;

:

(VNMIMeDiffData N - VNMIMeDiff) / 4; /* N = diffs_num - 1 */

(VNMIMeChanged0 - MIMeDiffSect) / 4;

:

(VNMIMeChangedM - MIMeDiffSect) / 4; /* M = onum - 1 */

VNMIMeDiffData0:

: /* VNMIMeDiffData format */

VNMIMeDiffData N:

: /* N = diffs_num - 1 */

RstVNMIMeDiff

H(0); H(diffs_num);

RstVNMIMeDiffData0:

: /* RstVNMIMeDiffData format */

RstVNMIMeDiffData N:

: /* N = diffs_num - 1 */

3D Graphics 2-123

File Formats

MimeDiffData

Actual difference values for each key.

The format and contents vary according to the interpolation method.

Difference Value Data

dtp:

Bit 0 is 0 when the rotation values (dvx-dvz and m) are all 0. Otherwise, Bit 0 is 1.

Bit 1 is 0 when the translation values (dtx-dtz) are all 0. Otherwise, Bit 1 is 1.

JntRPYMIMeDiffData

H(dvx); H(dvy); H(dvz); H(dtp); /* rot difference value */

dtx; dty; dtz; /* t[0-2] difference value */

JntAxesMIMeDiffData

H(dvx); H(dvy); H(dvz); H(dtp); /* rot difference value rotation vector */

dtx; dty; dtz; /* t[0-2] difference value */

VNMIMeDiffData

vstart; /* number of first different vertex */

H(0 /* reserved */); H(vnum); /* number of difference vertices */

H(dvx0); H(dvy0); H(dvz0); H(0);

:

H(dvx N); H(dvy N); H(dvz N); H(0); /* N = vnum - 1 */

Original reset data
RstVNMIMeDiffData

vstart; /* Number of the first vertex/normal which is */
/* different */

ostart; /* Number of ORGSVN area start which is used */

VNMIMeChanged: /* Referred from VNMIMeDiff */

H(changed); /* Initial value 0 */

/* At runtime, this value will be changed to 1 */
/* when the vertices or normal vectors in this */
/* region are changed to 0 when RstMIMe is reset*/

H(vnum); /* Number of different vertices/normals */

RstJntRPYMIMeDiffData

H(dvx); H(dvy); H(dvz); /* Initial value is undefined */

/* The original coordinate’s rot value will */
/* be saved here during execution */

H(changed); /* Initial value is 0; flag indicating data was */
/* saved */

dtx; dty; dtz; /* Initial value is undefined. The */
/* original coordinate’s t[0-2] value */
/* will be saved here during execution */

2-124 3D Graphics

File Formats

RstJntAxesMIMeDiffData

H(m00); H(m01); H(m02); /* Initial value is undefined */

/* The original coordinate’s m[0-2] */
/* [0-2] value will be saved here during */
/* execution*/

H(m10); H(m11); H(m12);

H(m20); H(m21); H(m22);

H(changed); /* Initial value is 0; flag indicating data was */
/* saved */

dtx; dty; dtz; /* Initial value is undefined. The */
/* original coordinate’s t[0-2] value */
/* will be saved here during execution */

MIMeOrgsVN Section

Initial values are not defined. These values are used in the following manner during execution. dx-z is the
original vertex/normal data that had been saved.

MIMeOrgsVN

H(dvx0); H(dvy0); H(dvz0); H(0);

:

H(dvxN); H(dvyN); H(dvzN); H(0);

3D Graphics 2-125

File Formats

Ground Primitives (Category 5)

Ground primitive is allowed to use as one of HMD primitive. This primitive generates packets at run time
based on width and height of a grid, and count of grids. Thus, data amount can be reduced in HMD data.

Primitive Header Section

Primitive header section

Primitive header format depends on texture is used or not.

(1) Non-textured
4; /* header size */

M(GndPolySect / 4); /* Polygon section */

M(GndGridSect / 4); /* Grid section */

M(GndVertSect / 4); /* Vertex section */

M(GndNormSect / 4); /* Normal section */

 (2) Textured

5; /* header size */

M(GndPolySect / 4); /* Polygon section */

M(GndGridSect / 4); /* Grid section */

M(GndVertSect / 4); /* Vertex section */

M(GndNormSect / 4); /* Normal section */

M(GndUVSect / 4); /* UV section */

Type

Type of ground primitive is defined as below.

Ground TYPE

Figure 142: Ground Primitive Type Field

DEVE
LOPER

ID

31 16

100 1

015

REVIRD

YTD A T A P E

DRIVER: All 0 in this version
DATA TYPE: Defines type of data

 0: Flat
 1: Flat texture

2-126 3D Graphics

File Formats

Primitive Section

Primitive section is common for non-textured and textured type.

Ground primitive

DEV_ID(SCE)|CTG(CTG_GND)|DRV(x)|PRIM_TYPE(y)

H(size); H(0);

(GndPoly - GndPolySect) / 4;

(GndGrid - GndGridSect) / 4;

(GndVert - GndVertSect) / 4;

Polygon Section

Required information to generate actual polygons is saved in polygon section.

Polygon section is common for non-textured and textured type.

H(x0); H(y0); /* Start point X coordinate; start point Y */
/* coordinate */

H(w); H(h); /* 1 grid width; 1 grid height */

H(m); H(n); /* Vertices count (horizontal); vertices */
/* count (vertical) */

H(size); H(base); /* Size; base vertex */

H(v0); H(c0); /* Start vertex number 0; grids count 0 */

:

H(v N); H(c N); /* Start vertex number N; Grids count N; N; N = */
/* size - 1 */

Grid Section

Grid section has information for each grid, for example, indexes to normal vectors, RGB value and UV.

Grid section format depends on non-textured or textured type.

(1) Non-textured

B(r); B(g); B(b); B(0);

H(norm_idx); H(0);

:

B(r); B(g); B(b); B(0);

H(norm_idx); H(0);

 (2) Textured

H(norm_idx); H(UV_idx);

:

H(norm_idx); H(UV_idx);

3D Graphics 2-127

File Formats

Vertex Section

Vertex section has information for each vertex, for example, Z value.

H(z0); H(z1);

:

H(z N-1); H(z N);

UV section

UV section has actual texture UV values that are referred from grid section.

H(uv0); H(cba);

H(uv1); H(tsb);

H(uv2); H(uv3);

:

H(uv0); H(cba);

H(uv1); H(tsb);

H(uv2); H(uv3);

2-128 3D Graphics

File Formats

Device Primitives Section (Category 7)

Device primitives are primitives that perform settings such as camera (viewpoint) and light (light source).
By using these primitives, it is possible to maintain camera and light settings that used to be made within
the application. With the exception of certain cases, linking should be performed as a standard preprocess.

Currently, the following primitives are supported as device primitives.

(1) Camera primitive

(2) Light primitive

Camera Primitives

With camera primitives, settings such as projection and camera position and direction can be made. The
following types of camera primitives are available.

Projection

Adjusts the field of view. Projection refers to the distance from the viewpoint to the projection plane. The
size of the projection plane is determined by the resolution for the GsInitGraph() function.

WORLD Camera

Sets the camera position on the WORLD coordinate system and calculates WSMATRIX.

FIX Camera

Sets the camera position on a coordinate system other than world and calculates WSMATRIX.

AIM Camera

A position on one coordinate system is referenced from a camera position on another coordinate system,
and WSMATRIX is calculated.

Light Primitives

With light primitives, settings such as ambient color and lighting direction can be made. The following types
of light primitives are available:

Ambient Color

Sets the ambient color.

WORLD Light

Sets light (flat light source) on the WORLD coordinate system.

FIXCg

Sets light (flat light source) on a coordinate system other than WORLD.

AIM Camera

A position on one coordinate system is referenced from a camera position on another coordinate system,
and light (flat light source) is set.

Types

The following types of device primitives are available

3D Graphics 2-129

File Formats

Figure 143: Type fields for device primitives

DEVE
LOPER

ID

31 16

110 1

015

REVIRD

YTD A T A P E

DATA TYPE:

Specifies the type of data

 0x0100: Camera primitive

 0x0200: Light primitive

DRIVER:

Specifies the type of primitive operation. Varies according to DATA TYPE.

Camera Primitive:

 0x00: Projection

 0x01: WORLD camera

 0x02: FIX camera

 0x03: AIM camera

Light Primitive

 0x00: Ambient color

 0x01: WORLD light

 0x02: FIX light

 0x03: AIM light

Primitive Header Section

Camera primitives and light primitives have different primitive headers.

Camera Primitive Header

3; /* header size :
 Projection, WORLD camera 1
 FIX camera 2
 AIM camera 3 */
M(CameraParamSect / 4); /* Camera parameter section */
M(CameraCoord / 4); /* Coordinate system in which camera is positioned :
 Nothing for projection, WORLD camera*/
M(ReferenceCoord / 4); /* Coordinate system referenced by camera :
 Nothing for projection, WORLD camera,
 FIX camera*/

2-130 3D Graphics

File Formats

Light Primitive Header

3; /* header size :
 Ambient color, WORLD light 1
 FIX light 2
 AIM light 3 */
M(LightParamSect / 4); /* Light parameters section */
M(LightCoord / 4); /* Coordinate system in which light is positioned :
 Nothing for ambient color, WORLD light */
M(ReferenceCoord / 4); /* Coordinate system referenced by light :
 Nothing for ambient color, WORLD light,
 FIX light */

Primitive Section

Camera primitives and light primitives have different primitive sections.

Camera Primitives

DEV_ID(SCE)|CTG(CTG_EQUIP)|DRV(x)|PRIM_TYPE(CAMERA)
H(1); H(0);

Light Primitives

DEV_ID(SCE)|CTG(CTG_EQUIP)|DRV(x)|PRIM_TYPE(LIGHT)
H(2); H(1); /* size, data */
H(n); H(idx); /* n: light number(0,1,2)

idx: light parameter index (number of words) */

Parameter Section

Camera primitives and light primitives have different parameter sections.

Camera Primitives

proj; /* Projection */
rot; /* Camera rotation; 4096 is equivalent to 1 degree*/
vx, vy, vz; /* Camera position
 WORLD camera: in WORLD coordinate system
 FIX camera, AIM camera: in local coordinate system */
rx, ry, rz; /* position of target point
 WORLD camera: in WORLD coordinate system
 FIX camera: in local coordinate system to which

camera belongs
 AIM camera: in local coordinate system to which

target point belongs */

Light Primitive

B(r);B(g);B(b);B(0);/* color of light */
vx, vy, vz; /* position of light
 ambient color: none
 WORLD light: in WORLD coordinate system
 FIX light, AIM light: in local coordinate system */
rx, ry, rz; /* position of target point
 ambient color: none
 WORLD light: in WORLD coordinate system
 FIX light: in local coordinate system to which light

belongs
 AIM light: in local coordinate system to which

target point belongs */

3D Graphics 2-131

File Formats

HMD Library Primitive Types

The list of installed primitives which previously appeared here has been moved into the excel spreadsheet
called “Installation status of HMD primitive drivers” included in the HMD chapter of the Library Overview
(Chapter 18). Following is an explanation of the primitive type list description rules.

The “libhmd” sheet in this spreadsheet presents a list of primitive types implemented in the HMD library.
The list is shown in HMD assembler (labp) format. The following notation is used:

DEV_ID(SCE)|CTG(CTG_POLY)|DRV(BOT)|PRIM_TYPE(TRI); /* 00100008; 4.2 */

In this example, the developer ID is "SCE" (0; standard primitive driver), the category is "CTG_POLY"
(polygon primitive), the driver bit is "BOT" (double-sided flag ON), and the primitive type is "TRI" (triangle).
The actual bit pattern is "00100008" in hexadecimal. A primitive driver function name can be obtained by
adding "GsU_" to the actual bit pattern value. Primitive types that have been newly implemented in library
4.2 will also have "; 4.2" added after the bit pattern value. If there is no designation, the primitive type was
implemented in version 4.1 or earlier.

Library 4.2 provides a beta release of a pseudo-environment map driver. These are expressed using the
following notation.

DEV_ID(SCE)|CTG(6)|DRV(0x00 /* ??? */)|PRIM_TYPE(0x0100 /* ??? */);/* 06000100; 4.2 */

Since the pseudo-environment map driver is a beta release, symbol definitions are not included in the
"hmd.def" HMD assembler definition file. Also, symbolic output is not supported in the "xhmd" HMD
disassembler. This document, "hmd.doc", does not describe pseudo-environment mapping. A brief
description is provided in the sample data directory.

HMD Animation

The HMD library also supports animation. Since HMD holds coordinate information, the motion of a
hierarchical model can be described.

A special characteristic of HMD animation is the interactive control of animation sequences via the Realtime
Motion Switch. This technique enables movement at arbitrary times between multiple pre-defined motion
sequence patterns. This technique allows interactivity to be implemented — a feature which is
indispensable in games. It also makes it possible to tune the authoring level (i.e. create apparent motion).

The amount of memory used for HMD animation data has been minimized by enabling sequences to be
used. Entities are not represented in the data, as everything is referenced according to indexes and
pointers.

Since the key frame interpolation method for HMD animation is managed by HMD Type, various
interpolation methods can be used. A new interpolation method can also be defined by adding a Type.

A library for performing LINEAR, BEZIER and B-SPLINE coordinate rotation, translation and scaling with
LINEAR, BEZIER and B-SPLINE interpolation is provided as a Primitive Driver. Also, the common
interpolation functions for animating the optional data within HMD are provided by the LINEAR, BEZIER and
B-SPLINE algorithms. In this way, animation of vertices, colors, etc. is possible.

Animation Definition

Sequence control descriptor

One animation sequence is defined by a list of 16-bit sequence control descriptors (SC). There are three
kinds of SCs. One is a key frame descriptor (SCK), another is a jump descriptor (SCJ) and the third is for
control (SCC).

2-132 3D Graphics

File Formats

A key frame descriptor (SCK) holds an index to the area in memory area that represents the key frame
entity. A jump descriptor (SCJ) holds the index of an SCK jump destination. The SCK also holds the
amount of time until the next key frame (TFRAME). It also maintains an index of interpolation functions (Type
Idx). SCC displays control information such as sequence stoppage.

All sequences contain a 7-bit ID called a stream ID (SID). An SCJ holds both a source stream ID (SSID) and
a destination stream ID (DSID). A jump due to an SCJ is performed only when the SSID matches the SID of
the relevant sequence. If it does not match, the pointer moves directly to the next SC. The DSID
determines the SID of the jump destination when a jump occurs. However, when the SID is equal to 0, it
unconditionally matches all SIDs. As an operational rule, it is advisable that SID127 not be matched.

Sequence header

The sequence header, which unifies the management of individual pieces of sequence information, consists
of the following two parts:

1) Sequence pointer
2) Sequence information

The sequence pointer directs animation playback control, which is described later.

The sequence information holds information on individual sequences. (Entries are listed for the number of
sequences.)

The information for one sequence consists of the sequence starting index and the stream ID. The sequence
starting index contains the index where that sequence begins of the area in which the SCs are listed. The
stream ID indicates the SID at the time that that sequence is to be played back.

This information is referenced by all user programs. A user program controls a sequence by notifying the
library via the sequence pointer.

Figure 144: Sequence Management Construction

Sequence Pointer

Sequence Information 1

Sequence Information 2

Sequence Information 3

 SCK1-0

 SCK1-1

 SCK1-2

 SCK1-3

 SCJ

 SCK2-4

 SCK2-5

 SCK2-6

 SCK3-7

 SCJ3-8

 K0

 K1

 K2

 K3

 K4

 K5

 K6

 K7

 K8

Sequence Header Key FrameSequence Control

3D Graphics 2-133

File Formats

Animation Playback

Frame update driver

A frame update driver interprets a sequence according to a time series and calls the appropriate
interpolation function for performing the interpolation.

Frame update drivers are included according to the same framework as HMD primitive drivers. The frame
update driver GsU_03000000(), which is provided with Version 4.0 of libgs, provides such features as the
Realtime Motion Switch, forward and reverse playback, slow-motion playback up to 1/16 speed, and high-
speed playback up to 8-times normal speed.

Interpolation driver

The interpolation driver is a function for performing key frame interpolation. Although the interpolation driver
is identified according to Type in a similar manner as the frame update driver, it is not implemented by the
HMD standard primitive driver framework. Instead, the special-purpose SCAN function GsScanAnim() is
used, rather than the standard SCAN function GsScanUnit().

When the SCAN function ends, the pointers to interpolation drivers are listed in a special-purpose area
(interpolation function table section).

The SCK specifies the interpolation driver that should be called for each key frame according to Type Idx.
This enables the key frame interpolation method to be switched within a single sequence.

Sequence pointer

The sequence pointer holds the playback point information of an animation. The playback of an animation
can be controlled via this pointer.

The following elements are maintained in the sequence pointer:

• Rewrite IDX Specifies the areas that are to be updated by the animation.
• NUM Holds the number of sequences which can be substituted for that sequence pointer.
• INTR IDX SCK index indicating the area for holding the current parameters.
• AFRAME Manages the absolute frame numbers of the sequence.
• SRC INTRIDX Contains the area where parameters to be specified for INTR IDX are held.
• SPEED Playback speed.
• TFRAME Time interval between key frames.
• RFRAME Time interval from a key frame (decremented).
• Stream IDSequence ID number.
• TCTR IDX Index to the SC that holds the target key frame.
• CTR IDX Index to the SC that holds the source key frame.
• START IDX Holds the starting index of the sequence.
• START SID Holds the SID when the sequence starts.
• TRAVELING A variable that is reset to 0 at a key frame transition point. This can be freely used.

Some of these parameters can be set only by the programmer, and others can be updated by a frame
update driver. For details, see the GsSEQ structure reference.

Realtime Motion Switch

This function makes interactive animation possible. It is implemented by the HMD frame update drivers and
interpolation drivers.

The Realtime Motion Switch is divided into two functions. One function switches sequences in terms of key
frame units according to the SID, and the other switches sequences immediately during interpolation.

Sequence switching using the SID

Normal sequence

2-134 3D Graphics

File Formats

Figure 145: Sequence With No Jumps

SCK1-1 SCK1-2 SCK1-3 SCK1-4SEQ1

Figure 146: Sequence With Jumps

SCJ1
SID=2

SCK1-1 SCK1-2 SCK1-3 SCK1-4

SCK2-1 SCK2-2

SID=1

SID=1
SEQ1

SID=1or2

If the SCJ1 descriptor is written in advance and the Sid is 1, this kind of sequence branches to SCK2-1
after SCK1-2. If the information that the Sid is to be set to 0 after the jump is written for the SCJ1
descriptor, the Sid is set to 0 after the jump. Since SCJ descriptors can be arranged in multiple series,
individual jump destinations can be specified for various Sids

Sequence branching can be controlled at execution time by changing (rewriting) the Sid from 0 to 1 before
the sequence pointer passes the SCJ1 descriptor.

Loop sequence

Figure 147: Loop Sequence

SCJ1
SID=2

SCK1-1 SCK1-2 SCK1-3 SCK1-4SEQ1
SID=1

A loop sequence is realized by jumping forward according to a jump descriptor. Looping continues while
the SID is 2, and control escapes the loop when the SID is set to 1. The loop can be controlled interactively
by rewriting the SID at execution time.

3D Graphics 2-135

File Formats

Immediate sequence switching

With sequence switching via the SID, a sequence is switched only when the key frame changes. This has
the advantage that the switching is completely controllable because the sequence is switched only at
points where an SID change can be issued and only at intended locations. However, since no response
appears unless the key frame is reached, this method presents a problem from the standpoint of
responsiveness. The figure below illustrates immediate sequence switching.

Figure 148: Immediate Sequence Switching 1

SCK1-2 SCK1-3

SCK2-1 SCK2-2

SCK1-1

The sequence can be changed to key frame SCK2-1 at any time during interpolation between key frame
SCK1-1 and key frame SCK1-2. In this case, a new virtual key frame SCK2-0 is defined at the branch
point.

Figure 149: Immediate Sequence Switching 2

SCK1-1 SCK1-2 SCK1-3SCK2-0

SCK2-2SCK2-1

To implement this function, the sequence pointer is set as described below. An area for saving the current
parameters is created in advance by entering a DUMMY key frame. This is defined as SCK2-0. Then,
SCK2-0 is entered in INTR IDX at the frame at which the sequence was switched. 0xffff is entered in INTR
IDX at the next frame. 0xffff prohibits parameter updating. This process enters the current location's
parameters in the key frame entity pointed to by SCK2-0.

At the stage where SCK2-0 is captured, the SCK2-1 index is entered in TCTR IDX and the SCK2-0 index is
entered in CTR IDX. Also, the time interval from SCK2-0 to SCK2-1 is entered in TFRAME and RFRAME.
The next SID is entered in SID.

This implements immediate sequence switching.

File Formats

Chapter 3:
2D Graphics

3-2 2D Graphics

File Formats

2D Graphics 3-3

File Formats

TIM: Screen Image Data

The TIM file covers standard images handled by the PlayStation unit, and can be transferred directly to its
VRAM. It can be used commonly as sprite patterns and 3D texture mapping materials.

The following are the image data modes (color counts) handled by the PlayStation unit.

• 4-bit CLUT
• 8-bit CLUT
• 16-bit Direct color
• 24-bit Direct color

The VRAM supported by the PlayStation unit is based on 16 bits. Thus, only 16- and 24-bit data can be
transferred directly to the frame buffer for display. Use as sprite pattern or polygon texture mapping data
allows the selection of any of 4-bit, 8-bit and 16-bit modes.

TIM files have a file header (ID) at the top and consist of several different blocks.

Figure 150: TIM File Format

31(MSB) 0(LSB)

ID

FLAG

CLUT

Pixel

Each data item is a string of 32-bit binary data. The data is Little Endian, so in an item of data containing
several bytes, the bottom byte comes first (holds the lowest address), as shown in Figure 151.

Figure 151: The order of bytes in a file

Byte0

Byte1

Byte2

Byte3

Byte0

Byte1

:
:

Byte3 Byte2 Byte0Byte1

bit31(MSB) bit0(LSB)

 1Word =

 File header or address

ID

The file ID is composed of one word, having the following bit configuration.

Figure 152: Structure of TIM File Header

Reserved (All Zero) Version No. ID

bit31 16 15 8 7 0(LSB)

3-4 2D Graphics

File Formats

Bits 0 – 7: ID value is 0x10
Bits 8 – 15: Version number. Value is 0x00

Flag

Flags are 32-bit data containing information concerning the file structure. The bit configuration is as in
Figure 153.

When a single TIM data file contains numerous sprites and texture data, the value of PMODE is 4 (mixed),
since data of multiple types is intermingled.

Figure 153: Flag Word

Reserved (All zero) C
F

PMODE

bit31 0(LSB)5 4 3 2 1

Bits 0 -3 (PMODE): Pixel mode (Bit length)
0: 4-bit CLUT
1: 8-bit CLUT
2: 15-bit direct
3: 24-bit direct
4: Mixed

Bit 4 (CF): Whether there is a CLUT or not
0: No CLUT section
1: Has CLUT section

Other: Reserved

CLUT

The CF flag in the FLAG block specifies whether or not the TIM file has a CLUT block. A CLUT is a color
palette, and is used by image data in 4-bit and 8-bit mode.

As shown in Figure 154, the number of bytes in the CLUT (bnum) is at the top of the CLUT block. This is
followed by information on its location in the frame buffer, image size, and the substance of the data.

Figure 154: CLUT

bnum

DY DX

H W

CLUT1 CLUT0

CLUTn CLUTn-1

:
:

bit31(MSB) bit0(LSB)

bnum Data length of CLUT block. Units: bytes. Includes the 4 bytes of bnum

DX x coordinate in frame buffer

DY y coordinate in frame buffer

2D Graphics 3-5

File Formats

H Size of data in vertical direction

W Size of data in horizontal direction

CLUT 1~n CLUT entry (16 bits per entry)

In 4-bit mode, one CLUT consists of 16 CLUT entries. In 8-bit mode, one CLUT consists of 256 CLUT
entries.

In the PlayStation system, CLUTs are located in the frame buffer, so the CLUT block of a TIM file is handled
as a rectangular frame buffer image. In other words, one CLUT entry is equivalent to one pixel in the frame
buffer. In 4-bit mode, one CLUT is handled as an item of rectangular image data with a height of 1 and a
width of 16; in 8-bit mode, it is handled as an item of rectangular image data with a height of 1 and a width
of 256.

One TIM file can hold several CLUTs. In this case, the area in which several CLUTs are combined is placed
in the CLUT block as a single item of image data.

The structure of a CLUT entry (= one color) is as follows:

Figure 155: A CLUT entry

S
T
P

B G R

bit15 14 10 9 5 4 0(LSB)

STP Transparency control bit

R Red component (5 bits)

G Green component (5 bits)

B Blue component (5 bits)

The transparency control bit (STP) is valid when data is used as Sprite data or texture data. It controls
whether or not the relevant pixel, in the Sprite or polygon to be drawn, is transparent. If STP is 1, the pixel
is a semitransparent color, and if STP is other than 1, the pixel is a non-transparent color.

R, G and B bits control the color components. If they all have the value 0, and STP is also 0, the pixel will
be a transparent color. If not, it will be a normal color (non-transparent).

These relationships can be represented in a table as follows:

Table 3-1: STP Bit Function in Combination with R, G, B Data

STP/R,G,B Translucent processing on Translucent processing off

0/0,0,0 Transparent Transparent
0/X,X,X Not transparent Not transparent
1/X,X,X Semi-transparent Not transparent
1/0,0,0 Non-transparent black Non-transparent black

Pixel Data

Pixel data is the substance of the image data. The frame buffer of the PlayStation system has a 16-bit
structure, so image data is broken up into 16-bit units. The structure of the pixel data block is as shown
below.

3-6 2D Graphics

File Formats

Figure 156: Pixel data

bnum

DY DX

H W

DATA1 DATA0

DATAn DATAn-1

:
:

bit31(MSB) bit0(LSB)

bnum Data length of pixel data. Units: bytes. Includes the 4 bytes of bnum

DX Frame buffer x coordinate

DY Frame buffer y coordinate

H Size of data in vertical direction

W Size of data in horizontal direction (in 16-bit units)

DATA 1~n Frame buffer data (16 bits)

The structure of one item of frame buffer data (16 bits) varies according to the image data mode. The
structure for each mode is shown in Figure 157.

Care is needed when handling the size of the pixel data within the TIM data. The W value (horizontal width)
in Figure 156 is in 16-pixel units, so in 4-bit or 8-bit mode it will be, respectively, 1/4 or 1/2 of the actual
image size. Accordingly, the horizontal width of an image size in 4-bit mode has to be a multiple of 4, and
an image size in 8-bit mode has to be an even number.

Figure 157: Frame buffer data (pixel data)

(a) In 4-bit mode

bit15 14 12 11 8 7 0(LSB)

Pix3 Pix2 Pix1 Pix0

4 3

pix 0-3 pixel value (CLUT No.)

The order on the screen is pix0, 1, 2, 3, from the LSB side.

(b) In 8-bit mode

pix 0-1 pixel value (CLUT No.)

The order on the screen is pix0, 1, from the LSB side.

2D Graphics 3-7

File Formats

(c) In 16-bit mode

S
T
P

B G R

bit15 14 10 9 5 4 0 (LSB)

STP transparency control bit (see CLUT)

R Red component (5 bits)

G Green component (5 bits)

B Blue component (5 bits)

(d) In 24-bit mode:

G0 R0

R1 B0

B1 G1

bit15 8 7 0 (LSB)

R0, R1 Red component (8 bits)

G0, G1 Green component (8 bits)

B0, B1 Blue component (8 bits)

In 24-bit mode, 3 items of 16-bit data correspond to 2 pixels’ worth of data. (R0, G0, B0)
indicate the pixels on the left, and (R1, R2, B1) indicate the pixels on the right.

3-8 2D Graphics

File Formats

SDF: Sprite Editor Project File

The SDF file stores settings and file groups created and edited by the PlayStation sprite editor and enables
all linked files to be loaded together.

The SDF file is an ASCII text file composed of seven blocks of information, as shown in Figure 158. Each
block is designated by a unique keyword that begins each line within the block. For some blocks, a bank
number, ranging from 0-3, is appended to the block keyword. Some blocks use only one bank of data
while others use four. Following the keyword and bank number is a list of parameters. For those blocks
with four banks of data, each bank must be specified, even if no parameters are given.

Figure 158: SDF File Structure

TIM

CEL

MAP

ANM

.

.

.

ADDR
.
.
.

DISPLAY

COLOR

.

.

.

The block is composed of lines assigned key word values.

Sample SDF File Contents
TIM0 file0.tim
TIM1 file1.pxl file1.clt
TIM2
TIM3
CEL0 file2.cel
MAP0 file3.bgd
MAP1 file4.bgd
MAP2
MAP3
ANM0 file5.anm
DISPLAY 1
COLOR0
ADDR0 768 0 0 480 16
ADDR1 768 256 0 496 16
ADDR2 512 0 256 480 16
ADDR3 512 256 256 496 16

2D Graphics 3-9

File Formats

TIM

The keyword of the TIM block is “TIM?” where “?” is a bank number from 0 to 3. All four banks must be
specified. Following the keyword is the name of a TIM file, or the name of separate PXL and CLT files. If no
data is required for a bank, the remainder of the line is left blank. For example:

TIM0 file0.tim
TIM1 file1.pxl file1.clt
TIM2
TIM3

Note: The key word of a bank not used must not be omitted, but assigned an item having no value.

CEL

The keyword of the CEL block is “CEL0”. There is only one bank of data. Following the keyword is the
name of a CEL file. If no data is required for the CEL block, the remainder of the line following is left blank.
For example:

CEL0 file0.tim

if no data is required:

CEL0

MAP

The keyword of the MAP block is “MAP?” where “?” is a bank number from 0 to 3. All four banks must be
specified. Following the keyword is a filename. If no data is required for a bank, the remainder of the line is
left blank. For example:

MAP0 file3.bgd
MAP1 file4.bgd
MAP2
MAP3

Note: The key word of a bank not used must not be omitted, but assigned an item having no value.

ANM

The keyword of the ANM block is “ANM0”. There is only one bank of data. Following the keyword is the
name of a ANM file. If no data is required for the ANM block, the remainder of the line following is left blank.
For example:

ANM0 file5.anm

if no data is required:

ANM0

3-10 2D Graphics

File Formats

DISPLAY

A DISPLAY block specifies and Artist Boards screen mode. The keyword for this block is DISPLAY. The
argument value depends on the desired artist board screen mode as shown in Table 3-2.

Table 3-2: Display

Image mode Value

256x240 0
320x240 1
512x240 2
640x240 3
256x480 4
320x480 5
512x480 6
640x480 7

For example:

DISPLAY 1

This would set the artist board to the 320x240 resolution mode.

COLOR

The COLOR block specifies the color mode. The keyword is COLOR. The value depends on the desired
color mode, as shown in Table 3-3.

Table 3-3: Color

Color Mode Value

16 0
256 1

For example:

COLOR 1

This would set the artist board to the 256 color mode.

ADDR

An ADDR block specifies the coordinates of images specified in the corresponding TIM bank, as well as the
palette coordinates, and the number of color sets. The keyword of the ADDR block is “ADDR?” where “?”
is a bank number from 0 to 3. All four banks must be specified. Following the keyword is a parameter list.
The parameters for the ADDR block are as follows:

ADDR? X Y CX CY N

X: X coordinate of TIM image
Y: Y coordinate of TIM image

CX: X coordinate of palette
CY: Y coordinate of palette

N: Number of color sets

2D Graphics 3-11

File Formats

All parameters must be specified. For example:

ADDR0 768 0 0 480 16
ADDR1 768 256 0 496 16
ADDR2 512 0 256 480 16
ADDR3 512 256 256 496 16

PXL: Pixel Image Data

The PXL format stores 4-bit or 8-bit indexed-color graphics images created and edited by the PlayStation
sprite editor. Palette information is not included (this is contained within a CLT file that is used together with
the PXL file).

The PXL format has a simple header containing an ID field and a FLAG field. After that comes raw pixel
data. All values are stored in little-endian format. Bytes for 16-bit or 32-bit values are stored in ascending
order (i.e. a 32-bit value would be stored byte 0, byte 1, byte 2, then byte 3).

Figure 159: PXL File Structure

ID

FLAG

Pixel data

Data is of the 32-bit binary format. Because of LittleEndian, bytes are arranged in ascending order. (see
Figure 160).

Figure 160: Byte Order in File

Byte0

Byte21Word=

Byte1

Byte0

Byte3

Byte2

Byte1
Byte0Byte1Byte3

bit0(LSB)bit31(MSB)

File header or address

ID

The ID field is a 32-bit value with the following bit definition:

Figure 161: Structure of PXL File Header

Reserved (All Zero) Version No. ID

bit31 16 15 8 7 0(LSB)

Bit 0 – 7: ID value is 0x11
Bit 8 – 15: Version number. Value is 0x00

3-12 2D Graphics

File Formats

FLAG

The FLAG field is a 32-bit value containing information about the pixel data format. It has the following bit
definition:

Figure 162: FLAG Bit Configuration

P
M
D

(ALL zero)

bit31 0(LSB)

Reserved

Bit 0: (PMODE): Pixel mode (Bit length)
0: 4-bit CLUT
1: 8-bit CLUT

Pixel Data

The pixel data section contains the actual image information. It includes a short header as shown below,
followed by the raw image data that is ready to be copied to the PlayStation’s VRAM.

Figure 163: Configuration of Pixel Data Section

bit31(MSB) bit0(LSB)

DY

bnum

DX

H W

DATA 1 DATA 0

DATA n DATA n-1

bnum Length of pixel data in bytes, including the 4 bytes of bnum

DX Frame buffer x coordinate

DY Frame buffer y coordinate

H Size of data in vertical direction

W Size of data in horizontal direction

DATA VRAM (16 bits)

2D Graphics 3-13

File Formats

The configuration of a piece of VRAM data (16 bits) depends on the mode. The following gives the
configuration in each mode.

Figure 164: VRAM Data (Pixel Data)

a) In 4-bit mode

bit15 0(LSB)

pix 1pix 3 pix 0pix 2

pix 0-3 pixel value (CLUT No.)

The order on the screen is pix0, 1, 2, 3, starting from the left.

b) In 8-bit mode

bit15 0(LSB)

pix 0pix 1

8

pix 0-1 pixel value (CLUT No.)

The order on the screen is pix0, 1, starting from the left.

(c) In 16-bit mode

S
T
P

B G R

bit15 14 10 9 5 4 0 (LSB)

STP Transparency control bit (see CLUT)

R Red component (5 bits)

G Green component (5 bits)

B Blue component (5 bits)

The coordinate system for the VRAM is based on 16 bits per pixel. Thus, note coordinate/size values in TIM
data. In the X axis direction, a value of 2/4 is H in the 4-bit mode, and a value of 1/2 is H in the 8-bit mode.
This means that, in the 4-bit mode, the image size must be a multiple of 4 and, in the 8-bit mode, the
image size must be even.

3-14 2D Graphics

File Formats

CLT: Palette Data

The CLT file saves 8-bit or 4-bit palette data edited by the PlayStation sprite editor.

The CLT format has a simple header containing an ID field and a FLAG field. After that comes raw pixel
data. All values are stored in little-endian format. Bytes for 16-bit or 32-bit values are stored in ascending
order (i.e. a 32-bit value would be stored byte 0, byte 1, byte 2, then byte 3).

Figure 165: CLT File Structure

ID

FLAG

CLUT

31(MSB) 0(LSB)

Data is of the 32-bit binary format. Because of LittleEndian, bytes are arranged in ascending order. (See
Figure 166.)

Figure 166: Byte Order in File

Byte0

Byte21Word=

Byte1

Byte0

Byte3

Byte2

Byte1
Byte0Byte1Byte3

bit0(LSB)bit31(MSB)

File header or address

ID

The ID field is a 32-bit value with the following definition:

Figure 167: Structure of CLT File Header

Reserved (All Zero) Version No. ID

bit31 16 15 8 7 0(LSB)

Bit 0–7: ID value is 0x12

Bit 8–15: Version number. Value is 0x00

2D Graphics 3-15

File Formats

FLAG

The FLAG field is a 32-bit value containing information about the pixel data format. It has the following bit
definition:

Figure 168: FLAG Bit Configuration

bit31 5 0(LSB)

(ALL zero)Reserved PMODE

Bit 0-1: PMODE 0x2

CLUT Section

The CLUT section begins with data on its byte count (bnum), followed by inner-VRAM positional
information, index size and the main data body.

Figure 169: Structure of CLUT Section

bit31(MSB) bit0(LSB)

DY

bnum

DX

H W

CLUT1 CLUT0

CLUT n CLUT n-1

bnum Data length of CLUT block

DX x coordinate in frame buffer

DY y coordinate in frame buffer

W Size of data in horizontal direction

CLUT VRAM data (16 bits per entry)

One CLUT set is composed of 16 CLUT entries in the 4-bit mode and of 256 CLUT entries in the 8-bit
mode. (However, one file is composed of 16 sets of CLT data output from the sprite editor in the 4-bit
mode.)

As CLUT is located on the VRAM, the PlayStation system handles the CLUT section in a TIM file as a
rectangular VRAM image. This means that one CLUT entry is equivalent to one pixel in the VRAM. Thus,
one CLUT set is handled as rectangular image data having a height of 1 and a width of 16 in the 4-bit
mode and a height of 1 and a width of 256 in the 8-bit mode. (CLUT data output from the sprite editor is a
rectangular image with a height of 16 and a width of 16 in the 4-bit mode.)

One TIM file can contain two or more CLUT sets. The area composed of two or more CLUT sets is
considered to be a piece of image data and written in the CLUT section.

A CLUT entry, which expresses one color, has the following configuration.

3-16 2D Graphics

File Formats

Figure 170: CLUT Entry

bit15 0(LSB)

GB R

S
T
P

10 5

STP Transparency control bit (see CLUT)

R Red component (5 bits)

G Green component (5 bits)

B Blue component (5 bits)

The transparency control bit is applicable to sprite and texture data. If all of R, G, B and STP are zero, the
color is regarded as being transparent. If not, the color is considered to be opaque.

For semitransparency processing, if the STP value is 1, the color is considered to be semitransparent. If
not, the color is regarded as being opaque. (Only in all zeros, the color is considered to be transparent.)

Table 3-4: Role of STP Bit

STP/R,G,B Semi-transparency processing on Semi-transparency processing off

0/0,0,0 Transparent Transparent
0/X,X,X Not transparent Not transparent
1/X,X,X Semi-transparent Not transparent

ANM: Animation Information

The ANM format contains information that specifies image data animation. An ANM file is typically used in
conjunction with a TIM file, which contains the actual screen information.

The ANM file has a header at the top, and is divided into four blocks.

Figure 171: ANM file format

HEADER

SEQUENCE

SPRITEGp

CLUTGp

HEADER

This is the file header. Its structure is shown below.

Figure 172: File Header

FLAG

NSEQUENCE

VERSION ID

31 (MSB) 0 (LSB)

NSPRITEGp

816

ID: 0x21

VERSION: 0x03

FLAG: See below

NSEQUENCE: Number of sequences

2D Graphics 3-17

File Formats

NSPRITEGp: Number of sprite groups

Figure 173: FLAG

(VERSION<2)

31 16

CLT RESERVED

CLT Number of CLUTs for color animation

(VERSION>=2)

TPF

31 16

CLT RESERVED

CLT Number of CLUTs for color animation

TPF Texture pattern pixel depth
00:4-bit
01:8-bit

SEQUENCE

Sequence data provides a set of coordinates of the hot spots in the frames, display time and sprite group
numbers.

Figure 174: Sequence

ATTR TIME SprGpNo

Y X

ATTR TIME SprGpNo

Y X

16242831 0

.

.

.

TIME Display time (number of repetitions)

SprGpNo Number of Sprite group to be displayed, from among the sprit group data

X X coordinate of hot spot

Y Y coordinate of hot spot

ATTR Attribute (user defined)

(VERSION<3): no ATTR

3-18 2D Graphics

File Formats

SPRITEGp

Sprite group data is a set of sprite groups, describing where a sprite is to be displayed in a frame.

Figure 175: SPRITEGp

1624 831 0

Ofs Y

FLAG

NSprite

uvOfs X

CBA

H W

FLAG2 ROT

XY

H

Ofs Y Ofs X uv

FLAG CBA

W

FLAG2 ROT

Y X

Ofs Y

FLAG

NSprite

uvOfs X

CBA

H W

FLAG2 ROT

XY

NSprite Number of Sprites in one Sprite frame

FLAG See Figure 176

v Vertical offset from base address of texture page

u Horizontal offset from base address of texture page

Ofs Y Vertical offset from hotspot within frame

Ofs X Horizontal offset from hotspot within frame

CBA See Figure 177

H Width of texture of optional size

W Height of texture of optional size

ROT Angle of rotation

2D Graphics 3-19

File Formats

FLAG2 See Figure 178

Y, X Scaling factor (specified as a fixed-point number)

FLAG has the following bit configuration.

Figure 176: FLAG

31 16

THW
R
O
T

R
S
Z

TPNTPF ABR

THW The size of the rectangular area of the Sprite, divided by 8 (if it cannot be divided by
8, this bit is set to 0x0 and the actual size is specified using H and W, described
earlier.)

ROT Rotation status
0: Not rotated
1: Rotated

RSZ Scaling status
0: Not scaled
1: Scaled

TPF Pixel depth of texture pattern
00: 4-bit CLUT
01: 8-bit CLUT
10: 16-bit

ABR Semi-transparency rate.
00: 0.50xF+0x50xB
01: 1.00xF+1.00xB
10: -1.00xF+1.00xB
11: 0.25xF+1.00xB

TPN Texture page number (0-31)

CBA has the following bit configuration.

Figure 177: CBA

(VERSION<3)

31 16

CLXCLY

CLY Y coordinate of beginning of CLUT (9 bit)

CLX X coordinate of beginning of CLUT (6 bit)

(VERSION>=3)

A
B
E

31 16

CLXCLY

ABE 0 : Semi-transparency processing OFF
1 : Semi-transparency processing ON

CLY Y coordinate of beginning of CLUT (9 bit)

3-20 2D Graphics

File Formats

CLX X coordinate of beginning of CLUT (6 bit)

FLAG2 has the following bit configuration.

Figure 178: FLAG2

(VERSION>=2)

31 16

CSNBNO

BNO TIM bank number (Sprite editor)

CSN Color set number (Sprite editor)

Note:

In VERSION 0, TIM bank is:

In Bank 0, TPN=12

In Bank 1, TPN=28

In Bank 2, TPN=8

In Bank 3, TPN=24

In VERSION 1:

In CBA_x<255, CBA_y <=495, Bank is 0

In CBA_x<255, CBA_y >495, Bank is 1

In CBA_x>=255, CBA_y <=495, Bank is 2

In CBA_x>=255, CBA_y >495, Bank is 3

2D Graphics 3-21

File Formats

CLUTGp

CLUT Gp is a group of CLUTs used for color animations. The number of CLUTs is specified by the CLT
parameter of the FLAG in the HEADER block.

Figure 179: CLUTGp

1631(MSB) 0(LSB)

DY

bnum

DX

H W

CLUT 1 CLUT 0

CLUT num CLUT num-1

DY

bnum

DX

H W

CLUT 1 CLUT 0

CLUT num-1CLUT num

bnum Data length of CLUT (in bytes)

DX x coordinate in frame buffer

DY y coordinate in frame buffer

W Horizontal size of data

H Vertical size of data

CLUT 0~n CLUT entries (16 bits per entry)

3-22 2D Graphics

File Formats

TSQ: Animation Time Sequence

TSQ is a binary file that stores time sequence data for sprite animations created and edited by the
PlayStation sprite editor. It has a short header composed of two blocks.

Figure 180: SEQ Data Structure

HEADER

The file header has the following configuration.

Figure 181: HEADER

NSEQUENCE VERSION ID

31 (MSB) 0 (LSB)816

ID: 0x24

VERSION: 0x01

NSEQUENCE Sequence data count

SEQUENCE

Sequence data is a set of coordinates of the hot spots in the frames, display time, and sprite group
numbers.

Figure 182: SEQUENCE

ATTR TIME SprGpNo

Y X

ATTR TIME SprGpNo

Y X

16242831 0

.

.

.

TIME Display time

SprGpNo Number of Sprite group to be displayed

X X coordinate of hot spot

Y Y coordinate of hot spot

ATTR Attribute (user defined)

(VERSION=0): no ATTR

2D Graphics 3-23

File Formats

CEL: Cell Data

CEL format stipulates the pointer table, in the VRAM, of the CELLs forming constituents of the BG surface.

A CEL file has a header at the top, and is divided into three blocks.

Figure 183: CEL file format

HEADER

CELL

ATTR

HEADER

The file header has the following configuration.

Figure 184: HEADER

31(MSB) 15 7 0(LSB)

FLAG VERSION ID

CELL-H CELL-W NCELL

FLAG Described later

ID 0x22

VERSION 0x03

NCELL Number of cell data items (units: cells)

CELL-H Size of cell display window height (units: cells) (used locally in sprite editor)

CELL-W Size of cell display window width (units: cells) (used locally in sprite editor)

FLAG has the following bit configuration.

Figure 185: FLAG

ATT Indicates whether an ATTR block is included in this file
0: ATTR is not included
1: ATTR is included

ATL Length of ATTR data
0: 8-bit
1: 16-bit

A
T
T

31 16
A
T
L

RESERVED

3-24 2D Graphics

File Formats

CELL

Cell data provides a table of VRAM pointers to cells constituting BG. Four bytes form one cell.

Figure 186: CELL Data Section

31(MSB) 16 8 0(LSB)
CBA v u

TSB FLAG

CBA v u

TSB FLAG

:

:

v Offset in vertical direction from base address of texture page (8 bits)

u Offset in horizontal direction from base address of texture page (8 bits)

CBA Described later

TSB Described later

FLAG Described later

CBA has the following bit configuration.

Figure 187: CBA

(VERSION<3)

CLY Y coordinate of beginning of CLUT (9 bits)

CLX X coordinate of beginning of CLUT (6 bits)

(VERSION>=3)

ABE 0 : Semi-transparency processing OFF
1 : Semi-transparency processing ON

CLY Y coordinate of beginning of CLUT (9 bits)

CLX X coordinate of beginning of CLUT (6 bits)

31 16
A
B
E CLXCLY

31 16

CLY CLX

2D Graphics 3-25

File Formats

TSB has the following bit configuration.

Figure 188: TSB

TPF Pixel depth of texture pattern
00: 4-bit CLUT
01: 8-bit CLUT
10: 16-bit Direct

ABR Translucence rate (F=foreground, B=background)
00: 0.50xF + 0.50xB
01: 1.00xF + 1.00xB
10: -1.00xF + 1.00xB
11: 0.25xF + 1.00xB

TPN Texture Page number

(VERSION>=3)

BNO: TIM bank (sprite editor) number

CSN: Color set (sprite editor) number

Note:

In VERSION 0, TIM bank is:

In Bank 0, TPN=12

In Bank 1, TPN=28

In Bank 2, TPN=8

In Bank 3, TPN=24

In VERSION 1 and 2:

In CBA_x<255, CBA_y <=495, Bank is 0

In CBA_x<255, CBA_y >495, Bank is 1

In CBA_x>=255, CBA_y <=495, Bank is 2

In CBA_x>=255, CBA_y >495, Bank is 3

FLAG has the following bit configuration.

31 16

ABRTPF TPN

31 16

CSN TPNBNO TPF ABR

3-26 2D Graphics

File Formats

Figure 189: FLAG

(VERSION>1)

HLP Horizontal reversal information

VLP Vertical reversal information

(VERSION=0)

HLP Horizontal reversal information

VLP Vertical reversal information

ATTR

Expresses attribute data. Attribute data is additional information concerning the cell and is arranged in the
same order as CEL.

There are two types of attribute data, 8 bit length data and 16 bit length data and each is shown below.
Data length is indicated in the Header section, in the ATL bit in the FLAG half word.

Figure 190: ATTR Format (8 Bit)

Figure 191: ATTR Format (16 Bit)

15

V
L
P

H
L
P

0

15

V
L
P

H
L
P

0

31(MSB 0(LSB)

ATTR 1 ATTR 0

31(MS 0(LSB)

ATTR 1 ATTR 0

2D Graphics 3-27

File Formats

BGD: BG Map Data

The BGD file provides data constituting the BG plane used in the 2D system. BG refers to any row of
rectangular pixel data. The BGD file is used along with the TIM and CEL files having the same name. Actual
pixel images are carried by the TIM file.

The BGD file has a header at the top, and is divided into three blocks. The ATTR block may be omitted.

Figure 192: BG file format

HEADER
MAP
ATTR

HEADER

This is the file header. Its structure is as follows:

Figure 193: HEADER

31 (MSB) 0 (LSB)
FLAG VERSION ID

CELLH CELLW MAPH MAPW

ID 0x23

VERSION 0X00

FLAG See Figure 194

MAPH Vertical size of BG map data (in cell units)

MAPW Horizontal size of cell BG map data (in cell units)

CELLH Vertical size of cell data (in pixel units)

CELLW Horizontal size of cell data (in pixel units)

The structure of the FLAG in Figure 193 is as follows:

Figure 194: FLAG

A
T
T

31 16
A
T
L

ATT Indicates whether an ATTR block is included in this file
0: ATTR is not included
1: ATTR is included

ATL Length of ATTR data
0: 8-bit
1: 16-bit

3-28 2D Graphics

File Formats

MAP Section

A map is considered as a set of the cells of MAPH x MAPW (a matrix of the vertical and horizontal size)
which describes the order of arrangement of these cells. For example the arrangement of the cells of an
8 x 8 map would be as follows:

Figure 195: Cell Arrangement in MAP (when 8 x 8)

61

41

7654321

24

2322212019181716

15
5

141312111098

40

3938373635343332

31302928272625

585756

5554535251504948

474645444342

63626059

0

The Map section is an aggregate of cell numbers arranged in numerical order in a form like that in
Figure 195. Cell number is a number which indicates the number of the cell in the CEL file.

Figure 196: MAP

31(MSB) 0(LSB)

CELL No (1) CELL No (0)

.

.

.

ATTR Section

Indicates attribute data. Attribute data is additional information concerning the MAP and is arranged in the
same order as MAP.

There are two types of attribute data, 8-bit data and 16-bit data and each is shown below. Data length is
indicated in the Header section, in the ATL bit in the FLAG.

Figure 197: ATTR (8 bit)

31(MSB) 0(LSB)

ATTR 1 ATTR 0ATTR 2ATTR 3

.

.

.

Figure 198: ATTR (16 bit)

31(MSB) 0(LSB)

ATTR 1 ATTR 0

.

.

.

File Formats

Chapter 4:
Sound

4–2 Sound

File Formats

Sound 4–3

File Formats

SEQ: PS Sequence Data

SEQ is the PlayStation sequence data format. The typical extension in DOS is “.SEQ”.

Figure 199: SEQ Format

ID (SEQp)

Version

Resolution of quarter note

Tempo

End of SEQ

Score data

Byte count

4

4

2

3

2

3

Any

Rhythm

SEP: PS Multi-Track Sequence Data

A SEP is a package containing multiple SEQ data files. SEPs enable multiple SEQ data files to be managed
as one file.

SEPs can be accessed by specifying the ID number returned when the SEP is opened, along with the SEQ
number of the SEQ data to be accessed.

For details of access-related functions, see the Run-time Library Reference.

The SEP data format is illustrated on the next page.

4–4 Sound

File Formats

Figure 200: SEP Format

ID (SEQp)

Version

Resolution of quarter note

Tempo

End of SEQ

Score data

Byte count

4

2

2

2

3

3

2Rhythm

SEQ ID

Data size 4

Any

Resolution of quarter note

Tempo

End of SEQ

Score data

2

2

2

3

2Rhythm

SEQ ID

Data size 4

Any

.

.

.

SEQ 1

SEQ 0

Sound 4–5

File Formats

VAG: PS Single Waveform Data

VAG is the PlayStation single waveform data format for ADPCM-encoded data of sampled sounds, such as
piano sounds, explosions, and music. The typical extension in DOS is “.VAG”.

Figure 201: VAG Format

ID (VAGp)

Version

Sampling frequency

Byte count

4

4

4

4

4

12Reserved

Reserved

Waveform data

Name 16

Data size (Bytes)

Any

VAB: PS Sound Source Data

The VAB file format is designed to manage multiple VAG files as a single group. It is a sound processing
format that is handled as a single file at runtime.

A VAB file contains all of the sounds, sound effects, and other sound-related data actually used in a scene.
Hierarchical management is used to support multitimbral (multisampling) functions.

Each VAB file may contain up to 128 programs. Each of these programs can contain up to 16 tone lists.
Also, each VAB file can contain up to 254 VAG files.

Since it is possible for multiple tone lists to reference the same waveform, users are able to set different
playback parameters for the same waveform, thus giving the same waveform different sounds.

4–6 Sound

File Formats

Organization

A VAB format file is organized as follows:

Figure 202: VAB Format

ID (VABp)

Version

Waveform size

System reserved

Bank attribute 1 (user defined)

Byte count

4

4

4

4

2

1

2Number of programs

VAB ID

Number of tones 2

2

System reserved

Program attribute table

1

4

16 x 128 (Max programs)*

32 x 16 (Max tones) x number of programs**Tone attribute table

Bank attribute 2 (user defined)

VAG offset table 512

Any (Up to 516,096)

VAB
header
(.VH)

VAG count

Master volume

Master pan

VAG (0)

VAG (1)

VAG (VAG count)

.

.

.

VAB
body
(.VB)

1

1

* See (b) in Structure

** See (c) in Structure

Structure

The structure of a VAB header is as follows. It is possible to set each attribute dynamically using this
structure at the time of execution.

(a) VabHdr structure is contained within the first 32 bytes (see libsnd in the Library Reference for details).

(b) ProgAtr structure for 128 programs is contained in the program attribute table (see libsnd in the Library
Reference for details).

(c) VagAtr structure for each tone is contained in the tone attribute table (see libsnd in the Library
Reference for details).

(d) VAG offset table contains 3-bit right-shifted VAG data size stored in short (16 bit). For example:

Sound 4–7

File Formats

Table 4-1: VAG Offset Table

VAG# 0 1 2 . . .

VAG offset table 0x1000 0x0800 0x0200 . . .
Actual size 0x8000 0x4000 0x1000 . . .
Offset 0x8000 0xc000 0xd000 . . .

DA: CD-DA Data

DA is the PlayStation CD-DA data format. The typical extension in DOS is “.DA”.

Figure 203: DA Format

L

R

L

Byte count

2

2

2

2

2

2R

L

R

.

.

.

4–8 Sound

File Formats

File Formats

Chapter 5:
PDA and Memory Card

5–2 PDA and Memory Card

File Formats

PDA and Memory Card 5–3

File Formats

FAT: Memory Card File System Specification

Memory Card block structure

A Memory Card contains 1 Mbit (128 KB) of flash memory and is organized in blocks of 8 KBytes. Memory
Cards are managed with an independent file system known as the FAT. PDA application data is also
managed in the blocks.

Table 5-1: Layout of Memory Card blocks

Block No. Contents
0 FAT block
1 Data block 1
2 Data block 2
.
.

.

.
14 Data block 14
15 Data block 15

Writes to flash memory are performed in 128-byte units known as sectors. There are 64 sectors in each
block.

FAT block format

A FAT block has the following structure:

Table 5-2: FAT block memory map

Sector No. Contents
0 Format ID sector
1 Block information sector 1
. . . .
15 Block information sector 15
16 Alternate information sector 1
. . . .
35 Alternate information sector

20
36 Alternate sector 1
. . . .
55 Alternate sector 20
56 Reserved sector 1
. . . .
62 Reserved sector 7
63 Dummy write sector

5–4 PDA and Memory Card

File Formats

Format ID Sector

'M' 'C' 0 0 --- sum

The first 2 bytes of the Format ID are 'M' and 'C', and the remaining bytes are all '0'. However the 128th
byte is the checksum, which contains the result obtained by XORing bytes 1-127.

When the first 2 bytes are 'MC', the card is identified as a formatted Memory Card. Otherwise, it is
considered unformatted.

Block Information Sector

Table 5-3: Structure of block information sector

Contents Data Type Size (bytes)

Block list Information (unsigned long) 4

File size (long) 4

Next block (unsigned short) 2

Filename (char) X 21 21

Reserved (unsigned char) 1

Unused unknown 94

PDA application (unsigned char) 1

Checksum (unsigned char) 1

Block list information

Table 5-4: Meaning of block list information

Value Contents
51 Header block
52 Intermediate block
53 End block
A0 Free block
A1 Header block with delete

mark
A2 Intermediate block with

delete mark
A3 End block with delete

mark

Immediately after formatting, all block list information fields are set to the value A0. When a file is created,
the file's block list information has values 51-53. When a file is deleted, the block list information used by
the deleted file has values A1-A3. Once a file has been deleted, it can be restored simply by restoring the
original block list information. However, if the file has been deleted and another file is created such that the
"header block - intermediate block - end block" chain is broken, all blocks of the broken chain will be set to
A0 by a check during the next FAT read.

If a file is only 1 block long, the block list information will only be 51 (or A1). If the file size is 2 blocks, the
block list information will only have values 51 and 53 (or A1 and A3), and there will be no blocks with a
value of 52 (or A2).

PDA and Memory Card 5–5

File Formats

File size

File size is maintained in bytes, and the value is computed as follows:

File size = No. of blocks specified when creating a new file X 8192 bytes

Next block

If a file spans multiple blocks, a pointer to the next block, which is 1 less than the block number, is stored.
For example, if the next block were block number 1, 2,..., or 15, then the value 0, 1,..., or 14, respectively,
would be stored as the pointer. When there is no next block, 0xFFFF is stored in this field.

Filename

Stores the filename. A NULL (0x00) is required at the end of the character string.

PDA application

For a PDA application, McxExecFlag() will set this flag to 1. Otherwise, the flag will be cleared. This flag is
not copied in libcard or libmcrd, so it is set to 0 when a PDA application is copied but not downloaded from
the PlayStation.

Checksum

The checksum is obtained by XORing bytes 1-127.

Alternate information sector

(long) substituted sector number 0 --- sum

When a sector is specified as an alternate information sector, the alternate sector is used in place of the
specified sector. For example, if alternate information sector 3 contained 123 as its substituted sector
number and an attempt was made to read or write sector 123, alternate sector 3 of the same number as
the alternate information sector would be read or written instead.

The checksum data in the 128th byte is obtained by XORing bytes 1-127.

Alternate sector

The actual sector specified in the alternate information sector is written here.

Dummy write sector

This sector is used for dummy writes in order to clear unidentified flags.

FAT Operation

Next, FAT operation using the PlayStation library, etc., will be described.

Format

The format operation sets up each sector as shown in the following table.

Table 5-5: State of formatted FAT

4D

Target
sector

43 00 00
00 00

00
0000

00 00 00
0

0
1 2 3 4~7 8 9 10~126

A01~15
16~35 FF FF FF FF

FF FF
00 FF FF

00
00

127
sum
sum
sum

Offset within sector / write contents

* The values in the table are expressed as hex numbers.

5–6 PDA and Memory Card

File Formats

The sum in the 127th byte is the checksum, and is obtained by XORing bytes 0-126.

Formatted FAT images are shown as Memory Card format images (see section 4).

Unformat

If the first two bytes of sector 0 are other than 'MC', the Memory Card is considered to be in an
unformatted state.

Delete

The delete operation changes the high-order 4 bits of the first byte of all block information sectors of the
appropriate file, from 5 to A. All other data (excluding the checksum in the 127th byte) remains unchanged.

Undelete

Following a delete operation, the undelete operation changes the high-order 4 bits of the first byte of all
block information sectors of the appropriate file, from A to 5. All other data (excluding the checksum in the
127th byte) remains unchanged. The undelete operation restores data files that have been deleted.

Special Processing in PDA

Writing to the FAT sector of an executing PDA application

When an attempt is made to write to a FAT sector corresponding to a block in which an executing PDA
application is stored, (e.g., from the PlayStation via the library), the write is inhibited and an error is
generated. Furthermore, the library recognizes this state to mean that a Memory Card has been swapped.

Alternate sector write disable interval

During the execution of the "display while transferring file" command of the libmcx library, writing to the
alternate information sectors (sectors 16-35) and to the alternate sectors (36-55) is disabled. An attempt to
write to these sectors generates an error.

PDA and Memory Card 5–7

File Formats

Memory Card Format Image

The FAT state for a formatted Memory Card is shown below.

From alternate sector 1 to the dummy write sector, it is unnecessary to set the specified initial value.

00000 4D 43 00 00 00 00 00 00 - 00 00 00 00 00 00 00 00 MC Format ID sector

00010 00 00 00 00 00 00 00 00 - 00 00 00 00 00 00 00 00

00020 00 00 00 00 00 00 00 00 - 00 00 00 00 00 00 00 00

00030 00 00 00 00 00 00 00 00 - 00 00 00 00 00 00 00 00

00040 00 00 00 00 00 00 00 00 - 00 00 00 00 00 00 00 00

00050 00 00 00 00 00 00 00 00 - 00 00 00 00 00 00 00 00

00060 00 00 00 00 00 00 00 00 - 00 00 00 00 00 00 00 00

00070 00 00 00 00 00 00 00 00 - 00 00 00 00 00 00 00 0E

00080 A0 00 00 00 00 00 00 00 - FF FF 00 00 00 00 00 00 Block information sector 1

00090 00 00 00 00 00 00 00 00 - 00 00 00 00 00 00 00 00

000A0 00 00 00 00 00 00 00 00 - 00 00 00 00 00 00 00 00

000B0 00 00 00 00 00 00 00 00 - 00 00 00 00 00 00 00 00

000C0 00 00 00 00 00 00 00 00 - 00 00 00 00 00 00 00 00

000D0 00 00 00 00 00 00 00 00 - 00 00 00 00 00 00 00 00

000E0 00 00 00 00 00 00 00 00 - 00 00 00 00 00 00 00 00

000F0 00 00 00 00 00 00 00 00 - 00 00 00 00 00 00 00 A0

00100 A0 00 00 00 00 00 00 00 - FF FF 00 00 00 00 00 00 Block information sector 2

00110 00 00 00 00 00 00 00 00 - 00 00 00 00 00 00 00 00

00120 00 00 00 00 00 00 00 00 - 00 00 00 00 00 00 00 00

00130 00 00 00 00 00 00 00 00 - 00 00 00 00 00 00 00 00

00140 00 00 00 00 00 00 00 00 - 00 00 00 00 00 00 00 00

00150 00 00 00 00 00 00 00 00 - 00 00 00 00 00 00 00 00

00160 00 00 00 00 00 00 00 00 - 00 00 00 00 00 00 00 00

00170 00 00 00 00 00 00 00 00 - 00 00 00 00 00 00 00 A0

:

:

00780 A0 00 00 00 00 00 00 00 - FF FF 00 00 00 00 00 00 Block information sector 15

00790 00 00 00 00 00 00 00 00 - 00 00 00 00 00 00 00 00

007A0 00 00 00 00 00 00 00 00 - 00 00 00 00 00 00 00 00

007B0 00 00 00 00 00 00 00 00 - 00 00 00 00 00 00 00 00

007C0 00 00 00 00 00 00 00 00 - 00 00 00 00 00 00 00 00

007D0 00 00 00 00 00 00 00 00 - 00 00 00 00 00 00 00 00

007E0 00 00 00 00 00 00 00 00 - 00 00 00 00 00 00 00 00

5–8 PDA and Memory Card

File Formats

007F0 00 00 00 00 00 00 00 00 - 00 00 00 00 00 00 00 A0

00800 FF FF FF FF 00 00 00 00 - FF FF 00 00 00 00 00 00 Alternate information sector 1

00810 00 00 00 00 00 00 00 00 - 00 00 00 00 00 00 00 00

00820 00 00 00 00 00 00 00 00 - 00 00 00 00 00 00 00 00

00830 00 00 00 00 00 00 00 00 - 00 00 00 00 00 00 00 00

00840 00 00 00 00 00 00 00 00 - 00 00 00 00 00 00 00 00

00850 00 00 00 00 00 00 00 00 - 00 00 00 00 00 00 00 00

00860 00 00 00 00 00 00 00 00 - 00 00 00 00 00 00 00 00

00870 00 00 00 00 00 00 00 00 - 00 00 00 00 00 00 00 00

00880 FF FF FF FF 00 00 00 00 - FF FF 00 00 00 00 00 00 Alternate information sector 2

00890 00 00 00 00 00 00 00 00 - 00 00 00 00 00 00 00 00

008A0 00 00 00 00 00 00 00 00 - 00 00 00 00 00 00 00 00

008B0 00 00 00 00 00 00 00 00 - 00 00 00 00 00 00 00 00

008C0 00 00 00 00 00 00 00 00 - 00 00 00 00 00 00 00 00

008D0 00 00 00 00 00 00 00 00 - 00 00 00 00 00 00 00 00

008E0 00 00 00 00 00 00 00 00 - 00 00 00 00 00 00 00 00

008F0 00 00 00 00 00 00 00 00 - 00 00 00 00 00 00 00 00

:

:

01180 FF FF FF FF 00 00 00 00 - FF FF 00 00 00 00 00 00 Alternate information sector 20

01190 00 00 00 00 00 00 00 00 - 00 00 00 00 00 00 00 00

011A0 00 00 00 00 00 00 00 00 - 00 00 00 00 00 00 00 00

011B0 00 00 00 00 00 00 00 00 - 00 00 00 00 00 00 00 00

011C0 00 00 00 00 00 00 00 00 - 00 00 00 00 00 00 00 00

011D0 00 00 00 00 00 00 00 00 - 00 00 00 00 00 00 00 00

011E0 00 00 00 00 00 00 00 00 - 00 00 00 00 00 00 00 00

011F0 00 00 00 00 00 00 00 00 - 00 00 00 00 00 00 00 00

01200 FF FF FF FF FF FF FF FF - FF FF FF FF FF FF FF FF Alternate sector 1

01210 FF FF FF FF FF FF FF FF - FF FF FF FF FF FF FF FF

01220 FF FF FF FF FF FF FF FF - FF FF FF FF FF FF FF FF

01230 FF FF FF FF FF FF FF FF - FF FF FF FF FF FF FF FF

01240 FF FF FF FF FF FF FF FF - FF FF FF FF FF FF FF FF

01250 FF FF FF FF FF FF FF FF - FF FF FF FF FF FF FF FF

01260 FF FF FF FF FF FF FF FF - FF FF FF FF FF FF FF FF

01270 FF FF FF FF FF FF FF FF - FF FF FF FF FF FF FF FF

01280 FF FF FF FF FF FF FF FF - FF FF FF FF FF FF FF FF Alternate sector 2

01280 FF FF FF FF FF FF FF FF - FF FF FF FF FF FF FF FF

01290 FF FF FF FF FF FF FF FF - FF FF FF FF FF FF FF FF

PDA and Memory Card 5–9

File Formats

012A0 FF FF FF FF FF FF FF FF - FF FF FF FF FF FF FF FF

012B0 FF FF FF FF FF FF FF FF - FF FF FF FF FF FF FF FF

012C0 FF FF FF FF FF FF FF FF - FF FF FF FF FF FF FF FF

012D0 FF FF FF FF FF FF FF FF - FF FF FF FF FF FF FF FF

012E0 FF FF FF FF FF FF FF FF - FF FF FF FF FF FF FF FF

012F0 FF FF FF FF FF FF FF FF - FF FF FF FF FF FF FF FF

:

:

01B80 FF FF FF FF FF FF FF FF - FF FF FF FF FF FF FF FF Alternate sector 20

01B90 FF FF FF FF FF FF FF FF - FF FF FF FF FF FF FF FF

01BA0 FF FF FF FF FF FF FF FF - FF FF FF FF FF FF FF FF

01BB0 FF FF FF FF FF FF FF FF - FF FF FF FF FF FF FF FF

01BC0 FF FF FF FF FF FF FF FF - FF FF FF FF FF FF FF FF

01BD0 FF FF FF FF FF FF FF FF - FF FF FF FF FF FF FF FF

01BE0 FF FF FF FF FF FF FF FF - FF FF FF FF FF FF FF FF

01BF0 FF FF FF FF FF FF FF FF - FF FF FF FF FF FF FF FF

01C00 FF FF FF FF FF FF FF FF - FF FF FF FF FF FF FF FF Reserved sector 1

01C10 FF FF FF FF FF FF FF FF - FF FF FF FF FF FF FF FF

01C20 FF FF FF FF FF FF FF FF - FF FF FF FF FF FF FF FF

01C30 FF FF FF FF FF FF FF FF - FF FF FF FF FF FF FF FF

01C40 FF FF FF FF FF FF FF FF - FF FF FF FF FF FF FF FF

01C50 FF FF FF FF FF FF FF FF - FF FF FF FF FF FF FF FF

01C60 FF FF FF FF FF FF FF FF - FF FF FF FF FF FF FF FF

01C70 FF FF FF FF FF FF FF FF - FF FF FF FF FF FF FF FF

01C80 FF FF FF FF FF FF FF FF - FF FF FF FF FF FF FF FF Reserved sector 2

01C90 FF FF FF FF FF FF FF FF - FF FF FF FF FF FF FF FF

01CA0 FF FF FF FF FF FF FF FF - FF FF FF FF FF FF FF FF

01CB0 FF FF FF FF FF FF FF FF - FF FF FF FF FF FF FF FF

01CC0 FF FF FF FF FF FF FF FF - FF FF FF FF FF FF FF FF

01CD0 FF FF FF FF FF FF FF FF - FF FF FF FF FF FF FF FF

01CE0 FF FF FF FF FF FF FF FF - FF FF FF FF FF FF FF FF

01CF0 FF FF FF FF FF FF FF FF - FF FF FF FF FF FF FF FF

:

:

01F00 FF FF FF FF FF FF FF FF - FF FF FF FF FF FF FF FF Reserved sector 7

01F10 FF FF FF FF FF FF FF FF - FF FF FF FF FF FF FF FF

01F20 FF FF FF FF FF FF FF FF - FF FF FF FF FF FF FF FF

01F30 FF FF FF FF FF FF FF FF - FF FF FF FF FF FF FF FF

5–10 PDA and Memory Card

File Formats

01F40 FF FF FF FF FF FF FF FF - FF FF FF FF FF FF FF FF

01F50 FF FF FF FF FF FF FF FF - FF FF FF FF FF FF FF FF

01F60 FF FF FF FF FF FF FF FF - FF FF FF FF FF FF FF FF

01F70 FF FF FF FF FF FF FF FF - FF FF FF FF FF FF FF FF

01F80 FF FF FF FF FF FF FF FF - FF FF FF FF FF FF FF FF Dummy write sector

01F90 FF FF FF FF FF FF FF FF - FF FF FF FF FF FF FF FF

01FA0 FF FF FF FF FF FF FF FF - FF FF FF FF FF FF FF FF

01FB0 FF FF FF FF FF FF FF FF - FF FF FF FF FF FF FF FF

01FC0 FF FF FF FF FF FF FF FF - FF FF FF FF FF FF FF FF

01FD0 FF FF FF FF FF FF FF FF - FF FF FF FF FF FF FF FF

01FE0 FF FF FF FF FF FF FF FF - FF FF FF FF FF FF FF FF

01FF0 FF FF FF FF FF FF FF FF - FF FF FF FF FF FF FF FF

	FILE FORMATS
	November 1998
	Changes Since Last Release
	Table of Contents
	List of Figures
	List of Tables

	About This Manual
	Changes Since Last Release
	Related Documentation
	Manual Structure
	Developer Reference Series
	Typographic Conventions
	Developer Support

	Ch 1: Streaming Audio and Video Data
	STR: Streaming (Movie) Data
	BS: MDEC Bitstream Data
	XA: CD-ROM Voice Data

	Ch 2: 3D Graphics
	RSD: 3D Model Data
	TMD: Modeling Data for OS Library
	PMD: High- Speed Modeling Data
	TOD: Animation Data
	HMD: Hierarchical 3D Model, Animation and Other Data

	Ch 3: 2D Graphics
	TIM: Screen Image Data
	SDF: Sprite Editor Project File
	PXL: Pixel Image Data
	CLT: Palette Data
	ANM: Animation Information
	TSQ: Animation Time Sequence
	CEL: Cell Data
	BGD: BG Map Data

	Ch 4: Sound
	SEQ: PS Sequence Data
	SEP: PS Multi-Track Sequence Data
	VAG: PS Single Waveform Data
	VAB: PS Sound Source Data
	DA: CD-DA Data

	Ch 5: PDA and Memory Card
	FAT: Memory Card File System Specification

