
Run-Time Library Reference

© 1999 Sony Computer Entertainment Inc.

Publication date: January 1999

Sony Computer Entertainment America
919 E. Hillsdale Blvd., 2nd floor
Foster City, CA 94404

Sony Computer Entertainment Europe
Waverley House
7-12 Noel Street
London W1V 4HH, England

The Run-Time Library Reference manual is supplied pursuant to and subject to the terms of the Sony
Computer Entertainment PlayStation® License and Development Tools Agreements, the Licensed
Publisher Agreement and/or the Licensed Developer Agreement.

The Run-Time Library Reference manual is intended for distribution to and use by only Sony Computer
Entertainment licensed Developers and Publishers in accordance with the PlayStation® License and
Development Tools Agreements, the Licensed Publisher Agreement and/or the Licensed Developer
Agreement.

Unauthorized reproduction, distribution, lending, rental or disclosure to any third party, in whole or in part,
of this book is expressly prohibited by law and by the terms of the Sony Computer Entertainment
PlayStation® License and Development Tools Agreements, the Licensed Publisher Agreement and/or the
Licensed Developer Agreement.

Ownership of the physical property of the book is retained by and reserved by Sony Computer
Entertainment. Alteration to or deletion, in whole or in part, of the book, its presentation, or its contents is
prohibited.

The information in the Run-Time Library Reference manual is subject to change without notice. The content
of this book is Confidential Information of Sony Computer Entertainment.

PlayStation and PlayStation logos are registered trademarks of Sony Computer Entertainment Inc. All other
trademarks are property of their respective owners and/or their licensors.

Run-Time Library Reference

Summary Table of Contents

About This Manual
Changes Since Last Release v
Related Documentation v
Manual Structure v
Developer Reference Series vi
Typographic Conventions vii
Developer Support vii

Chapter 1: Kernel Library
Structures 1-3
Functions 1-9

Chapter 2: Standard C Library
Functions 2-2

Chapter 3: Math Library
Functions 3-3

Chapter 4: Memory Card Library
Functions 4-3

Chapter 5: Extended Memory Card Library
Functions 5-3

Chapter 6: Data Compression Library
Structures 6-3
Functions 6-5

Chapter 7: Basic Graphics Library
Structures 7-4
Functions 7-33
Macros 7-118

Chapter 8: Basic Geometry Library
Structures 8-5
Functions 8-21

Chapter 9: Extended Graphics Library
Structures 9-3
Functions 9-31
Macros 9-110
External Variables 9-113

Chapter 10: CD/Streaming Library
Structures 10-3
Functions 10-8

Chapter 11: Extended CD-ROM Library
Structures 11-3
Functions 11-7

Chapter 12: Controller/Peripherals Library
Functions 12-3

Chapter 13: Link Cable Library
Functions 13-3
Macros 13-9

iv Table of Contents

Run-Time Library Reference

Chapter 14: Extended Sound Library
Structures 14-5
Functions 14-14

Chapter 15: Basic Sound Library
Structures 15-5
Functions 15-15

Chapter 16: Serial Input/Output Library
Functions 16-3

Chapter 17: HMD Library
Structures 17-3
Functions 17-23

Chapter 18: PDA Library (libmcx)
Functions 18-3

Chapter 19: Memory Card GUI Module (mcgui)
Structures 19-3
Functions 19-10

Index

Run-Time Library Reference

About This Manual

This manual is the latest release of the PlayStation® Library Reference as of Run-Time Library release 4.4.
The purpose of this manual is to define all available PlayStation run-time library functions, macros and
structures. The companion Run-Time Library Overview volume describes the structure and purpose of the
libraries in programming software for the PlayStation.

Changes Since Last Release

This manual has been significantly changed since the previous version.

The following formatting changes have been made:

• All functions now conform to C function prototype syntax. The description for each argument is to the
right of the argument, rather than in a separate “Arguments” section, for easier viewing.

• Similarly, the description for each structure member is to the right of the member name.
• The “Remarks” section has been incorporated into the “Explanation” section.
• The “Return Value” section has been omitted for void functions.

The ability to navigate the reference has been improved:

• More function references have been provided in the “See also” sections. These references are
hyperlinked to their definitions.

• Structure names in function definitions, as well as in the “Explanation” section, are also hyperlinked to
their definitions.

An attempt has been made to make the text more readable:

• The tenses of function descriptions and explanations have been standardized.
• References to structure members and function parameters are uniformly in italics, e.g. mode.
• Function names are uniformly referred to with parentheses, e.g. ResetGraph().
• Many typographical errors have been fixed.
• In some cases, functions that are extremely similar have been combined into a single section.

A number of other improvements have been made, including corrections to argument order, argument
descriptions and return value descriptions.

Related Documentation

This manual should be read in conjunction with the Run-Time Library Overview, since the Overview
summarizes the use of the libraries.

Note: the Developer Support Web site posts current developments regarding the run-time libraries and
also provides notice of future documentation releases and upgrades.

Manual Structure

The Library Reference contains nineteen chapters providing definitions of library structures and functions.

Generally, each chapter defines the structures and/or functions of a single library. Note, however, that
some chapters provide definitions for several related libraries. In particular, note that Chapter 2, the
Standard C Library, describes libc and libc2. Chapter 12, the Controller/Peripherals Library, describes
libetc, libgun, libpad and libtap.

vi About This Manual

Run-Time Library Reference

Developer Reference Series

This manual is part of the Developer Reference Series, a series of technical reference volumes covering all
aspects of PlayStation development. The complete series is listed below:

Manual Description

PlayStation Hardware Describes the PlayStation hardware architecture
and overviews its subsystems.

PlayStation Operating System Describes the PlayStation operating system and
related programming fundamentals.

Run-Time Library Overview Describes the structure and purpose of the
run-time libraries provided for PlayStation
software development.

Run-Time Library Reference Defines all available PlayStation run-time library
functions, macros and structures.

Inline Programming Reference Describes in-line programming using DMPSX,
GTE inline macro and GTE register information.

SDevTC Development Environment Describes the SDevTC (formerly "Psy-Q")
Development Environment for PlayStation
software development.

3D Graphics Tools Describes how to use the PlayStation 3D
Graphics Tools, including the animation and
material editors.

Sprite Editor Describes the Sprite Editor tool for creating
sprite data and background picture
components.

Sound Artist Tool Provides installation and operation instructions
for the DTL-H800 Sound Artist Board and
explains how to use the Sound Artist Tool
software.

File Formats Describes all native PlayStation data formats.
Data Conversion Utilities Describes all available PlayStation data

conversion utilities, including both stand-alone
and plug-in programs.

CD Emulator Provides installation and operation instructions
for the CD Emulator subsystem and related
software.

CD-ROM Generator Describes how to use the CD-ROM Generator
software to write CD-R discs.

Performance Analyzer User Guide Provides general instructions for using the
Performance Analyzer software.

Performance Analyzer Technical Reference Describes how to measure software
performance and interpret the results using the
Performance Analyser.

DTL-H2000 Installation and Operation Provides installation and operation instructions
for the DTL-H2000 Development System.

DTL-H2500/2700 Installation and Operation Provides installation and operation instructions
for the DTL-H2500/H2700 Development
Systems.

About This Manual vii

Run-Time Library Reference

Typographic Conventions

Certain Typographic Conventions are used through out this manual to clarify the meaning of the text. The
following conventions apply:

Convention Meaning

Italic Function arguments and structure members.

Courier Literal program code.

Medium Bold Types and structure/function names (in structure/function definitions only)

Blue Hyperlink to function or structure description

Developer Support

Sony Computer Entertainment America (SCEA)

SCEA developer support is available to licensees in North America only. You may obtain developer support
or additional copies of this documentation by contacting the following addresses:

Order Information Developer Support

In North America: In North America:
Attn: Developer Tools Coordinator E-mail: DevTech_Support@playstation.sony.com
Sony Computer Entertainment America Web: http://www.scea.sony.com/dev
919 East Hillsdale Blvd., 2nd floor Developer Support Hotline: (650) 655-8181
Foster City, CA 94404 (Call Monday through Friday, 8 a.m. to 5 p.m.,
Tel: (650) 655-8000 PST/PDT)

Sony Computer Entertainment Europe (SCEE)

SCEE developer support is available to licensees in Europe only. You may obtain developer support or
additional copies of this documentation by contacting the following addresses:

Order Information Developer Support

In Europe: In Europe:
Attn: Production Coordinator E-mail: dev_support@playstation.co.uk
Sony Computer Entertainment Europe Web: https://www-s.playstation.co.uk
Waverley House Developer Support Hotline:
7-12 Noel Street +44 (0) 171 447 1680
London W1V 4HH (Call Monday through Friday, 9 a.m. to 6 p.m.,
Tel: +44 (0) 171 447 1600 GMT or BST/BDT)

http://www.scea.sony.com/dev
https://www-s.playstation.co.uk

viii About This Manual

Run-Time Library Reference

Run-Time Library Reference

Chapter 1: Kernel Library
Table of Contents

Structures
DIRENTRY 1-3
EvCB 1-4
EXEC 1-5
TCB 1-6
TCBH 1-7
ToT 1-8

Functions
calloc2 1-9
calloc3 1-10
cd 1-11
ChangeClearPAD 1-12
ChangeTh 1-13
close 1-14
CloseEvent 1-15
CloseTh 1-16
DeliverEvent 1-17
DisableEvent 1-18
DisablePAD 1-19
EnableEvent 1-20
EnablePAD 1-21
EnterCriticalSection 1-22
erase 1-23
Exception 1-24
Exec 1-25
ExitCriticalSection 1-26
firstfile 1-27
FlushCache 1-28
format 1-29
free2 1-30
free3 1-31
GetConf 1-32
GetCr 1-33
GetGp 1-34
GetRCnt 1-35
GetSp 1-36
GetSr 1-37
GetSysSp 1-38
InitHeap 1-39
InitHeap2 1-40
InitHeap3 1-41
InitPAD 1-42
ioctl 1-43
Krom2RawAdd 1-44
Krom2RawAdd2 1-45
Load 1-46
LoadExec 1-47
LoadTest 1-48
lseek 1-49
malloc2 1-50
malloc3 1-51
nextfile 1-52
open 1-53

1-2

Run-Time Library Reference

OpenEvent 1-54
OpenTh 1-55
read 1-56
realloc2 1-57
realloc3 1-58
rename 1-59
ResetRCnt 1-60
ReturnFromException 1-61
SetConf 1-62
SetMem 1-63
SetRCnt 1-64
SetSp 1-65
StartPAD 1-66
StartRCnt 1-67
StopPAD 1-68
StopRCnt 1-69
SwEnterCriticalSection 1-70
SwExitCriticalSection 1-71
SystemError 1-72
TestEvent 1-73
undelete 1-74
UnDeliverEvent 1-75
WaitEvent 1-76
write 1-77
_96_init 1-78
_96_remove 1-79
_boot 1-80
_get_errno 1-81
_get_error 1-82

Kernel Library Structures 1-3

Run-Time Library Reference

Structures

DIRENTRY
Directory entries.

Library Header File Introduced Documentation Date
libapi.lib kernel.h 2.x 12/14/98

Structure
struct DIRENTRY {

char name[20]; Filename
long attr; Attributes (dependent on file system)
long size; File size (in bytes)
struct DIRENTRY *next; Pointer to next file entry (for user)
char system[8]; Reserved by system

};

Explanation
Stores information relating to files registered in the file system.

See Also
firstfile(), nextfile()

1-4 Kernel Library Structures

Run-Time Library Reference

EvCB
Event Control Block

Library Header File Introduced Documentation Date
libapi.lib kernel.h 2.x 12/14/98

Structure
struct EvCB {

u_long desc; Cause descriptor
long status; Status
long spec; Event type
long mode; Mode
(long *FHandler)(); Pointer to a function type handler
long system[2]; Reserved by system

};

Explanation
Stores information for each event.

See Also
OpenEvent(), GetConf(), SetConf().

Kernel Library Structures 1-5

Run-Time Library Reference

EXEC
Execution file data structure.

Library Header File Introduced Documentation Date
libapi.lib kernel.h 2.x 12/14/98

Structure
struct EXEC {

unsigned long pc0; Execution start address
unsigned long gp0; gp register initial value
unsigned long t_addr; Starting address of initialized text section
unsigned long t_size; Size of text section
unsigned long d_addr; Starting address of initialized data section
unsigned long d_size; Size of initialized data section
unsigned long b_addr; Uninitialized data section start address
unsigned long b_size; Uninitialized data section size
unsigned long s_addr; Stack start address (specified by the user)
unsigned long s_size; Stack size (specified by the user)
unsigned long sp; Register shunt variable
unsigned long fp; Register shunt variable
unsigned long gp; Register shunt variable
unsigned long ret; Register shunt variable
unsigned long base; Register shunt variable

};

Explanation
Stores information for loading and executing a program. The data is stored in the first 2K bytes of the
execution file (PS-X EXE format). By adding stack information and transfering it to Exec(), the program is
activated.

See Also
Exec()

1-6 Kernel Library Structures

Run-Time Library Reference

TCB
Task Control Block.

Library Header File Introduced Documentation Date
libapi.lib kernel.h 2.x 12/14/98

Structure
struct TCB {

long status; Status
long mode; Mode
unsigned long reg[NREGS]; Register saving area (specified by register

designation macro)
long system[6]; Reserved by system

};

Explanation
Stores a context (including contents of the registers) for thread management.

See Also
OpenTh(), ChangeTh(), GetConf(), SetConf()

Kernel Library Structures 1-7

Run-Time Library Reference

TCBH
Task Control Block Header.

Library Header File Introduced Documentation Date
libapi.lib kernel.h 2.x 12/14/98

Structure
struct TCBH {

struct TCB *entry; Pointer to execution TCB
long flag; System reserved

};

Explanation
Used for thread management. entry is a pointer to the currently executing TCB.

See Also
OpenTh(), ChangeTh()

1-8 Kernel Library Structures

Run-Time Library Reference

ToT
System Table Information.

Library Header File Introduced Documentation Date
libapi.lib kernel.h 2.x 12/14/98

Structure
struct ToT {

unsigned long *head; Pointer to a system table start address
long size; System table size (in bytes)

};

Explanation
Information about various system tables used by the kernel. The tables begin at address 0x00000100.

Kernel Library Functions 1-9

Run-Time Library Reference

Functions

calloc2
Allocate a block in main memory.

Library Header File Introduced Documentation Date
libapi.lib malloc.h 3.6 12/14/98

Syntax
void *calloc2(
size_t n, Number of partitions
size_t s) Size of one partition

Explanation
Allocates a block of n*s bytes in the heap memory and initializes it to 0. Corresponds to InitHeap2().

Return value
Pointer to the allocated memory block. If allocation fails, NULL is returned.

See Also
InitHeap2(), malloc2(), realloc2(), free2()

1-10 Kernel Library Functions

Run-Time Library Reference

calloc3
Allocate a block in main memory.

Library Header File Introduced Documentation Date
libapi.lib malloc.h 4.0 12/14/98

Syntax
void *calloc3 (
size_t n, Number of partitions
size_t s) Size of one partition

Explanation
Allocates a block of n*s bytes in the heap memory and initializes it to 0. Corresponds to InitHeap3().

Return value
A pointer to the allocated memory block. If allocation fails, NULL is returned.

See Also
InitHeap3(), malloc3(), realloc3(), free3()

Kernel Library Functions 1-11

Run-Time Library Reference

cd
Change default directory.

Library Header File Introduced Documentation Date
libapi.lib libapi.h 2.x 12/14/98

Syntax
long cd(
char *path) Pointer to the default directory path

Explanation
Changes the default directory path for a given file system (specified by the device name at the beginning of
path).

Return value
1 if it succeeds, and 0 otherwise.

See Also

1-12 Kernel Library Functions

Run-Time Library Reference

ChangeClearPAD
Set the control driver.

Library Header File Introduced Documentation Date
libapi.lib libapi.h 2.x 12/14/98

Syntax
void ChangeClearPAD(
long val) Vertical retrace line interruption clear flag

Explanation
if val is 1, interrupt processing in a control driver started by a vertical retrace line interrupt is completed. If
val is 0, processing is passed to a lower priority interrupt module without completion.

See Also
StartPAD(), StopPAD(), StartCARD() (see libcard), StopCARD() (see libcard)

Kernel Library Functions 1-13

Run-Time Library Reference

ChangeTh
Change the thread to be executed.

Library Header File Introduced Documentation Date
libapi.lib libapi.h 2.x 12/14/98

Syntax
long ChangeTh(
unsigned long thread) Thread descriptor

Explanation
Transfers execution to the thread specified by thread. The current thread is saved in a TCB. This function
returns when the original thread is restored.

Before executing ChangeTh(), initialize TCB reg [R-SR] to the following:

• The interrupt context is 0X404
• The main flow is 0X401

Return value
On success and re-execution, the function returns 1. On failure, it returns 0. The return value on re-
execution can be changed by any other thread.

See Also
OpenTh()

1-14 Kernel Library Functions

Run-Time Library Reference

close
Close a file.

Library Header File Introduced Documentation Date
libapi.lib libapi.h 2.x 12/14/98

Syntax
int close(
int fd) File descriptor

Explanation
Closes the file specified by fd.

Return value
fd, if the function succeeds, -1 otherwise.

See Also
Open()

Kernel Library Functions 1-15

Run-Time Library Reference

CloseEvent
Close an event.

Library Header File Introduced Documentation Date
libapi.lib libapi.h 2.x 12/14/98

Syntax
long CloseEvent(
unsigned long event) Event descriptor

Explanation
Releases the EvCB specified by event. Must be executed in a critical section.

Return value
1 on success, 0 on failure.

See Also
OpenEvent(), EnterCriticalSection(), SwEnterCriticalSection()

1-16 Kernel Library Functions

Run-Time Library Reference

CloseTh
Close a thread.

Library Header File Introduced Documentation Date
libapi.lib libapi.h 2.x 12/14/98

Syntax
long closeTh(
unsigned long thread) Thread descriptor

Explanation
Closes a thread and releases its TCB. Must be executed in a critical section.

Return value
1 on success, 0 on failure.

See Also
OpenTh(), EnterCriticalSection(), SwEnterCriticalSection()

Kernel Library Functions 1-17

Run-Time Library Reference

DeliverEvent
Generate an event.

Library Header File Introduced Documentation Date
libapi.lib libapi.h 2.x 12/14/98

Syntax
void DeliverEvent(
unsigned long ev1, Cause descriptor
long ev2) Event class

Explanation
Delivers an event if the event’s current status is EvStACTIVE (event not yet generated, generation possible).
If the event mode is EvMdINTR, the event handler function is called. If the event mode is EvMdNOINTR, the
event status is changed to EvStALREADY (event already occurred, generation prohibited). This function
must be executed in a critical section.

See Also
UnDeliverEvent(), OpenEvent(), TestEvent(), EnterCriticalSection(), SwEnterCriticalSection(), DisableEvent(),
EnableEvent(), WaitEvent(), CloseEvent()

1-18 Kernel Library Functions

Run-Time Library Reference

DisableEvent
Disable an event.

Library Header File Introduced Documentation Date
libapi.lib libapi.h 2.x 12/14/98

Syntax
long DisableEvent(
unsigned long event) Event descriptor

Explanation
Inhibits occurrence of an event specified by the descriptor event. It changes the event status to EvStWAIT
(event generation prohibited).

Return value
1 on success, 0 on failure.

See Also
EnableEvent()

Kernel Library Functions 1-19

Run-Time Library Reference

DisablePAD
Disable communication with the controller.

Library Header File Introduced Documentation Date
libapi.lib libapi.h 2.x 12/14/98

Syntax
void DisablePad(void)

Explanation
Temporarily disables communication with the controller.

Unlike StopPAD(), which deletes the controller handler activated by Vsync interrupts, this function simply
skips controller communication by setting a flag in the handler.

Since a controller normally communicates via Vsync interrupts, this function can be used in situations when
the controller status is needed less frequently than every 1/60 sec.

See Also
EnablePAD(), StopPAD()

1-20 Kernel Library Functions

Run-Time Library Reference

EnableEvent
Enable occurrence of an event.

Library Header File Introduced Documentation Date
libapi.lib libapi.h 2.x 12/14/98

Syntax
long EnableEvent(
unsigned long event) Event descriptor

Explanation
Enables occurrence of an event specified by the descriptor event. It changes the event status to
EvStACTIVE (event not yet generated, generation possible).

Return value
1 on success, 0 on failure.

See Also
DisableEvent(), TestEvent()

Kernel Library Functions 1-21

Run-Time Library Reference

EnablePAD
Enable communication with the controller.

Library Header File Introduced Documentation Date
libapi.lib libapi.h 2.x 12/14/98

Syntax
void EnablePAD(void)

Explanation
Enables communication with a controller which was disabled with DisablePAD(). Although a normal
controller communicates via Vsync interrupts, this function is used only with timing longer than 1/60 sec.
when the controller status is not needed.

See Also
DisablePAD()

1-22 Kernel Library Functions

Run-Time Library Reference

EnterCriticalSection
Disable interrupts.

Library Header File Introduced Documentation Date
libapi.lib libapi.h 2.x 12/14/98

Syntax
void EnterCriticalSection(void)

Explanation
Disables interrupts (enters a critical section).

Executes an internal system call and destroys the interrupt context. However, does not call the main
function from the event handler callback interrupt context.

Return value
0 when this function is called in a critical section, 1 otherwise.

See Also
ExitCriticalSection()

Kernel Library Functions 1-23

Run-Time Library Reference

erase
Delete a file.

Library Header File Introduced Documentation Date
libapi.lib libapi.h 2.x 12/14/98

Syntax
long erase(
char *name) Pointer to a filename

Explanation
Deletes the file specified by name.

This function was formerly called “delete.”

Return value
1 on success, 0 on failure.

See Also
undelete()

1-24 Kernel Library Functions

Run-Time Library Reference

Exception
Cause an interrupt.

Library Header File Introduced Documentation Date
libapi.lib libapi.h 2.x 12/14/98

Syntax
void Exception(void)

Explanation
Causes an interrupt, and stores the current context in the execution TCB. It is also valid in a critical section.
Executes an internal call and destroys the exception context.

See Also
ChangeTh(), ReturnFromException()

Kernel Library Functions 1-25

Run-Time Library Reference

Exec
Execute an execution file.

Library Header File Introduced Documentation Date
libapi.lib libapi.h 2.x 12/14/98

Syntax
long Exec(
struct EXEC *exec, Pointer to execution file information
long argc, Number of arguments
char *argv) Pointer to argument

Explanation
Executes a module that has already been loaded into memory, using the execution file information specified
by exec. If exec->s_addr is 0, neither the stack nor frame pointers are set.

The function does the following:

• Clears a data section without initial values to zero.
• Saves sp, fp, and gp, and then initializes them. (fp is set to the same value as sp.)
• Sets the arguments of main() in the a0 and a1 registers.
• Calls the execution start address.
• Restores sp, fp, and gp after a return is made.

It must be executed in a critical section.

This function needs the ISO 9660 file system to run properly. Call _96_init() to initialize the system and
_96_remove() to exit the system.

Return value
1 on success; 0 on failure.

See Also
Load(), _96_init(), _96_remove()

1-26 Kernel Library Functions

Run-Time Library Reference

ExitCriticalSection
Enable interrupts.

Library Header File Introduced Documentation Date
libapi.lib libapi.h 2.x 12/14/98

Syntax
void ExitCriticalSection(void)

Explanation
Enables interrupts (exits from a critical section).

Executes an internal system call and destroys the interrupt context. However, it does not call the main
function from the event handler callback interrupt context.

See Also
EnterCriticalSection()

Kernel Library Functions 1-27

Run-Time Library Reference

firstfile
Find the first file matching a filename.

Library Header File Introduced Documentation Date
libapi.lib libapi.h 2.x 12/14/98

Syntax
struct DIRENTRY *firstfile(
char *name, Pointer to a filename
struct DIRENTRY *dir) Pointer to the buffer holding information relating to the

referenced file.

Explanation
Finds the first file corresponding to the filename pattern name, and stores data relating to this file in the
directory dir. The wildcard characters “?” (standing for any one character) and “*” (standing for a character
string of any length) can be used in the filename pattern. Characters specified after “*” are ignored.

Return value
Returns dir if it succeeds, and 0 otherwise.

See Also
nextfile()

1-28 Kernel Library Functions

Run-Time Library Reference

FlushCache
Flush instruction cache.

Library Header File Introduced Documentation Date
libapi.lib libapi.h 2.x 12/14/98

Syntax
void FlushCache(void)

Explanation
Flushes the instruction cache (I-cache). Must be executed in a critical section.

See Also
EnterCriticalSection()

Kernel Library Functions 1-29

Run-Time Library Reference

format
Initialize file system.

Library Header File Introduced Documentation Date
libapi.lib libapi.h 2.x 12/14/98

Syntax
long format(
char *fs) Pointer to file system name

Explanation
Initializes file system fs. This function is only effective on writeable file systems.

When initializing the Memory Card, it’s preferable to use the libcard function _card_format().

Return value
Always returns 1.

See Also
 _card_format() (see libcard)

1-30 Kernel Library Functions

Run-Time Library Reference

free2
Free allocated memory blocks.

Library Header File Introduced Documentation Date
libapi.lib malloc.h 3.6 12/14/98

Syntax
void free2
(void *block) Area to be released

Explanation
Releases a memory block that was allocated by calloc2(),malloc2(), or realloc2(). Corresponds to
InitHeap2().

See Also
InitHeap2(), calloc2(), malloc2(), realloc2()

Kernel Library Functions 1-31

Run-Time Library Reference

free3
Free allocated memory blocks.

Library Header File Introduced Documentation Date
libapi.lib malloc.h 4.0 12/14/98

Syntax
void free3
(void *block) Area to be released

Explanation
Releases a memory block that was allocated by calloc3(), malloc3(), or realloc3().

See Also
InitHeap3(), calloc3(), malloc3(), realloc3()

1-32 Kernel Library Functions

Run-Time Library Reference

GetConf
Get the kernel configuration.

Library Header File Introduced Documentation Date
libapi.lib libapi.h 3.0 12/14/98

Syntax
void GetConf(
unsigned long *ev, Pointer to number of event management blocks
unsigned long *tcb, Pointer to number of task management blocks
unsigned long *sp) Ignored

Explanation
Stores a system configuration parameter set by SetConf() to the address given by the pointer as the
argument. It returns an undefined value before the execution of SetConf() because this function refers to its
internal parameter.

See Also
SetConf()

Kernel Library Functions 1-33

Run-Time Library Reference

GetCr
Get cause register value.

Library Header File Introduced Documentation Date
libapi.lib libapi.h 3.0 12/14/98

Syntax
unsigned long GetCr(void)

Explanation
Gets the value of the cause register (a coprocessor control register).

Table 1-1: Description of Cause-Register Bits for GetCr

Bit Description
31-6 Reserved by the system
5-2 Exception code

0000 External interrupt
0001 Not used
0010 Not used
0011 Not used
0100 Address read error
0101 Address write error
0110 Command bus error
0111 Data bus error
1000 System call
1001 Break point
1010 Undefined command
1011 Co-processor not mounted
1100 Overflow

1-0 Reserved by the system

Return value
The current cause register value.

See Also
OpenTh()

1-34 Kernel Library Functions

Run-Time Library Reference

GetGp
Get value of gp register.

Library Header File Introduced Documentation Date
libapi.lib libapi.h 3.0 12/14/98

Syntax
unsigned long GetGp(void)

Explanation
Gets the value of the gp register.

Return value
The current gp register value.

See Also
OpenTh(), Load(), Exec()

Kernel Library Functions 1-35

Run-Time Library Reference

GetRCnt
Get value of a root counter.

Library Header File Introduced Documentation Date
libapi.lib libapi.h 2.x 12/14/98

Syntax
long GetRCnt(
long spec) Root counter

Explanation
Returns the current value of root counter spec. To be used when root counter spec has been set by
SetRCnt to a polling mode (RCntMdNOINTR).

Return value
The 32-bit unsigned expanded counter value. On failure, it returns -1.

See Also
SetRCnt(), StartRCnt(), StopRCnt(), ResetRCnt()

1-36 Kernel Library Functions

Run-Time Library Reference

GetSp
Get value of stack pointer.

Library Header File Introduced Documentation Date
libapi.lib libapi.h 3.0 12/14/98

Syntax
unsigned long GetSp(void)

Explanation
Gets value of sp register.

Return value
The current sp register value.

See Also
OpenTh(), Load(), Exec(), SetSp()

Kernel Library Functions 1-37

Run-Time Library Reference

GetSr
Get value of status register.

Library Header File Introduced Documentation Date
libapi.lib libapi.h 3.0 12/14/98

Syntax
unsigned long GetSr(void)

Explanation
Gets the value of the status register.

Table 1-2: Description of Status-Register Bits for GetSr

Bit Description
31-28 Co-processor installation flag (1: Installed);

Bit 29 is GTE.
27-11 Reserved by the system
10 Always 1
9-3 Reserved by the system
2 Main flow interrupt permission (1:

Permission)
1 Reserved by the system
0 Interrupt permission (1: Permission)

Return value
The current status register value.

See Also
OpenTh()

1-38 Kernel Library Functions

Run-Time Library Reference

GetSysSp
Get address of system stack.

Library Header File Introduced Documentation Date
libapi.lib libapi.h 3.0 12/14/98

Syntax
long GetSysSp(void)

Explanation
Gets the highest address of a system stack area for event handler function execution.

The size of the stack area is 2 K-bytes.

Return value
Highest address of the system stack area

See Also
GetSp()

Kernel Library Functions 1-39

Run-Time Library Reference

InitHeap
Initialize heap area.

Library Header File Introduced Documentation Date
libapi.lib libapi.h 2.0 12/14/98

Syntax
void InitHeap(
unsigned long *head, Pointer to heap start address
unsigned long size) Heap size (a multiple of 4, in bytes)

Explanation
Initializes a group of standard function library memory control functions. After using this function, malloc(),
free(), etc. are usable.

There is some overhead, so the entire size in bytes cannot be used.

Must be executed in a critical section. If several executions of this function overlap, the previous memory
control information is lost.

See Also
malloc() (see libc/libc2)

1-40 Kernel Library Functions

Run-Time Library Reference

InitHeap2
Initialize heap area.

Library Header File Introduced Documentation Date
libapi.lib malloc.h 3.6 12/14/98

Syntax
void InitHeap(
void *head, Pointer to heap start address
long size) Heap size (a multiple of 4, in bytes)

Explanation
Initializes a heap area of size bytes. (Since there is overhead, the entire size in bytes cannot be used.)

After calling this function, the library memory routines in the “malloc3” group (malloc3(), free3(), etc.) are
usable. This routine fixes a bug in InitHeap() but has larger program size since this is a memory resident
function. See "Memory Allocation Functions" in the Kernel chapter of the Library Overview for more
information on the malloc systems.

If several executions of this function overlap, the previous memory control information is lost.

See Also
InitHeap(), malloc2(), realloc2(), calloc2(), free2()

Kernel Library Functions 1-41

Run-Time Library Reference

InitHeap3
Initialize heap area.

Library Header File Introduced Documentation Date
libapi.lib malloc.h 4.0 12/14/98

Syntax
void InitHeap3(
void *head, Pointer to heap start address
long size) Heap size (a multiple of 8, in bytes)

Explanation
Initializes a heap area of size bytes. If size is not divisible by 8, the remainder after dividing by 8 is
discarded and isn’t allocated. (Since there is overhead, the entire size in bytes cannot be used.)

After calling this function, the library memory routines in the “malloc3” group (malloc3(), free3(), etc.) are
usable. This function is a higher speed than the “malloc2” system and is smaller in size. See "Memory
Allocation Functions" in the Kernel chapter of the Library Overview for more information on the malloc
systems.

If several executions of this function overlap, the previous memory control information is lost.

See Also
InitHeap(), InitHeap2(), malloc3(), realloc3(), calloc3(), free3()

1-42 Kernel Library Functions

Run-Time Library Reference

InitPAD
Initialize the controller.

Library Header File Introduced Documentation Date
libapi.lib libapi.h 2.x 12/14/98

Syntax
long InitPAD(
char *bufA, char *bufB, Pointers to incoming data buffers
long lenA, long lenB) Length of incoming data buffers (in bytes)

Explanation
Registers a receive data buffer for the controller. For the format of this buffer, see “Receive Buffer Data
Format” of Chapter 13 (Controller/Peripherals Library) of the Library Overview.

Since it is possible for mistakes to occur when an unexpected controller is connected to the receive data
length, always allocate 34 bytes.

When using the Multi Tap, use InitTAP(). When using the gun controller, use InitGUN().

Return value
Always 1.

See Also
StartPAD(), StopPAD(), ChangeClearPAD(), InitTAP() (see libetc), InitGUN() (see libetc).

Kernel Library Functions 1-43

Run-Time Library Reference

ioctl
Control devices.

Library Header File Introduced Documentation Date
libapi.lib libapi.h 2.x 12/14/98

Syntax
long ioctl(
int fd, File descriptor
int com, Control command
int arg) Control command argument

Explanation
Executes control commands on the device. Details of the commands and their arguments are given
separately for each device.

Return value
1 if it succeeds and 0 otherwise.

See Also
open()

1-44 Kernel Library Functions

Run-Time Library Reference

Krom2RawAdd
Get Kanji font pattern addresses.

Library Header File Introduced Documentation Date
libapi.lib libapi.h 3.0 12/14/98

Syntax
unsigned long Krom2RawAdd(
unsigned short sjiscode) Shift-JIS code

Explanation
Gets the starting address in the kernel of the font pattern for the Kanji character specified by sjiscode.

Refer to the codeview sample in \psx\kanji\sjiscode for a list of usable fonts and the actual fonts
themselves.

Return value
The starting address of a Kanji font pattern. If there is no font data corresponding to the specified Kanji
character, a value of -1 is returned.

Bug alert: The normal arguments are Shift-JIS code values between 0x8140~0x84BE or 0x889F~0x9872.
If a Shift-JIS code within that region corresponds to a blank area in the code table, a font pattern unrelated
to that code is returned as the starting address. This problem has been corrected in Krom2RawAdd2, so
we recommend using Krom2RawAdd2 to obtain the font pattern starting address.

See Also
Krom2RawAdd2()

Kernel Library Functions 1-45

Run-Time Library Reference

Krom2RawAdd2
Get shift-JIS font pattern addresses.

Library Header File Introduced Documentation Date
libapi.lib libapi.h 3.2 12/14/98

Syntax
unsigned long Krom2RawAdd2(
unsigned short sjiscode) Shift-JIS code

Explanation
Gets the starting address in the font pattern kernel for the non-Kanji/Kanji level 1 character specified by the
sjiscode.

(Refer to the codeview sample in \psx\kanji\sjiscode for a list of usable fonts and the actual fonts
themselves.)

Return value
The font pattern starting address. When there is no font data corresponding to the specified shift-JIS code,
an address containing a full space font pattern is returned.

See Also
Krom2RawAdd()

1-46 Kernel Library Functions

Run-Time Library Reference

Load
Load an execution file.

Library Header File Introduced Documentation Date
libapi.lib libapi.h 2.x 12/14/98

Syntax
long Load(
char *name, Pointer to filename
struct EXEC *exec) Pointer to execution file information

Explanation
Reads the PlayStation EXE format file name to the address specified by its internal header, and writes
internal information to exec.

This function needs the ISO 9660 file system to run properly. To initialize this system, call _96_init(); to exit
the system, call _96_remove().

Calls FlushCache() internally.

Return value
1 if it succeeds, and 0 otherwise.

See Also
Exec(), FlushCache(), _96_init(), _96_remove()

Kernel Library Functions 1-47

Run-Time Library Reference

LoadExec
Load and execute an execution file.

Library Header File Introduced Documentation Date
libapi.lib libapi.h 2.x 12/14/98

Syntax
void LoadExec(
char *name, Pointer to a PS-X EXE format execution file name (fewer than

19 characters)
unsigned long s_addr, Stack area starting address
unsigned long s_size) Number of bytes in stack area

Explanation
Calls Load() and Exec(), then reads a file name into memory and executes the file. s_addr and s_size are
passed to Exec() and set by the structure EXEC.

This function needs the ISO 9660 file system to run properly. To initialize this system, call _96_init(); to exit
the system, call _96_remove().

See Also
Load(), Exec(), _96_init(), _96_remove()

1-48 Kernel Library Functions

Run-Time Library Reference

LoadTest
Load test.

Library Header File Introduced Documentation Date
libapi.lib libapi.h 2.x 12/14/98

Syntax
long LoadTest(
char *name, Pointer to filename
struct EXEC *exec) Pointer to data in an execution file

Explanation
Writes internal information from a PS-X EXE format file name to exec.

Return value
The execution starting address. On failure, it returns 0.

See Also
Load()

Kernel Library Functions 1-49

Run-Time Library Reference

lseek
Move a file pointer.

Library Header File Introduced Documentation Date
libapi.lib libapi.h 2.x 12/14/98

Syntax
unsigned long lseek(
int fd, File descriptor
unsigned int offset, Number of bytes to move pointer
int flag) Start point flag

Explanation
Moves a file pointer of the device indicated by the descriptor fd.

If flag is SEEK_SET, movement starts at the start of the file; if flag is SEEK_CUR, movement starts with the
current position.

This function does not apply to a PC communication link.

Return value
The current file pointer, if it succeeds. On failure, it returns -1.

See Also
open(), read(), write()

1-50 Kernel Library Functions

Run-Time Library Reference

malloc2
Allocate main memory.

Library Header File Introduced Documentation Date
libapi.lib malloc.h 3.6 12/14/98

Syntax
void *malloc2 (
size_t s) Size of memory block to be allocated

Explanation
Allocates s bytes of memory block from the heap memory. InitHeap2() must be executed in advance.

Heap memory is defined as below:

Low Address Module Highest Address + 4
High Address On-board memory - 64KB

Return value
A pointer to the allocated memory block. On failure, NULL is returned.

See Also
InitHeap2(), calloc2(), realloc2(), free2()

Kernel Library Functions 1-51

Run-Time Library Reference

malloc3
Allocate main memory.

Library Header File Introduced Documentation Date
libapi.lib malloc.h 4.0 12/14/98

Syntax
void *malloc3 (
size_t s) Size of memory block to be allocated

Explanation
Allocates s bytes of memory block from the heap memory. InitHeap3() must be executed in advance.

Refer to the section entitled "Memory Allocation Functions" in the Kernel chapter of the Library Overview for
the differences between the various malloc systems.

Return value
A pointer to the allocated memory block. If allocation fails, NULL is returned.

See Also
InitHeap3(), calloc3(), realloc3(), free3()

1-52 Kernel Library Functions

Run-Time Library Reference

nextfile
Find the next file matching a filename.

Library Header File Introduced Documentation Date
libapi.lib libapi.h 2.x 12/14/98

Syntax
struct DIRENTRY *nextfile(
struct DIRENTRY *dir) Pointer to buffer holding file information

Explanation
Continues a file lookup under the same conditions as the previous call to firstfile(). If it finds a corresponding
file, it stores file information in dir.

If the shell cover of the CD-ROM drive has been opened since the execution of the previous firstfile() call,
this function fails, and reports that the file has not been found.

Return value
dir if it succeeds, and 0 otherwise.

See Also
firstfile()

Kernel Library Functions 1-53

Run-Time Library Reference

open
Open a file.

Library Header File Introduced Documentation Date
libapi.lib libapi.h 2.x 12/14/98

Syntax
long open(
char *devname, Pointer to a filename
int flag) Open mode

Explanation
Opens a device for low-level input/output, and returns the descriptor. The values of flag are dependent on
the device; they can be the following:

Table 1-3: Open Modes

Macro Open mode
O_RDONLY Read only
O_WRONLY Write only
O_RDWR Both read and write
O_CREAT Create new file
O_NOBUF Non-buffer mode
O_NOWAIT Asynchronous mode

Return value
The file descriptor, if the function succeeds. On failure, it returns -1.

See Also
close()

1-54 Kernel Library Functions

Run-Time Library Reference

OpenEvent
Open an event.

Library Header File Introduced Documentation Date
libapi.lib libapi.h 2.x 12/14/98

Syntax
long OpenEvent(
unsigned long desc, Cause descriptor
long spec, Event type
long mode, Mode
long *func()) Pointer to the handler function

Explanation
Secures an EvCB for an event with the descriptor desc and event class spec. Must be executed in a critical
section.

Return value
The event descriptor, if the function succeeds. On failure, it returns -1.

See Also
CloseEvent(), DeliverEvent(), EnterCriticalSection()

Kernel Library Functions 1-55

Run-Time Library Reference

OpenTh
Open a thread.

Library Header File Introduced Documentation Date
libapi.lib libapi.h 2.x 12/14/98

Syntax
unsigned long OpenTh(
unsigned long (*func)(), Pointer to the execution start function
unsigned long sp, Stack pointer value
unsigned long gp) Global pointer value

Explanation
Secures a TCB for a given thread, and initializes it with the arguments given. Must be executed in a critical
section.

The thread can be executed using ChangeTh().

Return value
The thread descriptor, if the function succeeds. On failure, it returns -1.

See Also
CloseTh(), ChangeTh()

1-56 Kernel Library Functions

Run-Time Library Reference

read
Read data from a file

Library Header File Introduced Documentation Date
libapi.lib libapi.h 2.x 12/14/98

Syntax
long read (
long fd, File descriptor
void *buf, Pointer to read buffer address
long n) Number of bytes to read

Explanation
Reads n bytes from the descriptor fd to the area specified by buf.

Return value
The actual number of bytes read into the area. An error returns -1.

See Also
open(), lseek()

Kernel Library Functions 1-57

Run-Time Library Reference

realloc2
Change a block’s memory allocation.

Library Header File Introduced Documentation Date
libapi.lib malloc.h 3.6 12/14/98

Syntax
void *realloc2(
void *block, Area to be reallocated
size_t s) Size of area to be reallocated

Explanation
Changes the size of the memory block previously allocated to s bytes. Same as malloc2() when block is
NULL. Corresponds to InitHeap2().

Return value
A pointer to the reallocated memory block. The address may be from the original. If reallocation fails, NULL
is returned, and the original block is not released.

See Also
calloc2(), malloc2(), free2()

1-58 Kernel Library Functions

Run-Time Library Reference

realloc3
Change a block’s memory allocation.

Library Header File Introduced Documentation Date
libapi.lib malloc.h 4.0 12/14/98

Syntax
void *realloc3
(void *block, Area to be reallocated
size_t s) Size of area to be reallocated

Explanation
Changes the size of the memory block previously allocated to s bytes. When block is NULL, it operates in
the same way as malloc3().

Return value
A pointer to the reallocated block address; this address may be different from the original. If reallocation
fails, NULL is returned, and the original block is not released. NULL is also returned if s is 0.

See Also
InitHeap3(), calloc3(), malloc3(), free3()

Kernel Library Functions 1-59

Run-Time Library Reference

rename
Change a file name.

Library Header File Introduced Documentation Date
libapi.lib libapi.h 2.x 12/14/98

Syntax
long rename(
char *src, Pointer to the old filename
char *dest) Pointer to the new filename

Explanation
Changes a filename from src to dest. In both cases, the full path from the device name must be specified.
This function is only effective on writeable file systems.

Return value
1 if it succeeds, and 0 otherwise.

See Also
open()

1-60 Kernel Library Functions

Run-Time Library Reference

ResetRCnt
Reset a root counter.

Library Header File Introduced Documentation Date
libapi.lib libapi.h 2.x 12/14/98

Syntax
long ResetRCnt(
long spec) Root counter specification

Explanation
Resets the root counter spec to 0.

Return value
1 if it succeeds, and 0 otherwise. (0 is always returned if you specify RCntCNT3, since it can’t be set.)

See Also
SetRCnt(), GetRCnt(), StartRCnt(), StopRCnt()

Kernel Library Functions 1-61

Run-Time Library Reference

ReturnFromException
Return from exception.

Library Header File Introduced Documentation Date
libapi.lib libapi.h 2.x 12/14/98

Syntax
void ReturnFromException(void)

Explanation
Accesses the exception context and returns from exception processing. It is used in an event handler or
callback function.

See Also
Exception()

1-62 Kernel Library Functions

Run-Time Library Reference

SetConf
Modify the kernel configuration.

Library Header File Introduced Documentation Date
libapi.lib libapi.h 2.x 12/14/98

Syntax
long SetConf(
unsigned long ev, Number of event control block (EvCB) elements
unsigned long tcb, Number of task control block (TCB) elements
unsigned long sp) Ignored

Explanation
Modifies system configuration parameters. The contents of event and task control blocks, and all settings
for event handlers and callback functions in each library, are destroyed. However, file descriptors are not
affected (all the descriptors should be closed before SetConf() call) because most of the device drivers are
driven by the event handler.

All patches to the kernel are invalidated.

This function should be executed at the head of the first execution file. The operations of libraries initialized
before the execution of this function are not ensured.

This function eliminates the ISO-9660 file system installed in the kernel immediately after activation (call
_96_init() to reinstate). The result of operations on the opened files are not predictable.

If the number of the designated elements exceeds the maximum, the operation of the system after the
execution of this function is not defined.

Return value
1 if the function succeeds, 0 otherwise.

See Also
GetConf()

Kernel Library Functions 1-63

Run-Time Library Reference

SetMem
Modify the valid memory size.

Library Header File Introduced Documentation Date
libapi.lib libapi.h 2.x 12/14/98

Syntax
void SetMem(
unsigned long n) Valid memory size (in megabytes)

Explanation
Changes the valid memory size to n. It must be 2 or 8 (megabytes); any other values are ignored.

Memory access out of the valid range causes a CPU exception regardless of how much physical memory
is present.

See Also
SetConf()

1-64 Kernel Library Functions

Run-Time Library Reference

SetRCnt
Set a root counter.

Library Header File Introduced Documentation Date
libapi.lib libapi.h 2.x 12/14/98

Syntax
long SetRCnt(
long spec, Root counter specification
unsigned short target, Target value
long mode) Mode

Explanation
Sets the root counter in spec to the target value in target, and the mode in mode.

Return value
1 if it succeeds, and 0 otherwise. (0 is always returned if you specify RCntCNT3, since it can’t be set.)

See Also
GetRCnt(), StartRCnt(), StopRCnt(), ResetRCnt()

Kernel Library Functions 1-65

Run-Time Library Reference

SetSp
Set the stack pointer.

Library Header File Introduced Documentation Date
libapi.lib libapi.h 2.x 12/14/98

Syntax
unsigned long SetSp(
unsigned long new-sp) value to set sp register

Explanation
Sets the sp register to the value new-sp.

Return value
The previous sp register value.

See Also
OpenTh(), Load(), Exec(), GetSp()

1-66 Kernel Library Functions

Run-Time Library Reference

StartPAD
Start reading the controller.

Library Header File Introduced Documentation Date
libapi.lib libapi.h 2.x 12/14/98

Syntax
long StartPAD(void)

Explanation
Triggered by the interruption of a vertical retrace line, this function starts to read the controller.
ChangeClearPAD (1) is executed internally.

Interrupts are permitted.

Return value
Always returns 1.

See Also
InitPAD(), ChangeClearPAD(), StopPAD()

Kernel Library Functions 1-67

Run-Time Library Reference

StartRCnt
Start a root counter.

Library Header File Introduced Documentation Date
libapi.lib libapi.h 2.x 12/14/98

Syntax
long StartRCnt(
long spec) Root counter

Explanation
Enables interrupts for root counter spec.

Return value
1 if it succeeds, and 0 otherwise. (0 is always returned if you specify RCntCNT3, since it can’t be set.)

See Also
GetRCnt(), ResetRCnt(), SetRCnt(), StopRCnt()

1-68 Kernel Library Functions

Run-Time Library Reference

StopPAD
Stop reading the controller.

Library Header File Introduced Documentation Date
libapi.lib libapi.h 2.x 12/14/98

Syntax
void StopPAD(void)

Explanation
Stops reading the controller. Interrupts are not permitted.

See Also
InitPAD(), ChangeClearPAD(), StartPAD()

Kernel Library Functions 1-69

Run-Time Library Reference

StopRCnt
Stop a root counter.

Library Header File Introduced Documentation Date
libapi.lib libapi.h 2.x 12/14/98

Syntax
long StopRCnt(
long spec) Root counter

Explanation
Disables interrupts for root counter spec.

Return value
1 if it succeeds, and 0 otherwise. (0 is always returned if you specify RCntCNT3, since it can’t be set.)

See Also
StartRCnt(), SetRCnt(), ResetRCnt(), GetRCnt()

1-70 Kernel Library Functions

Run-Time Library Reference

SwEnterCriticalSection
Suppress interrupts.

Library Header File Introduced Documentation Date
libapi.lib libapi.h 2.x 12/14/98

Syntax
void SwEnterCriticalSection(void)

Explanation
Suppresses interrupts. Because no system call interrupt is generated internally, this function can be
invoked in event handling and callback functions. It must be executed in a critical section.

See Also
EnterCriticalSection(), SwExitCriticalSection()

Kernel Library Functions 1-71

Run-Time Library Reference

SwExitCriticalSection
Enable interrupts.

Library Header File Introduced Documentation Date
libapi.lib libapi.h 2.x 12/14/98

Syntax
void SwExitCriticalSection(void)

Explanation
Enables interrupts. Because no system call interrupt is generated internally, this function can be invoked in
event handling and callback functions.

Must be executed in a critical section.

See Also
EnterCriticalSection(), SwExitCriticalSection()

1-72 Kernel Library Functions

Run-Time Library Reference

SystemError
Display the system error screen.

Library Header File Introduced Documentation Date
libapi.lib libapi.h 2.x 12/14/98

Syntax
void SystemError(
char c, Error identification character (Alphabetic character)
long n) Error identification code (0 to 999)

Explanation
Displays a detected system error for the user. On the PlayStation, it calls exit().

See Also

Kernel Library Functions 1-73

Run-Time Library Reference

TestEvent
Test an event.

Library Header File Introduced Documentation Date
libapi.lib libapi.h 2.x 12/14/98

Syntax
long TestEvent(
unsigned long event) Event descriptor

Explanation
Checks to see whether or not the event specified by the descriptor event has occurred. If so, the function
restores the event state to EvStACTIVE.

Return value
1 if the event is found to have occurred, 0 otherwise.

See Also
DeliverEvent(), EnableEvent(), WaitEvent(), OpenEvent(), CloseEvent(), UnDeliverEvent(), DisableEvent()

1-74 Kernel Library Functions

Run-Time Library Reference

undelete
Resurrect a file.

Library Header File Introduced Documentation Date
libapi.lib libapi.h 2.x 12/14/98

Syntax
long undelete(
char *name) Pointer to filename

Explanation
Resurrects the previously deleted file specified by name.

Return value
1 if it succeeds, and 0 otherwise.

See Also
erase()

Kernel Library Functions 1-75

Run-Time Library Reference

UnDeliverEvent
Cancel an event.

Library Header File Introduced Documentation Date
libapi.lib libapi.h 2.x 12/14/98

Syntax
void UnDeliverEvent(
unsigned long ev1, Cause descriptor
long ev2) Event class

Explanation
Returns event state from EvStALREADY (already occurred) to EvStACTIVE if the event mode is
EvMdNOINTR. Must be executed in a critical section.

See Also
DeliverEvent(), EnableEvent(), OpenEvent(), TestEvent(), WaitEvent(), EnterCriticalSection()

1-76 Kernel Library Functions

Run-Time Library Reference

WaitEvent
Wait for the occurrence of an event.

Library Header File Introduced Documentation Date
libapi.lib libapi.h 2.x 12/14/98

Syntax
long WaitEvent(
unsigned long event) Event descriptor

Explanation
Waits until an event specified by the descriptor event occurs, and returns after restoring the event state to
EvStACTIVE.

Return value
1 if it succeeds, and 0 otherwise.

See Also
TestEvent(), OpenEvent(), CloseEvent(), DeliverEvent(), UnDeliverEvent(), DisableEvent(), EnableEvent()

Kernel Library Functions 1-77

Run-Time Library Reference

write
Write data to a file.

Library Header File Introduced Documentation Date
libapi.lib libapi.h 2.x 12/14/98

Syntax
int write(
int fd, File descriptor
char *buf, Pointer to the write buffer address
int n) Number of bytes to be written

Explanation
Writes n bytes from the descriptor fd to the area specified by buf.

Return value
The number of bytes actually written to the area. If there is an error, -1 is returned.

See Also
open(), lseek()

1-78 Kernel Library Functions

Run-Time Library Reference

_96_init
Install the ISO-9660 file system.

Library Header File Introduced Documentation Date
libapi.lib libapi.h 2.x 12/14/98

Syntax
void _96_init(void)

Explanation
Installs the ISO-9660 file system driver that manages access to the CD-ROM.

See Also
_96_remove()

Kernel Library Functions 1-79

Run-Time Library Reference

_96_remove
Remove the ISO-9660 file system.

Library Header File Introduced Documentation Date
libapi.lib libapi.h 2.x 12/14/98

Syntax
void _96_remove(void)

Explanation
Removes the ISO-9660 file system driver that manages access to the CD-ROM.

See Also
_96_init()

1-80 Kernel Library Functions

Run-Time Library Reference

_boot
Reboot the system.

Library Header File Introduced Documentation Date
libapi.lib libapi.h 2.x 12/14/98

Syntax
void _boot(void)

Explanation
Reboots the system. This function is useful for demonstration programs; don’t use it for general title
applications.

See Also

Kernel Library Functions 1-81

Run-Time Library Reference

_get_errno
Get the latest I/O error code.

Library Header File Introduced Documentation Date
libapi.lib libapi.h 3.0 12/14/98

Syntax
int _get_errno(void)

Explanation
Gets the latest error code from all file descriptors. (Error codes are defined in sys/errno.h.)

Return value
Error code.

See Also
_get_error()

1-82 Kernel Library Functions

Run-Time Library Reference

_get_error
Get an error code for a file descriptor.

Library Header File Introduced Documentation Date
libapi.lib libapi.h 3.0 12/14/98

Syntax
int_get_error(
int fd) File descriptor

Explanation
Gets the most recent error code of the specified file descriptor. (Error codes are defined in sys/errno.h.)

Return value
Error code.

See Also
get_errno()

Run-Time Library Reference

Chapter 2: Standard C Library
Table of Contents

Functions
abs 2-2
atoi 2-3
atol 2-4
bcmp 2-5
bcopy 2-6
bsearch 2-7
bzero 2-8
calloc 2-9
exit 2-10
free 2-11
getc 2-12
getchar 2-13
gets 2-14
isXXXX... 2-15
labs 2-16
longjmp 2-17
malloc 2-18
memchr 2-19
memcmp 2-20
memcpy 2-21
memmove 2-22
memset 2-23
printf 2-24
putc 2-25
putchar 2-26
puts 2-27
qsort 2-28
rand 2-29
realloc 2-30
setjmp 2-31
sprintf 2-32
srand 2-33
strcat 2-34
strchr 2-35
strcmp 2-36
strcpy 2-37
strcspn 2-38
strlen 2-39
strncat 2-40
strncmp 2-41
strncpy 2-42
strpbrk 2-43
strrchr 2-44
strspn 2-45
strstr 2-46
strtok 2-47
strtol 2-48
strtoul 2-49
toascii 2-50
tolower 2-51
toupper 2-52

2-2 Standard C Library Functions

Run-Time Library Reference

Functions

abs
Calculate absolute value.

Library Header File Introduced Documentation Date
libc\libc2.lib abs.h 2.x 12/14/98

Syntax
int abs(
int i) Integer

Explanation
Calculates the absolute value of the integer i. On the R3000, int and long are the same size, so this function
is equivalent to labs().

Return value
Absolute value of the argument.

See also
labs()

Standard C Library Functions 2-3

Run-Time Library Reference

atoi
Convert a string to an integer.

Library Header File Introduced Documentation Date
libc\libc2.lib convert.h 2.x 12/14/98

Syntax
int atoi(
char *s) Pointer to a character string

Explanation
Converts a string to its integer equivalent. On this system, it is equivalent to atol().

Return value
Integer equivalent of s.

See also
atol(), strtol(), strtoul()

2-4 Standard C Library Functions

Run-Time Library Reference

atol
Convert a character string to a long.

Library Header File Introduced Documentation Date
libc\libc2.lib convert.h 2.x 12/14/98

Syntax
long atol(
char *s) Pointer to a character string

Explanation
Converts a string to its long equivalent. On this system, it is equivalent to atoi().

Return Value
Integer equivalent of s.

See also
atoi(), strtol(), strtoul

Standard C Library Functions 2-5

Run-Time Library Reference

bcmp
Compare memory blocks.

Library Header File Introduced Documentation Date
libc\libc2.lib memory.h 2.x 12/14/98

Syntax
int bcmp(
u_char *b1, Pointer to first block
u_char *b2, Pointer to second block
int n) Number of bytes to be compared

Explanation
Compares the first n bytes of b1 and b2.

Return value
0 if b1== b2.

<0 if b1 < b2

>0 if b1 > b2.

See also
memcmp()

2-6 Standard C Library Functions

Run-Time Library Reference

bcopy
Copy a memory block.

Library Header File Introduced Documentation Date
libc\libc2.lib memory.h 2.x 12/14/98

Syntax
void bcopy(
u_char *src, Pointer to copy source
u_char *dest, Pointer to copy destination
int n) Number of bytes copied

Explanation
Copies the first n bytes of src to dest.

See also
memcpy(), memmove()

Standard C Library Functions 2-7

Run-Time Library Reference

bsearch
Perform a binary search.

Library Header File Introduced Documentation Date
libc\libc2.lib stdlib.h 2.x 12/14/98

Syntax
void *bsearch(
u_char *key, Pointer to the value to be searched for
u_char *base, Pointer to the array to be searched
size_t n, Number of elements
size_t w, Size of one element
int (*fcmp)()) Pointer to address of comparison function

Explanation
Carries out a binary search on a table of n items (of item size w) starting from base, for an item matching
key.

Return value
The address of the first item matching the search key. If no matching item is found, 0 is returned.

See also

2-8 Standard C Library Functions

Run-Time Library Reference

bzero
Fill a memory block with zeros.

Library Header File Introduced Documentation Date
libc\libc2.lib memory.h 2.x 12/14/98

Syntax
void bzero(
u_char *p, Pointer to memory block
int n) Size

Explanation
Sets n bytes to the value 0, starting from p..

See also

Standard C Library Functions 2-9

Run-Time Library Reference

calloc
Allocate main memory.

Library Header File Introduced Documentation Date
libc\libc2.lib malloc.h 2.x 12/14/98

Syntax
void *calloc(
size_t n, Number of blocks
size_t s) Size of block

Explanation
Allocates a memory area of n blocks of s bytes each from the heap and initializes it to 0.

Return value
A pointer to the memory area allocated. If the function fails, it returns NULL.

See also
malloc(), realloc(), free()

2-10 Standard C Library Functions

Run-Time Library Reference

exit
Terminate a program normally.

Library Header File Introduced Documentation Date
libc\libc2.lib stdlib.h 2.x 12/14/98

Syntax
void exit(
int err) Error code

Explanation
When executed on the PlayStation, a system error notice window is displayed (including the error code),
and the system enters an infinite loop. When executed on a development machine, the program currently
being executed is terminated, and the system returns to the debug monitor.

See also

Standard C Library Functions 2-11

Run-Time Library Reference

free
Release an allocated memory block.

Library Header File Introduced Documentation Date
libc\libc2.lib malloc.h 2.x 12/14/98

Syntax
void free(
void *block) Pointer to a memory block allocated by a function such as malloc().

Explanation
Releases a memory block that was allocated by calloc(), malloc() or realloc().

See also
calloc(), malloc(), realloc()

2-12 Standard C Library Functions

Run-Time Library Reference

getc
Get one character from a stream.

Library Header File Introduced Documentation Date
libc\libc2.lib stdio.h 2.x 12/14/98

Syntax
char getc(
int fd) File descriptor

Explanation
Gets one character from the file indicated by fd.

Devices and systems with a block size of 1 may all be used as the standard input/output stream as follows:

• Close (0);
• Close (1);
• Open (<device name>, O_RDONLY);
• Open (<device name>, O_WRONLY);

Return value
The character read. If the end of file is reached, or when an error is generated, the function returns EOF.

See also
getchar(), gets(), putc()

Standard C Library Functions 2-13

Run-Time Library Reference

getchar
Get one character from the standard input stream.

Library Header File Introduced Documentation Date
libc\libc2.lib stdio.h 2.x 12/14/98

Syntax
char getchar(void)

Explanation
Gets one character from the standard input stream. It is the same as getc(stdin).

Return value
The character read. If the end of file is reached, or when an error is generated, the function returns EOF.

See also
getc(), gets(), putchar()

2-14 Standard C Library Functions

Run-Time Library Reference

gets
Read a character string from standard input.

Library Header File Introduced Documentation Date
libc\libc2.lib stdio.h 2.x 12/14/98

Syntax
char *gets(
char *s) Pointer to storage destination for input character string

Explanation
Reads a character string from the standard input stream (stdin) and stores it in s until a new-line character
is read.

Return value
If this function succeeds, it returns s. The new-line character is discarded and a null character is written
immediately after the last character read. If it reaches the end of the file, or if an error is generated, it returns
NULL.

See also
getc(), getchar(), puts()

Standard C Library Functions 2-15

Run-Time Library Reference

isXXXX...
Test characters.

Library Header File Introduced Documentation Date
libc\libc2.lib ctype.h 2.x 12/14/98

Syntax
isXXXX(c) Character

Explanation
These are macros that perform the following tests on the character c:

Table 2–1: Character Macros

Name Conditions
isalnum(c) isalpha(c) || isdigit(c)
isalpha(c) isupper(c) || islower(c)
isascii(c) ASCII character
iscntrl(c) Control character
isdigit(c) Decimal
isgraph(c) Printing characters other than space
islower(c) Lower-case character
isprint(c) Printing characters including space
ispunct(c) Printing characters other than space and

alphanumerics
isspace(c) Space, new page, new line, restore, tab
isupper(c) Upper-case character
isxdigit(c) Hexadecimal

Return value
Non-zero if the character c satisfies the test conditions; 0 otherwise.

See also
toascii(), tolower(), toupper()

2-16 Standard C Library Functions

Run-Time Library Reference

labs
Calculate absolute value.

Library Header File Introduced Documentation Date
libc\libc2.lib convert.h 2.x 12/14/98

Syntax
long labs(
long i) Long value

Explanation
Calculates the absolute value of i.

Return value
Absolute value of the argument.

See also
abs()

Standard C Library Functions 2-17

Run-Time Library Reference

longjmp
Non-local jump.

Library Header File Introduced Documentation Date
libc\libc2.lib setjmp.h 2.x 12/14/98

Syntax
void longjmp(
jmp_buf p, Environment storage variable.
int val) setjmp() Return value

Explanation
Makes a non-local jump to the destination specified by p.

See also
setjmp()

2-18 Standard C Library Functions

Run-Time Library Reference

malloc
Allocate main memory.

Library Header File Introduced Documentation Date
libc\libc2.lib malloc.h 2.x 12/14/98

Syntax
void *malloc(
size_t s) Number of bytes to be allocated

Explanation
Allocates a block of s bytes from the memory heap.

Note that the memory heap is defined as follows when the user program is activated:

Bottom address: top address of module + 4.

Top address: available memory -32KB.

This function has a bug whereby the area is not completely released in free(). This function can be replaced
by malloc2() or malloc3() from libapi. For more information, refer to the Kernel Library chapter of the Run-
time Library Overview.

Return value
A pointer to the secured memory block. If allocation fails, NULL is returned.

See also
calloc(), realloc(), free()

Standard C Library Functions 2-19

Run-Time Library Reference

memchr
Search a memory block for a character.

Library Header File Introduced Documentation Date
libc\libc2.lib memory.h 2.x 12/14/98

Syntax
void *memchr(
u_char *s, Pointer to memory block
u_char c, Character
int n) Number of bytes

Explanation
Searches the memory block of n bytes starting from s, looking for the first appearance of the character c.

Return value
A pointer to the location at which c was found. If c was not found, NULL is returned.

See also
strchr()

2-20 Standard C Library Functions

Run-Time Library Reference

memcmp
Compare memory blocks.

Library Header File Introduced Documentation Date
libc\libc2.lib memory.h 2.x 12/14/98

Syntax
void *memcmp(
u_char *s1, Pointer to first memory block
u_char *s2, Pointer to second memory block
int n) Number of bytes to be compared

Explanation
Compares the first n bytes of s1 and s2.

Return value
0 if s1 = s2.
<0 if s1< s2.
>0 if s1 > s2.

See also
bcmp()

Standard C Library Functions 2-21

Run-Time Library Reference

memcpy
Copy a memory block.

Library Header File Introduced Documentation Date
libc\libc2.lib memory.h 2.x 12/14/98

Syntax
void *memcpy(
u_char *dest, Pointer to copy destination memory block
u_char *src, Pointer to copy source memory block
int n) Number of bytes copied

Explanation
Copies the first n bytes of src to dest.

Return value
Pointer to destination (dest).

See also
bcopy()

2-22 Standard C Library Functions

Run-Time Library Reference

memmove
Copy a memory block.

Library Header File Introduced Documentation Date
libc\libc2.lib memory.h 2.x 12/14/98

Syntax
void *memmove)
u_char *dest, Pointer to copy destination memory block
u_char *src, Pointer to copy source memory block
int n) Number of bytes copied

Explanation
Copies the first n bytes of src to dest. The block is copied correctly, even between overlapping objects.

Return value
Pointer to destination (dest).

See also
bcopy(), memcpy()

Standard C Library Functions 2-23

Run-Time Library Reference

memset
Write a character to a memory block.

Library Header File Introduced Documentation Date
libc\libc2.lib memory.h 2.x 12/14/98

Syntax
void *memset(
u_char *s, Pointer to memory block
u_char c, Character
int n) Number of characters

Explanation
Writes c to the first n bytes of s.

Return value
Pointer to block (s).

See also

2-24 Standard C Library Functions

Run-Time Library Reference

printf
Print formatted output.

Library Header File Introduced Documentation Date
libc\libc2.lib stdio.h 2.x 12/14/98

Syntax
int printf(
char *fmt[, argument ...]) Pointer to input format character string

Explanation
See a C language reference. Conversion directives f, e, E, g and G cannot be used.

Return value
The length of the output character string. If an error is generated, the function returns NULL.

See also
sprintf()

Standard C Library Functions 2-25

Run-Time Library Reference

putc
Output one character to a stream.

Library Header File Introduced Documentation Date
libc\libc2.lib stdio.h 2.x 12/14/98

Syntax
void putc(
char c, Output character
int fd) File descriptor

Explanation
Outputs a character c to the file indicated by fd.

Return value
c if the function succeeds; EOF if an error is generated.

See also
getc(), putchar(), puts()

2-26 Standard C Library Functions

Run-Time Library Reference

putchar
Output one character to the standard output stream.

Library Header File Introduced Documentation Date
libc\libc2.lib stdio.h 2.x 12/14/98

Syntax
void putchar(
char c); Output character

Explanation
Outputs a character c to standard output. It is the same as putc(stdout).

Return value
c if the function succeeds; EOF if an error is generated.

See also
getchar(), putc(), puts()

Standard C Library Functions 2-27

Run-Time Library Reference

puts
Output a character string to the standard output stream.

Library Header File Introduced Documentation Date
libc\libc2.lib stdio.h 2.x 12/14/98

Syntax
void puts(
char *s) Pointer to output character string

Explanation
Outputs a character string ending in NULL to the standard output stream (stdout), and finally outputs a
newline character.

Return value
A non-negative value, if the function succeeds; EOF if an error is generated.

See also
gets(), putc(), putchar()

2-28 Standard C Library Functions

Run-Time Library Reference

qsort
Perform a quick sort.

Library Header File Introduced Documentation Date
libc\libc2.lib qsort.h 2.x 12/14/98

Syntax
void qsort(
void *base, Pointer to storage destination of array to be sorted
size_t n, Number of elements
size_t w, Size of on element
int (*fcmp)()) Pointer to address of comparison function

Explanation
Quick-sorts a table of n items (of item size w) starting with base, with fcmp as the comparison function.

See also

Standard C Library Functions 2-29

Run-Time Library Reference

rand
Generate a random number.

Library Header File Introduced Documentation Date
libc\libc2.lib rand.h 2.x 12/14/98

Syntax
int rand(void)

Explanation
Generates a pseudo-random number from 0 to RAND_MAX (0x7FFF=32767).

Return value
The generated pseudo-random number.

See also
srand()

2-30 Standard C Library Functions

Run-Time Library Reference

realloc
Change heap memory allocations.

Library Header File Introduced Documentation Date
libc\libc2.lib malloc.h 2.x 12/14/98

Syntax
void *realloc(
void *block, Pointer to a block allocated by a function such as malloc()
size_t s; New size

Explanation
Takes a previously allocated block and contracts it or expands it to s bytes. If block is NULL, this function
works in the same way as malloc.

Return value
The address of the reallocated block. May be different from the old address.

If the allocation fails, the function returns NULL, and the old block is not released.

See also
calloc(), malloc(), free()

Standard C Library Functions 2-31

Run-Time Library Reference

setjmp
Defines non-local jump destination.

Library Header File Introduced Documentation Date
libc\libc2.lib setjmp.h 2.x 12/14/98

Syntax
int setjmp(
jmp_buf p) Environment storage variable

Explanation
Stores the destination information for a non-local jump at p. If longjmp(p, val) is executed, the system
returns from setjmp().

Return value
Returns the value given to the second argument of longjmp() when the jump is executed.

See also
longjmp()

2-32 Standard C Library Functions

Run-Time Library Reference

sprintf
Write formatted output to a string.

Library Header File Introduced Documentation Date
libc\libc2.lib stdio.h 2.x 12/14/98

Syntax
long sprintf(
char *s, Storage location for variable character string
const char *fmt[,argument...]) Input format character string

Explanation
This function is like printf(), except that it writes the formatted output to a string, followed by a null
character. Refer to a C language reference for a detailed explanation of the input format.

The conversion designators [f] [e] [E] [g] [G] are not supported. Use sprintf2() from the math library to
display floating points.

Return value
The length of the output character string. NULL is returned when an error occurs.

See also
printf(), sprintf2() see libmath)

Standard C Library Functions 2-33

Run-Time Library Reference

srand
Initialize the random number generator.

Library Header File Introduced Documentation Date
libc\libc2.lib rand.h 2.x 12/14/98

Syntax
void srand(
u_long seed) Random number seed

Explanation
Sets a new starting point for random number generation. The default is 1.

See also
rand()

2-34 Standard C Library Functions

Run-Time Library Reference

strcat
Concatenate character strings.

Library Header File Introduced Documentation Date
libc\libc2.lib strings.h 2.x 12/14/98

Syntax
char *strcat(
char *dest, Pointer to destination string
char *src; Pointer to source string

Explanation
Appends the character string src to the end of the character string dest.

Return value
Address of destination string (dest).

See also
strncat()

Standard C Library Functions 2-35

Run-Time Library Reference

strchr
Search for the first location at which a character appears in a string.

Library Header File Introduced Documentation Date
libc\libc2.lib strings.h 2.x 12/14/98

Syntax
char *strchr(
char *s, Pointer to character string searched
char c) Character searched for

Explanation
Searches for the first location at which the character c appears in the character string s.

Return value
Address of the location at which c appears. If c has not been found, NULL is returned.

See also
strrchr(), strpbrk()

2-36 Standard C Library Functions

Run-Time Library Reference

strcmp
Compare character strings.

Library Header File Introduced Documentation Date
libc\libc2.lib strings.h 2.x 12/14/98

Syntax
int strcmp(
char *s1, Pointer to character string 1
char *s2) Pointer to character string 2

Explanation
Compares the character string s2 with the character string s1, treating each character as an unsigned char.

Return value
<0 if s1<s2

0 if s1 = s2

>0 if s1 > s2

See also
strncmp()

Standard C Library Functions 2-37

Run-Time Library Reference

strcpy
Copy a character string.

Library Header File Introduced Documentation Date
libc\libc2.lib strings.h 2.x 12/14/98

Syntax
char *strcpy(
char *dest, Pointer to destination location.
char *src) Pointer to source character string

Explanation
Copies the character string src to the character string dest.

Return value
Pointer to destination string (dest).

See also
strncpy()

2-38 Standard C Library Functions

Run-Time Library Reference

strcspn
Search for a string of characters not included in the a character set.

Library Header File Introduced Documentation Date
libc\libc2.lib strings.h 2.x 12/14/98

Syntax
int strcspn(
char *s1, Pointer to string
char *s2) Pointer to character set

Explanation
Returns the length of the first part of the character string s1 consisting only of characters not included in
the character string s2.

Return value
The length of the partial character string found.

See also
strpbrk(), strtok(), strspn()

Standard C Library Functions 2-39

Run-Time Library Reference

strlen
Count characters in a string.

Library Header File Introduced Documentation Date
libc\libc2.lib strings.h 2.x 12/14/98

Syntax
int strlen(
char *s) Pointer to character string

Explanation
Counts the number of characters in string s.

Return value
The number of characters in the string.

See also

2-40 Standard C Library Functions

Run-Time Library Reference

strncat
Concatenate character strings.

Library Header File Introduced Documentation Date
libc\libc2.lib strings.h 2.x 12/14/98

Syntax
char *strncat(
char *dest, Pointer to destination string
char *src, Pointer to source string
int n) Number of characters concatenated

Explanation
Appends the first n characters from src to the end of the character string dest.

Return value
Pointer to destination string (dest).

See also
strcat()

Standard C Library Functions 2-41

Run-Time Library Reference

strncmp
Compare character strings.

Library Header File Introduced Documentation Date
libc\libc2.lib strings.h 2.x 12/14/98

Syntax
int strcmp(
char *s1, Pointer to character string 1
char *s2, Pointer to character string 2
int n) Number of characters compared

Explanation
Compares the first n characters of s1 and s2, treating each character as an unsigned char.

Return value
One of the following values, depending on the comparison result (the values are the same as for strcmp).

<0 if s1<s2

0 if s1 = s2

>0 if s1 > s2

See also
strcmp()

2-42 Standard C Library Functions

Run-Time Library Reference

strncpy
Copy a character string.

Library Header File Introduced Documentation Date
libc\libc2.lib strings.h 2.x 12/14/98

Syntax
char *strncpy(
char *dest, Pointer to destination string
char *src, Pointer to source string
int n) Number of bytes to copy

Explanation
Copies the first n bytes of src to the character string dest.

Return value
Pointer to destination string (dest).

See also
strcpy()

Standard C Library Functions 2-43

Run-Time Library Reference

strpbrk
Search for the first occurrence of a character in a character set.

Library Header File Introduced Documentation Date
libc\libc2.lib strings.h 2.x 12/14/98

Syntax
char *strpbrk(
char *s1, Pointer to character string searched
char *s2) Pointer to character group

Explanation
Searches for the first location at which any of the characters contained in the character string s2 appear
within the character string s1.

Return value
The address of the first character found. If no character was found, NULL is returned.

See also
strcspn(), strtok()

2-44 Standard C Library Functions

Run-Time Library Reference

strrchr
Search for the last location of a character in a character string.

Library Header File Introduced Documentation Date
libc\libc2.lib strings.h 2.x 12/14/98

Syntax
char *strrchr(
char *s, Pointer to character string searched
char c) Character searched for

Explanation
Searches for the last occurrence of the character c within the character string s.

Return value
The address of the last occurrence of c. If c does not occur, NULL is returned.

See also
strchr(), strpbrk()

Standard C Library Functions 2-45

Run-Time Library Reference

strspn
Search for the part of a string consisting solely of characters in a character set.

Library Header File Introduced Documentation Date
libc\libc2.lib strings.h 2.x 12/14/98

Syntax
int strspn(
char *s1, Pointer to string
char *s2) Pointer to character set

Explanation
Returns the length of the first part of the character string s1 which consists solely of characters included in
the character string s2.

Return value
The length of the partial character string found.

See also
strcspn(), strpbrk()

2-46 Standard C Library Functions

Run-Time Library Reference

strstr
Search for the location of a partial character string.

Library Header File Introduced Documentation Date
libc\libc2.lib strings.h 2.x 12/14/98

Syntax
char *strstr(
char *s1, Pointer to character string searched
char *s2) Pointer to string searched for

Explanation
Searches for the first location of character string s2 within character string s1.

Return value
The address of s2. If it was not found, the function returns NULL.

See also
strchr()

Standard C Library Functions 2-47

Run-Time Library Reference

strtok
Search for a string demarcated by characters in a character set.

Library Header File Introduced Documentation Date
libc\libc2.lib strings.h 2.x 12/14/98

Syntax
char *strtok(
char *s1, Pointer to character string searched
char *s2) Pointer to separator characters

Explanation
Treats character string s1 as a set of tokens punctuated by one or more characters from the separator
character string s2. The first call in the sequence searches s1 for the first character that is not contained
within s2.

The first time strtok() is called, the starting address of the first token of s1 is returned, and a NULL character
is written in immediately after this token. The address of s1 is stored in the function, and then, when strtok()
is called with NULL entered as the first argument, a search is carried out until there are no tokens left in the
character string s1.

Return value
The starting address of the tokens found in s1. If it does not find any s1 tokens, strtok() returns NULL.

See also
strcspn(), strpbrk()

2-48 Standard C Library Functions

Run-Time Library Reference

strtol
Convert a character string to a long.

Library Header File Introduced Documentation Date
libc\libc2.lib convert.h 2.x 12/14/98

Syntax
long strtol(
char *s, Pointer to character string
char **endp, Storage destination of pointer to a non-convertible character string
unsigned int base) Radix specification

Explanation
Converts a character string s to a long (the same as an int in R3000). s must be formatted as follows:

[ws][sn][ddd]

[ws] white space (may be omitted)
[sn] sign (may be omitted)
[ddd] number string (may be omitted)

The value of base determines the format of [ddd]. The letters a (or A) thru z (or Z) are ascribed values from
10-35. Only values less than base may be included in [ddd]. For some values of base, optional characters
may precede the sequence of letters and digits following the sign (if present).

Table 2–2

Base Value Optional Characters
2 0b, 0B
8 “O,” “o”
16 0x, 0X

The function strtol() stops converting when it encounters a non-convertible character, and if endp is not
NULL, it sets endp as the pointer to the character at which it stopped converting.

Return value
The result obtained by converting the input value s to a long. If an error is generated, it returns 0.

See also
atol(), strtoul()

Standard C Library Functions 2-49

Run-Time Library Reference

strtoul
Convert a character string to an unsigned long.

Library Header File Introduced Documentation Date
libc\libc2.lib convert.h 2.x 12/14/98

Syntax
u_long strtoul(
char *s, Pointer to character string
char **endp, Storage destination of pointer to a non-convertible character string
int base) Radix specification

Explanation
Converts a character string s to unsigned long type (the same as unsigned int type in R3000). s must be
formatted as follows.

[ws][sn][ddd]

[ws] white space (may be omitted)
[sn] sign (may be omitted)
[ddd] number string (may be omitted)

The value of base determines the format of [ddd]. The letters a (or A) thru z (or Z) are ascribed values from
10-35. Only values less than base may be included in [ddd]. For some values of base, optional characters
may precede the sequence of letters and digits following the sign (if present).

Table 2–3

Base Value Optional Characters
2 0b, 0B
8 “O,” “o”
16 0x, 0X

The function strtoul() stops converting when it encounters a non-convertible character, and if endp is not
NULL, it sets endp as the pointer to the character at which it stopped converting.

Return value
The result obtained by converting the input value s to a long.

See also
atol(), strtol()

2-50 Standard C Library Functions

Run-Time Library Reference

toascii
Mask bit 7 of the input value.

Library Header File Introduced Documentation Date
libc\libc2.lib ctype.h 2.x 12/14/98

Syntax
toascii (c) Value

Explanation
This macro returns an ASCII value equal to the low 7 bits of the input.

Return value
The low 7 bits of the input value c.

See also
isXXXX()

Standard C Library Functions 2-51

Run-Time Library Reference

tolower
Convert a letter to lower-case.

Library Header File Introduced Documentation Date
libc\libc2.lib ctype.h 2.x 12/14/98

Syntax
tolower(c) Character

Explanation
This macro converts a character c to lower case. The behavior of this macro when it is given a value not an
upper-case letter is undefined.

Return value
The lower-case letter that corresponds to c.

See also
toupper(), isXXXX()

2-52 Standard C Library Functions

Run-Time Library Reference

toupper
Converts a character to upper case.

Library Header File Introduced Documentation Date
libc\libc2.lib ctype.h 2.x 02/15/98

Syntax
toupper(c) Character

Explanation
This macro converts a character c to upper case. The behavior of this macro when it is given a value not a
lower-case letter is undefined.

Return value
The upper-case letter that corresponds to the character c.

See also
tolower(), isXXXX()

Run-Time Library Reference

Chapter 3: Math Library
Table of Contents

Functions
acos 3-3
asin 3-4
atan 3-5
atan2 3-6
atof 3-7
ceil 3-8
cos 3-9
cosh 3-10
exp 3-11
fabs 3-12
floor 3-13
fmod 3-14
frexp 3-15
hypot 3-16
ldexp 3-17
log 3-18
log10 3-19
modf 3-20
pow 3-21
printf2 3-22
sin 3-23
sinh 3-24
sprintf2 3-25
sqrt 3-26
strtod 3-27
tan 3-28
tanh 3-29

3-2

Run-Time Library Reference

Math Library Functions 3-3

Run-Time Library Reference

Functions

acos
Arccosine.

Library Header File Introduced Documentation Date
libmath.lib libmath.h 3.0 12/14/98

Syntax
double acos(
double x) Value whose arccosine is to be determined, ranging from -1 to 1

Explanation
Determines the arccosine of x.

Return value
Arccosine of x, ranging from 0 to pi.

Error handling: if fabs(x)>1, 0 is returned, and math_errno is set to EDOM (domain error).

See also
cos(), asin(), atan(), atan2()

3-4 Math Library Functions

Run-Time Library Reference

asin
Arcsine.

Library Header File Introduced Documentation Date
libmath.lib libmath.h 3.0 12/14/98

Syntax
double asin(
double x) Value whose arcsine is to be determined, ranging from -1 to 1.

Explanation
Determines the arcsine of x.

Return value
Arcsine of x, ranging from -pi/2 to pi/2.

Error handling: if fabs(x)>1, 0 is returned, and math_errno is set to EDOM (domain error).

See also
sin(), acos(), atan(), atan2()

Math Library Functions 3-5

Run-Time Library Reference

atan
Arctangent.

Library Header File Introduced Documentation Date
libmath.lib libmath.h 3.0 12/14/98

Syntax
double atan(
double x) Value whose arctangent is to be calculated

Explanation
Determines the arctangent of x.

Return value
Arctangent of x, ranging from -pi/2 to pi/2 radians.

See also
tan(), asin(), acos(), atan2()

3-6 Math Library Functions

Run-Time Library Reference

atan2
Arctangent.

Library Header File Introduced Documentation Date
libmath.lib libmath.h 3.0 12/14/98

Syntax
double atan2(
double x, double y) Floating-point values

Explanation
Determines the arctangent of x/y. If x and y are 0, a value of 0 is returned.

Return value
Arctangent of x/y, ranging from -pi to pi.

See also
acos(), asin(), tan(), atan()

Math Library Functions 3-7

Run-Time Library Reference

atof
Convert a string to a floating-point equivalent.

Library Header File Introduced Documentation Date
libmath.lib libmath.h 3.0 12/14/98

Syntax
double atof(
char *s) Pointer to a string

Explanation
Converts a string "s" to its floating-point (double type) equivalent.

Return value
The result from converting input string "s" to a double floating point equivalent.

Error handling: if there is an overflow error, either +HUGE_VAL(1.797693134862316e+308) or -HUGE_VAL
depending on the sign, is returned, and math_errno is set to ERANGE (range error). If there is an
underflow, 0 is returned, and math_errno is set to ERANGE (range error).

See also
strtod()

3-8 Math Library Functions

Run-Time Library Reference

ceil
Minimum integer not less than x (ceiling function).

Library Header File Introduced Documentation Date
libmath.lib libmath.h 3.0 12/14/98

Syntax
double ceil(
double x) Floating-point value

Explanation
Determines the minimum integer (double type) not less than x.

Return value
Minimum integer (double type) not less than x.

See also
floor()

Math Library Functions 3-9

Run-Time Library Reference

cos
Cosine.

Library Header File Introduced Documentation Date
libmath.lib libmath.h 3.0 12/14/98

Syntax
double cos(
double x) Angle in radians

Explanation
Determines the cosine of x.

Return value
Cosine of x (cos(x)).

See also
sin(), tan(), acos()

3-10 Math Library Functions

Run-Time Library Reference

cosh
Hyperbolic cosine.

Library Header File Introduced Documentation Date
libmath.lib libmath.h 3.0 12/14/98

Syntax
double cosh(
double x) Angle in radians

Explanation
Determines the hyperbolic cosine of x.

Return value
Hyperbolic cosine of x (cosh(x)).

See also
sinh(), tanh()

Math Library Functions 3-11

Run-Time Library Reference

exp
Exponent.

Library Header File Introduced Documentation Date
libmath.lib libmath.h 3.0 12/14/98

Syntax
double exp(
double x) Floating-point value

Explanation
Determines the exponential of x.

Return value
e raised to the x-th power (e**x).

See also
pow(), log(), ldexp()

3-12 Math Library Functions

Run-Time Library Reference

fabs
Absolute value (macro).

Library Header File Introduced Documentation Date
libmath.lib libmath.h 3.0 12/14/98

Syntax
double fabs(
double x) Floating-point value

Explanation
This macro determines the absolute value of a double.

Return value
Absolute value of x.

See also
abs (see libc), labs() (see libc)

Math Library Functions 3-13

Run-Time Library Reference

floor
Maximum integer not more than x (lower function).

Library Header File Introduced Documentation Date
libmath.lib libmath.h 3.0 12/14/98

Syntax
double floor(
double x) Floating-point value

Explanation
Determines the maximum integer (double type) not more than x.

Return value
Maximum integer not more than x (double type)

See also
ceil()

3-14 Math Library Functions

Run-Time Library Reference

fmod
Floating-point remainder resulting from x/y.

Library Header File Introduced Documentation Date
libmath.lib libmath.h 3.0 12/14/98

Syntax
double fmod(
double x, double y) Floating-point values

Explanation
Determines the floating-point remainder resulting from x/y. The sign of the return value is the same as that
of x.

Return value
Floating-point remainder resulting from x/y. If y is 0, 0 is returned.

See also
modf()

Math Library Functions 3-15

Run-Time Library Reference

frexp
Resolve into a normalized fraction and a power of 2.

Library Header File Introduced Documentation Date
libmath.lib libmath.h 3.0 12/14/98

Syntax
double frexp(
double x, Floating-point value
int *n) Pointer to the part that is a power of 2

Explanation
Resolves x into a fraction in the interval [1/2, 1) (that is, 1/2<= x < 1), and a power of 2. The fractional part is
returned, and the power of 2 is stored in n.

A pair of square brackets [] indicates a closed area, while a pair of parentheses () indicates an open area.

Return value
The normalized fraction.

See also

3-16 Math Library Functions

Run-Time Library Reference

hypot
Absolute value of a complex number.

Library Header File Introduced Documentation Date
libmath.lib libmath.h 3.0 12/14/98

Syntax
double hypot(
double x, double y) Floating-point values

Explanation
Computes the square root of the sum of the squares of x and y.

Return value
Square root of the sum of (x**2) and (y**2).

See also

Math Library Functions 3-17

Run-Time Library Reference

ldexp
Calculate a real number from a mantissa and an exponent.

Library Header File Introduced Documentation Date
libmath.lib libmath.h 3.0 12/14/98

Syntax
double ldexp(
double x, Floating-point value
int n) Integral exponent

Explanation
Determines a real number from a mantissa and an exponent.

Return value
Value of x multiplied by 2 raised to the nth power.

See also

3-18 Math Library Functions

Run-Time Library Reference

log
Natural logarithm.

Library Header File Introduced Documentation Date
libmath.lib libmath.h 3.0 12/14/98

Syntax
double log(
double x) Value subjected to logarithmic operation

Explanation
Determines the natural logarithm of x.

Return value
Logarithm of x (ln(x)) for x >0.

Error handling: If x = 0, 1 is returned, and math_errno = ERANGE (range error). If x <0, 0 is returned, and
math_errno = EDOM (domain error).

See also
exp(), log10()

Math Library Functions 3-19

Run-Time Library Reference

log10
Base 10 logarithm.

Library Header File Introduced Documentation Date
libmath.lib libmath.h 3.0 12/14/98

Syntax
double log10(
double x) Value subjected to logarithmic operation

Explanation
Determines the logarithm of x whose base is 10.

Return value
Logarithm of x whose base is 10 (log10(x))

x must be greater than zero. Otherwise, an error results: If x = 0, 1 is returned, and math_errno = ERANGE
(range error). If x <0, 0 is returned, and math_errno = EDOM (domain error).

See also
log()

3-20 Math Library Functions

Run-Time Library Reference

modf
Separate a double into integral and fractional parts.

Library Header File Introduced Documentation Date
libmath.lib libmath.h 3.0 12/14/98

Syntax
double modf(
double x, Floating-point value
double *y) Pointer to the integral part

Explanation
Separates x into integral and fractional parts. The integral part is stored in y, and the return value is the
fractional part. The signs of both parts are the same as the sign of x.

Return value
Fractional part of x.

See also
fmod()

Math Library Functions 3-21

Run-Time Library Reference

pow
Raise a double to a power.

Library Header File Introduced Documentation Date
libmath.lib libmath.h 3.0 12/14/98

Syntax
double pow(
double x, Floating-point value
double y) Pointer to the integral part

Explanation
Raises x to the y-th power.

Return value
x raised to the y-th power(x**y).

Table 3–1

Condition Return value Error (math_errno)
x==0 && y>0 0 Domain error (EDOM)
x==0 && y<=0 1 Domain error (EDOM)
x<0 && [y not an integer] 0 Domain error (EDOM)

See also
exp(), sqrt()

3-22 Math Library Functions

Run-Time Library Reference

printf2
Convert formatted output as standard output (with floating-point and double-precision arguments).

Library Header File Introduced Documentation Date
libmath.lib libmath.h 3.0 12/14/98

Syntax
int printf2(
const char *fmt[,argument...]) Pointer to input format character string

Explanation
The conversion directives [f] [e] [E] [g] and [G] can be used.

Stack consumption is greater than with printf().

Return value
Output character length.

See also
sprintf2()

Math Library Functions 3-23

Run-Time Library Reference

sin
Sine.

Library Header File Introduced Documentation Date
libmath.lib libmath.h 3.0 12/14/98

Syntax
double sin(
double x) Angle in radians

Explanation
Determines the sine of x.

Return value
Sine of x (sin(x)).

See also
cos(), tan(), asin()

3-24 Math Library Functions

Run-Time Library Reference

sinh
Hyperbolic sine.

Library Header File Introduced Documentation Date
libmath.lib libmath.h 3.0 12/14/98

Syntax
double sinh(
double x) Angle in radians

Explanation
Determines the hyperbolic sine of x.

Return value
Hyperbolic sine of x (sinh(x)).

See also
cosh(), tanh()

Math Library Functions 3-25

Run-Time Library Reference

sprintf2
Format output to a string (with floating-point and double-precision arguments).

Library Header File Introduced Documentation Date
libmath.lib libmath.h 3.0 12/14/98

Syntax
int sprintf2(
char *s, Pointer to destination string
const char *fmt[,argument...]) Pointer to input format character string

Explanation
The conversion directives [f] [e] [E] [g] and [G] can be used.

Stack consumption is greater than with sprintf.

Return value
Output character length.

See also
printf2()

3-26 Math Library Functions

Run-Time Library Reference

sqrt
Square root.

12/14/98 Header File Introduced Documentation Date
libmath.lib libmath.h 3.0 12/14/98

Syntax
double sqrt(
double x) Non-negative floating-point value

Explanation
Determines the non-negative square root of x.

Error processing: if x<0, zero is returned, and math_errno = EDOM (domain error).

Return value
Square root of x.

See also
pow()

Math Library Functions 3-27

Run-Time Library Reference

strtod
Convert a string to a floating-point equivalent.

Library Header File Introduced Documentation Date
libmath.lib libmath.h 3.0 12/14/98

Syntax
double strtod(
char *s, Input string
char **endp) Pointer to a string that was unable to be converted (output)

Explanation
Converts a string to a double type floating-point equivalent.

s must be one of the following:

[ws][sn][ddd]

[ws] White space (may be omitted)
[sn] Sign (may be omitted)
[ddd] Number string (may be omitted)

Stops converting upon encountering a character that was unable to be converted. If endp is not NULL, the
pointer to the character in error is set to endp.

Return value
The result from converting s to a floating point double type.

Error handling: if the converted value overflows, either +HUGE_VAL(1.797693134862316e+308) or -
HUGE_VAL according to the sign, is returned. 0 is returned for an underflow case, or if no conversion could
be performed. In either case, math_errno = ERANGE (range error).

See also
atof()

3-28 Math Library Functions

Run-Time Library Reference

tan
Tangent.

Library Header File Introduced Documentation Date
libmath.lib libmath.h 3.0 12/14/98

Syntax
double tan(
double x) Angle in radians

Explanation
Determines the tangent of x.

Return value
Tangent of x (tan(x)).

See also
sin(), cos(), atan(), atan2()

Math Library Functions 3-29

Run-Time Library Reference

tanh
Hyperbolic tangent.

Library Header File Introduced Documentation Date
libmath.lib libmath.h 3.0 12/14/98

Syntax
double tanh(
double x) Angle in radians

Explanation
Determines the hyperbolic tangent of x.

Return value
Hyperbolic tangent of x (tanh(x)).

See also
sinh(), cosh()

3-30 Math Library Functions

Run-Time Library Reference

Run-Time Library Reference

Chapter 4: Memory Card Library
Table of Contents

Functions
InitCARD 4-3
StartCARD 4-4
StopCARD 4-5
_bu_init 4-6
_card_auto 4-7
_card_chan 4-8
_card_clear 4-9
_card_format 4-10
_card_info 4-11
_card_load 4-12
_card_read 4-13
_card_status 4-14
_card_wait 4-15
_card_write 4-16
_new_card 4-17

4-2

Run-Time Library Reference

Memory Card Library Functions 4-3

Run-Time Library Reference

Functions

InitCARD
Initialize Memory Card BIOS.

Library Header File Introduced Documentation Date
libcard.lib libapi.h 3.0 12/14/98

Syntax
void InitCARD(
long val) Specify sharing with controller

Explanation
Initializes the Memory Card BIOS and enters an idle state. val specifies whether or not there is sharing with
the controller. (0: not shared; 1: shared.)

When the BIOS is subsequently put into operation by StartCARD(), the low-level interface functions that
begin with “ _card” can be used directly.

The Memory Card file system uses these interfaces internally, so InitCARD() needs to be executed before
_bu_init().

There is no effect on the controller.

See also
_bu_init()

4-4 Memory Card Library Functions

Run-Time Library Reference

StartCARD
Start Memory Card BIOS.

Library Header File Introduced Documentation Date
libcard.lib libapi.h 3.0 12/14/98

Syntax
void StartCARD(void)

Explanation
Changes the Memory Card BIOS initialized by InitCARD() to a run state.

Performs ChangeClearPAD(1) internally.

See also
InitCARD(), StopCARD(), _bu_init(), ChangeClearPAD() (see libapi)

Memory Card Library Functions 4-5

Run-Time Library Reference

StopCARD
Stop Memory Card BIOS.

Library Header File Introduced Documentation Date
libcard.lib libapi.h 3.0 12/14/98

Syntax
void StopCARD(void)

Explanation
Changes Memory Card BIOS to an idle state--the same state as that immediately after executing
InitCARD().

It also stops the controller. It is necessary to call StartPAD() to start the controller.

See also
InitCARD(), StartCARD(), _bu_init(), ChangeClearPAD() (see libapi)

4-6 Memory Card Library Functions

Run-Time Library Reference

_bu_init
Initialize Memory Card file system.

Library Header File Introduced Documentation Date
libcard.lib libapi.h 3.0 12/14/98

Syntax
void_bu_init(void)

Explanation
Initializes the Memory Card file system. This file system is not initialized automatically, so it is necessary to
call this function.

See also
InitCARD(), StartCARD(), StopCARD()

Memory Card Library Functions 4-7

Run-Time Library Reference

_card_auto
Set automatic format function.

Library Header File Introduced Documentation Date
libcard.lib libapi.h 3.0 12/14/98

Syntax
long _card_auto(
long val) Indicates automatic formatting

Explanation
When val is 0, the automatic format function is disabled; when val is 1, it is enabled.

This function should be used for testing purposes only.

Return value
Previously set automatic format value.

See also

4-8 Memory Card Library Functions

Run-Time Library Reference

_card_chan
Get a Memory Card BIOS event.

Library Header File Introduced Documentation Date
libcard.lib libapi.h 3.0 12/14/98

Syntax
long _card_chan(void)

Explanation
Returns the device number of the Memory Card that just generated an event.

Return value
2-digit hex device number.

See also
card_status(), _card_wait()

Memory Card Library Functions 4-9

Run-Time Library Reference

_card_clear
Clear unconfirmed flags.

Library Header File Introduced Documentation Date
libcard.lib libapi.h 3.0 12/14/98

Syntax
long _card_clear(
long chan) Port number x 16 + Card number

Explanation
Performs a dummy write to the system management area of the card and clears the card’s unconfirmed
flags.

When calculating chan, “port number” is 0 for Port 1 and 1 for Port 2. “Card number” is zero when a
standard controller is connected, and may be in the range 0-3 if a Multi Tap is connected.

This function executes asynchronously, so it returns immediately. Processing completion is communicated
by an event. (See table below.) In order to use this command with multiple slots in a Multi Tap, you must
wait until processing has completed before sending another _card_clear() call.

Table 4–1: Events on completion of processing

Source Descriptor/Event Class Contents
HwCARD/EvSpIOE Ends process
HwCARD/EvSpTIMOUT Card not connected
HwCARD/EvSpNEW New card detected
HwCARD/EvSpERROR Error generated
HwCARD/EvSpUNKOWN Source unknown

Return value
1 if registration successful, otherwise 0.

See also
card_info()

4-10 Memory Card Library Functions

Run-Time Library Reference

_card_format
Format the Memory Card.

Library Header File Introduced Documentation Date
libcard.lib libapi.h 3.0 12/14/98

Syntax
long _card_format(
long chan) Port number x 16 + Card number

Explanation
Formats the Memory Card. When calculating chan, “port number” is 0 for Port 1 and 1 for Port 2. “Card
number” is zero when a standard controller is connected, and may be in the range 0-3 if a Multi Tap is
connected.

Does not enter critical section. Synchronous functions are blocked for approximately 144 Vsync.

Return value
1 if formatting is successful, otherwise 0.

See also
_card_load()

Memory Card Library Functions 4-11

Run-Time Library Reference

_card_info
Get card status.

Library Header File Introduced Documentation Date
libcard.lib libapi.h 3.0 12/14/98

Syntax
long _card_info(
long chan) Port number x 16 + Card number

Explanation
Tests the connection of the Memory Card specified in chan.

When calculating chan, “port number” is 0 for Port 1 and 1 for Port 2. “Card number” is zero when a
standard controller is connected, and may be in the range 0-3 if a Multi Tap is connected.

This function executes asynchronously, so it returns immediately. Processing completion is communicated
by an event. (See table below.) In order to use this command with multiple slots in a Multi Tap, you must
wait until processing has completed before sending another _card_info() call.

Table 4–2: Posts an event on completion of processing

Source Descriptor/Event Class Description
SwCARD/EvSpIOE Connected
SwCARD/EvSpTIMOUT Not connected
SwCARD/EvSpNEW No writing after connection
SwCARD/EvSpERROR Generates an error

Do not use _new_card() to suppress EvSpNEW.

Return value
1 if registration successful, otherwise 0.

See also
_card_clear(), _card_status(), _new_card()

4-12 Memory Card Library Functions

Run-Time Library Reference

_card_load
Test logical format

Library Header File Introduced Documentation Date
libcard.lib libapi.h 3.0 12/14/98

Syntax
long _card_load(
long chan) Port number x 16 + Card number

Explanation
Reads file management information for the card specified by chan in the file system in order to get
asynchronous access using the I/O management service.

When calculating chan, “port number” is 0 for Port 1 and 1 for Port 2. “Card number” is zero when a
standard controller is connected, and may be in the range 0-3 if a Multi Tap is connected.

_card_load() must be called at least once before you can use open() on a Memory Card file in O_NOWAIT
mode. It does not have to be called again unless a card is changed.

This function executes asynchronously, so it returns immediately. Processing completion is communicated
by an event. (See table below.) In order to use this command with multiple slots in a Multi Tap, you must
wait until processing has completed before sending another _card_load() call.

Table 4–3: Posts an event on completion of processing

Source Descriptor/ Event Class Contents
SwCARD/EvSpIOE Read completed
SwCARD/EvSpTIMOUT Not connected
SwCARD/EvSpNEW Uninitialized card
SwCARD/EvSpERROR Generates an error

Return value
1 if the read is successful, otherwise 0.

See also
format() (see libcd), card_info()

Memory Card Library Functions 4-13

Run-Time Library Reference

_card_read
Read one block from the Memory Card.

Library Header File Introduced Documentation Date
libcard.lib libapi.h 3.0 12/14/98

Syntax
long _card_read(
long chan, Port number x 16 + card number
long block, Target block number
long *buf) Pointer to 128 byte data buffer

Explanation
Reads 128 bytes of buffer data into buf from the target block number (block) of the Memory Card of the
specified channel (chan).

When calculating chan, “port number” is 0 for Port 1 and 1 for Port 2. “Card number” is zero when a
standard controller is connected, and may be in the range 0-3 if a Multi Tap is connected.

This function executes asynchronously so it returns immediately after completion. Actual processing
termination is communicated by an event. (See table below.) Multiplex processing to the same card slot
can’t be performed.

Table 4–4: Events on completion of processing

Source Descriptor / Event Class Contents
HwCARD/EvSpIOE Ends processing
HwCARD/EvSpTIMOUT Card not connected
HwCARD/EvSpNEW New card detected
HwCARD/EvSpERROR Error generated
HwCARD/EvSpUNKOWN Source unknown

This function exists within the low-level interface and is one of the special functions used for testing.

Return value
1 if successful processing registration, otherwise 0.

See also
_card_write(), open() (see libapi), read() (see libapi)

4-14 Memory Card Library Functions

Run-Time Library Reference

_card_status
Get Memory Card BIOS status.

Library Header File Introduced Documentation Date
libcard.lib libapi.h 3.0 12/14/98

Syntax
long _card_status(
long drv) Port number

Explanation
Gets the Memory Card BIOS status of each slot, drv. Specify drv as 0 for Port 1, 1 for Port 2.

This is a synchronous function.

Return value
If the Memory Card BIOS is in run state, it can return any of the following values.

Table 4–5

Value State
0x01 Idle processing
0x02 READ processing
0x04 WRITE processing
0x08 Connection test processing registration
0x11 No registered processing (just prior to

EvSpTIMOUT generation)
0x21 No registered processing (just prior to

EvSpERROR generation)

See also
card_wait(), _card_chan(), _card_info()

Memory Card Library Functions 4-15

Run-Time Library Reference

_card_wait
Wait for Memory Card BIOS completion.

Library Header File Introduced Documentation Date
libcard.lib libapi.h 3.0 12/14/98

Syntax
long _card_wait(
long drv) Sets slot number

Explanation
Wait until registration processing completes for the drv slot. Specify drv as 0 for Port 1, 1 for Port 2.

Return value
Always 1.

See also
_card_status(), _card_chan()

4-16 Memory Card Library Functions

Run-Time Library Reference

_card_write
Write to one block of the Memory Card (for testing only)

Library Header File Introduced Documentation Date
libcard.lib libapi.h 3.0 12/14/98

Syntax
long _card_write(
long chan, Port number x 16 + card number
long block, Target block number
long *buf) Pointer to 128-byte data buffer

Explanation
Writes 128 bytes of buffer data pointed to by buf to the target block number (block) of the Memory Card of
the specified channel (chan).

When calculating chan, “port number” is 0 for Port 1 and 1 for Port 2. “Card number” is zero when a
standard controller is connected, and may be in the range 0-3 if a Multi Tap is connected.

This function executes asynchronously, so it returns immediately. Actual processing termination is
communicated by an event. (See table below.) Multiplex processing to the same card slot can’t be
performed; that is, multiple _card_write() calls to the same Multi Tap cannot be processed synchronously.

Table 4–6: Events on completion of processing

Source Descriptor/Event Class Contents
HwCARD/EvSpIOE Ends process
HwCARD/EvSpTIMOUT Card not connected
HwCARD/EvSpNEW New card detected
HwCARD/EvSpERROR Error generated
HwCARD/EvSpUNKOWN Source unknown

This is a low-level function that should be used for testing only. It bypasses the memory card file system;
therefore, in a released product, use the C file-handling routines such as write().

Return value
1 if registration successful, otherwise 0.

See also
_card_read(), open() (see libapi), write() (see libapi)

Memory Card Library Functions 4-17

Run-Time Library Reference

_new_card
Change settings of unconfirmed flag test.

Library Header File Introduced Documentation Date
libcard.lib libapi.h 3.0 12/14/98

Syntax
void _new_card(void)

Explanation
Masks the generation of an EvSpNEW event immediately after _card_read() or _card_write().

Terminates immediately even though it is a synchronous function.

See also
_card_clear(), _card_read(), _card_write()

4-18 Memory Card Library Functions

Run-Time Library Reference

Run-Time Library Reference

Chapter 5: Extended Memory Card Library
Table of Contents

Functions
MemCardAccept 5-3
MemCardCallback 5-4
MemCardClose 5-5
MemCardCreateFile 5-6
MemCardDeleteFile 5-7
MemCardEnd 5-8
MemCardExist 5-9
MemCardFormat 5-10
MemCardGetDirentry 5-11
MemCardInit 5-12
MemCardOpen 5-13
MemCardReadData 5-14
MemCardReadFile 5-15
MemCardStart 5-16
MemCardStop 5-17
MemCardSync 5-18
MemCardUnformat 5-19
MemCardWriteData 5-20
MemCardWriteFile 5-21

5-2

Run-Time Library Reference

Extended Memory Card Library Functions 5-3

Run-Time Library Reference

Functions

MemCardAccept
Check Memory Card status.

Library Header File Introduced Documentation Date
libmcrd.lib libmcrd.h 4.0 12/14/98

Syntax
long MemCardAccept(
long chan) port number + card number

port number(port A: 0x00; port B: 0x10)
card number (normally 0)

Explanation
Tests connection with the Memory Card specified by chan. If the card is connected, additional information
is obtained. If the card is new, _card_clear() and _card_load() are executed, allowing the use of file access
functions.

MemCardAccept() must be executed before using file access functions such as MemCardOpen().
MemCardAccept() does not need to be called again as long as the card is not swapped.

The function is asynchronous and returns immediately. (Multiple instances can’t be registered.) Use
MemCardSync() or an exit callback to determine completion and get the result, which is one of the
following:

Table 5-1

Value Macro Status
0x00 McErrNone Connected
0x01 McErrCardNotExist Not connected
0x02 McErrCardInvalid Bad card
0x03 McErrNewCard New card (card was

replaced)
0x04 McErrNotFormat Not formatted

The maximum time required to perform this operation is 76 VSyncs. Approximately 4 VSyncs are needed if
a card is not present.

A new card is detected only once and returns McErrNewCard. Subsequent calls return McErrNone.

Return value
1 if registration successful, otherwise 0.

See also
MemCardOpen(), MemCardReadFile(), MemCardWriteFile(), MemCardExist()

5-4 Extended Memory Card Library Functions

Run-Time Library Reference

MemCardCallback
Define exit callback.

Library Header File Introduced Documentation Date
libmcrd.lib libmcrd.h 4.0 12/14/98

Syntax
MemCB MemCardCallback(
MemCB func) pointer to callback function

Explanation
Sets the callback function (func) to be triggered when an asynchronous function completes. If func is 0, no
callback is generated.

The following format is used for exit callback functions:

typedef void (*MemCB)(unsigned long cmds, unsigned long result)

cmds: the completed asynchronous function (see below)

result: the execution result from the asynchronous function

Allowed value for cmds:

Table 5-2

Value Macro Function
0x01 McFuncExist MemCardExist
0x02 McFuncAccept MemCardAccept
0x03 McFuncReadFile MemCardReadFile
0x04 McFuncWriteFile MemCardWriteFile
0x05 McFuncReadData MemCardReadData
0x06 McFuncWriteData MemCardWriteData

See the sections on the respective functions for details of the result value.

Return value
The address of the previously set callback.

See also
MemCardAccept(), MemCardExist(), MemCardReadFile(), MemCardWriteFile(), MemCardReadData(),
MemCardWriteData(), MemCardSync()

Extended Memory Card Library Functions 5-5

Run-Time Library Reference

MemCardClose
Close file.

Library Header File Introduced Documentation Date
libmcrd.lib libmcrd.h 4.0 12/14/98

Syntax
void MemCardClose(void)

Explanation
Closes the file that was opened with MemCardOpen(). It is an asynchronous function that exits
immediately.

See also
MemCardOpen()

5-6 Extended Memory Card Library Functions

Run-Time Library Reference

MemCardCreateFile
Create a new file in the Memory Card

Library Header File Introduced Documentation Date
libmcrd.lib libmcrd.h 4.0 12/14/98

Syntax
long MemCardCreateFile(
long chan, port number + card number

port number (port A: 0x00, port B: 0x10)
card number (normally 0)

char *file, filename
long blocks) number of blocks

Explanation
Creates the specified file in the Memory Card. It is a synchronous function; blocking time is 1 - 4 VSyncs for
normal exit, 4 - 76 VSyncs otherwise. It doesn’t enter a critical section.

The block parameter is given in units of 8192 bytes.

Return value

Table 5-3

Value Macro Status
0x00 McErrNone Normal exit
0x01 McErrCardNotExist Card is not connected
0x02 McErrCardInvalid Communication error

generated
0x04 McErrNotFormat Not formatted
0x06 McErrAlreadyExist File already exists
0x07 McErrBlockFull Not enough available

blocks
-1 None A non-synchronous

function is active.

See also
MemCardOpen(), MemCardWriteFile(), MemCardDeleteFile()

Extended Memory Card Library Functions 5-7

Run-Time Library Reference

MemCardDeleteFile
Delete file from Memory Card.

Library Header File Introduced Documentation Date
libmcrd.lib libmcrd.h 4.0 12/14/98

Syntax
long MemCardDeleteFile(
long chan, port number + card number

port number (port A: 0x00, port B: 0x10)
card number (normally 0)

char *file) filename

Explanation
Deletes the specified file from the Memory Card. It is a synchronous function; blocking time: 1 - 4 VSyncs
for normal exit. 4 - 76 VSyncs otherwise. Does not enter critical section.

Return value

Table 5-4

Value Macro Status
0x00 McErrNone Normal exit
0x01 McErrCardNotExist Card is not connected
0x02 McErrCardInvalid Communication error

generated
0x04 McErrNotFormat Not formatted
0x05 McErrFileNotExist File not found
-1 None A non-synchronous

function is active.

See also
MemCardCreateFile()

5-8 Extended Memory Card Library Functions

Run-Time Library Reference

MemCardEnd
Terminate Memory Card system.

Library Header File Introduced Documentation Date
libmcrd.lib libmcrd.h 4.0 12/14/98

Syntax
void MemCardEnd(void)

Explanation
Terminates the Memory Card system. It is a synchronous function.

MemCardStop() needs to be executed first if the system was activated from MemCardStart().

See also
MemCardInit(), MemCardStart(), MemCardStop()

Extended Memory Card Library Functions 5-9

Run-Time Library Reference

MemCardExist
Get connection status of card.

Library Header File Introduced Documentation Date
libmcrd.lib libmcrd.h 4.0 12/14/98

Syntax
long MemCardExist(
long chan) port number + card number

port number (port A: 0x00, port B: 0x10)
card number (normally 0)

Explanation
Tests the connection status of the Memory Card specified by chan. MemCardExist() is faster than
MemCardAccept(), since it checks only the presence of the card. MemCardAccept() must be used for more
detailed information, such as whether the card is formatted. If cards are swapped, MemCardAccept() must
be executed before using file access functions such as MemCardOpen().

The function is asynchronous and exits immediately. Multiple instances of the function cannot be
registered. Use MemCardSync() or an exit callback to determine completion and obtain the result of the
operation, as shown below:

Table 5-5

Value Macro Status
0x00 McErrNone Connected
0x01 McErrCardNotExist Not connected
0x02 McErrCardInvalid Bad card
0x03 McErrNewCard New card (card was

replaced)

The time required is approximately 4 VSyncs.

When a new card is detected (McErrNewCard), you must call MemCardAccept() to clear the new card
status, before performing any other operations.

Return value
1, if the command was successfully registered; 0 otherwise.

See also
MemCardAccept()

5-10 Extended Memory Card Library Functions

Run-Time Library Reference

MemCardFormat
Format Memory Card.

Library Header File Introduced Documentation Date
libmcrd.lib libmcrd.h 4.0 12/14/98

Syntax
long MemCardFormat(
long chan) port number + card number

port number (port A: 0x00, port B: 0x10)
card number (normally 0)

Explanation
Formats the specified Memory Card. Synchronous function. Blocking time: approx. 144 VSyncs. Does not
enter critical section.

Return value

Table 5-6

Value Macro Status
0x00 McErrNone Connected
0x01 McErrCardNotExist Not connected
0x02 McErrCardInvalid Communication error
-1 None A non-synchronous

function is active

See also
MemCardUnformat()

Extended Memory Card Library Functions 5-11

Run-Time Library Reference

MemCardGetDirentry
Get directory information from Memory Card.

Library Header File Introduced Documentation Date
libmcrd.lib libmcrd.h 4.0 12/14/98

Syntax
long MemCardGetDirentry(
long chan, port number + card number

port number (port A: 0x00, port B: 0x10)
card number (normally 0)

char *name, filename to be searched (wildcards can be used)
struct DIRENTRY *dir, pointer to structure to hold information about matching files
long *files, pointer to buffer to hold number of matching files
long ofs, offset for entry. Specifies the number of files to skip from the first file

that matches before saving to the buffer (0 - 14).
long max) maximum number of entries to store in the buffer

Explanation
Finds files matching the filename pattern name. Data for these files are stored in dir, and the total number of
matching files is returned in files. The buffer must be prepared by the user application.

Synchronous function. Blocking time: 1 - 2 VSyncs for normal exit. Otherwise, 4 - 76 VSyncs.

Wildcard characters can be used in the filename pattern: "?" for any single character; "*" for any number of
characters. Characters following * are ignored.

Return value

Table 5-7

Value Macro Status
0x00 McErrNone Normal exit
0x01 McErrCardNotExist Card is not connected
0x02 McErrCardInvalid Bad card
0x03 McErrNewCard New card inserted
-1 None A non-synchronous

function is active.

See also

5-12 Extended Memory Card Library Functions

Run-Time Library Reference

MemCardInit
Initialize Memory Card system.

Library Header File Introduced Documentation Date
libmcrd.lib libmcrd.h 4.0 12/14/98

Syntax
void MemCardInit(
long val) Use of control routine in ROM (0: do not use, 1: use)

Explanation
Initializes the Memory Card system. If the system is subsequently activated with MemCardStart(), libmcrd
functions (those beginning with "MemCard") are available. MemCardInit() should be executed after
InitPAD(), InitGUN(), or InitTAP().

val should be set to 0 when using libtap or libgun.

MemCardInit() requires 60 - 70 VSyncs to complete. It cannot be executed twice.

See also
MemCardEnd(), MemCardStart(), MemCardStop()

Extended Memory Card Library Functions 5-13

Run-Time Library Reference

MemCardOpen
Open file.

Library Header File Introduced Documentation Date
libmcrd.lib libmcrd.h 4.0 12/14/98

Syntax
long MemCardOpen(
long chan, port number + card number

port number (port A: 0x00, port B: 0x10)
card number (normally 0)

char *file, filename
long flag) specifies method with which to open

(read only: O_RDONLY, write only: O_WRONLY)

Explanation
Opens the specified Memory Card file with the method specified by flag. Once the file is open,
MemCardReadData() and MemCardWriteData() can be used.

Methods cannot be combined (O_RDONLY|O_WRONLY). Multiple files cannot be opened.

Synchronous function. Blocking time: Exits immediately for normal completion. Otherwise, 4 - 76 VSyncs.

Return value

Table 5-8

Value Macro Status
0x00 McErrNone Normal exit
0x01 McErrCardNotExist Card is not connected
0x02 McErrCardInvalid Bad card
0x04 McErrNotFormat Not formatted
0x05 McErrFileNotExist File not found
-1 None Either another file is already

open or a non-
synchronous function is
active in the background.

See also
MemCardReadData(), MemCardWriteData(), MemCardClose()

5-14 Extended Memory Card Library Functions

Run-Time Library Reference

MemCardReadData
Read data from Memory Card.

Library Header File Introduced Documentation Date
libmcrd.lib libmcrd.h 4.0 12/14/98

Syntax
long MemCardReadData(
unsigned long *adrs, pointer to destination buffer in main memory
long offset, offset in bytes from which to read, where the start of the file is defined

to be 0
long bytes) number of bytes to read (multiple of 128)

Explanation
Reads data from the Memory Card file previously opened in MemCardOpen() and stores it in the buffer
pointed to by adrs.

It is an asynchronous function and exits immediately. Multiple instances cannot be registered.

Use MemCardSync() or an exit callback to determine completion and obtain the result of the operation.
(The time required is approximately 1 VSync overhead + approximately 130 VSyncs per block (8192 bytes).

bytes is specified in units of 128. If a number that is not a multiple of 128 is specified, the process is not
registered and the operation terminates with a return value of 0.

The function result can have the values shown below.

Table 5-9

Value Macro Status
0x00 McErrNone Normal exit
0x01 McErrCardNotExist Not connected
0x02 McErrCardInvalid Communication error
0x03 McErrNewCard New card (card swapped)

Return value
1 if operation was registered successfully. Otherwise, 0.

See also
MemCardOpen(), MemCardSync()

Extended Memory Card Library Functions 5-15

Run-Time Library Reference

MemCardReadFile
Read file from Memory Card.

Library Header File Introduced Documentation Date
libmcrd.lib libmcrd.h 4.0 12/14/98

Syntax
long MemCardReadFile(
long chan, port number + card number

port number (port A: 0x00, port B: 0x10)
card number (normally 0)

char *file, filename
unsigned long *adrs, pointer to destination buffer in main memory
long offset, offset in bytes from which to read, where the start of the file is defined

to be 0
long bytes) number of bytes to read (multiple of 128)

Explanation
Reads data from the specified Memory Card file and stores it in the buffer pointed to by adrs. bytes is
specified in units of 128. If a number that is not a multiple of 128 is specified, the process is not registered
and the operation terminates with a return value of 0.

This function is asynchronous and returns immediately. Multiple instances cannot be registered. Use
MemCardSync() or an exit callback to determine completion and obtain the result of the operation, as
shown below.

Table 5-10

Value Macro Status
0x00 McErrNone Normal exit
0x01 McErrCardNotExist Not connected
0x02 McErrCardInvalid Communication error
0x03 McErrNewCard New card (card swapped)
0x05 McErrFileNotExist File cannot be found

Required time: approximately 1 VSync overhead + approximately 130 VSyncs per block (8192 bytes).

MemCardOpen() and MemCardReadData() are executed within MemCardReadFile(). If MemCardOpen() is
executed on a file which is already open, an error is generated and the value 0 is returned.

Return value
1 if operation was registered successfully. If the file was already open, or another asynchronous function
was already registered, 0 is returned.

See also
MemCardOpen(), MemCardReadFile(), MemCardSync()

5-16 Extended Memory Card Library Functions

Run-Time Library Reference

MemCardStart
Start Memory Card system.

Library Header File Introduced Documentation Date
libmcrd.lib libmcrd.h 4.0 12/14/98

Syntax
void MemCardStart(void)

Explanation
Places the Memory Card system, previously initialized with MemCardInit() in an active state. Internally, eight
events such as HwCARD and SwCARD are opened.

Asynchronous Function. Exits immediately.

See also
MemCardInit(), MemCardStop()

Extended Memory Card Library Functions 5-17

Run-Time Library Reference

MemCardStop
Stop Memory Card system.

Library Header File Introduced Documentation Date
libmcrd.lib libmcrd.h 4.0 12/14/98

Syntax
void MemCardStop(void)

Explanation
Stops the Memory Card system activated by MemCardStart(). Various events are closed.

Asynchronous Function. Exits immediately.

See also
MemCardInit(), MemCardStart(), MemCardStop()

5-18 Extended Memory Card Library Functions

Run-Time Library Reference

MemCardSync
Wait for completion of an asynchronous function or check status.

Library Header File Introduced Documentation Date
libmcrd.lib libmcrd.h 4.0 12/14/98

Syntax
long MemCardSync(
long mode, 0: wait for termination of asynchronous function

1: check current status and return immediately
long *cmds, pointer to the terminated asynchronous function
long *result) pointer to execution results from the asynchronous function

Explanation
If mode is 0, this function waits for termination of an asynchronous function such as MemCardAccept() and
MemCardReadFile().The execution time depends on the corresponding asynchronous function.

If mode is 1, it exits immediately and returns the status of the asynchronous function (see Return value).

cmds stores the operation code corresponding to the terminated asynchronous function:

Table 5-11

Value Macro Function
0x01 McFuncExist MemCardExist
0x02 McFuncAccept MemCardAccept
0x03 McFuncReadFile MemCardReadFile
0x04 McFuncWriteFile MemCardWriteFile
0x05 McFuncReadData MemCardReadData
0x06 McFuncWriteData MemCardWriteData

Return value
0: Still active
1: Terminated
-1: No registered process

See also
MemCardAccept(), MemCardExist(), MemCardReadFile(), MemCardWriteFile(), MemCardReadData(),
MemCardWriteData(), MemCardCallback()

Extended Memory Card Library Functions 5-19

Run-Time Library Reference

MemCardUnformat
Uninitialize a Memory Card (for debugging only).

Library Header File Introduced Documentation Date
libmcrd.lib libmcrd.h 4.3 12/14/98

Syntax
long MemCardUnFormat(
long chan) port number + card number

port number (port A: 0x00, port B: 0x10)
card number (default 0)

Explanation
Puts Memory Card in uninitialized (unformatted) state. Synchronous function.

MemCardUnFormat() is a debugging function that can be used to create an unformatted card. This function
should only be used for testing Memory Card initialization during program debugging. It should not be used
in an actual title.

Return value
1: Completed successfully. 0: Error. -1: Could not be executed because of an asynchronous function
running in the background.

See also
MemCardFormat()

5-20 Extended Memory Card Library Functions

Run-Time Library Reference

MemCardWriteData
Write data to Memory Card.

Library Header File Introduced Documentation Date
libmcrd.lib libmcrd.h 4.0 12/14/98

Syntax
long MemCardWriteData(
unsigned long *adrs, pointer to destination buffer in main memory
long offset, offset in bytes from which to read, where the start of the file is defined

to be 0
long byte) number of bytes to read (multiple of 128)

Explanation
Writes data from the buffer pointed to by adrs to the Memory Card file previously opened with
MemCardOpen().

MemCardWriteData() is asynchronous and exits immediately. Multiple instances cannot be registered.
Required time: Approximately 1 VSync overhead + 130 VSyncs per block (8192 bytes)

Use MemCardSync() or an exit callback to determine completion and obtain the result of the operation.

bytes is specified in units of 128. If a number that is not a multiple of 128 is specified, the process is not
registered and the operation terminates with a return value of 0.

The function result can have the values shown below.

Table 5-12

Value Macro Status
0x00 McErrNone Normal exit
0x01 McErrCardNotExist Not connected
0x02 McErrCardInvalid Communication error
0x03 McErrNewCard New card (card swapped)

Return value
1 if the operation was registered successfully, 0 otherwise.

See also
MemCardOpen(), MemCardSync()

Extended Memory Card Library Functions 5-21

Run-Time Library Reference

MemCardWriteFile
Write file to Memory Card.

Library Header File Introduced Documentation Date
libmcrd.lib libmcrd.h 4.0 12/14/98

Syntax
long MemCardWriteFile(
long chan, port number + card number

port number (port A: 0x00, port B: 0x10)
card number (normally 0)

char *file, filename
unsigned long *adrs, pointer to destination buffer in main memory
long offset, offset in bytes from which to read, where the start of the file is

defined to be 0
long bytes) number of bytes to read (multiple of 128)

Explanation
Writes data from the buffer pointed to by adrs to the specified Memory Card. If the file is new, it must be
created beforehand with MemCardCreateFile(). bytes is specified in units of 128. If a number not a multiple
of 128 is specified, the process is not registered and the operation terminates with a return value of 0.

MemCardWriteFile() is an asynchronous function and returns immediately. Multiple instances cannot be
registered. Use MemCardSync() or an exit callback to determine completion and obtain the result of the
operation, as shown below:

The function result can have the values shown below.

Table 5-13

Value Macro Status
0x00 McErrNone Normal exit
0x01 McErrCardNotExist Not connected
0x02 McErrCardInvalid Communication error
0x03 McErrNewCard New card (card swapped)
0x05 McErrFileNotExist File not found

Required time: Approximately 1 VSync overhead + 130 VSyncs per block (8192 bytes).

MemCardOpen() and MemCardWriteData() are executed within MemCardWriteFile(). If MemCardOpen() is
executed on a file which is already open, an error is generated and the value 0 is returned.

Return value
1 if operation was registered successfully. If the file was already open, or another asynchronous function
was already registered, 0 is returned.

See also
MemCardCreateFile(), MemCardSync()

5-22 Extended Memory Card Library Functions

Run-Time Library Reference

Run-Time Library Reference

Chapter 6: Data Compression Library
Table of Contents

Structures
DECDCTENV 6-3
ENCSPUENV 6-4

Functions
DecDCTBufSize 6-5
DecDCTGetEnv 6-6
DecDCTin 6-7
DecDCTinCallback 6-8
DecDCTinSync 6-9
DecDCTout 6-10
DecDCToutCallback 6-11
DecDCToutSync 6-12
DecDCTPutEnv 6-13
DecDCTReset 6-14
DecDCTvlc 6-15
DecDCTvlc2 6-16
DecDCTvlcBuild 6-17
DecDCTvlcSize 6-18
DecDCTvlcSize2 6-19
EncSPU 6-20

6-2

Run-Time Library Reference

Data Compresson Library Structures 6-3

Run-Time Library Reference

Structures

DECDCTENV
Quantization tables used during MDEC decoding process.

Library Header File Introduced Documentation Date
libpress.lib libpress.h 3.5 12/14/98

Structure
typedef struct {

u_char iq_y[64]; Brightness component quantization table
u_char iq_c[64]; Chrominance component quantization table
short dct[64]; System reserved

} DECDCTENV;

Explanation
This structure contains the tables used during the reverse-quantization step of the MDEC decoding
process. The default values used by the system are:

iq_y
 2 16 19 22 26 27 29 34 
 16 16 22 24 27 29 34 37 
 19 22 26 27 29 34 34 38 
 22 22 26 27 29 34 37 40  ×

1/16
 22 26 27 29 32 35 40 48 
 26 27 29 32 35 40 48 58 
 26 27 29 34 38 46 56 69 
 27 29 35 38 46 56 69 83 

iq_c
 2 16 19 22 26 27 29 34 
 16 16 22 24 27 29 34 37 
 19 22 26 27 29 34 34 38 
 22 22 26 27 29 34 37 40  ×

1/16
 22 26 27 29 32 35 40 48 
 26 27 29 32 35 40 48 58 
 26 27 29 34 38 46 56 69 
 27 29 35 38 46 56 69 83 

The values in the iq_y and iq_c tables are sorted in a diagonal zig-zag scanning order.

See also

6-4 Data Compresson Library Structures

Run-Time Library Reference

ENCSPUENV
SPU encode environment attribute structure.

Library Header File Introduced Documentation Date
libpress.lib libpress.h 3.6 12/14/98

Structure
typedef struct {

short *src; 16-bit PCM data address
short *dest; PlayStation original waveform data
short *work; Work area when encode processing
long size; 16-bit PCM data size(in bytes)
long loop_start; PCM data loop start point(in bytes)
char loop; Loop waveform generation specification

ENCSPU_ENCODE_LOOP: Generate loop waveform data
ENCSPU_ENCODE_NO_LOOP: Generate non-loop waveform data

char byte_swap; PCM data endian specification
ENCSPU_ENCODE_ENDIAN_BIG: 16-bit big endian
ENCSPU_ENCODE_ENDIAN_LITTLE: 16-bit little endian

char proceed; Whole/Divided encoding specification
ENCSPU_ENCODE_WHOLE: Whole encoding
ENCSPU_ENCODE_START: Start divided encoding
ENCSPU_ENCODE_CONTINUE: Continue divided encoding
ENCSPU_ENCODE_END: End divided encoding

char pad4; System reserved
} ENCSPUENV;

Explanation
This structure is used to specify the SPU encode environment attributes for EncSPU() function.

When 0 is specified for loop, loop_start is ignored.

See also
EncSPU()

Data Compression Library Functions 6-5

Run-Time Library Reference

Functions

DecDCTBufSize
Get size of run-level DCT data.

Library Header File Introduced Documentation Date
libpress.lib libpress.h 2.x 12/14/98

Syntax
long DecDCTBufSize(
u_long *bs) Pointer to bitstream

Explanation
Returns the uncompressed length of the data contained in the Huffman-encoded bitstream pointed to by
the bs parameter. It does not perform the actual decoding.

When using DecDCTvlc()/DecDCTvlc2() to perform decoding, you must reserve a 1-word header buffer to
add to the size obtained by this function.

Return value
Length of uncompressed data in long words (i.e. returns 1000 for a 4000-byte length).

See also
DecDCTvlc(), DecDCTvlc2()

6-6 Data Compression Library Functions

Run-Time Library Reference

DecDCTGetEnv
Get current quantization tables and environment data used during MDEC image decoding.

Library Header File Introduced Documentation Date
libpress.lib libpress.h 3.5 12/14/98

Syntax
DECDCTENV *DecDCTGetEnv(
DECDCTENV *env) Pointer to decoding environment

Explanation
Returns the current decoding environment to env.

Return value
Address of env.

See also
DecDCTPutEnv()

Data Compression Library Functions 6-7

Run-Time Library Reference

DecDCTin
Begin decoding RLE-encoded MDEC image data.

Library Header File Introduced Documentation Date
libpress.lib libpress.h 2.x 12/14/98

Syntax
void DecDCTin(
unsigned long *runlevel, Pointer to input runlevel
long mode) Decode mode

Explanation
Begins decoding the RLE-encoded MDEC image data at the address specified by runlevel. A maximum of
128k may be decoded at a time. The resulting image data is retrieved by the DecDCTout() function.

Bit 0 of the mode parameter controls the depth of the output pixels: 0 = 16-bit direct color; 1 = 24-bit
direct color. In 16-bit mode, bit 1 of mode is the STP bit that determines bit 15 of the pixel.

The image data produced is raw pixel data without any header information. The width and height of the
image is not maintained; the application or a higher level structure (such as the STR format) must maintain
such information.

Data decoded from a single DecDCTin() call may be read using multiple DecDCTout() calls, or the data
created by multiple DecDCTin() calls may be read using a single DecDCTout() call.

DecDCTin() is non-blocking. To detect when execution of the primitive list is complete, use DecDCTinSync()
or install a callback routine with DecDCTinCallback(). If DecDCTin() is called before a previous DecDCTin()
operation has finished, it is blocked until the previous operation is complete.

See also
DecDCTout(), DecDCTinSync(), DecDCTinCallback()

6-8 Data Compression Library Functions

Run-Time Library Reference

DecDCTinCallback
Install a callback routine to be called at termination of MDEC transmission.

Library Header File Introduced Documentation Date
libpress.lib libpress.h 2.x 12/14/98

Syntax
long DecDCTinCallback(
void (*func)()) Pointer to callback function

Explanation
Installs the user-defined callback routine specified by func. This routine is called when the data transmission
initiated by a DecDCTin() call has been completed. If func is 0, any previous callback routine is disabled.

Although the callback is called during an interrupt, it is not an interrupt handler; it should be written as a
normal subroutine that is called by the main interrupt handler. Inside the callback, subsequent termination
interrupts are masked; therefore, the callback should return as soon as possible.

Return value
A pointer to a previously set callback function.

See also
DecDCTin()

Data Compression Library Functions 6-9

Run-Time Library Reference

DecDCTinSync
Detect DecDCTin() termination.

Library Header File Introduced Documentation Date
libpress.lib libpress.h 2.x 12/14/98

Syntax
long DecDCTinSync(
long mode) 0: Blocks until termination; 1: Performs only status notification

Explanation
Detects termination of DecDCTin().

Synchronization with DecDCTinSync()must be performed after reading the appropriate amount of decode
data with DecDCTout(). When calling this function without using DecDCTout() after DecDCTin(), a timeout
occurs and MDEC is reset.

Return value
Image processing subsystem status: 1 if transmission is in process and 0 if transmission is not being
performed.

See also
DecDCTin(), DecDCTout()

6-10 Data Compression Library Functions

Run-Time Library Reference

DecDCTout
Receive decoded data from the image processing subsystem.

Library Header File Introduced Documentation Date
libpress.lib libpress.h 2.x 12/14/98

Syntax
void DecDCTout(
unsigned long *cell, Pointer to decoded image data
long size) Received data size (long words)

Explanation
The RLE-encoded MDEC image data previously specified in a DecDCTin() call is decoded and stored in the
buffer specified by the cell parameter. The amount of data is specified in long words by size (e.g. size=1000
to transfer 4000 bytes of data). Multiple calls to DecDCTout() may be made to retrieve image data.

You must specify a size value that is the same as or smaller than the available decoded data. If there is
more data available than is read by one DecDCTout() call, additional calls must be made to avoid MDEC
transmission deadlocks.

The decoded image is output one 16 x 16 macroblock at a time. size must be a multiple of the total
macroblock size for the current decoding mode. If decoding to 16-bit, a macroblock is 128 words. If
decoding to 24-bit, the macroblock length is 192 words.

DecDCTout() is non-blocking. To detect when execution is complete, use DecDCToutSync() or install a
callback routine with DecDCToutCallback(). If a DecDCTout() call is executed before a previous one has
finished, the transmission is blocked until the previous operation is complete.

See also
DecDCTin(), DecDCToutSync(), DecDCToutCallback()

Data Compression Library Functions 6-11

Run-Time Library Reference

DecDCToutCallback
Install a callback routine to be called at termination of MDEC transmission.

Library Header File Introduced Documentation Date
libpress.lib libpress.h 2.x 12/14/98

Syntax
long DecDCToutCallback(
long (*func)()) Pointer to callback function address

Explanation
Installs the user-defined callback routine specified by func. This routine is called when the data transmission
initiated by a DecDCTout() call has been completed. If func is 0, any previous callback routine is disabled.

Although the specified function is called during an interrupt, it is not an interrupt handler; it should be
written as a normal subroutine that is called by the main interrupt handler. Inside the callback, subsequent
transmission termination interrupts are masked; therefore, the callback should return as soon as possible.

Return value
A pointer to the previously set callback function.

See also
DecDCTout()

6-12 Data Compression Library Functions

Run-Time Library Reference

DecDCToutSync
Detect termination of DecDCTout().

Library Header File Introduced Documentation Date
libpress.lib libpress.h 2.x 12/14/98

Syntax
long DecDCToutSync(
long mode) 0: blocks until termination; 1: performs only status notification

Explanation
Detects termination of DecDCTout().

Return value
Image processing subsystem status: 1 if reception is in progress and 0 if reception is not being performed.

See also
DecDCTout()

Data Compression Library Functions 6-13

Run-Time Library Reference

DecDCTPutEnv
Set image-processing-subsystem environment.

Library Header File Introduced Documentation Date
libpress.lib libpress.h 3.5 12/14/98

Syntax
DECDCTENV *DecDCTPutEnv(
DECDCTENV *env) Pointer to decoding environment

Explanation
Sets the quantization tables and environment data used during the reverse-quantization step of the MDEC
decoding process.

Return value
Address of env.

See also
DecDCTGetEnv()

6-14 Data Compression Library Functions

Run-Time Library Reference

DecDCTReset
Initialize image processing subsystem.

Library Header File Introduced Documentation Date
libpress.lib libpress.h 2.x 12/14/98

Syntax
void DecDCTReset(
long mode) 0: Initializes all internal states

1: Discontinues only current decoding; does not affect internal states

Explanation
Resets the image processing subsystem.

Processing time is longer for mode 0 than for mode 1 because internal tables are initialized.

See also

Data Compression Library Functions 6-15

Run-Time Library Reference

DecDCTvlc
Decode Huffman-compressed MDEC image data.

Library Header File Introduced Documentation Date
libpress.lib libpress.h 2.x 12/14/98

Syntax
int DecDCTvlc(
u_long *bs, Input bitstream
u_long *buf) Output runlevel

Explanation
Builds the run-level intermediate format in buf by decoding the bitstream bs. If runlevel data exceeds the
value specified in DecDCTvlcSize(), DecDCTvlc() is interrupted and returns control to the application.
The interrupted VLC decode can be restarted by executing DecDCTvlc (0,0).
With buf, the 1 word area added to the header buffer in DecDCTBufSize() must be reserved in advance.

This is a blocking function.
This function is only the first stage of decoding an MDEC image. The Huffman-encoded bitstream must
always be decoded using DecDCTvlc() before DecDCTin() is executed.
A partial result run level cannot be provided as DecDCTin() input.

Return value
0 Decoding for all bit stream is successfully

completed.
1 Returned with some bit stream left non-

decoded.
-1 Decode failed.

See also
DecDCTvlc2(), DecDCTin(), DecDCTBufSize(), DecDCTvlcSize()

6-16 Data Compression Library Functions

Run-Time Library Reference

DecDCTvlc2
Decode VLC.

Library Header File Introduced Documentation Date
libpress.lib libpress.h 3.7 12/14/98

Syntax
int DecDCTvlc2(
u_long *bs, Input bit stream
u_long *buf, Output run level
DECDCTTAB table) VLC table

Explanation
Builds the run-level intermediate format in buf by decoding the bitstream bs using the table. When the run
level data exceeds the value specified in DecDCTvlcSize2(), DecDCTvlc2() is suspended and control is
returned to the application. The suspended VLC decoding process can be restarted by executing
DecDCTvlc2(0, 0, table). With buf, the 1-word area added to the header buffer in DecDCTBufSize() must be
reserved in advance.

This is a blocking function.
This function is only the first stage of decoding an MDEC image. The Huffman-encoded bitstream must
always be decoded using DecDCTvlc() before DecDCTin() is executed.
A partial result run level cannot be provided as DecDCTin() input.
The VLC table should be decoded in advance using DecDCTBuild().

Return value
0 Decoding for all bit stream is successfully

completed.
1 Returned with some bit stream left non-

decoded.
-1 Decode failed.

See also
DecDCTvlcSize2(), DecDCTin(), DecDCTvlcBuild(), DecDCTBufSize()

Data Compression Library Functions 6-17

Run-Time Library Reference

DecDCTvlcBuild
Build the VLC table.

Library Header File Introduced Documentation Date
libpress.lib libpress.h 3.7 12/14/98

Syntax
void DecDCTvlcBuild(
u_short *table) VLC Buffer

Explanation
Builds the VLC table that will be used for DecDCTvlc2(). The size of the VLC table to be built can be
obtained using sizeof (DECDCTTAB). See libpress.h for the definition of DECDCTTAB.

The VLC table is held in a compressed (4KB) format and only when a movie is playing is it released to the
work area and used in its decompressed form (64 KB).

See also
DecDCTvlc2()

6-18 Data Compression Library Functions

Run-Time Library Reference

DecDCTvlcSize
Set maximum amount of data returned by a single call to DecDCTvlc().

Library Header File Introduced Documentation Date
libpress.lib libpress.h 3.2 12/14/98

Syntax
int DecDCTvlcSize(
int size) Maximum value of a decoded runlevel (long word)

Explanation
Sets the maximum number of long words that DecDCTvlc() can return. Subsequent calls to DecDCTvlc()
halt after decoding size long words. If size is zero, DecDCTvlc() decodes the entire bitstream regardless of
length.

This allows your program to make multiple calls to DecDCTvlc() to decode a bitstream in chunks using a
smaller buffer size.

This is a blocking function. A bitstream must be converted to run-levels by DecDCTvlc() before executing
DecDCTin().

Return value
Previously set buffer size.

Example:

/* Decoding the first VLC_SIZE word in VLC */
DecDCTvlcSize (VLC_SIZE);
isvlcLeft = DecDCTvlc (next, dec.vlcbuf[dec.vlcid]);
/* Waiting for data to be completed */
do {

/* Decoding the remaining VLC_SIZE words in VLC */
if (isvlcLeft) {

isvlcLeft = DecDCTvlc (0, 0);
FntPrint ("%d, ", VSync (1));

}
/* Application code is here */

} while (isvlcLeft || isEndOfFlame == 0);
isEndOfFlame = 0;

See also
DecDCTvlc(), DecDCTin()

Data Compression Library Functions 6-19

Run-Time Library Reference

DecDCTvlcSize2
Set maximum size of single VLC decoding process.

Library Header File Introduced Documentation Date
libpress.lib libpress.h 3.7 12/14/98

Syntax
int DecDCTvlcSize2(
int size) Maximum value of a decoded runlevel (long word)

Explanation
Sets the maximum size of bitstream that can be decoded per decoding process. DecDCTvlc2() suspends
the decoding process when decoding the first block after the number of words specified by size. If size is 0
(the default), the decoding process is not suspended.

Since this is a blocking function, the bit stream must be converted to a run level by DecDCTvlc2() before
executing DecDCTin().

Return value
Maximum run level set immediate before.

See also
DecDCTvlc2(), DecDCTin()

6-20 Data Compression Library Functions

Run-Time Library Reference

EncSPU
Encode 16-bit PCM data into PlayStation waveform format.

Library Header File Introduced Documentation Date
libpress.lib libpress.h 3.6 12/14/98

Syntax
long EncSPU(
ENCSPUENV *es_env) SPU encode environment attribute structure

Explanation
Encodes the PCM data specified by es_env->src into PlayStation waveform data (VAG, without header
information) and returns the encoded data in es_env->dest.

If es_env->loop_start is not a multiple of 56 (28 samples), the loop start point is set to the next lower
multiple of 56.

Specify the user area address for both es_env->src and es_env->dest.

Divided encoding can be done by specifying an attribute to es_env->proceed.

If es_env->size is not a multiple of 56 (28 samples), the data is padded with zeroes until it is. This causes
the generated waveform to be discontinuous; to maintain continuity, perform a divided encode on the data
with es_env->size equal to a multiple of 56. If es_env->proceed is set to ENCSPU_ENCODE_WHOLE, the
waveform is padded with zeroes to make es_env->size a multiple of 56, and waveform encoding is
performed all at once.

To use the scratchpad as the workspace, specify es_env->work as the scratchpad address; 168 bytes are
used from the specified address. If es_env->work is set to NULL, the automatic variables are used
internally.

Return value
The data size of the encoded waveform (VAG).

ENC_ENCODE_ERROR is returned when an encoding error occurs.

See also

Run-Time Library Reference

Chapter 7: Basic Graphics Library
Table of Contents

Structures
DISPENV 7-4
DRAWENV 7-5
DR_AREA 7-7
DR_ENV 7-8
DR_LOAD 7-9
DR_MODE 7-10
DR_MOVE 7-11
DR_OFFSET 7-12
DR_STP 7-13
DR_TPAGE 7-14
DR_TWIN 7-15
LINE_F2, LINE_F3, LINE_F4 7-16
LINE_G2, LINE_G3, LINE_G4 7-17
POLY_F3, POLY_F4 7-19
POLY_FT3, POLY_FT4 7-20
POLY_G3, POLY_G4 7-22
POLY_GT3, POLY_GT4 7-23
RECT 7-25
RECT32 7-26
SPRT 7-27
SPRT_8, SPRT_16 7-28
TILE 7-29
TILE_1, TILE_8, TILE_16 7-30
TIM_IMAGE 7-31
TMD_PRIM 7-32

Functions
AddPrim, addPrim 7-33
AddPrims, addPrims 7-34
BreakDraw 7-35
CatPrim, catPrim 7-36
CheckPrim 7-37
ClearImage 7-38
ClearImage2 7-39
ClearOTag 7-40
ClearOTagR 7-41
ContinueDraw 7-42
DrawOTag 7-43
DrawOTag2 7-44
DrawOTagEnv 7-45
DrawOTagIO 7-46
DrawPrim 7-47
DrawSync 7-48
DrawSyncCallback 7-49
DumpClut, dumpClut 7-50
DumpDispEnv 7-51
DumpDrawEnv 7-52
DumpOTag 7-53
DumpTPage, dumpTPage 7-54
FntFlush 7-55
FntLoad 7-56
FntOpen 7-57
FntPrint 7-58

7-2

Run-Time Library Reference

GetClut, getClut 7-59
GetDispEnv 7-60
GetDrawArea 7-61
GetDrawEnv 7-62
GetDrawMode 7-63
GetDrawOffset 7-64
GetGraphDebug 7-65
GetODE 7-66
GetTexWindow 7-67
GetTimSize 7-68
GetTPage, getTPage 7-69
IsEndPrim, isendprim 7-70
IsIdleGPU 7-71
KanjiFntClose 7-72
KanjiFntFlush 7-73
KanjiFntOpen 7-74
KanjiFntPrint 7-75
Krom2Tim 7-76
LoadClut 7-77
LoadClut2 7-78
LoadImage 7-79
LoadImage2 7-80
LoadTPage 7-81
MargePrim 7-82
MoveImage 7-83
MoveImage2 7-84
NextPrim, nextPrim 7-85
OpenTIM 7-86
OpenTMD 7-87
PutDispEnv 7-88
PutDrawEnv 7-89
ReadTIM 7-90
ReadTMD 7-91
ResetGraph 7-92
SetDefDispEnv 7-93
SetDefDrawEnv 7-94
SetDispMask 7-95
SetDrawArea 7-96
SetDrawEnv 7-97
SetDrawLoad 7-98
SetDrawMode 7-99
SetDrawMove 7-100
SetDrawOffset 7-101
SetDrawStp 7-102
SetDrawTPage, setDrawTPage 7-103
SetDumpFnt 7-104
SetGraphDebug 7-105
SetLineF2, SetLineF3, SetLineF4; setLineF2, setLineF3, setLineF4; SetLineG2, SetLineG3,
SetLineG4; setLineG2, setLineG3, setLineG4 7-106
SetPolyF3, SetPolyF4; setPolyF3, setPolyF4; SetPolyG3, SetPolyG4; setPolyG3,
setPolyG4; SetPolyGT3, SetPolyGT4; setPolyGT3, setPolyGT4 7-107
SetSemiTrans, setSemiTrans 7-108
SetShadeTex, setShadeTex 7-109
SetSprt, SetSprt8, SetSprt16; setSprt, setSprt8, setSprt16 7-110
SetTexWindow 7-111
SetTile, SetTile1, SetTile8, SetTile16; setTile, setTile1, setTile8, setTile16 7-112
StoreImage 7-113

7-3

Run-Time Library Reference

StoreImage2 7-114
TermPrim, termPrim 7-115
VSync 7-116
VSyncCallback 7-117

Macros
addVector 7-118
applyVector 7-119
copyVector 7-120
dumpMatrix 7-121
dumpRECT 7-122
dumpVector 7-123
dump... 7-124
setClut 7-125
setRECT 7-126
setRGB0, setRGB1, setRGB2, setRGB3 7-127
setTPage 7-128
setUV0, setUV3, setUV4 7-129
setUVWH 7-130
setVector 7-131
setWH 7-132
setXY0, setXY2, setXY3, setXY4 7-133
setXYWH 7-134

7-4 Basic Graphics Library Structures

Run-Time Library Reference

Structures

DISPENV
Display environment.

Library Header File Introduced Documentation Date
libgpu.lib libgpu.h 2.x 12/14/98

Structure
struct DISPENV {

RECT disp; Display area within frame buffer. Width: 256, 320, 384, 512, or 640.
Height: 240 or 480.

RECT screen; Output screen display area. It is calculated without regard to the value of
disp, using the standard monitor screen upper left-hand point (0, 0) and
lower right-hand point (256, 240).

u_char isinter; Interlace mode flag. 0: non-interlace; 1: interlace
u_char isrgb24; 24-bit mode flag. 0: 16-bit mode; 1: 24-bit mode
u_char pad0, pad1; Reserved by system

};

Explanation
Specifies display parameters for screen display mode, frame buffer display value, and so on.

See also
DumpDispEnv(), GetDispEnv(), PutDispEnv(), SetDefDispEnv()

Basic Graphics Library Structures 7-5

Run-Time Library Reference

DRAWENV
Drawing environment.

Library Header File Introduced Documentation Date
libgpu.lib libgpu.h 2.x 12/14/98

Structure
struct DRAWENV {

RECT clip; Drawing area. Drawing is restricted to the area specified by clip. It must
be within the area area (0, 0) - (1023, 511).

short ofs[2]; The offsets ofs[0] and ofs[1] are added to the X and Y values,
respectively, of all primitives before drawing. Note: Addresses after
adding offsets are wrapped around at (-1024, -1024) - (1023, 1023).

RECT tw; Texture window. Specifies a rectangle inside the texture page, to be
used for drawing textures.

u_short tpage; Initial value of texture page
u_char dtd; Dithering processing flag. 0: off; 1: on
u_char dfe; 0: drawing to display area is blocked

1: drawing to display area is permitted
u_char isbg; 0: Does not clear drawing area when drawing environment is set.

1: Paints entire clip area with brightness values (r0, g0, b0) when drawing
environment is set.

u_char r0, g0, b0; Background color. Valid only when isbg is 1.
DR_ENV dr_env; System reserved

};

Explanation
Sets basic drawing parameters, such as drawing offset and drawing clip area.

The GPU uses 8 bits for R, G, B internally; when writing to the frame buffer, each value is reduced to 5 bits.
When dtd is ON, a 4x4 dither matrix is used as follows:

i = 8 bit brightness value + 1/2 * D - 4

D = Dither matrix [X%4][Y%4]

Table 7-1: 4x4 Dither Matrix

0 8 2 10
12 4 14 6
3 11 1 9
15 7 13 5

5 bit brightness value = 1 >> 3

The values which may be specified for the texture window are restricted to the following combinations:

Table 7-2

tw.w, tw.x
tw.w 0 (=256) 8 16 32 64 128
tw.x 0 Multiple of

8
Multiple of
16

Multiple of
32

Multiple of
64

Multiple of
128

tw.h, tw.y
tw.h 0 (=256) 8 16 32 64 128
tw.y 0 Multiple of

8
Multiple of
16

Multiple of
32

Multiple of
64

Multiple of
128

7-6 Basic Graphics Library Structures

Run-Time Library Reference

See also
DrawOTagEnv(), DumpDrawEnv(), GetDrawEnv(), PutDrawEnv(), SetDefDrawEnv(), SetDrawEnv()

Basic Graphics Library Structures 7-7

Run-Time Library Reference

DR_AREA
Drawing area change primitive.

Library Header File Introduced Documentation Date
libgpu.lib libgpu.h 3.0 12/14/98

Structure
struct DR_AREA {

u_long *tag; Pointer to the next primitive in primitive list
u_long code[2]; New drawing area information specified by SetDrawArea()

};

Explanation
Modifies the drawing area of the current drawing environment while a primitive list is being drawn. Use
SetDrawArea() to set the contents of this primitive.

See also
GetDrawArea(), SetDrawArea()

7-8 Basic Graphics Library Structures

Run-Time Library Reference

DR_ENV
Drawing environment modification primitive.

Library Header File Introduced Documentation Date
libgpu.lib libgpu.h 2.x 12/14/98

Structure
struct DR_ENV {

u_long *tag; Pointer to the next primitive in primitive list
u_long code[15]; New drawing environment information specified by SetDrawEnv()

};

Explanation
Changes the drawing environment (DRAWENV) while a primitive list is being drawn. Use SetDrawEnv() to
specify the new DRAWENV parameters.

This primitive affects only the drawing environment, not the display environment (see DISPENV). The entire
drawing environment may be changed using this primitive; see also the DR_MODE primitive, which sets a
subset of the drawing environment.

See also
SetDrawEnv(), PutDrawEnv()

Basic Graphics Library Structures 7-9

Run-Time Library Reference

DR_LOAD
Load Image primitive.

Library Header File Introduced Documentation Date
libgpu.lib libgpu.h 3.4 12/14/98

Structure
typedef struct {

u_long *tag; Pointer to next primitive (reserved)
u_long code[3]; Primitive ID
u_long p[13]; Transfer data

} DR_LOAD;

Explanation
Transfers data below array p to the frame buffer. As with LoadImage(), semitransparent/ transparent color
control is not performed. Also, there is no dependence on the drawing environment.

Maximum data transfer amount is 12 words (24 pixels).

See also
LoadImage(), SetDrawLoad()

7-10 Basic Graphics Library Structures

Run-Time Library Reference

DR_MODE
Drawing mode modification primitive.

Library Header File Introduced Documentation Date
libgpu.lib libgpu.h 3.0 12/14/98

Structure
typedef struct {

u_long *tag; Pointer to the next primitive in primitive list
u_long code[2]; New drawing environment information as specified by

SetDrawMode()
} DR_MODE;

Explanation
Changes the texture page, texture window, dithering flag, and drawing flag parameters of the current
drawing environment while a primitive list is being drawn. See the tpage, tw, dtd, and dfe members of the
DRAWENV structure for more information. Use SetDrawMode() to specify the parameters to be used.

See also
SetDrawMode(), GetDrawMode()

Basic Graphics Library Structures 7-11

Run-Time Library Reference

DR_MOVE
Rectangle copy primitive.

Library Header File Introduced Documentation Date
libgpu.lib libgpu.h 3.2 12/14/98

Structure
typedef struct {

u_long tag; Hook to the next primitive (reserved)
u_long code[5]; Primitive ID

} DR_MOVE;

Explanation
Copies a rectangle. Speed is the same as MoveImage().

Unlike the 16-bit SPRT primitive, semitransparent/transparent color control is not carried out. Also, transfer
does not depend on the drawing environment.

See also
MoveImage(), MoveImage2(), SetDrawMove()

7-12 Basic Graphics Library Structures

Run-Time Library Reference

DR_OFFSET
Drawing offset modification primitive.

Library Header File Introduced Documentation Date
libgpu.lib libgpu.h 3.0 12/14/98

Structure
typedef struct {

u_long *tag; Pointer to the next primitive in primitive list
u_long code[2]; New drawing offset information specified by SetDrawOffset()

} DR_OFFSET;

Explanation
Changes the drawing offset parameters of the current drawing environment while a primitive list is being
drawn. See the ofs member of the DRAWENV structure for more information. Use SetDrawOffset() to
specify the parameters to be used.

See also
GetDrawOffset(), SetDrawOffset()

Basic Graphics Library Structures 7-13

Run-Time Library Reference

DR_STP
STP bit updated primitive.

Library Header File Introduced Documentation Date
libgpu.lib libgpu.h 4.1 12/14/98

Structure
typedef struct DR_STP {

u_long tag; Pointer to the next primitive in primitive list (reserved)
u_long code[2]; Primitive ID

} DR_STP;

Explanation
Updates the STP bit during drawing. Use SetDrawStp() to set the contents of this primitive.

See also
SetDrawStp()

7-14 Basic Graphics Library Structures

Run-Time Library Reference

DR_TPAGE
Texture page change primitive.

Library Header File Introduced Documentation Date
libgpu.lib libgpu.h 3.5 12/14/98

Structure
typedef struct {

u_long *tag; Pointer to the next primitive in primitive list
u_long code[2]; New texture page information specified by SetDrawTPage()

} DR_TPAGE;

Explanation
Changes the texture page parameter of the current drawing environment while a primitive list is being
drawn. See the tpage member of the DRAWENV structure for more information. Use SetDrawTPage() to
specify the parameters to be used.

See also
SetDrawTPage()

Basic Graphics Library Structures 7-15

Run-Time Library Reference

DR_TWIN
Texture window change primitives.

Library Header File Introduced Documentation Date
libgpu.lib libgpu.h 3.0 12/14/98

Structure
typedef struct {

u_long *tag; Pointer to the next primitive in primitive list
u_long code[2]; New texture window information specified by

SetDrawTexWindow()
} DR_TWIN;

Explanation
Changes the texture window of the current drawing environment while a primitive list is being drawn. See
the tw member of the DRAWENV structure for more information. Use SetTexWindow() to specify the
parameters to be used.

See also
GetTexWindow(), SetTexWindow()

7-16 Basic Graphics Library Structures

Run-Time Library Reference

LINE_F2, LINE_F3, LINE_F4
One flat-shaded non-connecting line/ Two flat-shaded connected lines/ Three flat-shaded connected lines.

Library Header File Introduced Documentation Date
libgpu.lib libgpu.h 2.x 12/14/98

Structure
struct LINE_F2 {

u_long *tag; Pointer to the next primitive (reserved)
u_char r0, g0, b0; RGB color specifed by straight line
u_char code; Primitive ID
short x0, y0, x1, y1; Coordinate of vertices forming straight lines

};

struct LINE_F3 {
u_long *tag; Pointer to the next primitive (reserved)
u_char r0, g0, b0; RGB color specifed by straight line
u_char code; Primitive ID
short x0, y0, x1, y1, x2, y2; Coordinate of vertices forming straight lines
u_long pad; Reserved

};

struct LINE_F4 {
u_long *tag; Pointer to the next primitive (reserved)
u_char r0, g0, b0; RGB color specifed by straight line
u_char code; Primitive ID
short x0, y0, x1, y1, x2, y2, x3,

y3;
Coordinate of vertices forming straight lines

u_long pad; Reserved
};

Explanation
LINE_F2 draws a non-connecting line linking (x0, y0) - (x1, y1) with the RGB color specifed by (r0, g0, b0).

LINE_F3 draws 2 connecting lines linking (x0, y0) - (x1, y1) - (x2, y2) with the RGB color specifed by (r0, g0,
b0).

LINE_F4 draws 3 connecting lines linking (x0, y0) - (x1, y1) - (x2, y2) - (x3, y3), with the RGB color specifed
by (r0, g0, b0).

See also
SetLineF2()

Basic Graphics Library Structures 7-17

Run-Time Library Reference

LINE_G2, LINE_G3, LINE_G4
One Gouraud-shaded non-connecting line/ Two Gouraud-shaded connected lines/ Three Gouraud-shaded
connected lines

Library Header File Introduced Documentation Date
libgpu.lib libgpu.h 2.x 12/14/98

Structure
struct LINE_G2 {

u_long *tag; Pointer to the next primitive
u_char r0, g0, b0; RGB color values
u_char code; Primitive ID (reserved)
short x0, y0; Vertex coordinates
u_char r1, g1, b1; RGB color values
u_char p1; Primitive ID (reserved)
short x1, y1; Vertex coordinates

};

struct LINE_G3 {
u_long *tag; Pointer to the next primitive
u_char r0, g0, b0; RGB color values
u_char code; Primitive ID (reserved)
short x0, y0; Vertex coordinates
u_char r1, g1, b1; RGB color values
u_char p1; Primitive ID (reserved)
short x1, y1; Vertex coordinates
u_char r2, g2, b2; RGB color values
u_char p2; Primitive ID (reserved)
short x2, y2; Vertex coordinates
u_long pad; Reserved

};

struct LINE_G4 {
u_long *tag; Pointer to the next primitive
u_char r0, g0, b0; RGB color values
u_char code; Primitive ID (reserved)
short x0, y0; Vertex coordinates
u_char r1, g1, b1; RGB color values
u_char p1; Primitive ID (reserved)
short x1, y1; Vertex coordinates
u_char r2, g2, b2; RGB color values
u_char p2; Primitive ID (reserved)
short x2, y2; Vertex coordinates
u_char r3, g3, b3; RGB color values
u_char p3; Primitive ID (reserved)
short x3, y3; Vertex coordinates
u_long pad; Reserved

};

Explanation
LINE_G2 draws a non-connecting line linking (x0, y0) - (x1, y1) in such a way that its vertices have the RGB
color specified by (r0, g0, b0) - (r1, g1, b1), and perform Gouraud shading at the same time.

7-18 Basic Graphics Library Structures

Run-Time Library Reference

LINE_G3 draws connecting lines linking (x0, y0) - (x1, y1)- (x2, y2) in such a way that their vertices have the
RGB color specified by (r0, g0, b0) - (r1, g1, b1) - (r2, g2, b2), and perform Gouraud shading at the same
time.

LINE_G4 draws connecting lines linking (x0, y0) - (x1, y1)- (x2, y2) - (x3, y3) in such a way that their vertices
have the RGB color specified by (r0, g0, b0) - (r1, g1, b1) - (r2, g2, b2) - (r3, g3, b3) and perform Gouraud
shading at the same time.

See also
SetLineF2()

Basic Graphics Library Structures 7-19

Run-Time Library Reference

POLY_F3, POLY_F4
Flat-shaded, non-textured mapped triangel/ Flat-shaded, not-textured mapped quad.

Library Header File Introduced Documentation Date
libgpu.lib libgpu.h 2.x 12/14/98

Structure
struct POLY _F3 {

u_long *tag; Pointer to the next primitive
u_char r0, g0, b0; RGB color values
u_char code; Primitive ID (reserved)
short x0, y0; Vertex coordinates
short x1, y1; Vertex coordinates
short x2, y2; Vertex coordinates

};

struct POLY_F4 {
u_long *tag; Pointer to the next primitive
u_char r0, g0, b0; RGB color values
u_char code; Primitive ID (reserved)
short x0, y0; Vertex coordinates
short x1, y1; Vertex coordinates
short x2, y2; Vertex coordinates
short x3, y3; Vertex coordinates

};

Explanation
POLY_F3 paints the area demarcated by (x0, y0) - (x1, y1) - (x2, y2) using RGB color specified by (ro, g0,
b0).

POLY_F4 paints the area demarcated by (x0, y0) - (x1, y1) - (x3, y3) - (x2, y2) using RGB color specified by
(ro, g0, b0).

The address where a picture is actually drawn is equivalent to the value of x0-x3 to which the offset value
specified by the drawing environment is added. What is drawn is clipped according to the clip area
(quadrilateral area) specified by the drawing environment.

If the polygon has a width greater than 1024 and a height greater than 512, all of it is clipped. In the case of
a quadrilateral primitive, the corners are specified in the order shown below.

Figure 7–1

(x0,y0) (x1,y1)

(x2,y2) (x3,y3)

See also
SetPolyF3()

7-20 Basic Graphics Library Structures

Run-Time Library Reference

POLY_FT3, POLY_FT4
Flat-shaded, texture-mapped triangle/ Flat-shaded, texture-mapped quad.

Library Header File Introduced Documentation Date
libgpu.lib libgpu.h 2.x 12/14/98

Structure
struct POLY_FT3 {

u_long *tag; Pointer to the next primitive
u_char r0, g0, b0; RGB color values
u_char code; Primitive ID (reserved)
short x0, y0; Vertex coordinates
u_char u0, v0; Texture coordinates
u_short clut; CLUT ID (color-look-up table for 4-bit/8-bit mode only)
short x1, y1; Vertex coordinates
u_char u1, v1; Texture coordinates
u_short tpage; Texture page ID
short x2, y2; Vertex coordinates
u_char u2, v2; Texture coordinates
u_short pad1; Reserved by the system

};

struct POLY_FT4 {
u_long *tag; Pointer to the next primitive
u_char r0, g0, b0; RGB color values
u_char code; Primitive ID (reserved)
short x0, y0; Vertex coordinates
u_char u0, v0; Texture coordinates
u_short clut; CLUT ID (color-look-up table for 4-bit/8-bit mode only)
short x1, y1; Vertex coordinates
u_char u1, v1; Texture coordinates
u_short tpage; Texture page ID
short x2, y2; Vertex coordinates
u_char u2, v2; Texture coordinates
u_short pad1; Reserved by the system
short x3, y3; Vertex coordinates
u_char u3, v3; Texture coordinates
u_short pad2; Reserved by the system

};

Explanation
POLY_FT3 draws an area demarcated by (x0, y0) - (x1, y1) - (x2, y2) while mapping the area demarcated
by (u0, v0) - (u1, v1) - (u2, v2) in the texture pattern on the texture page tpage.

POLY_FT4 draws an area demarcated by (x0, y0) - (x1, y1) - (x3, y3) - (x2, y2) while mapping the area
demarcated by (u0, v0) - (u1, v1) - (u3, v3) - (u2, v2) in the texture pattern on the texture page tpage.

The actual brightness value for drawn graphics are obtained by multiplying the RGB color values from the
texture pattern by the RGB color values given by r0, g0, b0.

The texture coordinates are the coordinates (0 to 255) inside the texture page corresponding to the vertices
of the triangle to be drawn. if the texture mode is 4-bit or 8-bit, the texture coordinates and the actual frame
buffer address are not 1-to-1.

Texture page ID is given to tpage. Using GetTPage(), the texture page ID is obtained from the address (x, y)
of the buffer frame where the texture page is located.

Basic Graphics Library Structures 7-21

Run-Time Library Reference

A texture using CLUT gives CLUT ID to be set in clut. Using GetClut(), CLUT ID is obtained from the
address (x, y) of the frame buffer where CLUT is located.

The size of the texture page which can be used by one drawing command is 256 x 256. One primitive can
only use one texture page.

In the case of a quadrilateral primitive, the corners are specified in the order shown below. The same
applies to designation of (u, v) for a texture map rectangle, and (r, g, b) for a Gouraud shaded rectangle.

Figure 7–2

(x0,y0) (x1,y1)

(x2,y2) (x3,y3)

See also
GetTPage(), GetClut(), SetPolyF3()

7-22 Basic Graphics Library Structures

Run-Time Library Reference

POLY_G3, POLY_G4
Gouraud-shaded, non-textured mapped triangle/ Gouraud-shaded, non-textured mapped quad.

Library Header File Introduced Documentation Date
libgpu.lib libgpu.h 2.x 12/14/98

Structure
struct POLY_G3 {

u_long *tag; Pointer to the next primitive
u_char r0, g0, b0; RGB color values
u_char code; Primitive ID (reserved)
short x0, y0; Vertex coordinates
u_char r1, g1, b1; RGB color values
u_char pad1; Reserved by the system
short x1, y1; Vertex coordinates
u_char r2, g2, b2; RGB color values
u_char pad2; Reserved by the system
short x2, y2; Vertex coordinates

};

struct POLY_G4 {
u_long *tag; Pointer to the next primitive
u_char r0, g0, b0; RGB color values
u_char code; Primitive ID (reserved)
short x0, y0; Vertex coordinates
u_char r1, g1, b1; RGB color values
u_char pad1; Reserved by the system
short x1, y1; Vertex coordinates
u_char r2, g2, b2; RGB color values
u_char pad2; Reserved by the system
short x2, y2; Vertex coordinates
u_char r3, g3, b3; RGB color values
u_char pad3; Reserved by the system
short x3, y3; Vertex coordinates

};

Explanation
When drawing while performing Gouraud shading, POLY_G3 paints the area demarcated by (x0, y0) - (x1,
y1) - (x2, y2) so that vertex RGB color value may be set to (r0, g0, b0) - (r1, g1, b1) - (r2, g2, b2).

When drawing while performing Gouraud shading, POLY_G4 paints the area demarcated by (x0, y0) - (x1,
y1) - (x3, y3) - (x2, y2) so that vertex RGB color value may be set to (r0, g0, b0) - (r1, g1, b1) - (r3, g3, b3) -
(r2, g2, b2).

The brightness of triangle-internal pixels is calculated by performing linear interpolation of the RGB color
values of the three vertices. (Gouraud shading).

See also
SetPolyF3()

Basic Graphics Library Structures 7-23

Run-Time Library Reference

POLY_GT3, POLY_GT4
Gouraud-shaded, texture-mapped triangle/ Gouraud-shaded, texture-mapped quad.

Library Header File Introduced Documentation Date
libgpu.lib libgpu.h 2.x 12/14/98

Structure
struct POLY_GT3 {

u_long *tag; Pointer to the next primitive
u_char r0, g0, b0; RGB color values
u_char code; Primitive ID (reserved)
short x0, y0; Vertex coordinates
u_char u0, v0; Texture coordinates
u_short clut; CLUT ID (color-look-up table for 4-bit/8-bit mode only)
u_char r1, g1, b1; RGB color values
u_char p1; Primitive ID (reserved)
short x1, y1; Vertex coordinates
u_char u1, v1; Texture coordinates
u_short tpage; Texture page ID
u_char r2, g2, b2; RGB color values
u_char p2; Primitive ID (reserved)
short x2, y2; Vertex coordinates
u_char u2, v2; Texture coordinates
u_short pad2; Reserved by the system

};

struct POLY_GT4 {
u_long *tag; Pointer to the next primitive
u_char r0, g0, b0; RGB color values
u_char code; Primitive ID (reserved)
short x0, y0; Vertex coordinates
u_char u0, v0; Texture coordinates
u_short clut; CLUT ID (color-look-up table for 4-bit/8-bit mode only)
u_char r1, g1, b1; RGB color values
u_char p1; Primitive ID (reserved)
short x1, y1; Vertex coordinates
u_char u1, v1; Texture coordinates
u_short tpage; Texture page ID
u_char r2, g2, b2; RGB color values
u_char p2; Primitive ID (reserved)
short x2, y2; Vertex coordinates
u_char u2, v2; Texture coordinates
u_short pad2; Reserved by the system
u_char r3, g3, b3; RGB color values
u_char p3; Primitive ID (reserved)
short x3, y3; Vertex coordinates
u_char u3, v3; Texture coordinates
u_short pad3; Reserved by the system

};

Explanation
POLY_GT3 draws a triangle performing texture mapping and Gouraud shading simultaneously.

POLY_GT4 draws a quadrilateral performing texture mapping and Gouraud shading simultaneously.

7-24 Basic Graphics Library Structures

Run-Time Library Reference

The actual RGB color values for the picture are equal to the RGB color values obtained from the texture
pattern multiplied by the RGB color values calculated by Gouraud shading.

See also
SetPolyF3()

Basic Graphics Library Structures 7-25

Run-Time Library Reference

RECT
Frame buffer rectangular area.

Library Header File Introduced Documentation Date
libgpu.lib libgpu.h 2.x 12/14/98

Structure
struct RECT {

short x, y; Top left coordinates of the rectangular area
short w, h; Width and height of the rectangular area

};

Explanation
Used by several library functions to specify a rectangular area of the frame buffer. Neither negative values,
nor values exceeding the size of the frame buffer (1024x512), may be specified.

See also
ClearImage(), LoadImage(), MoveImage(), StoreImage(), dumpRECT(), setRECT()

7-26 Basic Graphics Library Structures

Run-Time Library Reference

RECT32
Rectangular area (32 bit)

Library Header File Introduced Documentation Date
libgpu.lib libgpu.h 4.3 12/14/98

Structure
typedef struct {

int x, y; Top left coordinates of the rectangular area
int w, h; Width and height of the rectangular area

} RECT32;

Explanation
Used by several library functions to specify a rectangular area of the frame buffer. Neither negative values,
nor values exceeding the size of the frame buffer (1024x512) may be specified.

See also

Basic Graphics Library Structures 7-27

Run-Time Library Reference

SPRT
Sprite of any desired size.

Library Header File Introduced Documentation Date
libgpu.lib libgpu.h 2.x 12/14/98

Structure
struct SPRT {

u_long *tag; Pointer to next primitive (reserved)
u_char r0, g0, b0; RGB color values for sprite
u_char code; Primitive code (reserved)
short x0, y0; Position of sprite (top left coordinate)
u_char u0, v0; Position of sprite texture within the texture page (top left coordinate). u0

should be an even number.
u_short clut; CLUT ID used (for 4-bit/8-bit mode only)
short w, h; Width and height of sprite. w is an even number

};

Explanation
Draws a texture-mapped rectangular area. Drawing speed for a SPRT primitive is faster than for a
POLY_FT4.

Only even numbers can be specified for u0 and w.

Because the SPRT primitive has no tpage parameter, the texture page of the current drawing environment
is used. You can change the texture page by inserting a DR_TPAGE or DR_MODE primitive into the
primitive list before your SPRT primitive.

See also
SetSprt()

7-28 Basic Graphics Library Structures

Run-Time Library Reference

SPRT_8, SPRT_16
8 x 8 fixed size, texture-mapped sprite / 16 x 16 fixed size, texture-mapped sprite.

Library Header File Introduced Documentation Date
libgpu.lib libgpu.h 2.x 12/14/98

Structure
struct SPRT_16 {

u_long *tag; Pointer to next primitive (reserved)
u_char r0, g0, b0; RGB color values for sprite
u_char code; Primitive code (reserved)
short x0, y0; Position of sprite (top left coordinate)
u_char u0, v0; Position of sprite texture within the texture page (top left coordinate). u0

should be an even number.
u_short clut; CLUT ID used (for 4-bit/8-bit mode only)

};

struct SPRT_8 {
u_long *tag; Pointer to next primitive (reserved)
u_char r0, g0, b0; RGB color values for sprite
u_char code; Primitive code (reserved)
short x0, y0; Position of sprite (top left coordinate)
u_char u0, v0; Position of sprite texture within the texture page (top left coordinate). u0

should be an even number.
u_short clut; CLUT ID used (for 4-bit/8-bit mode only)

};

Explanation
Draws a sprite with a fixed size of 8 x 8 or 16 x 16. The same result can be obtained if 8 and 16 are
designated as the w and h members of the SPRT structure.

See also
SetSprt()

Basic Graphics Library Structures 7-29

Run-Time Library Reference

TILE
Tile of any desired size.

Library Header File Introduced Documentation Date
libgpu.lib libgpu.h 2.x 12/14/98

Structure
struct TILE {

u_long *tag; Pointer to next primitive (reserved)
u_char r0, g0, b0; RGB color values for sprite
u_char code; Primitive code (reserved)
short x0, y0; Position of sprite (top left coordinate)
short w, h; Width and height of sprite. w is an even number

};

Explanation
Draws a rectangular area with the specified RGB color value (r0, g0, b0). No texture mapping or shading is
done. It is faster than the POLY_F4 primitive.

See also
SetTile()

7-30 Basic Graphics Library Structures

Run-Time Library Reference

TILE_1, TILE_8, TILE_16
1 x 1 fixed-size tile sprite / 8 x 8 fixed-size tile sprite / 16 x 16 fixed-size tile sprite.

Library Header File Introduced Documentation Date
libgpu.lib libgpu.h 2.x 12/14/98

Structure
struct TILE_16 {

u_long *tag; Pointer to next primitive (reserved)
u_char r0, g0, b0; RGB color values for sprite
u_char code; Primitive code (reserved)
short x0, y0; Position of sprite (top left coordinate)

};

struct TILE_8 {
u_long *tag; Pointer to next primitive (reserved)
u_char r0, g0, b0; RGB color values for sprite
u_char code; Primitive code (reserved)
short x0, y0; Position of sprite (top left coordinate)

};

struct TILE_1 {
u_long *tag; Pointer to next primitive (reserved)
u_char r0, g0, b0; RGB color values for sprite
u_char code; Primitive code (reserved)
short x0, y0; Position of sprite (top left coordinate)

};

Explanation
Fixed-size versions of the TILE primitive. The rectangular area is drawn with the specified RGB color value
(r0, g0, b0). No texture mapping or shading is done. These are faster than the POLY_F4 primitive.

See also
SetTile()

Basic Graphics Library Structures 7-31

Run-Time Library Reference

TIM_IMAGE
TIM format image data header.

Library Header File Introduced Documentation Date
libgpu.lib libgpu.h 2.x 12/14/98

Structure
typedef struct {

u_long mode; Pixel mode
RECT *crect; Pointer to destination rectangle in VRAM for CLUT data
u_long *caddr; Pointer to address of CLUT data in main memory
RECT *prect; Pointer to destination rectangle in VRAM for texture image data
u_long *paddr; Pointer to address of texture image data in main memory

} TIM_IMAGE;

Explanation
TIM data header information is acquired by ReadTIM().

crect and caddr are assigned a value of zero for TIM having no CLUT.

See also
ReadTIM()

7-32 Basic Graphics Library Structures

Run-Time Library Reference

TMD_PRIM
TMD format model data header.

Library Header File Introduced Documentation Date
libgpu.lib libgpu.h 2.x 12/14/98

Structure
typedef struct {

u_long id; TMD primitive ID
u_char r0, g0, b0, p0; RGB color values of vertex 1 (+ 1-byte pad)
u_char r1, g1, b1, p1; RGB color values of vertex 2 (+ 1-byte pad)
u_char r2, g2, b2, p2; RGB color values of vertex 3 (+ 1-byte pad)
u_char r3, g3, b3, p3; RGB color values of vertex 4 (+ 1-byte pad)
u_short tpage; Texture page ID
u_short clut; CLUT ID
u_char u0, v0, u1, v1; Texture vertex coordinates
u_char u2, v2, u3, v3; Texture vertex coordinates
SVECTOR x0, x1, x2, x3; Three-dimensional coordinates
SVECTOR n0, n1, n2, n3; Normal coordinates
SVECTOR *v_ofs; Pointer to start coordinates of a vertex array
SVECTOR *n_ofs; Pointer to start coordinates of a normal array
u_short vert0, vert1; Offset to vertex array
u_short vert2, vert3; Offset to vertex array
u_short norm0, norm1; Offset to normal array
u_short norm2, norm3; Offset to normal array

} TMD_PRIM;

Explanation
Information on primitives constituting a TMD object. The information is acquired using ReadTMD(). x0, x1,
x3, n0, n1,n3 are used for an independent vertex model. v_ofs, n_ofs and vert0,..vert3, norm0...norm3 are
used for a common vertex model.

Some members have no meaning depending on the TMD primitive type.

See also
ReadTMD()

Basic Graphics Library Functions 7-33

Run-Time Library Reference

Functions

AddPrim, addPrim
Register a primitive to the OT.

Library Header File Introduced Documentation Date
libgpu.lib libgpu.h 2.x 12/14/98

Syntax
void AddPrim (
void *ot OT entry
void *p) Start address of primitive to be registered

addPrim(ot, p) Macro version of AddPrim()

Explanation
Registers a primitive beginning with the address *p to the OT entry *ot in OT table. ot is an ordering table or
pointer to another primitive.

A primitive may be added to a primitive list only once in the same frame. Attempting to add it multiple times
in the same frame results in a corrupted list.

See also
AddPrims(), CatPrim()

7-34 Basic Graphics Library Functions

Run-Time Library Reference

AddPrims, addPrims
Collectively register primitives to the OT.

Library Header File Introduced Documentation Date
libgpu.lib libgpu.h 2.x 12/14/98

Syntax
void AddPrims(
void *ot, OT entry
void *p0, Start address of primitive list
void *p1) End address of primitive list

addPrims(ot, p0, p1) Macro version of AddPrims

Explanation
Registers primitives beginning with p0 and ending with p1 to the *ot entry in the OT.

The primitive list is a list of primitives connected by AddPrim() or created by the local ordering table.

See also
AddPrim()

Basic Graphics Library Functions 7-35

Run-Time Library Reference

BreakDraw
Interrupt drawing.

Library Header File Introduced Documentation Date
libgpu.lib libgpu.h 3.4 12/14/98

Syntax
u_long *BreakDraw(void)

Explanation
Interrupts drawing after the current polygon is drawn. The return value is the next drawing entry; to resume
drawing, pass this value to DrawOTag().

Return value
Next polygon drawing entry.

However, during a DMA transfer outside the OT (such as LoadImage(), etc.) 0xffffffff is returned.

See also
ContinueDraw(), DrawOTag(), IsIdleGPU()

7-36 Basic Graphics Library Functions

Run-Time Library Reference

CatPrim, catPrim
Concatenate primitives.

Library Header File Introduced Documentation Date
libgpu.lib libgpu.h 2.x 12/14/98

Syntax
void CatPrim(
void *p0, void *p1) Starting addresses of primitives to be concatenated

catPrim(p0, p1) Macro version of CatPrim()

Explanation
Links the primitive p1 to the primitive p0.

AddPrim() adds a primitive to a primitive list. CatPrim() simply concatenates two primitives.

Return value
Start address of p0.

See also
AddPrim()

Basic Graphics Library Functions 7-37

Run-Time Library Reference

CheckPrim
Check validity of a primitive.

Library Header File Introduced Documentation Date
libgpu.lib libgpu.h 2.x 12/14/98

Syntax
long CheckPrim(
char *s, Pointer to optimal character string
u_long *p) Pointer to primitive

Explanation
Checks the validity of the primitive. If the primitive is found to be invalid, a message is printed with the
contents of s followed by the type code and length of the primitive. The primitive is not modified in any
case.

Return value
0 for a valid primitive; -1 for an invalid primitive.

See also

7-38 Basic Graphics Library Functions

Run-Time Library Reference

ClearImage
Clear Frame Buffer at high speed.

Library Header File Introduced Documentation Date
libgpu.lib libgpu.h 2.x 12/14/98

Syntax
int ClearImage(
RECT *rect, Pointer to rectangular area to be cleared
u_char r, u_char g, u_char b) Pixel values to be used for clearing

Explanation
Sets the rectangular area rect in the Frame Buffer to RGB color values (r, g, b).

Because this is a non-blocking function, the end of the operation must be detected using DrawSync(). The
drawing area is not affected by the drawing environment (clip/offset).

When in interlace mode, use ClearImage2() instead.

Return value
Position of this command in the libgpu command queue.

See also
ClearImage2(), DrawSync()

Basic Graphics Library Functions 7-39

Run-Time Library Reference

ClearImage2
Clear Frame Buffer at high speed (interlace mode).

Library Header File Introduced Documentation Date
libgpu.lib libgpu.h 2.x 12/14/98

Syntax
int ClearImage2(
RECT *rect, Pointer to rectangular area to be cleared
u_char r, u_char g, u_char b) Pixel values to be used for clearing

Explanation
Sets the rectangular area rect in the Frame Buffer to RGB color values (r, g, b).

Although ClearImage() only clears one field when in interlace mode, ClearImage2() clears both fields.

Because this is a non-blocking function, the end of the operation must be detected using DrawSync(). The
drawing area is not affected by the drawing environment (clip/offset).

Return value
Position of this command in the libgpu command queue.

See also
ClearImage(), DrawSync()

7-40 Basic Graphics Library Functions

Run-Time Library Reference

ClearOTag
Initialize an array to a linked list for use as an ordering table.

Library Header File Introduced Documentation Date
libgpu.lib libgpu.h 2.x 12/14/98

Syntax
u_long *ClearOTag(
u_long *ot, OT starting pointer
int n) Number of entries in OT

Explanation
Walks the array specified by ot and sets each element to be a pointer to the following element, except the
last, which is set to a pointer to a special terminator value which the PlayStation uses to recognize the end
of a primitive list. n specifies the number entries in the array.

To execute the OT initialized by ClearOTag(), call DrawOTag(ot).

See also
DrawOTag(), ClearOTagR()

Basic Graphics Library Functions 7-41

Run-Time Library Reference

ClearOTagR
Initialize an array to a linked list for use as an ordering table.

Library Header File Introduced Documentation Date
libgpu.lib libgpu.h 2.x 12/14/98

Syntax
void ClearOTagR(
u_long *ot, Head pointer of OT
long n) Number of entries in OT

Explanation
Walks the array specified by ot and sets each element to be a pointer to the previous element, except the
first, which is set to a pointer to a special terminator value which the PlayStation uses to recognize the end
of a primitive list. n specifies how many entries are present in the array.

To execute the OT initialized by ClearOTagR(), execute DrawOTag(ot+n-1).

See also
DrawOTag(), ClearOTag()

7-42 Basic Graphics Library Functions

Run-Time Library Reference

ContinueDraw
Continue to draw the OT interrupted by BreakDraw()

Library Header File Introduced Documentation Date
libgpu.lib libgpu.h 2.x 12/14/98

Syntax
void ContinueDraw(
u_long *inst_ot, Address of interrupting OT
u_long *cont_ot) Address of drawn OT immediately after drawing inst_ot

Explanation
Immediately executes the OT supplied by inst_ot without entering it in the libgpu queue. When the drawing
of inst_ot is completed, it then draws cont_ot. Since the GPU must be in an immediately executable state,
ContinueDraw() must be used in combination with routines such as BreakDraw().

This function is used when you wish to draw a specific OT with certain timing and high priority. In such
cases, this can be achieved by using BreakDraw() to interrupt the OT being drawn and by executing the
return value as cont_ot.

See also
BreakDraw()

Basic Graphics Library Functions 7-43

Run-Time Library Reference

DrawOTag
Execute a list of GPU primitives.

Library Header File Introduced Documentation Date
libgpu.lib libgpu.h 3.0 12/14/98

Syntax
void DrawOTag(
u_long *ot) Pointer to a linked list of GPU primitives

Explanation
Executes the GPU primitives in the linked list ot.

DrawOTag() is non-blocking. To detect when execution of the primitive list is complete, use DrawSync() or
install a callback routine with DrawSyncCallback().

See also
DrawSync(), DrawSyncCallback()

7-44 Basic Graphics Library Functions

Run-Time Library Reference

DrawOTag2
Execute a list of GPU primitives (immediate execution).

Library Header File Introduced Documentation Date
libgpu.lib libgpu.h 4.1 12/14/98

Syntax
int DrawOTag2(
u_long *p) Pointer to a linked list of GPU primitives

Explanation
Executes the GPU primitives in the linked list p.

When drawing has been suspended using BreakDraw() and you want to execute a linked list of GPU
primitives using DrawOTag(), immediate execution is not possible because of the need for queueing. If
immediate execution is desired, you must use DrawOTag2().

When drawing is suspended with BreakDraw() after DrawOTag2() is called, before restarting the drawing
with ContinueDraw(), it is necessary to confirm the completion of data transfer using IsIdleGPU(). This is
because DrawOTag2() is a non-blocking function.

Return value
0: Normal completion; -1: Abnormal completion.

See also
BreakDraw(), ContinueDraw(), IsIdleGPU(), DrawOTag()

Basic Graphics Library Functions 7-45

Run-Time Library Reference

DrawOTagEnv
Set the drawing environment and draw the primitives registered in the OT.

Library Header File Introduced Documentation Date
libgpu.lib libgpu.h 3.0 12/14/98

Syntax
void DrawOTagEnv
u_long *p, OT start pointer
DRAWENV *env) Drawing environment

Explanation
Sets drawing environment parameters and executes the primitives registered in the OT.

The drawing environment specified by DrawOTagEnv() is effective until PutDrawEnv(), DrawOTagEnv() or
the DR_ENV primitive are executed.

See also
PutDrawEnv(), DrawOTagEnv()

7-46 Basic Graphics Library Functions

Run-Time Library Reference

DrawOTagIO
Draw the primitives registered in the OT

Library Header File Introduced Documentation Date
libgpu.lib libgpu.h 3.0 12/14/98

Syntax
void DrawOTagIO(
u_long *p) Pointer to top of OT

Explanation
Collectively executes the primitives registered in the OT. It is the same as DrawOTag(), except that it uses
CPU I/O instead of DMA, which results in a significant speed decrease.

See also
DrawOTag()

Basic Graphics Library Functions 7-47

Run-Time Library Reference

DrawPrim
Draw a primitive.

Library Header File Introduced Documentation Date
libgpu.lib libgpu.h 2.x 12/14/98

Syntax
void DrawPrim(
void *p) Pointer to primitive

Explanation
Executes a primitive which has completed initialization. Slower than DrawOTag().

See also
DrawOTag()

7-48 Basic Graphics Library Functions

Run-Time Library Reference

DrawSync
Wait for all drawing to terminate.

Library Header File Introduced Documentation Date
libgpu.lib libgpu.h 2.x 12/14/98

Syntax
long DrawSync(
long mode) 0 Wait for termination of all non-blocking functions registered in the queue

1 Return the number of positions in the current queue

Explanation
Waits for drawing to terminate.

If DrawSync(0) is used, and execution of the primitive list takes an exceptionally long time (approximately
longer than 8 Vsync) to complete, a timeout is generated and the GPU is reset. Reasons why this might
occur include an exceptionally long primitive list, or one that renders exceptionally large numbers of pixels.
Another possibility is that the primitive list has been corrupted in some way. To avoid this, the application
can use a loop such as:

while(DrawSync(1));

Return value
Number of positions in the execution queue.

See also
DrawSyncCallback()

Basic Graphics Library Functions 7-49

Run-Time Library Reference

DrawSyncCallback
Define a callback function to be called when the GPU is finished executing a primitive list.

Library Header File Introduced Documentation Date
libgpu.lib libgpu.h 2.x 12/14/98

Syntax
void DrawSyncCallback(
void (*func)()) Pointer to callback function

Explanation
Defines a routine to be used as a callback when drawing is completed. When all requests in the queue
have terminated, the function func is called. If func is set to 0, then any previous callback routine is
disabled.

Inside the callback, subsequent drawing termination interrupts are masked. Therefore, the callback routine
should return as soon as possible. Although the specified function is called during an interrupt, it is not an
interrupt handler; it should be written as a normal subroutine that is called by the main interrupt handler.

See also
DrawSync()

7-50 Basic Graphics Library Functions

Run-Time Library Reference

DumpClut, dumpClut
Print contents of clut member of primitive.

Library Header File Introduced Documentation Date
libgpu.lib libgpu.h 2.x 12/14/98

Syntax
void DumpClut(
u_short clut) CLUT ID

dumpClut(clut) Macro version of DumpClut().

Explanation
Prints the CLUT contents.

See also
GetClut(), LoadClut()

Basic Graphics Library Functions 7-51

Run-Time Library Reference

DumpDispEnv
Print contents of display environment Structure.

Library Header File Introduced Documentation Date
libgpu.lib libgpu.h 2.x 12/14/98

Syntax
void DumpDispEnv(
DISPENV *env) Pointer to display environment

Explanation
Prints the contents of the display environment structure.

See also

7-52 Basic Graphics Library Functions

Run-Time Library Reference

DumpDrawEnv
Print contents of drawing environment structure.

Library Header File Introduced Documentation Date
libgpu.lib libgpu.h 2.x 12/14/98

Syntax
void DumpDrawEnv(
DRAWENV *env) Pointer to drawing environment

Explanation
Prints the contents of the drawing environment structure.

See also
SetDrawEnv()

Basic Graphics Library Functions 7-53

Run-Time Library Reference

DumpOTag
Print primitives registered in the OT.

Library Header File Introduced Documentation Date
libgpu.lib libgpu.h 2.x 12/14/98

Syntax
void DumpOTag(
u_long *ot) OT starting pointer

Explanation
Prints the code fields of the primitives registered in the OT.

See also
DrawOTag()

7-54 Basic Graphics Library Functions

Run-Time Library Reference

DumpTPage, dumpTPage

Print contents of tpage member of primitive.

Library Header File Introduced Documentation Date
libgpu.lib libgpu.h 2.x 12/14/98

Syntax
void DumpTPage(
u_short tpage) Texture page ID

dumpTPage(tpage) Macro version of DumpTPage().

Explanation
Prints the contents of the texture page ID.

See also
setTPage()

Basic Graphics Library Functions 7-55

Run-Time Library Reference

FntFlush
Draw contents of print stream.

Library Header File Introduced Documentation Date
libgpu.lib libgpu.h 2.x 12/14/98

Syntax
u_long *FntFlush(
long id) Print stream ID

Explanation
Draws the contents of the print stream into the frame buffer. It initializes and then draws a sprite primitive
list corresponding to the characters specified in the print stream.

When id is -1, the print stream ID which was set in SetDumpFnt() is used (0 if print stream ID was not set).

After the drawing has been done, the print stream contents are also flushed.

Return value
The starting pointer of the primitive list used to perform the drawing.

See also
SetDumpFnt()

7-56 Basic Graphics Library Functions

Run-Time Library Reference

FntLoad
Transmit font pattern.

Library Header File Introduced Documentation Date
libgpu.lib libgpu.h 2.x 12/14/98

Syntax
void FntLoad(
long tx, long ty) Font pattern frame buffer address

Explanation
Transmits the built-in text font used for debugging text output to the frame buffer. It loads the basic font
pattern (4-bit, 256x128) and initializes all the print streams.

FntLoad() must always be executed before FntOpen() and FntFlush(). The font area must not clash with the
frame buffer area used by the application. Font data is located at the upper left of the texture page for
FntFlush(). Font data is treated as a RECT (0,0,32,32) area consisting of 128 characters, each 128 x 32. As
this is similar to the texture page area, tx is restricted to a multiple of 64 and ty is restricted to a multiple of
256.

Loads the Clut to location (tx, ty+128).

See also
FntOpen(), FntFlush(), SetDumpFnt()

Basic Graphics Library Functions 7-57

Run-Time Library Reference

FntOpen
Open a print stream.

Library Header File Introduced Documentation Date
libgpu.lib libgpu.h 2.x 12/14/98

Syntax
long FntOpen(
long x, long y, Display start location
long w, long h, Display area
long isbg, Automatic clearing of background

0: Clear background to (0, 0, 0) when display is performed
1: Do not clear background to (0, 0, 0) when display is performed

long n) Maximum number of characters

Explanation
Opens the stream for on-screen printing. After this, character strings up to n characters long can be drawn
in the (x, y)- (x+w, y+h) rectangular area of the frame buffer, using FntPrint(). If isbg is 1, the background is
cleared when a character string is drawn.

Up to 8 streams can be opened at once. However, once a stream is opened, it cannot be closed until the
next time FntLoad() is called.

n specifies the maximum number of characters. Up to 1024 characters can be specified together in 8
streams.

Return value
The stream ID.

See also
FntLoad(), FntPrint()

7-58 Basic Graphics Library Functions

Run-Time Library Reference

FntPrint
Print a string.

Library Header File Introduced Documentation Date
libgpu.lib libgpu.h 2.x 12/14/98

Syntax
long FntPrint(
long id, Print stream ID
char *format) Pointer to print format

Explanation
Sends the string format to the specified print stream using the same interface as the fprintf() standard C
library function.

The character string is not actually displayed until FntFlush() has been executed.

Return value
The number of characters in the stream.

See also
FntOpen(), FntFlush()

Basic Graphics Library Functions 7-59

Run-Time Library Reference

GetClut, getClut
Calculate value of the CLUT member in a primitive.

Library Header File Introduced Documentation Date
libgpu.lib libgpu.h 2.x 12/14/98

Syntax
u_short GetClut(
int x, int y) Frame buffer address of CLUT

getClut(x, y) Macro version of getClut().

Explanation
Calculates and returns the texture CLUT ID.

The CLUT address is limited to multiples of 16 in the x direction.

Return value
CLUT ID.

See also
setClut()

7-60 Basic Graphics Library Functions

Run-Time Library Reference

GetDispEnv
Get current display environment.

Library Header File Introduced Documentation Date
libgpu.lib libgpu.h 2.x 12/14/98

Syntax
DISPENV *GetDispEnv(
DISPENV *env) Pointer to display environment start address

Explanation
Stores the current display environment in the address specified by env.

Return value
A pointer to the display environment obtained by the function.

See also
PutDispEnv(), SetDefDispEnv()

Basic Graphics Library Functions 7-61

Run-Time Library Reference

GetDrawArea
Get data for the current draw area.

Library Header File Introduced Documentation Date
libgpu.lib libgpu.h 4.3 12/14/98

Syntax
void GetDrawArea(
DR_AREA *p) starting address for DR_AREA primitive

Explanation
Reads GPU's current draw area settings into p.

p must be initialized beforehand using SetDrawArea().

See also
SetDrawArea()

7-62 Basic Graphics Library Functions

Run-Time Library Reference

GetDrawEnv
Get the current drawing environment.

Library Header File Introduced Documentation Date
libgpu.lib libgpu.h 2.x 12/14/98

Syntax
DRAWENV *GetDrawEnv(
DRAWENV *env) Pointer to drawing environment start address

Explanation
Stores the current drawing environment in the address specified by env.

Return value
A pointer to the drawing environment obtained.

See also
PutDrawEnv(), SetDrawEnv()

Basic Graphics Library Functions 7-63

Run-Time Library Reference

GetDrawMode
Get current draw mode data

Library Header File Introduced Documentation Date
libgpu.lib libgpu.h 4.3 12/14/98

Syntax
void GetDrawMode(
DR_MODE *p) Starting address for DR_MODE primitives

Explanation
Reads GPU's current draw mode settings into p.

p must be initialized beforehand with SetDrawMode().

See also
SetDrawMode()

7-64 Basic Graphics Library Functions

Run-Time Library Reference

GetDrawOffset
Get the current draw offset.

Library Header File Introduced Documentation Date
libgpu.lib libgpu.h 4.3 12/14/98

Syntax
void GetDrawOffset(
DR_OFFSET *p) Starting address for DR_OFFSET primitive

Explanation
Reads GPU's current draw offset settings into p.

p must be initialized beforehand with SetDrawOffset().

See also
SetDrawOffset()

Basic Graphics Library Functions 7-65

Run-Time Library Reference

GetGraphDebug
Get present debug level.

Library Header File Introduced Documentation Date
libgpu.lib libgpu.h 3.0 12/14/98

Syntax
int GetGraphDebug(void)

Explanation
Gets graphics system debug level.

Return value
Present debug level value.

See also

7-66 Basic Graphics Library Functions

Run-Time Library Reference

GetODE
Get field currently being drawn.

Library Header File Introduced Documentation Date
libgpu.lib libgpu.h 2.x 12/14/98

Syntax
int GetODE(void)

Explanation
Gets field currently being drawn.

Return value
Current drawing field:
0: VRAM even address being drawn
1: VRAM odd address being drawn

See also

Basic Graphics Library Functions 7-67

Run-Time Library Reference

GetTexWindow
Get current texture window data.

Library Header File Introduced Documentation Date
libgpu.lib libgpu.h 4.3 12/14/98

Syntax
void GetTexWindow(
DR_TWIN *p) Starting address for DR_TWIN primitives

Explanation
Reads GPU's current texture window settings into p.

p must be initialized beforehand with SetTexWindow().

See also
SetTexWindow()

7-68 Basic Graphics Library Functions

Run-Time Library Reference

GetTimSize
Calculate size of Tim data domain returned by Krom2Tim().

Library Header File Introduced Documentation Date
libgpu.lib libgpu.h 3.0 12/14/98

Syntax
int GetTimSize(
u_char *sjis) Pointer to sjis character string

Explanation
Calculates size of the Tim data domain returned by Krom2Tim(). This size domain is maintained in malloc()
and is designated Krom2Tim().

Return value
Size of Tim data domain returned by Krom2Tim().

See also
Krom2Tim()

Basic Graphics Library Functions 7-69

Run-Time Library Reference

GetTPage, getTPage
Calculate value of member tpage in a primitive.

Library Header File Introduced Documentation Date
libgpu.lib libgpu.h 2.x 12/14/98

Syntax
u_short GetTPage(
int tp, Texture mode

0: 4bitCLUT
1: 8bitCLUT
2: 16bitDirect

int abr, Semitransparency rate
0: 0.5 x Back + 0.5 x Forward
1: 1.0 x Back + 1.0 x Forward
2: 1.0 x Back - 1.0 x Forward
3: 1.0 x Back + 0.25 x Forward

int x, int y) Texture page address

getTPage(tp, abr, x, y) Macro version of GetTPage().

Explanation
Calculates the texture page ID, and returns it.

The semitransparent rate is also effective for polygons on which texture mapping is not performed.

The texture page address is limited to a multiple of 64 in the X direction and a multiple of 256 in the Y
direction.

Return value
Texture page ID.

See also
setTPage(), DumpTPage()

7-70 Basic Graphics Library Functions

Run-Time Library Reference

IsEndPrim, isendprim
Determine if a primitive is the last in a list.

Library Header File Introduced Documentation Date
libgpu.lib libgpu.h 2.x 12/14/98

Syntax
int IsEndPrim(
void *p) Primitive start address

isendprim(p) Macro version of IsEndPrim().

Explanation
Decides if the end of the primitive list is p.

Return value
1: final end case; 0: non-final end case.

See also
AddPrim()

Basic Graphics Library Functions 7-71

Run-Time Library Reference

IsIdleGPU
Check if drawing suspended by BreakDraw() was completed.

Library Header File Introduced Documentation Date
libgpu.lib libgpu.h 3.6 12/14/98

Syntax
int IsIdleGPU(
int maxcount) Count value

Explanation
Checks whether the GPU is idle.

When drawing is suspended by BreakDraw(), the GPU doesn’t stop until drawing of the current primitive is
completed. This function checks whether the drawing suspended by BreakDraw() has completed.
maxcount is the number of times the function will check for idle before returning.

Return value
0: GPU is in idle state. -1: GPU is in drawing state.

See also
BreakDraw()

7-72 Basic Graphics Library Functions

Run-Time Library Reference

KanjiFntClose
Close print streams.

Library Header File Introduced Documentation Date
libgpu.lib libgpu.h 3.0 12/14/98

Syntax
void KanjiFntClose(void)

Explanation
Closes all the streams currently open and are by KanjiFntPrint() and initializes the state of the Kanji font
ruoutines. It will function correctly even when no streams are open.

See also
KanjiFntFlush(), KanjiFntOpen(), KanjiFntPrint()

Basic Graphics Library Functions 7-73

Run-Time Library Reference

KanjiFntFlush
Draw contents of a Kanji print stream.

Library Header File Introduced Documentation Date
libgpu.lib libgpu.h 3.0 12/14/98

Syntax
u_long *KanjiFntFlush(
int id) Print stream ID

Explanation
Draws the contents of the Kanji print stream into the frame buffer. It initializes and then draws a sprite
primitive list corresponding to the characters specified in the print stream.

The contents of a print stream are also flushed after the end of drawing.

To internally reserve the transfer buffer on the stack, approximately 72K is needed.

Return value
Start pointer of a primitive list used for drawing

See also
KanjiFntClose(), KanjiFntOpen(), KanjiFntPrint()

7-74 Basic Graphics Library Functions

Run-Time Library Reference

KanjiFntOpen
Open a print stream.

Library Header File Introduced Documentation Date
libgpu.lib libgpu.h 3.0 12/14/98

Syntax
int KanjiFntOpen(
int x, int y, Position of starting display
int w, int h, Display area
int dx, int dy, Kanji font pattern frame buffer address
int cx, int cy, Kanji clut frame buffer address
int isbg, Automatic background clear

0: Does not clear the background to (0, 0, 0) during display
1: Clears the background to (0, 0, 0) during display

int n) Maximum number of characters

Explanation
Opens a stream for screen printing. Then, KanjiFntPrint() can be used to render a character string
composed of up to n characters in the rectangular area of (x, y) and (x+w, y+h) in the frame buffer. With
isbg assigned a value of one, the background is cleared when a character string is rendered.

Up to eight streams can be opened at a time. The opened stream cannot be closed until KanjiFntLoad() is
called. The kanji font area must not interfere in the frame buffer area used for applications.

Return value
Stream ID.

See also
KanjiFntClose(), KanjiFntFlush(), KanjiFntPrint()

Basic Graphics Library Functions 7-75

Run-Time Library Reference

KanjiFntPrint
Print a string, in SJIS ZENKAKU format.

Library Header File Introduced Documentation Date
libgpu.lib libgpu.h 3.0 12/14/98

Syntax
int KanjiFntPrint(
int id, Print stream ID
char *format, [arg]...) Pointer to print format

Explanation
Send SJIS ZENKAKU string using printf() interface.

KANJI code must be the SJIS. Although both ZENKAKU and HANKAKU characters can be mixed in the
string, a HANKAKU character is converted to ZENKAKU when it is drawn. HANKAKU KANA characters are
not supported. Actual drawing of the string is done at execution of KanjiFntFlush(). When there is ~p in the
string format, all the characters after ~p are drawn in half-pitch.

Return value
Number of characters within the stream.

See also
KanjiFntClose(), KanjiFntFlush(), KanjiFntOpen()

7-76 Basic Graphics Library Functions

Run-Time Library Reference

Krom2Tim
Convert SJIS character string to 4-bit CLUT Tim data.

Library Header File Introduced Documentation Date
libgpu.lib libgpu.h 3.0 12/14/98

Syntax
int Krom2Tim (
u_char *sjis SJIS character string
u_long *taddr, Tim area for storing data
int dx, int dy, Pixel data x,y coordinates on VRAM
int cdx, int cdy, Clut data x,y coordinates on VRAM
u_int fg, u_int bg) Character color and bg color

Explanation
Converts SJIS character string to 4 bits CLUT TIM data and returns it to taddr.

The size area returned by GetTimSize() must be secured in advance.

The Kanji code must be SJIS. Full-width and half-width characters can be mixed within the character string,
but when they are displayed, they area ll converted to full-width characters. Half-width characters are not
supported.

To internally reserve the transfer buffer on the stack, approximately 72K is needed.

Return value
When an abnormal code is given, -1 is returned; 0 otherwise.

See also
GetTimSize()

Basic Graphics Library Functions 7-77

Run-Time Library Reference

LoadClut
Load 256-color CLUT.

Library Header File Introduced Documentation Date
libgpu.lib libgpu.h 2.x 12/14/98

Syntax
u_short LoadClut(
u_long *clut, Pointer to CLUT data start address
long x, long y) Destination coordinates in frame buffer

Explanation
Loads 256 entries of texture color data (CLUT) from main memory address clut into the frame buffer (x,y)
and calculates the ID of the loaded texture CLUT.

256 palette entries are always transmitted, even in 4-bit mode.

Return value
The CLUT ID for the loaded CLUT.

See also
LoadClut2()

7-78 Basic Graphics Library Functions

Run-Time Library Reference

LoadClut2
Load 16-color CLUT.

Library Header File Introduced Documentation Date
libgpu.lib libgpu.h 3.0 12/14/98

Syntax
u_short LoadClut2(
u_long *clut, Texture color start address
int x, int y) Destination frame buffer address

Explanation
Loads 16 entries of texture color data (CLUT) from main memory address clut into the frame buffer (x,y) and
calculates the ID of the loaded texture CLUT.

LoadClut2() transmits 16 palette entries whereas LoadClut() transmits 256 palette entries.

LoadClut2() internally invokes LoadImage().

Return value
The CLUT ID for the loaded CLUT.

See also
LoadClut(), LoadImage()

Basic Graphics Library Functions 7-79

Run-Time Library Reference

LoadImage
Transfer data to a frame buffer.

Library Header File Introduced Documentation Date
libgpu.lib libgpu.h 2.x 12/14/98

Syntax
int LoadImage(
RECT *recp, Pointer to destination rectangular area
u_long *p) Pointer to main memory address of source of transmission

Explanation
Transfers the contents of memory from the address p to the rectangular area in the frame buffer specified
by recp.

Because LoadImage() is a non-blocking function, transmission termination must be detected by
DrawSync().

The source and destination areas are not affected by the drawing environment (clip, offset). The destination
area must be located within a drawable area (0, 0) - (1023, 511). See the description of the DR_LOAD
primitive.

Return value
Position of this command in the libgpu command queue.

See also
DrawSync(), LoadImage2(), StoreImage()

7-80 Basic Graphics Library Functions

Run-Time Library Reference

LoadImage2
Transfer data to a frame buffer (immediate execution).

Library Header File Introduced Documentation Date
libgpu.lib libgpu.h 4.1 12/14/98

Syntax
int LoadImage2(
RECT *rect, Pointer to destination rectangular area
u_long *p) Pointer to main memory address of source of transfer

Explanation
Immediately transfers the contents of memory beginning at the address pointed to by p to the rectangular
area in the frame buffer specified by rect, without queueing

When drawing has been suspended using BreakDraw() and you want to transfer data to the frame buffer
using LoadImage(), immediate execution is not possible because of the need for queueing. If immediate
execution is desired, you must use LoadImage2().

The drawing area (clip offset) does not affect the transfer area.

The destination area must be located within a drawable area (0, 0) - (1023, 511).

When drawing is suspended with BreakDraw() after LoadImage2() is called, before restarting the drawing
with ContinueDraw(), it is necessary to confirm the completion of data transfer using IsIdleGPU(). This is
because LoadImage2() is a non-blocking function.

Return value
0: Normal completion; -1: Abnormal completion.

See also
BreakDraw(), ContinueDraw(), IsIdleGPU(), LoadImage()

Basic Graphics Library Functions 7-81

Run-Time Library Reference

LoadTPage
Load a texture page.

Library Header File Introduced Documentation Date
libgpu.lib libgpu.h 2.x 12/14/98

Syntax
u_short LoadTPage(
u_long *pix, Pointer to texture pattern start address
int tp, Bit depth (0 = 4-bit; 1 = 8-bit; 2 = 16-bit)
int abr, Semitransparency rate
int x, int y, Destination frame buffer address
int w, int h) Texture pattern size

Explanation
Loads a texture pattern from the memory area starting at the address pix into the frame buffer area starting
at the address (x, y), and calculates the texture page ID for the loaded texture pattern.

The texture pattern size w represents the number of pixels, not the actual size of the transfer area in the
frame buffer.

LoadTPage() calls LoadImage() internally.

Return value
Texture page ID for the loaded texture pattern.

See also
LoadImage(), setTPage()

7-82 Basic Graphics Library Functions

Run-Time Library Reference

MargePrim
Link primitives.

Library Header File Introduced Documentation Date
libgpu.lib libgpu.h 3.0 12/14/98

Syntax
int MargePrim(
void *p0, First primitive
void *p1) Second primitive

Explanation
Links primitive p0 to primitive p1. The combined primitive size of p0 and p1 must be less than 15 words.
Within this size, any number of connections is possible.

The resulting linked primitives can be added to an OT using AddPrim().

p0 and p1 describe continuous regions of memory. p1 must be the higher address.

Return value
0 on success, -1 on failure.

See also
AddPrim()

Basic Graphics Library Functions 7-83

Run-Time Library Reference

MoveImage
Transfer data between two locations within the frame buffer.

Library Header File Introduced Documentation Date
libgpu.lib libgpu.h 2.x 12/14/98

Syntax
int MoveImage(
RECT *rect, Pointer to source rectangular area
int x, int y) Top left corner of the destination rectangle

Explanation
The rectangular area of the frame buffer specified by rect is copied to the rectangular area of the same size
starting at (x, y).

The content at the source is preserved. If the source and destination areas are the same, normal operation
is not guaranteed.

Because MoveImage() is a non-blocking function, the end of copying must be detected by DrawSync().
Note: Depending on the timing, there are cases when MoveImage() fails to execute when multiple
MoveImage() functions are executed while a movie is playing. In such cases, it is necessary to wait for the
transfer to terminate by calling DrawSync() after each MoveImage().

The source and destination areas are not affected by the drawing environment (clip, offset). The destination
area must be located within a drawable area (0, 0) - (1023, 511). See also the description of the DR_MOVE
primitive.

Return value
Position of this command in the libgpu command queue.

See also
DrawSync(), LoadImage(), MoveImage2()

7-84 Basic Graphics Library Functions

Run-Time Library Reference

MoveImage2
Transfer data between two locations within the frame buffer (immediate execution).

Library Header File Introduced Documentation Date
libgpu.lib libgpu.h 4.1 12/14/98

Syntax
int MoveImage2(
RECT *rect, Pointer to source rectangular area
int x, y) Top left corner of the destination rectangle

Explanation
The rectangular area of the frame buffer specified by rect is transferred to the rectangular area of the same
size starting at (x, y).

The contents of the source rectangle are preserved. If the source and destination areas are the same,
normal operation is not guaranteed.

When drawing is suspended with BreakDraw() and you want to move data within the frame buffer using
MoveImage(), immediate execution is not possible because of the need for queueing. If immediate
execution is desired, you must use MoveImage2().

The source and destination transfer areas are not affected by the drawing environment (clip, offset). The
source and destination areas must be located within a drawable area (0, 0) - (1023, 511). See also the
description of the DR_MOVE primitive.

When drawing is suspended with BreakDraw() after MoveImage2() is called, before restarting the drawing
with ContinueDraw(), it is necessary to confirm the completion of data transfer using IsIdleGPU(). This is
because MoveImage2() is a non-blocking function.

Return value
0: Normal completion; -1: Abnormal completion..

See also
BreakDraw(), ContinueDraw(), IsIdleGPU(), MoveImage()

Basic Graphics Library Functions 7-85

Run-Time Library Reference

NextPrim, nextPrim
Get pointer to next primitive in primitive list.

Library Header File Introduced Documentation Date
libgpu.lib libgpu.h 2.x 12/14/98

Syntax
void *NextPrim(
void *p) Pointer to start address of a primitive

nextPrim(p) Macro version of NextPrim()

Explanation
Returns a pointer to the next primitive in a primitive list.

Return value
Pointer to the next primitive.

See also
AddPrim()

7-86 Basic Graphics Library Functions

Run-Time Library Reference

OpenTIM
Open TIM data.

Library Header File Introduced Documentation Date
libgpu.lib libgpu.h 2.x 12/14/98

Syntax
long OpenTIM(
u_long *addr) Pointer to main memory address to which the TIM has been loaded

Explanation
Opens a TIM in main memory. The information in the opened TIM can then be read using ReadTIM().

Only one TIM can be opened at a time. An opened TIM is not closed until the next time OpenTIM() is called.

Return value
0 on success; any other value indicates failure.

See also
ReadTIM()

Basic Graphics Library Functions 7-87

Run-Time Library Reference

OpenTMD
Open TMD data.

Library Header File Introduced Documentation Date
libgpu.lib libgpu.h 2.x 12/14/98

Syntax
long OpenTMD(
u_long *tmd, Pointer to main memory address to which TMD has been loaded
long obj_no) Object number

Explanation
Opens the TMD of the object specified by obj_no. The information in the opened TMD can then be read
using ReadTMD().

Calling OpenTMD() closes any previously opened TMD.

Return value
The number of polygons comprising the object as a positive integer; on failure, returns 0.

See also
ReadTMD()

7-88 Basic Graphics Library Functions

Run-Time Library Reference

PutDispEnv
Set the display environment.

Library Header File Introduced Documentation Date
libgpu.lib libgpu.h 2.x 12/14/98

Syntax
DISPENV *PutDispEnv(
DISPENV *env) Pointer to display environment start address

Explanation
Sets a display environment according to information specified by env.

Return value
A pointer to the display environment set; on failure, returns 0.

See also
GetDispEnv(), SetDefDispEnv(), SetDefDispEnv()

Basic Graphics Library Functions 7-89

Run-Time Library Reference

PutDrawEnv
Set the drawing environment.

Library Header File Introduced Documentation Date
libgpu.lib libgpu.h 2.x 12/14/98

Syntax
DRAWENV *PutDrawEnv(
DRAWENV *env) Pointer to drawing environment start address

Explanation
The basic drawing parameters s(uch as the drawing offset and the drawing clip area) are set according to
the values specified in env.

The drawing environment is effective until the next time PutDrawEnv() is executed, or until the DR_ENV
primitive is executed.

Return value
A pointer to the drawing environment set. On failure, returns 0.

See also
DrawOTagEnv(), GetDrawEnv(), SetDefDrawEnv(), SetDrawEnv()

7-90 Basic Graphics Library Functions

Run-Time Library Reference

ReadTIM
Produce TIM header.

Library Header File Introduced Documentation Date
libgpu.lib libgpu.h 2.x 12/14/98

Syntax
TIM_IMAGE *ReadTIM(
TIM_IMAGE *timimg) TIM_IMAGE structure pointer

Explanation
Sets the members of the TIM_IMAGE structure pointed to by timimg according to the data specified by the
most recent OpenTIM() call.

Return value
The timimg start address, if succesful; 0 if TIM analysis fails.

See also
OpenTim()

Basic Graphics Library Functions 7-91

Run-Time Library Reference

ReadTMD
Read contents of TMD primitives.

Library Header File Introduced Documentation Date
libgpu.lib libgpu.h 2.x 12/14/98

Syntax
TMD_PRIM *ReadTMD(
TMD_PRIM *tmdprim) Pointer to printer for TMD-PRIM structure

Explanation
Sets the members of the TMD_PRIM structure pointed to by tmdprim according to the data specified by
the most recent OpenTMD() call.

Note that the TMD_PRIM structure includes fields that are not used for all types of objects. ReadTIM()
copies only those fields that are valid for the current object.

Return value
tmdprim if successful; 0 on failure.

See also
OpenTMD()

7-92 Basic Graphics Library Functions

Run-Time Library Reference

ResetGraph
Initialize drawing engine.

Library Header File Introduced Documentation Date
libgpu.lib libgpu.h 2.x 12/14/98

Syntax
int ResetGraph(
int mode) Reset mode

Explanation
Resets the graphic system according to mode:

Table 7-3

Mode Operation
0 Complete reset. The drawing environment

and display environment are initialized.
1 Cancels the current drawing and flushes

the command buffer.
3 Initializes the drawing engine while

preserving the current display environment
(i.e. the screen is not cleared or the screen
mode changed).

See also

Basic Graphics Library Functions 7-93

Run-Time Library Reference

SetDefDispEnv
Set display environment structure members and screen display area.

Library Header File Introduced Documentation Date
libgpu.lib libgpu.h 2.x 12/14/98

Syntax
DISPENV
*SetDefDispEnv(
DISPENV *disp, Pointer to display environment
int x, int y, Upper left corner of display area
int w, int h) Width and height of the display area

Explanation
Sets the members of a DISPENV (display environment) structure. The new display area is specified using
the coordinates within the frame buffer of the top left corner, along with the width and height, of the desired
rectangle.

Table 7-4

Member Content Value
disp Display area (x, y, w, h)
screen Screen display area (0, 0)-(0, 0)
isinter Interlace flag 0
isrgb24 24-bit mode flag 0

This function does not actually change the display environment. It merely sets the members of the specified
structure as desired. Use PutDispEnv() with this structure to change the actual environment.

Note: While the screen width and height are set to (0, 0), internally they are processed as (256, 240).

Return value
Pointer to the display environment set.

See also
GetDispEnv(), PutDispEnv()

7-94 Basic Graphics Library Functions

Run-Time Library Reference

SetDefDrawEnv
Set standard drawing environment structure.

Library Header File Introduced Documentation Date
libgpu.lib libgpu.h 2.x 12/14/98

Syntax
DRAWENV *SetDefDrawEnv(
DRAWENV *env, Pointer to drawing environment
int x, int y, Upper left corner of drawing area
int w, int h) Width and height of drawing area

Explanation
Sets the drawing area members of a DRAWENV (drawing environment) structure. The new drawing area is
specified using the coordinates within the frame buffer of the top left corner, along with the width and
height, of the desired rectangle.

Table 7-5

Member Content Value
clip Drawing area (x, y, w, h)
ofs[2] Drawing offset (x, y)
tw Texture window (0, 0, 0, 0)
tpage Texture page (tp, abr, tx,

ty)
(0, 0, 640, 0)

dtd Dither processing flag 1 (ON)
dfe Permission flag for drawing 1 (drawing on display area

is inhibited)
isbg Draw area clear flag 0 (clear: OFF)
r0, g0, b0 Background color (0, 0, 0)

This function does not actually change the drawing environment. It merely sets the members of the
specified structure as desired. Use PutDrawEnv() with this structure to change the actual environment.

Return value
The starting pointer of the drawing environment set.

See also
GetDrawEnv(), PutDrawEnv(), SetDrawEnv()

Basic Graphics Library Functions 7-95

Run-Time Library Reference

SetDispMask
Set and cancel display mask.

Library Header File Introduced Documentation Date
libgpu.lib libgpu.h 2.x 12/14/98

Syntax
void SetDispMask(
int mask) Display mask

Explanation
Puts display mask into the status specified by mask. mask =0: not displayed on screen; mask = 1;
displayed on screen.

See also

7-96 Basic Graphics Library Functions

Run-Time Library Reference

SetDrawArea
Initialize content of drawing area setting primitive.

Library Header File Introduced Documentation Date
libgpu.lib libgpu.h 2.x 12/14/98

Syntax
void SetDrawArea(
DR_AREA *p, Pointer to drawing area setting primitive
RECT *r) Pointer to drawing area

Explanation
Initializes a DR_AREA primitive. By using AddPrim() to insert a DR_AREA primitive into your primitive list, it is
possible to change part of your drawing environment in the middle of drawing.

See also
AddPrim(), GetDrawArea()

Basic Graphics Library Functions 7-97

Run-Time Library Reference

SetDrawEnv
Initialize content of drawing environment change primitive.

Library Header File Introduced Documentation Date
libgpu.lib libgpu.h 2.x 12/14/98

Syntax
void SetDrawEnv(
DR_ENV *dr_env, Pointer to drawing environment change primitive
DRAWENV *env) Pointer to drawing environment structure in which the drawing

environment is described

Explanation
Initializes a DR_ENV primitive using the values contained in a DRAWENV structure. By using AddPrim() to
insert a DR_ENV primitive into your primitive list, it is possible to change part of your drawing environment
in the middle of drawing.

The DR_ENV primitive uses the same information as the DRAWENV structure, but the data format is
different and the DRAWENV structure cannot be used as a primitive. When the DR_ENV primitive is
executed, the previous drawing environment settings are destroyed.

See also
AddPrim(), GetDrawEnv(), PutDrawEnv(), SetDefDrawEnv()

7-98 Basic Graphics Library Functions

Run-Time Library Reference

SetDrawLoad
Initialize content of the LoadImage primitive.

Library Header File Introduced Documentation Date
libgpu.lib libgpu.h 2.x 12/14/98

Syntax
void SetDrawLoad(
DR_LOAD *p, Destination rectangular area primitive
RECT *rect) Destination rectangular area

Explanation
Initializes the destination rectangular area primitive. By registering the initialized primitive in OT using
AddPrim(), the rectangular area can be transferred just as in LoadImage().

Maximum data transfer amount is 12 words (24 pixels).

See also
AddPrim(), LoadImage()

Basic Graphics Library Functions 7-99

Run-Time Library Reference

SetDrawMode
Initialize content of a drawing mode primitive.

Library Header File Introduced Documentation Date
libgpu.lib libgpu.h 2.x 12/14/98

Syntax
void SetDrawMode(
DR_MODE *p, Pointer to drawing mode primitive
int dfe, 0: drawing not allowed in display area, 1: drawing allowed in display area
int dtd, 0: dithering off, 1: dithering on.
int tpage, Texture page
RECT *tw) Pointer to texture window

Explanation
Initializes a DR_MODE primitive. By using AddPrim() to insert a DR_MODE primitive into your primitive list, it
is possible to change part of your drawing environment in the middle of drawing.

If tw is 0, the texture window is not changed.

See also
GetDrawMode()

7-100 Basic Graphics Library Functions

Run-Time Library Reference

SetDrawMove
Initialize rectangle copy primitive.

Library Header File Introduced Documentation Date
libgpu.lib libgpu.h 2.x 12/14/98

Syntax
void SetDrawMove(
DR_MOVE *p, Pointer to rectangular area copy primitive
RECT *rect, Rectangular area to be transferred
int x,y) Upper left edge of the rectangular area transfer destination

Explanation
Initializes the rectangular area copy primitive. After the primitive is initialized, it can be entered in the OT
using AddPrim(). When the primitive is executed, it performs the same copying of a rectangular area as
MoveImage().

See also
AddPrim(), MoveImage()

Basic Graphics Library Functions 7-101

Run-Time Library Reference

SetDrawOffset
Initialize drawing offset setting primitive.

Library Header File Introduced Documentation Date
libgpu.lib libgpu.h 2.x 12/14/98

Syntax
void SetDrawOffset(
DR_OFFSET *p, Pointer to drawing offset setting primitive
u_short *ofs) Pointer to drawing offset

Explanation
Initializes a DR_OFFSET primitive. By using AddPrim() to insert a DR_OFFSET primitive into your primitive
list, it is possible to change part of your drawing environment in the middle of drawing.

See also
AddPrim(), GetDrawOffset()

7-102 Basic Graphics Library Functions

Run-Time Library Reference

SetDrawStp
Initializes STP bit update primitive.

Library Header File Introduced Documentation Date
libgpu.lib libgpu.h 4.1 12/14/98

Syntax
void SetDrawStp(
DR_STP *p, Pointer to primitive
int pbw) STP bit update flag (0: STP bit OFF, 1: STP bit ON)

Explanation
Initializes the DR_STP primitive pointed to by p.

When pbw = 0, normal drawing is performed. When pbw = 1, drawing is performed with the STP bit set
(STP is a 16-bit object).

See also

Basic Graphics Library Functions 7-103

Run-Time Library Reference

SetDrawTPage, setDrawTPage
Initialize texture page change primitive.

Library Header File Introduced Documentation Date
libgpu.lib libgpu.h 2.x 12/14/98

Syntax
void SetDrawTPage(
DR_TPAGE *p, Texture page setting primitive
int dfe, Flag for drawing to a display area

0: no drawing in display area
1: drawing in display area

int dtd, Dither processing flag
0: dither processing not performed
1: dither processing performed

int tpage) Texture page

setDrawTPage(p, dfe, dtd, tpage) Macro version of SetDrawTPage().

Explanation
Initializes a texture page change primitive. By registering the initialized primitive in OT using AddPrim(), the
texture page can be changed while drawing.

See also
AddPrim(), setTPage()

7-104 Basic Graphics Library Functions

Run-Time Library Reference

SetDumpFnt
Define stream for onscreen dump.

Library Header File Introduced Documentation Date
libgpu.lib libgpu.h 2.x 12/14/98

Syntax
void SetDumpFnt(
long id) Print stream ID

Explanation
Sets the print stream for debug printing. The output of the debug printing functions can then be carried out
in relation to the stream specified in id.

The actual display is executed by FntFlush().

See also
dumpRECT(), dumpMatrix(), dumpVector(), dump…(), FntFlush()

Basic Graphics Library Functions 7-105

Run-Time Library Reference

SetGraphDebug
Set debugging level.

Library Header File Introduced Documentation Date
libgpu.lib libgpu.h 2.x 12/14/98

Syntax
void SetGraphDebug(
int level) Debugging level

Explanation
Sets a debugging level for the graphics system. level can be one of the following:

Table 7-6

Level Operation
0 No checks are performed. (Highest speed

mode)
1 Checks coordinating registered and drawn

primitives.
2 Registered and drawn primitives are

dumped.

Return value
The previously set debug level.

See also
GetGraphDebug()

7-106 Basic Graphics Library Functions

Run-Time Library Reference

SetLineF2, SetLineF3, SetLineF4;
setLineF2, setLineF3, setLineF4;
SetLineG2, SetLineG3, SetLineG4;
setLineG2, setLineG3, setLineG4
Initialize a line primitive.

Library Header File Introduced Documentation Date
libgpu.lib libgpu.h 2.x 12/14/98

Syntax
void SetLineF2(LINE_F2 *p) Flat unconnected straight line drawing primitive.
void SetLineF3(LINE_F3 *p) Flat connected 2-straight line drawing primitive.
void SetLineF4(LINE_F4 *p) Flat connected 3-straight line drawing primitive.
void SetLineG2 (LINE_G2 *p) Gouraud unconnected straight line drawing primitive.
void SetLineG3 (LINE_G3 *p) Gouraud connected 2-straight line drawing primitive.
void SetLineG4 (LINE_G4 *p) Gouraud connected 3-straight line drawing primitive.

setLineF2(p) Macro version of SetLineF2()
setLineF3(p) Macro version of SetLineF3()
setLineF4(p) Macro version of SetLineF4().
setLineG2(p) Macro version of SetLineG2()
setLineG3(p) Macro version of SetLineG3()
setLineG4(p) Macro version of SetLineG4()

Explanation
These functions initialize the primitives specified by p.

See also

Basic Graphics Library Functions 7-107

Run-Time Library Reference

SetPolyF3, SetPolyF4;
setPolyF3, setPolyF4;
SetPolyG3, SetPolyG4;
setPolyG3, setPolyG4;
SetPolyGT3, SetPolyGT4;
setPolyGT3, setPolyGT4
Initialize a polygon primitive.

Library Header File Introduced Documentation Date
libgpu.lib libgpu.h 2.x 12/14/98

Syntax
void SetPolyF3(POLY_F3 *p) Flat shaded triangle primitive.
void SetPolyF4(POLY_F4 *p) Flat shaded quadrangle primitive.
void SetPolyFT3(POLY_FT3 *p) Flat textured triangle primitive.
void SetPolyFT4(POLY_FT4 *p) Flat textured quadrangle primitive.
void SetPolyG3(POLY_G3 *p) Gouraud shaded triangle primitive.
void SetPolyG4(POLY_G4 *p) Gouraud shaded quadrangle primitive.
void SetPolyGT3(POLY_GT3 *p) Gouraud textured triangle primitive.
void SetPolyGT4(POLY_GT4 *p) Gouraud textured quadrangle primitive.

setPolyF3(p) Macro version of SetPolyF3()
setPolyF4(p) Macro version of SetPolyF4()
setPolyFT3(p) Macro version of SetPolyFT3()
setPolyFT4(p) Macro version of SetPolyFT4()
setPolyG3(p) Macro version of SetPolyG3()
setPolyG4(p) Macro version of SetPolyG4()
setPolyGT3(p) Macro version of SetPolyGT3()
setPolyGT4(p) Macro version of SetPolyGT4()

Explanation
These functions initialize the primitive specified by p.

See also

7-108 Basic Graphics Library Functions

Run-Time Library Reference

SetSemiTrans, setSemiTrans
Set the semitransparent attribute of a primitive.

Library Header File Introduced Documentation Date
libgpu.lib libgpu.h 2.x 12/14/98

Syntax
void SetSemiTrans(
void *p, Pointer to primitive
int abe) Semitransparent flag

0: semitransparent OFF
1: semitransparent ON

setSemiTrans(p, abe) Macro version of SetSemiTrans()

Explanation
Sets the semitransparent attribute of the primitive specified by p to the value specified by abe. If
semitransparent mode is enabled, then semitransparent pixels are drawn as specified by the table below.

Table 7-7

Primitive Pixels subjected to semitransparent
processing

POLY_FT3/POLY_FT4 Pixels for which the topmost bit of the
corresponding texture pixel is 1

POLY_GT3/POLY_GT4 Pixels for which the topmost bit of the
corresponding texture pixel is 1

SPRT/SPRT_8/SPRT_16 Pixels for which the topmost bit of the
corresponding texture pixel is 1

Other drawing primitives All Pixels

Semitransparent pixels are calculated from the foreground pixels Pf and background pixels Pb as follows:

P = F x Pf + B x Pb

The rate (F, B) of semitransparency is designated by the member tpage in the primitive. Drawing speed is
reduced because semitransparency requires reading of background brightness values. Therefore, do not
draw primitives with semitransparent mode turned on unless they are to be displayed that way.

See also

Basic Graphics Library Functions 7-109

Run-Time Library Reference

SetShadeTex, setShadeTex
Inhibit shading function.

Library Header File Introduced Documentation Date
libgpu.lib libgpu.h 2.x 12/14/98

Syntax
void SetShadeTex(
void *p, Pointer to primitive
int tge) Unshaded flag

0: Shading is performed
1: Shading is not performed

setShadeTex(p, tge) Macro version of SetShadeTex()

Explanation
Sets the shading attribute of the primitive pointed to by p to the value specified by tge.

When texture and shading are both ON, each pixel in the polygon is calculated as shown below from the
pixel value T of the corresponding texture pattern, and the brightness value L corresponding to the pixel
value T.

P = (T&0xf8*L&0xf8) / 128
if (p > 255) p = 255
if (p < 0) p = 0

When L = 128, the brightness value of the texture pattern is drawn as it is. If the value results in an
overflow, the pixel value is clipped to 255.

When tge = 1, the brightness value is not divided, and the texture pattern value is used, as it is, as the pixel
value.

T, L are only effective for the upper 5 bits. The lower 3 bits are discarded.

This function cannot be used for primitives other than POLY_FT3, POLY_FT4, SPRT, SPRT_8, and
SPRT_16.

Although the texture number of colors is saved at intensity level of 32 when using ShadeTex, the shading
brightness value is decreased from an intensity level of 256 to 32.

See also

7-110 Basic Graphics Library Functions

Run-Time Library Reference

SetSprt, SetSprt8, SetSprt16;
setSprt, setSprt8, setSprt16
Initialize a sprite primitive.

Library Header File Introduced Documentation Date
libgpu.lib libgpu.h 2.x 12/14/98

Syntax
void SetSprt(SPRT *p) Initialize a SPRT primitive.
void SetSprt8(SPRT_8 *p) Initialize a SPRT8 primitive.
void SetSprt16(SPRT_16 *p) Initialize a SPRT16 primitive.

setSprt(p) Macro version of SetSprt()
setSprt8(p) Macro version of SetSprt8()
setSprt16(p) Macro version of SetSprt16()

Explanation
These functions initialize the primitives specified by p. Details are given below.

Table 7-8

Function name Sprite size Primitive
SetSprt8 8 x 8 SPRT_8
SetSprt16 16 x 16 SPRT_16
SetSprt Can be set using values of

members h, w.
(0 < h < 255, 0 < w < 255)

SPRT

The SPRT... primitives are faster than POLY_FT4. TILE is also faster than POLY_F4.

See also

Basic Graphics Library Functions 7-111

Run-Time Library Reference

SetTexWindow
Initialize the content of a texture window primitive.

Library Header File Introduced Documentation Date
libgpu.lib libgpu.h 2.x 12/14/98

Syntax
void SetTexWindow(
DR_TWIN *p, Pointer to texture window primitive
RECT *tw) Pointer to texture window

setTexWindow(p, tw) Macro version of SetTexWindow()

Explanation
Initializes a DR_TWIN primitive using the specified values. By using AddPrim() to insert a DR_TWIN primitive
into your primitive list, it is possible to change the current texture window in the middle of drawing.

See also
AddPrim(), GetTexWindow()

7-112 Basic Graphics Library Functions

Run-Time Library Reference

SetTile, SetTile1, SetTile8, SetTile16;
setTile, setTile1, setTile8, setTile16
Initialize a tile primitive.

Library Header File Introduced Documentation Date
libgpu.lib libgpu.h 2.x 12/14/98

Syntax
void SetTile(TILE *p) Initialize a TILE primitive.
void SetTile1(TILE_1 *p) Initialize a TILE1 primitive.
void SetTile8(TILE_8 *p) Initialize a TILE8 primitive.
void SetTile16(TILE_16 *p) Initialize a TILE16 primitive.

setTile(p) Macro version of SetTile()
setTile1(p) Macro version of SetTile1()
setTile8(p) Macro version of SetTile8()
setTile16(p) Macro version of SetTile16()

Explanation
These functions initialize the primitives specified by p. Details are given below.

Table 7-9

Function name Tile size Primitive size
SetTile1 1 x 1 TILE_1
SetTile8 8 x 8 TILE_8
SetTile16 16 x 16 TILE_16
SetTile Can be set using values of

members h, w.
(0 < h < 255, 0 < w < 255)

TILE

The SPRT primitives are faster than POLY_FT4. TILE is also faster than POLY_F4.

See also

Basic Graphics Library Functions 7-113

Run-Time Library Reference

StoreImage
Transfer image data from the frame buffer to main memory.

Library Header File Introduced Documentation Date
libgpu.lib libgpu.h 2.x 12/14/98

Syntax
int StoreImage(
RECT *recp, Pointer to destination rectangular area
u_long *p) Pointer to main memory address of destination of transmission

Explanation
Transfers the rectangular area of the frame buffer specified by recp to the main memory storage location
starting at the address specified by p.

Because StoreImage() is a non-blocking function, use DrawSync() to determine when the operation has
completed.

The source and destination areas are not affected by the drawing environment (clip, offset). The source
area must be located within a drawable area (0, 0) - (1023, 511).

Return value
Position of this command in the libgpu command queue.

See also
StoreImage2(), DrawSync(), LoadImage()

7-114 Basic Graphics Library Functions

Run-Time Library Reference

StoreImage2
Transfer data from a frame buffer (immediate execution).

Library Header File Introduced Documentation Date
libgpu.lib libgpu.h 4.1 12/14/98

Syntax
int StoreImage2(
RECT *rect, Pointer to source rectangular area
u_long *p) Pointer to destination main memory address

Explanation
Immediately transfers the contents of the rectangular area in the frame buffer pointed to by rect to the main
memory location starting with the address pointed to by p, without queueing. p must be on a word
boundary.

When drawing is suspended with BreakDraw(), and you want to transfer data from the frame buffer using
StoreImage(), immediate execution is not possible because of the need for queueing. If immediate
execution is desired, you must use StoreImage2().

The drawing area (clip offset) does not affect the transfer area.

The transfer area must be located within a drawable area (0, 0) - (1023, 511).

When drawing is suspended with BreakDraw() after StoreImage2() is called, before restarting the drawing
with ContinueDraw(), it is necessary to confirm the completion of data transfer using IsIdleGPU(). This is
because StoreImage2() is a non-blocking function.

Return value
0: Normal completion. -1: Abnormal completion.

See also
BreakDraw(), ContinueDraw(), IsIdleGPU(), StoreImage(), LoadImage()

Basic Graphics Library Functions 7-115

Run-Time Library Reference

TermPrim, termPrim
Terminate a primitive list

Library Header File Introduced Documentation Date
libgpu.lib libgpu.h 2.x 12/14/98

Syntax
void TermPrim(
void *p) Pointer to start address of a primitive list

termPrim(p) Macro version of TermPrim()

Explanation
Sets the tag pointer of the primitive specified by p to point at a special terminator value that signals the end
of the list when it is executed. Any primitives already pointed to by p are removed from the list.

See also
CatPrim(), MargePrim()

7-116 Basic Graphics Library Functions

Run-Time Library Reference

VSync
Wait for the next vertical blank, or return the vertical blank counter value.

Library Header File Introduced Documentation Date
libetc.lib libetc.h 2.x 12/14/98

Syntax
int VSync(
int mode) Mode

Explanation
Waits for vertical blank using the method specified by mode, as defined below.

Table 7-10

Mode Operation
0 Blocks until vertical sync is generated
1 Returns time elapsed from the point

VSync() processing is last completed
when mode=1or n in horizontal sync units

n (n>1) Blocks from the point VSync() processing
is last completed when mode=1 or n until
n number of vertical syncs are generated.

-n (n>0) Returns absolute time after program boot
in vertical sync interval units.

Vsync() may generate a timeout if long blocking periods are specified. To prevent deadlocks, rather than
using Vsync() to block for an especially long time (say more than 4 vertical blank periods), have your
program poll VSync(-1) in a loop instead.

Return value
Mode value is as listed below.

Table 7-11

Mode Return value
mode>=0 Time elapsed from the point that Vsync()

processing is last completed when
mode=1 or n (horizontal blanking units)

mode<0 Time elapsed after program boot (vertical
blanking units)

See also
DrawSync(), VSyncCallback()

Basic Graphics Library Functions 7-117

Run-Time Library Reference

VSyncCallback
Define a function to be executed during each vertical blank period.

Library Header File Introduced Documentation Date
libetc.lib libetc.h 2.x 12/14/98

Syntax
void VSyncCallback(
void (*func)()) Pointer to callback function

Explanation
Specifies that the routine at address func should be executed at the start of the vertical blank interrupt. If
func is 0, then any previous callback routine is disabled.

Subsequent interrupts are masked inside func. Therefore, it is necessary to return quickly after performing
necessary processes using func.

Although the specified function is called during an interrupt, it is not the actual interrupt handler. It should
be written as a normal subroutine that are called by the main interrupt handler.

See also
VSync(), DrawSyncCallback()

7-118 Basic Graphics Library Macros

Run-Time Library Reference

Macros

addVector
Add vectors.

Library Header File Introduced Documentation Date
libgpu.lib libgpu.h 2.x 12/14/98

Syntax
addVector(v0, v1)

Arguments
v0, v1 Pointers to vectors

Explanation
Adds v1 to the vector v0, and stores the result in v0.

Since it is a macro, there is no dependence on the vector type.

See also
applyVector(), copyVector()

Basic Graphics Library Macros 7-119

Run-Time Library Reference

applyVector
Apply arithmetic operation to a vector.

Library Header File Introduced Documentation Date
libgpu.lib libgpu.h 3.4 12/14/98

Syntax
applyVector(*v, x, y, z, op)

Arguments
v Pointer to vector
x,y,z Coordinate value
op Operator

Explanation
Performing the operation specified on vector v, x, y, z and op

applyVector (v, 2, 4, 8, +=)

is equivalent to:

v->vx += 2, v-> vx+= 4, v-> vx += 8

applyVector is a macro, so there is no dependence on the vector model.

See also
addVector(), copyVector()

7-120 Basic Graphics Library Macros

Run-Time Library Reference

copyVector
Copy vectors.

Library Header File Introduced Documentation Date
libgpu.lib libgpu.h 2.x 12/14/98

Syntax
copyVector(v0, v1)

Arguments
v0, v1 Vector pointer

Explanation
Copies vector v1 to v0.

copyVector is a macro, so there is no dependence on the vector type.

See also
addVector(), applyVector()

Basic Graphics Library Macros 7-121

Run-Time Library Reference

dumpMatrix
Display matrix contents.

Library Header File Introduced Documentation Date
libgpu.lib libgpu.h 4.3 12/14/98

Syntax
dumpMatrix(x)

Arguments
x pointer to matrix

Explanation
Displays the contents of the matrix pointed to by x.
If SetDumpFnt() is called, the output is displayed to the screen. Otherwise, the output is sent to stdout.

See also
SetDumpFnt(), dumpRECT(), dumpVector(), dump…()

7-122 Basic Graphics Library Macros

Run-Time Library Reference

dumpRECT
Display contents of a rectangle.

Library Header File Introduced Documentation Date
libgpu.lib libgpu.h 4.3 12/14/98

Syntax
dumpRECT(r)

Arguments
r pointer to RECT

Explanation
Displays the contents of the RECT structure pointed to by r.
If SetDumpFnt() is called, the output is displayed to the screen. Otherwise, the output is sent to stdout.

Since this is a macro, it does not depend on the vector type.

See also
SetDumpFnt(), dumpMatrix(), dumpVector(), dump…()

Basic Graphics Library Macros 7-123

Run-Time Library Reference

dumpVector
Display contents of vector

Library Header File Introduced Documentation Date
libgpu.lib libgpu.h 4.3 12/14/98

Syntax
dumpVector(str, v)

Arguments
str string to be displayed
v pointer to vector

Explanation
This macro displays the contents of the vector pointed to by v.
If SetDumpFnt() is called, the output is displayed to the screen. Otherwise, the output is sent to stdout.

See also
SetDumpFnt(), dumpRECT(), dumpVector(), dump…()

7-124 Basic Graphics Library Macros

Run-Time Library Reference

dump...
Display contents of a primitive.

Library Header File Introduced Documentation Date
libgpu.lib libgpu.h 4.3 12/14/98

Syntax
dumpWH(p) Displays w, h of primitive.
dumpXY0(p) Displays x0, y0 of primitive.
dumpXY2(p) Displays x0, x1, y0, y1 of primitive.
dumpXY3(p) Displays x0-x2, y0-y2 of primitive.
dumpXY4(p) Displays x0-x3, y0-y3 of primitive.
dumpUV0(p) Displays u0, v0 of primitive.
dumpUV3(p) Displays u0-u2, v0-v2 of primitive.
dumpUV3(p) Displays u0-u3, v0-v3 of primitive.
dumpRGB0(p) Displays r0, g0, b0 of primitive.
dumpRGB1(p) Displays r0, r1, g0, g1, b0, b1 of primitive.
dumpRGB2(p) Displays r0-r2, g0-g2, b0-b2 of primitive.
dumpRGB3(p) Displays r0-r3, g0-g3, b0-b3 of primitive.

Explanation
Displays the contents of the primitive pointed to by p. If SetDumpFnt() is called, the output is displayed to
the screen. Otherwise, the output is sent to stdout.

Since these are macros, they do not depend on the primitive type.

See also
SetDumpFnt()

Basic Graphics Library Macros 7-125

Run-Time Library Reference

setClut
Set CLUT for primitive.

Library Header File Introduced Documentation Date
libgpu.lib libgpu.h 4.3 12/14/98

Syntax
setClut(p, x, y)

Arguments
p pointer to primitive
x, y CLUT frame buffer address

Explanation
The texture CLUT ID specified by the parameters is set in the clut member of primitive p.

Since this is a macro, it does not depend on the primitive type.
For the CLUT address, the x component must be a multiple of 16.

See also
DumpClut(), GetClut(), LoadClut()

7-126 Basic Graphics Library Macros

Run-Time Library Reference

setRECT
Set rectangular area.

Library Header File Introduced Documentation Date
libgpu.lib libgpu.h 2.x 12/14/98

Syntax
setRECT(r, x, y, w, h)

Arguments
r Pointer to RECT structure
x, y Upper left point of rectangular area
w, h Size of rectangular area

Explanation
This macro sets the x, y, w, and h values of the RECT structure r.

See also
dumpRECT()

Basic Graphics Library Macros 7-127

Run-Time Library Reference

setRGB0, setRGB1, setRGB2, setRGB3
Initialize RGB fields of a primitive.

Library Header File Introduced Documentation Date
libgpu.lib libgpu.h 2.x 12/14/98

Syntax
setRGB0(p, r0, g0, b0) Initialize r0, g0, and b0 fields
setRGB1(p, r1, g1, b1) Initialize r1, g1, and b1 fields
setRGB2(p, r2, g2, b2) Initialize r2, g2, and b2 fields
setRGB3(p, r3, g3, b3) Initialize r3, g3, and b3 fields

Arguments
p Pointer to primitive
r, g, b RGB members of primitive

Explanation
These macros set the values for the RGB members of the primitive p.

These are macros, so there is no dependence on the primitive type.

See also

7-128 Basic Graphics Library Macros

Run-Time Library Reference

setTPage
Set texture page for primitive.

Library Header File Introduced Documentation Date
libgpu.lib libgpu.h 4.3 12/14/98

Syntax
setTPage(p, tp, abr, x, y)

Arguments
p pointer to primitive
tp texture mode

0: 4bitCLUT
1: 8bitCLUT
2:16bitDIrect

abr semi-transparency rate
0: 0.5 x Back + 0.5 x Forward
1: 1.0 x Back + 1.0 x Forward
2: 1.0 x Back - 1.0 x Forward
3: 1.0 x Back + 0.25 x Forward

x, y texture page address

Explanation
The texture page specified by the parameters is set in the tpage member of primitive p.

Since this is a macro, it does not depend on the primitive type.

See also
GetTPage(), SetDrawTPage(), LoadTPage()

Basic Graphics Library Macros 7-129

Run-Time Library Reference

setUV0, setUV3, setUV4
Set the u and v members of a primitive.

Library Header File Introduced Documentation Date
libgpu.lib libgpu.h 2.x 12/14/98

Syntax
setUV0(*p, u0, v0) Set u0 and v0
setUV3(*p, u0, v0, u1, v1, u2, v2) Set u0-u2 and v0-v2
setUV4(*p, u0, v0, u1, v1, u2, v2, u3, v3) Set u0-u3 and v0-v3

Arguments
p Pointer to primitive
u, v UV members of primitive

Explanation
These macros set the values of the appropriate UV fields of the primitive p.

These are C preprocessor macros and can be used with any primitive or structure with the appropriate
fields.

See also
setUVWH()

7-130 Basic Graphics Library Macros

Run-Time Library Reference

setUVWH
Set the u, v members of a primitive.

Library Header File Introduced Documentation Date
libgpu.lib libgpu.h 2.x 12/14/98

Syntax
setUVWH(*p, u0, v0, w, h)

Arguments
p Pointer to primitive
u0, v0 Upper left corner of primitive texture
w, h Width and height of primitive texture

Explanation
This macro sets the u0, v0, u1, v1, u2, v2, u3, and v3 fields of a primitive structure to represent the corners
of the rectangle specified by the input parameters.

It can be used with any primitive or structure with the appropriate fields; it cannot be used with sprite
primitives.

See also
setUV0()

Basic Graphics Library Macros 7-131

Run-Time Library Reference

setVector
Set the values of a vector.

Library Header File Introduced Documentation Date
libgpu.lib libgpu.h 2.x 12/14/98

Syntax
setVector(*v, x, y, z)

Arguments
v Pointer to a vector
x, y, z Coordinate values

Explanation
Sets the (x, y, z) values of a VECTOR or SVECTOR (defined in libgte).

See also

7-132 Basic Graphics Library Macros

Run-Time Library Reference

setWH
Set the w,h members of a primitive.

Library Header File Introduced Documentation Date
libgpu.lib libgpu.h 2.x 12/14/98

Syntax
setWH(*p, w, h)

Arguments
p Pointer to primitive.
w, h Width and height of primitive texture

Explanation
Specifies the w,h members of a primitive (cannot be used with primitives which do not have w,h members).

See also
setXYWH()

Basic Graphics Library Macros 7-133

Run-Time Library Reference

setXY0, setXY2, setXY3, setXY4
Set the x and y parameters of a primitive.

Library Header File Introduced Documentation Date
libgpu.lib libgpu.h 2.x 12/14/98

Syntax
setXY0(*p, x0, y0)
setXY2(*p, x0, y0, x1, y1)
setXY3(*p, x0, y0, x1, y1, x2, y2)
setXY4(*p, x0, y0, x1, y1, x2, y2, x3, y3)

Arguments
p Pointer to primitive
x, y x, y members of primitive

Explanation
These macros set the values for the x, y members of the primitive. Because they are macros, there is no
dependence on the primitive type.

See also
setXYWH()

7-134 Basic Graphics Library Macros

Run-Time Library Reference

setXYWH
Set x, y members of a rectangular primitive.

Library Header File Introduced Documentation Date
libgpu.lib libgpu.h 4.3 12/14/98

Syntax
setXYWH(p, x0, y0, w, h)

Arguments
p pointer to primitive
x0, y0 upper left point of primitive
w, h width and height of primitive

Explanation
The coordinates of the rectangle defined by (x0, y0)-(x0 + w, y0 + h) are set in members (x0,y0)..(x3, y3) of
the primitive. This macro works with any primitive having (x0,y0)..(x3, y3) members.

See also
setXY0(), setWH()

Run-Time Library Reference

Chapter 8: Basic Geometry Library
Table of Contents

Structures
CRVECTOR3 8-5
CRVECTOR4 8-6
CVECTOR 8-7
DIVPOLYGON3 8-8
DIVPOLYGON4 8-9
DVECTOR 8-10
EVECTOR 8-11
MATRIX 8-12
POL3 8-13
POL4 8-14
QMESH 8-15
RVECTOR 8-16
SPOL 8-17
SVECTOR 8-18
TMESH 8-19
VECTOR 8-20

Functions
ApplyMatrix 8-21
ApplyMatrixLV 8-22
ApplyMatrixSV 8-23
ApplyRotMatrix 8-24
ApplyRotMatrixLV 8-25
ApplyTransposeMatrixLV 8-26
AverageZ3 8-27
AverageZ4 8-28
catan 8-29
ccos 8-30
Clip3F, Clip3FP, Clip3FT, Clip3FTP, Clip3G, Clip3GT, Clip3GTP 8-31
Clip4F, Clip4FP, Clip4FT, Clip4FTP, Clip4G, Clip4GT, Clip4GTP 8-33
cln 8-35
ColorCol 8-36
ColorDpq 8-37
ColorMatCol 8-38
ColorMatDpq 8-39
CompMatrix 8-40
CompMatrixLV 8-41
csin 8-42
csqrt 8-43
DivideF3, DivideF4, DivideFT3, DivideFT4, DivideG3, DivideG4, DivideGT3, DivideGT4 8-44
DpqColor 8-46
DpqColor3 8-47
DpqColorLight 8-48
EigenMatrix 8-49
gteMIMefunc 8-50
InitClip 8-51
InitGeom 8-52
Intpl 8-53
InvSquareRoot 8-54
IsIdMatrix 8-55
LightColor 8-56
LoadAverage0 8-57
LoadAverage12 8-58
LoadAverageByte 8-59

8-2

Run-Time Library Reference

LoadAverageCol 8-60
LoadAverageShort0 8-61
LoadAverageShort12 8-62
LocalLight 8-63
Lzc 8-64
MatrixNormal 8-65
MatrixNormal_0 8-66
MatrixNormal_1 8-67
MatrixNormal_2 8-68
MulMatrix 8-69
MulMatrix0 8-70
MulMatrix2 8-71
MulRotMatrix 8-72
MulRotMatrix0 8-73
NormalClip 8-74
NormalColor, NormalColor_nom 8-75
NormalColor3, NormalColor3_nom 8-76
NormalColorCol, NormalColorCol_nom 8-77
NormalColorCol3, NormalColorCol3_nom 8-78
NormalColorDpq, NormalColorDpq_nom 8-79
NormalColorDpq3, NormalColorDpq3_nom 8-80
otz2p 8-81
OuterProduct0 8-82
OuterProduct12 8-83
p2otz 8-84
pers_map 8-85
PhongLine 8-86
PopMatrix 8-87
PushMatrix 8-88
ratan2 8-89
rcos 8-90
RCpolyF3, RCpolyFT3, RCpolyG3, RCpolyGT3 8-91
RCpolyF4, RCpolyFT4, RCpolyG4, RCpolyGT4 8-92
ReadColorMatrix 8-93
ReadGeomOffset 8-94
ReadGeomScreen 8-95
ReadLightMatrix 8-96
ReadRGBfifo 8-97
ReadRotMatrix 8-98
ReadSXSYfifo 8-99
ReadSZfifo3 8-100
ReadSZfifo4 8-101
RotAverage3, RotAverage3_nom 8-102
RotAverage4 8-103
RotAverageNclip3 8-104
RotAverageNclip3_nom 8-105
RotAverageNclip4 8-106
RotAverageNclipColorCol3 8-107
RotAverageNclipColorCol3_nom 8-108
RotAverageNclipColorDpq3 8-109
RotAverageNclipColorDpq3_nom 8-110
RotColorDpq 8-111
RotColorDpq_nom 8-112
RotColorDpq3 8-113
RotColorDpq3_nom 8-114
RotColorMatDpq 8-115
RotMatrix... 8-116

8-3

Run-Time Library Reference

RotMatrix_gte 8-118
RotMatrixC 8-119
RotMatrixX 8-120
RotMatrixY 8-121
RotMatrixYXZ_gte 8-122
RotMatrixZ 8-123
RotMatrixZYX_gte 8-124
RotMeshH 8-125
RotMeshPrimQ_T 8-126
RotMeshPrimR_... 8-127
RotMeshPrimS_... 8-128
RotNclip3 8-129
RotNclip3_nom 8-130
RotNclip4 8-131
RotPMD_... 8-132
RotPMD_SV_... 8-133
RotRMD_... 8-134
RotRMD_SV_... 8-135
RotSMD_... 8-136
RotSMD_SV_... 8-137
RotTrans 8-138
RotTrans_nom 8-139
RotTransPers 8-140
RotTransPers_nom 8-141
RotTransPers3 8-142
RotTransPers3_nom 8-143
RotTransPers3N 8-144
RotTransPers4 8-145
RotTransPers4_nom 8-146
RotTransPersN 8-147
RotTransSV 8-148
rsin 8-149
ScaleMatrix 8-150
ScaleMatrixL 8-151
SetBackColor 8-152
SetColorMatrix 8-153
SetFarColor 8-154
SetFogFar 8-155
SetFogNear 8-156
SetFogNearFar 8-157
SetGeomOffset 8-158
SetGeomScreen 8-159
SetLightMatrix 8-160
SetMulMatrix 8-161
SetMulRotMatrix 8-162
SetRGBcd 8-163
SetRotMatrix 8-164
SetTransMatrix 8-165
Square0 8-166
Square12 8-167
SquareRoot0 8-168
SquareRoot12 8-169
SquareSL0 8-170
SquareSL12 8-171
SquareSS0 8-172
SquareSS12 8-173
SubPol3 8-174

8-4

Run-Time Library Reference

SubPol4 8-175
TransMatrix 8-176
TransposeMatrix 8-177
TransRotPers 8-178
TransRotPers3 8-179
TransRot_32 8-180
VectorNormal 8-181
VectorNormalS 8-182
VectorNormalSS 8-183

Basic Geometry Library Structures 8-5

Run-Time Library Reference

Structures

CRVECTOR3
Triangular recursive vector data.

Library Header File Introduced Documentation Date
libgte.lib libgte.h 3.0 12/14/98

Structure
typedef struct {

RVECTOR r01, r12, r20; Division vertex vector data
RVECTOR *r0, *r1, *r2; Pointer to division vector data
u_long *rtn; Pointer to return address for assembler

} CRVECTOR3;

See also
RCpolyF3()

8-6 Basic Geometry Library Structures

Run-Time Library Reference

CRVECTOR4
Quadrilateral recursive vector data.

Library Header File Introduced Documentation Date
libgte.lib libgte.h 3.0 12/14/98

Structure
typedef struct {

RVECTOR r01, r02, r31, r32, rc; Division vertex vector data
RVECTOR *r0, *r1, *r2, *r3; Pointer to division vertex vector data
u_long *rtn; Pointer to return address for assembler

} CRVECTOR4;

See also
RCpolyF4()

Basic Geometry Library Structures 8-7

Run-Time Library Reference

CVECTOR
Character vector.

Library Header File Introduced Documentation Date
libgte.lib libgte.h 2.x 12/14/98

Structure
typedef struct {

u_char r, g, b; Color palette
u_char cd; GPU code

};

See also

8-8 Basic Geometry Library Structures

Run-Time Library Reference

DIVPOLYGON3
Triangular division buffer.

Library Header File Introduced Documentation Date
libgte.lib libgte.h 3.0 12/14/98

Structure
typedef struct {

u_long ndiv; Number of divisions
u_long pih, piv; Clip area specification (display screen resolution)
u_short clut; CLUT
u_short tpage; Texture page
CVECTOR rgbc; Code + RGB color
u_long *ot; Pointer to OT
RVECTOR r0, r1, r2; Division vertex vector data
CRVECTOR3 cr[5]; Triangular recursive vector data

} DIVPOLYGON3;

See also
DivideF3(), RCpolyF3()

Basic Geometry Library Structures 8-9

Run-Time Library Reference

DIVPOLYGON4
Quadrilateral recursive vector data.

Library Header File Introduced Documentation Date
libgte.lib libgte.h 3.0 12/14/98

Structure
typedef struct {

u_long ndiv; Number of divisions
u_long pih, piv; Clip area specification (display screen's resolution)
u_short clut; CLUT
u_short tpage; Texture page
CVECTOR rgbc; Code + RGB color
u_long *ot; Pointer to OT
RVECTOR r0, r1, r2, r3; Division vertex vector data
CRVECTOR4 cr[5]; Quadrilateral recursive vector data

} DIVPOLYGON4;

See also
DivideF4(), RCpolyF4()

8-10 Basic Geometry Library Structures

Run-Time Library Reference

DVECTOR
2D vector.

Library Header File Introduced Documentation Date
libgte.lib libgte.h 3.0 12/14/98

Structure
typedef struct {

short vx, vy; Vector coordinates
} DVECTOR;

See also
RotMeshH(), RotTransPers3N(), RotTransPersN()

Basic Geometry Library Structures 8-11

Run-Time Library Reference

EVECTOR
Clip vector data.

Library Header File Introduced Documentation Date
libgte.lib libgte.h 3.0 12/14/98

Structure
typedef struct {

SVECTOR v; Local object 3D vertex
VECTOR sxyz; Screen 3D vertex
DVECTOR sxy; Screen 2D vertex
CVECTOR rgb; Color palette
short txuv, pad; Texture mapping data
long chx, chy; Clip area data

} EVECTOR;

See also
Clip3F(), Clip4F(), InitClip()

8-12 Basic Geometry Library Structures

Run-Time Library Reference

MATRIX
Matrix.

Library Header File Introduced Documentation Date
libgte.lib libgte.h 2.x 12/14/98

Structure
struct MATRIX {

short m[3][3]; 3 x 3 matrix coefficient value
long t[3]; Parallel transfer volume

};

Explanation
Specifies each component on the MATRIX m[i][j]. Specifies the transfer volume after conversion on the
MATRIX t [I]. Pay attention to the differing word lengths on m and t.

The GTE essentially performs the following multiply and accumulate calculations from the MATRIX
structure.

a) RotTrans system function (function group which does not perform coordinate conversion). Performs
only basic matrix calculations and vector addition.

MATRIX m

SVECTOR xi

SVECTOR xo

xo.vx  m.m[0][0] m.m[0][1] m.m[0][2]   xi.vx  m.t[0] 
xo.vy  = m.m[1][0] m.m[1][1] m.m[1][2]   xi.vy + m.t[1] 
xo.vz  m.m[2][0] m.m[2][1] m.m[2][2]   xi.vz  m.t[2] 

b) RotTransPers system function (function group which performs coordinate conversion). In addition to
the (a) calculation, perspective conversion (division by z) is performed at the same time.

MATRIX m

SVECTOR xi

SVECTOR xo

SVECTOR x2

long h

xo.vx  m.m[0][0] m.m[0][1] m.m[0][2]   xi.vx  m.t[0] 

xo.vy  = m.m[1][0] m.m[1][1] m.m[1][2]   xi.vy  + m.t[1] 

xo.vz  m.m[2][0] m.m[2][1] m.m[2][2]   xi.vz  m.t[2] 

x2.vx = (h*xo.vx) / xo.vz

x2.vy = (h*yo.vy) / xo.vz

See also

Basic Geometry Library Structures 8-13

Run-Time Library Reference

POL3
Triangle polygon.

Library Header File Introduced Documentation Date
libgte.lib libgte.h 2.x 12/14/98

Structure
struct POL3 {

short sxy[3][2]; Screen coordinates
short sz[3][2]; Screen coordinates
short uv[3][2]; Texture coordinates
short rgb[3][3]; RGB value
short code; Code (F3 = 1, FT3 = 2, G3 = 3, GT3 = 4)

};

See also
SubPol3()

8-14 Basic Geometry Library Structures

Run-Time Library Reference

POL4
Four-sided polygon.

Library Header File Introduced Documentation Date
libgte.lib libgte.h 2.x 12/14/98

Structure
struct POL4 {

short sxy[4][2]; Screen coordinates
short sz[4][2]; Screen coordinates
short uv[4][2]; Texture coordinates
short rgb[4][3]; RGB value
short code; Code (F4 = 5, FT4 = 6, G4 = 7, GT4 = 8)

};

See also
SubPol4()

Basic Geometry Library Structures 8-15

Run-Time Library Reference

QMESH
Quadrilateral mesh

Library Header File Introduced Documentation Date
libgte.lib libgte.h 4.3 12/14/98

Structure
typedef struct {

SVECTOR *v; pointer to shared vertex coordinates array
SVECTOR *n; pointer to shared normal array
SVECTOR *u; pointer to shared texture coordinates array
CVECTOR *c; pointer to shared color data array
u_long lenv; vertex length (horizontal)
u_long lenh; vertex length (vertical)

}QMESH;

See also
RotMeshPrimQ_T()

8-16 Basic Geometry Library Structures

Run-Time Library Reference

RVECTOR
Division vertex vector data.

Library Header File Introduced Documentation Date
libgte.lib libgte.h 3.0 12/14/98

Structure
typedef struct {

SVECTOR v; Local object 3D vertex
u_char uv[2]; Texture mapping data
u_short pad;
CVECTOR c; Vertex color palette
DVECTOR sxy; Screen 2D vertex
u_long sz; Clip Z-data

} RVECTOR;

See also
RCpolyF3(), RCpolyF4()

Basic Geometry Library Structures 8-17

Run-Time Library Reference

SPOL
Vertex information.

Library Header File Introduced Documentation Date
libgte.lib libgte.h 2.x 12/14/98

Structure
struct SPOL {

short xy[3]; XY coordinates
short uv[2]; UV coordinates
short rgb[3]; RGB value

};

See also
SubPol3(), SubPol4()

8-18 Basic Geometry Library Structures

Run-Time Library Reference

SVECTOR
Short vector.

Library Header File Introduced Documentation Date
libgte.lib libgte.h 2.x 12/14/98

Structure
struct SVECTOR {

short vx, vy, vz; Vector coordinates
short pad; System reserved

};

See also

Basic Geometry Library Structures 8-19

Run-Time Library Reference

TMESH
Triangle mesh.

Library Header File Introduced Documentation Date
libgte.lib libgte.h 2.x 12/14/98

Structure
struct TMESH {

SVECTOR *v; Pointer to vertex string
SVECTOR *n; Pointer to normal string
SVECTOR *u; Pointer to texture string
CVECTOR *c; Pointer to RGB string
u_long len; Mesh length

};

See also
RotMeshPrimR…(), RotMeshPrimS…()

8-20 Basic Geometry Library Structures

Run-Time Library Reference

VECTOR
Vector.

Library Header File Introduced Documentation Date
libgte.lib libgte.h 2.x 12/14/98

Structure
struct VECTOR {

long vx, vy, vz; Vector coordinates
long pad; System reserved

};

See also

Basic Geometry Library Functions 8-21

Run-Time Library Reference

Functions

ApplyMatrix
Multiply a vector by a matrix.

Library Header File Introduced Documentation Date
libgte.lib libgte.h 3.0 12/14/98

Syntax
VECTOR *ApplyMatrix(
MATRIX *m, Pointer to matrix to be multiplied (input)
SVECTOR *v0, Pointer to short vector (input)
VECTOR *v1) Pointer to vector (output)

Explanation
Multiplies the matrix m by the short vector v0 beginning with the rightmost end. The vector is in effect
rotated and then translated.

The result is saved in the vector v1. The function destroys the constant rotation matrix.

m -> m [i] [j] : (1, 3, 12)
v0 -> vx, vy, vz : (1, 15, 0)
v1 -> vx, vy, vz : (1, 31, 0)

Return value
v1.

See also
ApplyMatrixLV(), ApplyMatrixSV(), ApplyRotMatrix(), ApplyRotMatrixLV(), ApplyTransposeMatrixLV()

8-22 Basic Geometry Library Functions

Run-Time Library Reference

ApplyMatrixLV
Multiply a vector by a matrix.

Library Header File Introduced Documentation Date
libgte.lib libgte.h 3.0 12/14/98

Syntax
VECTOR *ApplyMatrixLV(
MATRIX *m, Pointer to matrix to be multiplied (input)
VECTOR *v0, Pointer to vector (input)
VECTOR *v1) Pointer to vector (output)

Explanation
Multiplies matrix m by vector v0 beginning from the rightmost end. The result is saved in vector v1. It is a 16
x 32 bit multiplier which uses the GTE. It destroys the constant rotation matrix.

m -> m [i] [j] : (1, 3, 12)
v0 -> vx, vy, vz : (1, 31, 0)
v1 -> vx, vy, vz : (1, 31, 0)

Return value
v1

See also
ApplyMatrix(), ApplyMatrixSV(), ApplyRotMatrix(), ApplyRotMatrixLV(), ApplyTransposeMatrixLV()

Basic Geometry Library Functions 8-23

Run-Time Library Reference

ApplyMatrixSV
Multiply a vector by a matrix.

Library Header File Introduced Documentation Date
libgte.lib libgte.h 3.0 12/14/98

Syntax
SVECTOR *ApplyMatrixSV(
MATRIX *m, Pointer to matrix to be multiplied (input)
SVECTOR *v0, Pointer to short vector (input)
SVECTOR *v1) Pointer to short vector (output)

Explanation
Multiplies matrix m by short vector v0 beginning at the rightmost end. The result is saved in the short vector
v1. This function destroys the rotation matrix.

m -> m [i] [j] : (1, 3, 12)
v0 -> vx, vy, vz : (1, 15, 0)
v1 -> vx, vy, vz : (1, 15, 0)

Return value
v1

See also
ApplyMatrix(), ApplyMatrixLV(), ApplyRotMatrix(), ApplyRotMatrixLV(), ApplyTransposeMatrixLV()

8-24 Basic Geometry Library Functions

Run-Time Library Reference

ApplyRotMatrix
Multiply a vector by a constant rotation matrix.

Library Header File Introduced Documentation Date
libgte.lib libgte.h 3.0 12/14/98

Syntax
VECTOR *ApplyRotMatrix(
SVECTOR *v0, Pointer to short vector (input)
VECTOR *v1) Pointer to vector (output)

Explanation
Multiplies a constant rotation matrix by short vector v0 beginning at the rightmost end. The result is saved
in vector v1.

v0 -> vx, vy, vz : (1, 15, 0)
v1 -> vx, vy, vz : (1, 31, 0)

Return value
v1

See also
ApplyMatrix(), ApplyMatrixLV(), ApplyMatrixSV(), ApplyRotMatrixLV(), ApplyTransposeMatrixLV()

Basic Geometry Library Functions 8-25

Run-Time Library Reference

ApplyRotMatrixLV
Multiply a vector by a constant rotation matrix.

Library Header File Introduced Documentation Date
libgte.lib libgte.h 3.0 12/14/98

Syntax
VECTOR *ApplyRotMatrixLV(
VECTOR *v0, Pointer to long vector (input)
VECTOR *v1) Pointer to vector (output)

Explanation
Multiplies a constant rotation matrix by long vector v0 beginning at the rightmost end. The result is saved in
vector v1.

v0 -> vx, vy, vz : (1, 31, 0)
v1 -> vx, vy, vz : (1, 31, 0)

Return value
v1

See also
ApplyMatrix(), ApplyMatrixLV(), ApplyMatrixSV(), ApplyRotMatrix(), ApplyTransposeMatrixLV()

8-26 Basic Geometry Library Functions

Run-Time Library Reference

ApplyTransposeMatrixLV
Multiply a vector by a matrix.

Library Header File Introduced Documentation Date
libgte.lib libgte.h 3.2 12/14/98

Syntax
VECTOR *ApplyTransposeMatrixLV(
MATRIX *m, Pointer to matrix to be multiplied
VECTOR *v0, Pointer to vector (input)
VECTOR *v1) Pointer to vector (output)

Explanation
Multiplies a transposed matrix by vector v0 beginning at the rightmost end. The result is saved in vector v1.

m -> m [i] [j] : (1, 3, 12)
v0 -> vx, vy, vz : (1, 31, 0)
v1 -> vx, vy, vz : (1, 31, 0)

Return value
v1

See also
ApplyMatrix(), ApplyMatrixLV(), ApplyMatrixSV(), ApplyRotMatrix(), ApplyRotMatrixLV()

Basic Geometry Library Functions 8-27

Run-Time Library Reference

AverageZ3
Average three values.

Library Header File Introduced Documentation Date
libgte.lib libgte.h 3.0 12/14/98

Syntax
long AverageZ3(
long sz0, long sz1, long sz2) Input values

Explanation
Calculates an average of three values sz0, sz1, and sz2.

sz0, sz1, sz2 : (0, 16, 0)
Return value : (0, 16, 0)

Return value
Average of 1/4 of three values sz0, sz1, and sz2.

See also
AverageZ4()

8-28 Basic Geometry Library Functions

Run-Time Library Reference

AverageZ4
Average four values.

Library Header File Introduced Documentation Date
libgte.lib libgte.h 3.0 12/14/98

Syntax
long AverageZ4(
long sz0, long sz1, long sz2, long sz3) Input values

Explanation
Calculates an average of four values sz0, sz1, sz2, and sz3.

sz0, sz1, sz2, sz3 : (0, 16, 0)
Return value : (0, 16, 0)

Return value
1/4 of the average of four values sz0, sz1, sz2, and sz3.

See also
AverageZ3()

Basic Geometry Library Functions 8-29

Run-Time Library Reference

catan
Compute arctangent of an angle within 180 degrees.

Library Header File Introduced Documentation Date
libgte.lib libgte.h 3.0 12/14/98

Syntax
int catan(
int a) Value

Explanation
Uses PlayStation format (where 4096 = 360 degrees = 2pai) to find the arctan (between -90 and +90
degrees, -pai/2...pai/2) of a.

a : (1, 19, 12)

Return value
atan (a) : (1, 19, 12)

See also
ratan2(), ccos(), csin()

8-30 Basic Geometry Library Functions

Run-Time Library Reference

ccos
Compute cosine of an angle.

Library Header File Introduced Documentation Date
libgte.lib libgte.h 3.0 12/14/98

Syntax
int ccos(
int a) Angle (in PlayStation format)

Explanation
Finds the cosine function of the angle (in PlayStation format) (4096 = 360 degrees = 2 pai) using fixed point
math (where 4096 = 1.0).

Compared to rcos(), ccos() is slower and takes up less space

a : PlayStation format (4096 = 360 degrees = 2pai)

Return value
cos (a) : (1, 19, 12)

See also
rcos(), csin(), catan()

Basic Geometry Library Functions 8-31

Run-Time Library Reference

Clip3F, Clip3FP, Clip3FT, Clip3FTP, Clip3G, Clip3GT, Clip3GTP
Three-vertex clipping functions.

Syntax
Flat-shaded, no perspective transformation.
long Clip3F(SVECTOR *v0, SVECTOR *v1, SVECTOR *v2, EVECTOR **evmx)

Flat-shaded,with perspective transformation
long Clip3FP(SVECTOR *v0, SVECTOR *v1, SVECTOR *v2, EVECTOR **evmx)

Flat-shaded, textured, no perspective transformation
long Clip3FT(SVECTOR *v0, SVECTOR *v1, SVECTOR *v2, short *uv0, short *uv1, short *uv2, EVECTOR
**evmx)

Flat-shaded, textured, with perspective transformation
long Clip3FTP(SVECTOR *v0, SVECTOR *v1, SVECTOR *v2, short *uv0, short *uv1, short *uv2, EVECTOR
**evmx)
Gouraud-shaded, no perspective transformation
long Clip3G(SVECTOR *v0, SVECTOR *v1, SVECTOR *v2,CVECTOR *rgb0, CVECTOR *rgb1, CVECTOR
*rgb2, EVECTOR **evmx)

Gouraud-shaded, with perspective transformation
long Clip3GP(SVECTOR *v0, SVECTOR *v1, SVECTOR *v2,CVECTOR *rgb0, CVECTOR *rgb1, CVECTOR
*rgb2,EVECTOR **evmx)

Gouraud-shaded, textured, no perspective transformation
long Clip3GT(SVECTOR *v0, SVECTOR *v1, SVECTOR *v2,short *uv0, short *uv1, short *uv2,CVECTOR
*rgb0, CVECTOR *rgb1, CVECTOR *rgb2, EVECTOR **evmx;

Gouraud-shaded, textured, with perspective transformation
long Clip3GTP(SVECTOR *v0, SVECTOR *v1, SVECTOR *v2,short *uv0, short *uv1, short *uv2,CVECTOR
*rgb0, CVECTOR *rgb1, CVECTOR *rgb2, EVECTOR **evmx;

Explanation
These functions clip a triangle having vertices v0, v1, and v2 to six surfaces defined by InitClip(). Other input
parameters are:

uv0, uv1, uv2: Pointers to texture coordinate vectors
rgb0, rgb1, rgb2: Pointers to vertex color data

Effective output clip vector data is stored in evmx. The following members of evmx are returned depending
on the particular function:

evmx[i] -> v Local Object 3D Vertex (all functions)
evmx[i] -> sxyz Screen 3D Vertex (all functions)
evmx[i] -> sxyz.pad Fog effect interpolation value (P functions)
evmx[i] -> sxy Screen 2D Vertex (P functions)
evmx[i] -> rgb Vertex Color Data (G functions)
evmx[i] -> txuv Texture Mapping Data (T functions)
evmx[i] -> chx chx = vz x (hw/2)/h (all functions)
evmx[i] -> chy chy = vz x (vw/2)/h (all functions)

8-32 Basic Geometry Library Functions

Run-Time Library Reference

These functions reserve the pointer arrays (20 pointer arrays = 80 bytes), including the work area.

Return value
Output number of vertices.

See also
Clip4F(), InitClip()

Basic Geometry Library Functions 8-33

Run-Time Library Reference

Clip4F, Clip4FP, Clip4FT, Clip4FTP, Clip4G, Clip4GT, Clip4GTP
Four-vertex clipping functions.

Syntax
Flat-shaded, no perspective transformation.
long Clip4F(SVECTOR *v0, SVECTOR *v1, SVECTOR *v2, SVECTOR *v3, EVECTOR**evmx)

Flat-shaded,with perspective transformation
long Clip4FP(SVECTOR *v0, SVECTOR *v1, SVECTOR *v2, SVECTOR *v3, EVECTOR **evmx)

Flat-shaded, textured, no perspective transformation
long Clip4FT(SVECTOR *v0, SVECTOR *v1, SVECTOR *v2, SVECTOR *v3, short *uv0, short *uv1, short
*uv2, short *uv3, EVECTOR **evmx)

Flat-shaded, textured, with perspective transformation
long Clip4FTP(SVECTOR *v0, SVECTOR *v1, SVECTOR *v2, SVECTOR *v3, short *uv0, short *uv1, short
*uv2, short *uv3, EVECTOR **evmx)
Gouraud-shaded, no perspective transformation
long Clip4G(SVECTOR *v0, SVECTOR *v1, SVECTOR *v2, SVECTOR *v3, CVECTOR *rgb0, CVECTOR
*rgb1, CVECTOR *rgb2, EVECTOR **evmx)

Gouraud-shaded, with perspective transformation
long Clip4GP(SVECTOR *v0, SVECTOR *v1, SVECTOR *v2, SVECTOR *v3, CVECTOR *rgb0, CVECTOR
*rgb1, CVECTOR *rgb3, CVECTOR *rgb2, EVECTOR **evmx)

Gouraud-shaded, textured, no perspective transformation
long Clip4GT(SVECTOR *v0, SVECTOR *v1, SVECTOR *v2, SVECTOR *v3, short *uv0, short *uv1, short
*uv2, short *uv3, CVECTOR *rgb0, CVECTOR *rgb1, CVECTOR *rgb2, CVECTOR *rgb3, EVECTOR **evmx;

Gouraud-shaded, textured, with perspective transformation
long Clip4GTP(SVECTOR *v0, SVECTOR *v1, SVECTOR *v2, SVECTOR *v3, short *uv0, short *uv1, short
*uv2, short *uv3, CVECTOR *rgb0, CVECTOR *rgb1, CVECTOR *rgb2, CVECTOR *rgb3, EVECTOR **evmx;

Explanation
These functions clip a quadrilateral (linked triangle) having vertices v0, v1, v2, and v3 to six surfaces defined
by InitClip(). Other input parameters are:

uv0, uv1, uv2, uv3: Pointers to texture coordinate vectors
rgb0, rgb1, rgb2,
rgb3:

Pointers to vertex color data

Effective output clip vector data is stored in evmx. The following members of evmx are returned depending
on the particular function:

evmx[i] -> v Local Object 3D Vertex (all functions)
evmx[i] -> sxyz Screen 3D Vertex (all functions)
evmx[i] -> sxyz.pad Fog effect interpolation value (P functions)
evmx[i] -> sxy Screen 2D Vertex (P functions)
evmx[i] -> rgb Vertex Color Data (G functions)
evmx[i] -> txuv Texture Mapping Data (T functions)

8-34 Basic Geometry Library Functions

Run-Time Library Reference

evmx[i] -> chx chx = vz x (hw/2)/h (all functions)
evmx[i] -> chy chy = vz x (vw/2)/h (all functions)

These functions reserve the pointer arrays (20 pointer arrays = 80 bytes), including the work area.

Return value
Output number of vertices.

See also
Clip3F(), InitClip()

Basic Geometry Library Functions 8-35

Run-Time Library Reference

cln
C logarithm function.

Library Header File Introduced Documentation Date
libgte.lib libgte.h 3.0 12/14/98

Syntax
int cln(
int a) Value

Explanation
Uses fixed point math (where 4096 = 1.0) to find the fixed point natural logarithm.

a : (1, 19, 12)

Return value
ln (a) : (1, 19, 12)

See also

8-36 Basic Geometry Library Functions

Run-Time Library Reference

ColorCol
Find a local color from a local light vector.

Library Header File Introduced Documentation Date
libgte.lib libgte.h 2.x 12/14/98

Syntax
void ColorCol(
VECTOR *v0, Pointer to local light vector (input)
CVECTOR *v1, Pointer to primary color vector (input)
CVECTOR *v2) Pointer to color vector (output)

Explanation
Calculates the following:

LC = BK + LCM x v0

v2 = v1 x LC (product of multiplication)

v0 -> vx, vy, vz : (1, 19, 12)
v1 -> r, g, b :(0, 8, 0)
v2 -> r, g, b :(0, 8, 0)

See also
ColorDpq(), ColorMatCol(), ColorMatDpq()

Basic Geometry Library Functions 8-37

Run-Time Library Reference

ColorDpq
Find a local color from a local light vector, and perform depth cueing.

Library Header File Introduced Documentation Date
libgte.lib libgte.h 2.x 12/14/98

Syntax
void ColorDpq(
VECTOR *v0, Pointer to local light vector (input)
CVECTOR *v1, Pointer to primary color vector (input)
long p, Interpolation value for depth cueing (input)
CVECTOR *v2) Pointer to color vector (output)

Explanation
Calculates the following:

LC = BK + LCM x v0

v2 = (1-p) x v1 x LC + p x FC

where v1 x LC is the product of separate multiplication.

v0 -> vx, vy, vz : (1, 19, 12)
vl -> r, g, b : (0, 8, 0)
p : (0, 20, 12)
v2 -> r, g, b : (0, 8, 0)

See also
ColorCol(), ColorMatCol(), ColorMatDpq()

8-38 Basic Geometry Library Functions

Run-Time Library Reference

ColorMatCol
Find a color.

Library Header File Introduced Documentation Date
libgte.lib libgte.h 2.x 12/14/98

Syntax
void ColorMatCol(
SVECTOR *v0, Pointer to normal vector (input)
CVECTOR *v1, Pointer to primary color vector (input)
CVECTOR *v2, Pointer to color vector (output)
long matc) Material (output)

Explanation
Performs the following calculations:

LLV = LLM x v0

LLV = LLV^ (2^matc)

LC = BK + LCM x LLV

v2 = v1 x LC (separate multiplications)

v0 -> vx, vy, vz : (1, 3, 12)
v1 -> r, g, b : (0, 8, 0)
v2 -> r, g, b : (0, 8, 0)
matc : (0, 32, 0)

See also
ColorCol(), ColorDpq(), ColorMatDpq()

Basic Geometry Library Functions 8-39

Run-Time Library Reference

ColorMatDpq
Find a color and perform depth cueing.

Library Header File Introduced Documentation Date
libgte.lib libgte.h 2.x 12/14/98

Syntax
void ColorMatDpq(
SVECTOR *v0, Pointer to normal vector (input)
CVECTOR *v1, Pointer to color vector (input)
long p, Interpolation value for depth cueing (output)
CVECTOR *v2, Pointer to color vector (output)
long matc) Material (output)

Explanation
Performs the following calculations:

LLV = LLM x v0
LLV = LLV^ (2^matc)
LC = BK + LCM x LLV
v2 = (1-p) x v1 x LC + p x FC.

v0 -> vx, vy, vz : (1, 3, 12)
v1 -> r, g, b : (0, 8, 0)
p : (0, 20, 12)
v2 -> r, g, b : (0, 8, 0)
matc : (0, 32, 0)

See also
ColorCol(), ColorDpq(), ColorMatCol()

8-40 Basic Geometry Library Functions

Run-Time Library Reference

CompMatrix
Make a composite coordinate transformation matrix.

Library Header File Introduced Documentation Date
libgte.lib libgte.h 2.x 12/14/98

Syntax
MATRIX *CompMatrix(
MATRIX *m0, MATRIX *m1, Pointer to matrix (input)
MATRIX *m2) Pointer to matrix (output)

Explanation
Makes a composite coordinate transformation matrix that includes parallel translation.

[m2 -> m] = [m0 -> m] x [m1 -> m]

(m2 -> t) = [m0 -> m] x (m1 -> t) + (m0 -> t)

However, the values of the elements of m1 -> t should be in the range (-2^15, 2^15).

m0 -> m [i] [j] : (1, 3, 12)
m0 -> t [i] : (1, 31, 0)
m1 -> m [i] [j] : (1, 3, 12)
m1 -> t [i] : (1, 15, 0)
m2 -> m [i] [j] : (1, 3, 12)
m2 -> t [i] : (1, 31, 0)

This function destroys a constant rotation matrix.

Return value
m2

See also
CompMatrixLV()

Basic Geometry Library Functions 8-41

Run-Time Library Reference

CompMatrixLV
Make a composite coordinate transformation matrix.

Library Header File Introduced Documentation Date
libgte.lib libgte.h 3.6 12/14/98

Syntax
MATRIX *CompMatrix(
MATRIX *m0, MATRIX *m1, Pointer to matrix (input)
MATRIX *m2) Pointer to matrix (output)

Explanation
Makes a composite coordinate transformation matrix that includes parallel translation.

[m2->m] = [m0->m] * [m1->m]
(m2->t) = [m0->m] * (m1->t) + (m0->t)
m0 -> m [i] [j] : (1, 3, 12)
m0 -> t [i] : (1, 31, 0)
m1 -> m [i] [j] : (1, 3, 12)
m1 -> t [i] : (1, 31, 0)
m2 -> m [i] [j] : (1, 3, 12)
m2 -> t [i] : (1, 31, 0)

This function destroys a rotation matrix.

Return value
m2

See also
CompMatrix()

8-42 Basic Geometry Library Functions

Run-Time Library Reference

csin
C sine function.

Library Header File Introduced Documentation Date
libgte.lib libgte.h 3.0 12/14/98

Syntax
int csin(
int a) Angle (in PlayStation format)

Explanation
Find the sine function of the angle (in PlayStation format) (4096 = 360 degrees = 2pai) using fixed point
math (where 4096 = 1.0).

Compared to rsin(), csin() is slower and takes up less space.

a : PlayStation format (4096 = 360 degrees = 2pai)

Return value
sin (a) : (1, 19, 12)

See also
rsin(), ccos(), catan()

Basic Geometry Library Functions 8-43

Run-Time Library Reference

csqrt
C square root function.

Library Header File Introduced Documentation Date
libgte.lib libgte.h 3.0 12/14/98

Syntax
int csqrt(
int a) Value

Explanation
Uses fixed point math (where 4096 = 1.0) to find the fixed point square root.

This function is the same as SquareRoot12() except that it requires a smaller table memory area.

a : (1, 19, 12)

Return value
sqrt (a) : (1, 19, 12)

See also
SquareRoot0(), SquareRoot12(), InvSquareRoot()

8-44 Basic Geometry Library Functions

Run-Time Library Reference

DivideF3, DivideF4, DivideFT3, DivideFT4, DivideG3, DivideG4,
DivideGT3, DivideGT4
Polygon division functions.

Library Header File Introduced Documentation Date
libgte.lib libgte.h 3.0 12/14/98

Syntax
Flat triangle.
u_long *DivideF3(SVECTOR *v0, SVECTOR *v1, SVECTOR *v2, CVECTOR *rgbc, POLY_F3 *s, u_long *ot,
DIVPOLYGON3 *divp)

Flat quadrilateral.
u_long *DivideF4(SVECTOR *v0, SVECTOR *v1, SVECTOR *v2, SVECTOR *v3, CVECTOR *rgbc,
POLY_F4 *s, u_long *ot, DIVPOLYGON4 *divp)

Flat textured triangle.
u_long *DivideFT3(SVECTOR *v0, SVECTOR *v1, SVECTOR *v2, u_long *uv0, u_long *uv1, u_long *uv2,
CVECTOR *rgbc, POLY_FT3 *s, u_long *ot, DIVPOLYGON3 *divp)

Flat textured quadrilateral.
u_long *DivideFT4(SVECTOR *v0, SVECTOR *v1, SVECTOR *v2, SVECTOR *v3, u_long *uv0, u_long
*uv1, u_long *uv2, u_long *uv3, CVECTOR *rgbc, POLY_FT4 *s, u_long *ot, DIVPOLYGON4 *divp)

Gouraud-shaded triangle.
u_long *DivideG3(SVECTOR *v0, SVECTOR *v1, SVECTOR *v2, CVECTOR *rgb0, CVECTOR *rgb1,
CVECTOR *rgb2, POLY_G3 *s, u_long *ot, DIVPOLYGON3 *divp)

Gouraud-shaded quadrilateral.
u_long *DivideG4(SVECTOR *v0, SVECTOR *v1, SVECTOR *v2, SVECTOR *v3, CVECTOR *rgb0,
CVECTOR *rgb1, CVECTOR *rgb2, CVECTOR *rgb3, POLY_G4 *s, u_long *ot, DIVPOLYGON4 *divp)

Gouraud-shaded, textured triangle.
u_long *DivideGT3(SVECTOR *v0, SVECTOR *v1, SVECTOR *v2, u_long *uv0, u_long *uv1, u_long *uv2,
CVECTOR *rgb0, CVECTOR *rgb1, CVECTOR *rgb2, POLY_GT3 *s, u_long *ot, DIVPOLYGON3 *divp)

Gouraud-shaded textured quadrilateral.
u_long *DivideGT4(SVECTOR *v0, SVECTOR *v1, SVECTOR *v2, SVECTOR *v3, u_long *uv0, u_long
*uv1, u_long *uv2, u_long *uv3, CVECTOR *rgb0, CVECTOR *rgb1, CVECTOR *rgb2, CVECTOR *rgb3,
POLY_GT4 *s, u_long *ot, DIVPOLYGON4 *divp)

Explanation
Divides a polygon and registers the result to the OT.

v0 – v3 are pointers to the vertex coordinate vectors.

uv0 – uv3, for textured polygons, are pointers to the texture coordinate vectors.

rgbc is a pointer to a color vector + code.

s is a pointer to the GPU packet buffer address. It depends on the polygon type.

ot is a pointer to the OT entry

divp is a pointer to the division work area. You must set divp->ndiv to the desired number of divisions, and
divp->pih, divp->piv to the display screen (clipping) resolution.

The divp -> ndiv values and division format are shown below:

Basic Geometry Library Functions 8-45

Run-Time Library Reference

Table 8-1: Division types

divp->ndiv Number of divisions
1 2x2
2 4x4
3 8x8
4 16 x 16
5 32 x 32

rgb0 – rgb3, for Gouraud-sh

aded polygons, are pointers to color vectors.
rgb0:rgb0+code

Return value
Updated GPU packet buffer address.

8-46 Basic Geometry Library Functions

Run-Time Library Reference

DpqColor
Interpolate a primary color vector and far color.

Library Header File Introduced Documentation Date
libgte.lib libgte.h 2.x 12/14/98

Syntax
void DpqColor(
CVECTOR *v0, Pointer to primary color vector (input)
long p, Interpolation value (input)
CVECTOR *v1) Pointer to primary color vector (output)

Explanation
Calculates v1 = (1-p) x v0 + p x FC.

v0 -> r, g, b : (0, 8, 0)
p : (0, 20, 12)
v1 -> r, g, b : (0, 8, 0)

See also
DpqColor3(), DpqColorLight()

Basic Geometry Library Functions 8-47

Run-Time Library Reference

DpqColor3
Interpolate three primary color vectors and far color.

Library Header File Introduced Documentation Date
libgte.lib libgte.h 2.x 12/14/98

Syntax
void DpqColor3(
CVECTOR *v0, CVECTOR *v1, CVECTOR *v2, Pointer to primary color vectors (input)
long p, Interpolation value (input)
CVECTOR *v3, CVECTOR *v4, CVECTOR *v5) Pointer to color vectors (output)

Explanation
Calculates:

v3 = (1-p) x v0 + p x FC

v4 = (1-p) x v1 + p x FC

v5 = (1-p) x v2 + p x FC.

v0, v1, v2 -> r, g, b : (0, 8, 0)
p : (0, 20, 12)
v3, v4, v5 -> r, g, b : (0, 8, 0)

See also
DpqColor(), DpqColorLight()

8-48 Basic Geometry Library Functions

Run-Time Library Reference

DpqColorLight
Interpolate the product from multiplication of a local color vector by primary color vector, and far color.

Library Header File Introduced Documentation Date
libgte.lib libgte.h 2.x 12/14/98

Syntax
void DpqColorLight(
SVECTOR *v0, Pointer to local color vector (input)
CVECTOR *v1, Pointer to primary color vector (input)
long p, Interpolation value (input)
CVECTOR *v2) Pointer to color vector (output)

Explanation
Calculates v2 = (1-p) x (v1 x v0) + p x FC.

where v1 x v0 is a separate multiplication product.

v0 -> vx, vy, vz : (1, 3, 12)
v1 -> r, g, b : (0, 8, 0)
p : (0, 20, 12)
v2 -> r, g, b : (0, 8, 0)

See also
DpqColor(), DpqColor3()

Basic Geometry Library Functions 8-49

Run-Time Library Reference

EigenMatrix
Obtain the eigen matrix.

Library Header File Introduced Documentation Date
libgte.lib libgte.h 4.1 12/14/98

Syntax
void EigenMatrix(
MATRIX *m, Input: rotation matrix
MATRIX *t) Output: eigen matrix

Explanation
The eigen matrix (ordered eigen vectors) corresponding to the input rotation matrix, m, is output to the
matrix t.

The operation performed is shown below.

[] 1−t x []m x [] 1−t =

















θθ−
θθ

)(cos)(sin0

)(sin)(cos0

001

m -> m [I] [j] : (1, 3, 12)
t -> m [I] [j] : (1, 3, 12)

See also

8-50 Basic Geometry Library Functions

Run-Time Library Reference

gteMIMefunc
Add a vertex data array to a differential data array multiplied by a coefficient.

Library Header File Introduced Documentation Date
libgte.lib libgte.h 2.x 12/14/98

Syntax
void gteMIMefunc(
SVECTOR *otp, Pointer to a vertex array
SVECTOR *dfp, Pointer to a differential array
long n, Number of vertex (differential) data
long p) Weight (control) coefficient: (1, 19, 12)

Explanation
Executes calculation of multiple interpolations using vertex data array and difference data array. The
argument format is as follows:

p : (1, 19, 12)

otp, dfp optional

It operates at high speed in a similar way to the program given in the example below.

void gteMIMefunc (otp, dfp, n, p)
SVECTOR *otp, *dfp;
long n, p;
{
int i;
for (i = 0; i<n; i++) {
(otp+i)->x+=((int)((dfp+i)->x) x p)>>12;
(otp+i)->y+=((int)((dfp+i)->y) x p)>>12;
(otp+i)->z+=((int)((dfp+i)->z) x p)>>12;

}
}

See also

Basic Geometry Library Functions 8-51

Run-Time Library Reference

InitClip
Initialize clipping parameter.

Library Header File Introduced Documentation Date
libgte.lib libgte.h 3.0 12/14/98

Syntax
void InitClip(
EVECTOR *evbfad, Pointer to 16 clip vector data arrays
long hw, Window width
long vw, Window height
long h, Projection distance from view point to screen
long near, NearClip position
long far) FarClip position

Explanation
Sets parameters used for clipping.

The clip vector data array evbfad reserves 16 data arrays (176 words or 704 bytes).

See also
Clip3F(), Clip4F()

8-52 Basic Geometry Library Functions

Run-Time Library Reference

InitGeom
Initialize the geometry transform engine.

Library Header File Introduced Documentation Date
libgte.lib libgte.h 2.x 12/14/98

Syntax
void InitGeom(void)

Explanation
Initializes the GTE. It must be called whenever the basic geometry library is used.

See also

Basic Geometry Library Functions 8-53

Run-Time Library Reference

Intpl
Interpolate a vector and far color.

Library Header File Introduced Documentation Date
libgte.lib libgte.h 2.x 12/14/98

Syntax
void Intpl(
SVECTOR *v0, Pointer to vector (input)
long p, Interpolation value (input)
CVECTOR *v1) Pointer to vector (output)

Explanation
Calculates v1 = (1-p) x v0 + p x FC.

v0 -> vx, vy, vz : (1, 3, 12)
p : (0, 20, 12)
v1 -> r, g, b : (0, 8, 0)

See also

8-54 Basic Geometry Library Functions

Run-Time Library Reference

InvSquareRoot
Inverse square root.

Library Header File Introduced Documentation Date
libgte.lib libgte.h 2.x 12/14/98

Syntax
void InvSquareRoot(
long a, Value
long *b, Pointer to mantissa
long *c) Pointer to exponent

Explanation
Calculates 1/square root of a.

a : (0, 32, 0)
b : (0, 20, 12)
c : (0, 32, 0)

If a > 0x7FFFFFF, a processor exception will occur.

See also
csqrt(), SquareRoot12()

Basic Geometry Library Functions 8-55

Run-Time Library Reference

IsIdMatrix
Judge distance from unit matrix.

Library Header File Introduced Documentation Date
libgte.lib libgte.h 4.1 12/14/98

Syntax
void IsIdMatrix(
MATRIX *m) Input matrix

Explanation
Compares the input matrix m with the unit matrix. If the elements of matrix m are less than 20 away from
the unit matrix, the function returns the value 1.

m -> m [i] [j] : (1, 3, 12)

Return value
1 if the matrix is the unit matrix, else 0.

See also

8-56 Basic Geometry Library Functions

Run-Time Library Reference

LightColor
Coordinate transformation using the local color matrix.

Library Header File Introduced Documentation Date
libgte.lib libgte.h 2.x 12/14/98

Syntax
void LightColor(
SVECTOR *v0, Pointer to vector (input)
VECTOR *v1) Pointer to vector (output)

Explanation
Calculates v1=LCM x v0. A limiter works on negative components of v1 when 0 is reached.

v0 -> vx, vy, vz : (1, 3, 12)
v1 -> vx, vy, vz : (0, 20, 12)

See also

Basic Geometry Library Functions 8-57

Run-Time Library Reference

LoadAverage0
Weighted average of two vectors.

Library Header File Introduced Documentation Date
libgte.lib libgte.h 3.0 12/14/98

Syntax
void LoadAverage0(
VECTOR *v0, VECTOR *v1, Pointer to vectors (input)
long p0, long p1, Weights (input)
VECTOR *v2) Pointer to vector (output)

Explanation
Returns the weighted average of two vectors v0 and v1 in v2 using weights of p0 and p1.

v0, v1 -> vx, vy, vz : (1, 31, 0)
p0, p1 : (1, 15, 0)
v2 -> vx, vy, vz : (1, 31, 0)

See also
LoadAverage12(), LoadAverageByte(), LoadAverageCol(), LoadAverageShort0(), LoadAverageShort12()

8-58 Basic Geometry Library Functions

Run-Time Library Reference

LoadAverage12
Weighted average of two vectors.

Library Header File Introduced Documentation Date
libgte.lib libgte.h 2.x 12/14/98

Syntax
void LoadAverage12(
VECTOR *v0, VECTOR *v1, Pointer to vectors (input)
long p0, long p1, Weights (input)
VECTOR *v2) Pointer to vector (output)

Explanation
Finds the weighted average of two vectors v0 and v1 using weights of p0 and p1 after division by 4096 (1
in fixed point format) the results are returned in v2.

v0, v1 -> vx, vy, vz : (1, 31, 0)
p0, p1 : (1, 3, 12)
v2 -> vx, vy, vz : (1, 31, 0)

See also
LoadAverage0(), LoadAverageByte(), LoadAverageCol(), LoadAverageShort0(), LoadAverageShort12()

Basic Geometry Library Functions 8-59

Run-Time Library Reference

LoadAverageByte
Find weighted average of two vectors.

Library Header File Introduced Documentation Date
libgte.lib libgte.h 3.0 12/14/98

Syntax
void LoadAverageByte(
u_char v0[2], u_char v1[2], Vector (input)
long p0, p1, Weights (input)
u_char v2[2]) Vector (output)

Explanation
Finds the weighted average of two vectors v0 and v1 using weights p0 and p1. The result is returned in v2
after division by 4096.

v0[i], v1[i] : (0, 8, 0)
p0, p1 : (1, 3, 12)
v2[i] : (0, 8, 0)

See also
LoadAverage0(), LoadAverage12(), LoadAverageCol(), LoadAverageShort0(), LoadAverageShort12()

8-60 Basic Geometry Library Functions

Run-Time Library Reference

LoadAverageCol
Find weighted average of two vectors.

Library Header File Introduced Documentation Date
libgte.lib libgte.h 3.0 12/14/98

Syntax
void LoadAverageCol(
u_char v0[3], u_char v1[3], Vectors (input)
long p0, long p1, Weights (input)
u_char v2[3]) Vector (output)

Explanation
Finds the weighted average of two vectors v0 and v1 using weights p0 and p1. The result is returned in v2
after division by 4096.

v0[i], v1[i] : (0, 8, 0)
p0, p1 : (1, 3, 12)
v2[i] : (0, 8, 0)

See also
LoadAverage0(), LoadAverage12(), LoadAverageByte(), LoadAverageShort0(), LoadAverageShort12()

Basic Geometry Library Functions 8-61

Run-Time Library Reference

LoadAverageShort0
Weighted average of two vectors.

Library Header File Introduced Documentation Date
libgte.lib libgte.h 2.x 12/14/98

Syntax
void LoadAverageShort0(
SVECTOR *v0, SVECTOR *v1, Pointer to vectors (input)
long p0, long p1, Weights (input)
SVECTOR *v2) Pointer to vector (output)

Explanation
Returns the weighted average of two vectors v0 and v1 in v2 using weights of p0 and p1.

v0, v1 -> vx, vy, vz : (1, 15, 0)
p0, p1 : (1, 15, 0)
v2 -> vx, vy, vz : (1, 30, 0)

See also
LoadAverage0(), LoadAverage12(), LoadAverageByte(), LoadAverageCol(), LoadAverageShort12()

8-62 Basic Geometry Library Functions

Run-Time Library Reference

LoadAverageShort12
Weighted average of two vectors.

Library Header File Introduced Documentation Date
libgte.lib libgte.h 2.x 12/14/98

Syntax
void LoadAverageShort12(
SVECTOR *v0, SVECTOR *v1, Pointer to vectors (input)
long p0, long p1, Weights (input)
SVECTOR *v2) Pointer to vector (output)

Explanation
Finds the weighted average of two vectors v0 and v1 using weights of p0 and p1 after division by 4096 (1
in fixed point format) the results are returned to v2.

v0, v1 -> vx, vy, vz : (1, 15, 0)
p0, p1 : (1, 3, 12)
v2 -> vx, vy, vz : (1, 15, 0)

See also
LoadAverage0(), LoadAverage12(), LoadAverageByte(), LoadAverageCol(), LoadAverageShort0()

Basic Geometry Library Functions 8-63

Run-Time Library Reference

LocalLight
Coordinate transformation using the local light matrix.

Library Header File Introduced Documentation Date
libgte.lib libgte.h 2.x 12/14/98

Syntax
void LocalLight(
SVECTOR *v0, Pointer to vector (input)
VECTOR *v1) Pointer to vector (output)

Explanation
Calculates v1=LLM*v0. A limiter works on negative components of v1 when 0 is reached.

v0 -> vx, vy, vz: :(1, 3, 12)
v1 -> vx, vy, vz: :(0, 20, 12)

See also

8-64 Basic Geometry Library Functions

Run-Time Library Reference

Lzc
Calculate leading zero count.

Library Header File Introduced Documentation Date
libgte.lib libgte.h 2.x 12/14/98

Syntax
long Lzc(
long data) Value

Explanation
Calculates the Leading Zero Count (LZC) given by data.

data : (1, 31, 0)

Return value
The value of LZC.

See also

Basic Geometry Library Functions 8-65

Run-Time Library Reference

MatrixNormal
Normalize a matrix.

Library Header File Introduced Documentation Date
libgte.lib libgte.h 3.2 12/14/98

Syntax
void MatrixNormal(
MATRIX *m, Pointer to matrix (input)
MATRIX *n) Pointer to matrix (output)

Explanation
Orthonormalizes a distorted rotation matrix.

(Do not use m[2][0], m[2][1], m[2][2].)

m -> m [i] [j] : (1, 3, 12)
n -> m [i] [j] : (1, 3, 12)

See also
MatrixNormal_0(), MatrixNormal_1(), MatrixNormal_2()

8-66 Basic Geometry Library Functions

Run-Time Library Reference

MatrixNormal_0
Orthonormalize a matrix.

Library Header File Introduced Documentation Date
libgte.lib libgte.h 3.6 12/14/98

Syntax
void MatrixNormal_0(
MATRIX *m, Pointer to matrix (input)
MATRIX *n) Pointer to matrix (output)

Explanation
Orthonormalizes a distorted rotation matrix.

(Do not use m[2][0], m[2][1], m[2][2].)

m -> m [i] [j] : (1, 3, 12)
n -> m [i] [j] : (1, 3, 12)

See also
MatrixNormal_1(), MatrixNormal_2()

Basic Geometry Library Functions 8-67

Run-Time Library Reference

MatrixNormal_1
Normalize a matrix.

Library Header File Introduced Documentation Date
libgte.lib libgte.h 3.2 12/14/98

Syntax
void MatrixNormal_1(
MATRIX *m, Pointer to matrix (input)
MATRIX *n) Pointer to matrix (output)

Explanation
Orthonormalizes a distorted rotation matrix.

(Do not use m[0][0], m[0][1], m[0][2].)

m -> m [i] [j] (1, 3, 12)
n -> m [i] [j] (1, 3, 12)

See also
MatrixNormal_0(), MatrixNormal_2()

8-68 Basic Geometry Library Functions

Run-Time Library Reference

MatrixNormal_2
Normalize a matrix.

Library Header File Introduced Documentation Date
libgte.lib libgte.h 3.2 12/14/98

Syntax
void MatrixNormal_2(
MATRIX *m, Pointer to matrix (input)
MATRIX *n) Pointer to matrix (output)

Explanation
Orthonormalizes a distorted rotation matrix.

(Do not use m[1][0], m[1][1], m[1][2].)

m -> m [i] [j] : (1, 3, 12)
n -> m [i] [j] : (1, 3, 12)

See also
MatrixNormal_0(), MatrixNormal_1()

Basic Geometry Library Functions 8-69

Run-Time Library Reference

MulMatrix
Multiply two matrices.

Library Header File Introduced Documentation Date
libgte.lib libgte.h 2.x 12/14/98

Syntax
MATRIX *MulMatrix(
MATRIX *m0, MATRIX *m1) Pointer to input/output matrices

Explanation
Multiplies two matrices. The result is saved in m0.

m0, m1 -> m [i] [j] : (1, 3, 12)
The function destroys the constant rotation matrix.

Return value
m0.

See also
MulMatrix0(), MulMatrix2(), MulRotMatrix(), MulRotMatrix0()

8-70 Basic Geometry Library Functions

Run-Time Library Reference

MulMatrix0
Multiply two matrices.

Library Header File Introduced Documentation Date
libgte.lib libgte.h 2.x 12/14/98

Syntax
MATRIX *MulMatrix0(
MATRIX *m0, MATRIX *m1, Pointer to input matrices
MATRIX *m2) Pointer to output matrix

Explanation
Multiplies two matrices m0 and m1.

m0, m1, m2 -> m [i] [j] : (1, 3, 12)
The function destroys the constant rotation matrix.

Return value
m2.

See also
MulMatrix(), MulMatrix2(), MulRotMatrix(), MulRotMatrix0()

Basic Geometry Library Functions 8-71

Run-Time Library Reference

MulMatrix2
Multiply two matrices.

Library Header File Introduced Documentation Date
libgte.lib libgte.h 2.x 12/14/98

Syntax
MATRIX *MulMatrix2(
MATRIX *m0, MATRIX *m1) Pointer to input/output matrices

Explanation
Multiplies two matrices. The result is saved in m1.

m0, m1 -> m [i] [j] : (1, 3, 12)

The function destroys the constant rotation matrix.

Return value
m1.

See also
MulMatrix(), MulMatrix0(), MulRotMatrix(), MulRotMatrix0()

8-72 Basic Geometry Library Functions

Run-Time Library Reference

MulRotMatrix
Multiply a constant rotation matrix by a matrix.

Library Header File Introduced Documentation Date
libgte.lib libgte.h 3.0 12/14/98

Syntax
MATRIX *MulRotMatrix(
MATRIX *m0) Pointer to input/output matrix

Explanation
Multiplies a constant rotation matrix by a matrix. It stores the value in m0.

m0, m1 -> m [i] [j] : (1, 3, 12)

Return value
Returns m0.

See also
MulMatrix(), MulMatrix0(), MulMatrix2(), MulRotMatrix0()

Basic Geometry Library Functions 8-73

Run-Time Library Reference

MulRotMatrix0
Multiply a constant rotation matrix by a matrix.

Library Header File Introduced Documentation Date
libgte.lib libgte.h 3.0 12/14/98

Syntax
MATRIX *MulRotMatrix0(
MATRIX *m0, Pointer to input matrix
MATRIX *m1) Pointer to output matrix

Explanation
Multiplies a constant rotation matrix by matrix m0. The result is saved in m1.

m0, m1 -> m [i] [j] : (1, 3, 12)

Return value
Returns m1.

See also
MulMatrix(), MulMatrix0(), MulMatrix2(), MulRotMatrix()

8-74 Basic Geometry Library Functions

Run-Time Library Reference

NormalClip
Outer product of three points.

Library Header File Introduced Documentation Date
libgte.lib libgte.h 2.x 12/14/98

Syntax
long NormalClip(
long sxy0, long sxy1, long sxy2) Input values (upper 16 bits are screen x coordinates (sx); lower

16 bits are screen y coordinates (sy)

Explanation
Returns the outer product for a triangle formed by three points (sx0, sy0), (sx1, sy1), and (sx2, sy2).

When viewed from the direction of the viewpoint (Z axis negative) the value is positive when the triangle is
righthanded.

(However, the X axis positive faces right and the Y axis positive faces down.)

sxy0, sxy1, sxy2 : (1, 15, 0), (1, 15, 0)

Return value
 sx1-sx0, sy1-sy0 

 sx2-sx0, sy2-sy0 

See also
OuterProduct0(), OuterProduct12()

Basic Geometry Library Functions 8-75

Run-Time Library Reference

NormalColor, NormalColor_nom
Find a local color from a normal vector.

Library Header File Introduced Documentation Date
libgte.lib libgte.h 2.x 12/14/98

Syntax
void NormalColor(
SVECTOR *v0, Pointer to normal vector (input)
CVECTOR *v1) Pointer to color vector (output)

void NormalColor_nom(
SVECTOR *v0) Pointer to normal vector (input)

Explanation
LLV = LLM x v0

v1 = BK + LCM x LLV

v0 -> vx, vy, vz : (1, 3, 12)
NormalColor(): v1-> r, g, b : (0, 8, 0)

NormalColor_nom():The operation result(s) must be retrieved from the GTE. (For further information see the
Inline Reference documentation.)
• For (v1->r,v1->g, v1->b) use the read_rgb2 macro.

See also
NormalColor3(), NormalColorCol(), NormalColorCol3(), NormalColorDpq(), NormalColorDpq3()

8-76 Basic Geometry Library Functions

Run-Time Library Reference

NormalColor3, NormalColor3_nom
Find three local colors from three normal vectors.

Library Header File Introduced Documentation Date
libgte.lib libgte.h 2.x 12/14/98

Syntax
void NormalColor3(
SVECTOR *v0, SVECTOR *v1, SVECTOR *v2, Pointer to normal vectors (input)
CVECTOR *v3, CVECTOR *v4, CVECTOR *v5) Pointer to color vectors (output)

void NormalColor3_nom(
SVECTOR *v0, SVECTOR *v1, SVECTOR *v2) Pointer to normal vectors (input)

Explanation
(LLV0, LLV1, LLV2) = LLM x (v0, v1, v2)

(v3, v4, v5) = BK + LCM x (LLV0, LLV1, LLV2)

v0, v1, v2 -> vx, vy, vz : (1, 3, 12)

NormalColor3(): v3, v4, v5 -> r, g, b : (0, 8, 0)

NormalColor3_nom():The operation result(s) must be retrieved from the GTE (For further information, refer
to the Inline Reference documentation):

• For (v3,v4 and v5) use the read_rgb_fifo macro.

See also
NormalColor(), NormalColorCol(), NormalColorCol3(), NormalColorDpq(), NormalColorDpq3()

Basic Geometry Library Functions 8-77

Run-Time Library Reference

NormalColorCol, NormalColorCol_nom
Find a local color from a normal vector.

Library Header File Introduced Documentation Date
libgte.lib libgte.h 2.x 12/14/98

Syntax
void NormalColorCol(
SVECTOR *v0, Pointer to normal vector (input)
CVECTOR *v1, Pointer to primary color vector (input)
CVECTOR *v2) Pointer to color vector (output)

void NormalColorCol_nom(
SVECTOR *v0, Pointer to normal vector (input)
CVECTOR *v1) Pointer to primary color vector (input)

Explanation
LLV = LLM x v0

LC = BK + LCM x LLV

v2 = v1 x LC

v0 -> vx, vy, vz : (1, 3, 12)
v1 -> r, g, b : (0, 8, 0)
NormalColorCol(): v2 -> r, g, b : (0, 8, 0)

NormalColorCol_nom():The operation result(s) must be retrieved from the GTE (For further information, refer
to the Inline Reference documentation):

• For (v2->r,v2->g,v2->b) use the read_rgb2 macro.

See also
NormalColor(), NormalColor3(), NormalColorCol3(), NormalColorDpq(), NormalColorDpq3()

8-78 Basic Geometry Library Functions

Run-Time Library Reference

NormalColorCol3, NormalColorCol3_nom
Find a local color from three normal vectors.

Library Header File Introduced Documentation Date
libgte.lib libgte.h 2.x 12/14/98

Syntax
void NormalColorCol3(
SVECTOR *v0, SVECTOR *v1, SVECTOR *v2, Pointer to normal vectors (input)
CVECTOR *v3, Pointer to primary color vector (input)
CVECTOR *v4, CVECTOR *v5, CVECTOR *v6) Pointer to color vectors (output)

void NormalColorCol3_nom(
SVECTOR *v0, SVECTOR *v1, SVECTOR *v2, Pointer to normal vectors (input)
CVECTOR *v3) Pointer to primary color vector (input)

Explanation
(LLV0, LLV1, VVL2) = LLM x (v0, v1, v2)

(LC0, LC1, LC2) = BK + LCM x (LLV0, LLV1, LLV2)

(v4, v5, v6) = v3 x (LC0, LC1, LC2)

v0, v1, v2 -> vx, vy, vz : (1, 3, 12)
v3 -> r, g, b : (0, 8, 0)
NormalColorCol3(): v4, v5, v6 -> r, g, b : (0, 8, 0)

NormalColorCol3_nom():The operation result(s) must be retrieved from the GTE (For further information,
refer to the Inline Reference documentation):

• For (v4,v5,v6) use the read_rgb_fifo macro.

See also
NormalColor(), NormalColor3(), NormalColorCol(), NormalColorDpq(), NormalColorDpq3()

Basic Geometry Library Functions 8-79

Run-Time Library Reference

NormalColorDpq, NormalColorDpq_nom
Find a local color from a normal vector and perform depth cueing.

Library Header File Introduced Documentation Date
libgte.lib libgte.h 2.x 12/14/98

Syntax
void NormalColorDpq(
SVECTOR *v0, Pointer to normal vector (input)
CVECTOR *v1, Pointer to primary color vector (input)
long p, Interpolation value (input)
CVECTOR *v2) Pointer to color vector (output)

void NormalColorDpq_nom(
SVECTOR *v0, Pointer to normal vector (input)
CVECTOR *v1, Pointer to primary color vector (input)
long p) Interpolation value (input)

Explanation
LLV = LLM x v0

LC = BK + LCM x LLV

v2 = (1 - p) x v1 x LC + p x FC

v0 -> vx, vy, vz : (1, 3, 12)
vl -> r, g, b : (0, 8, 0)
p : (0, 20, 12)
NormalColorDpq(): v2 -> r, g, b : (0, 8, 0)

NormalColorDpq_nom():The operation result(s) must be retrieved from the GTE. (For further information see
the Inline Reference documentation.):
• For (v2->r,v2->g,v2->b) use the read_rgb2 macro.

See also
NormalColor(), NormalColor3(), NormalColorCol(), NormalColorCol3(), NormalColorDpq3()

8-80 Basic Geometry Library Functions

Run-Time Library Reference

NormalColorDpq3, NormalColorDpq3_nom
Find local color from three normal vectors and perform depth cueing.

Library Header File Introduced Documentation Date
libgte.lib libgte.h 2.x 12/14/98

Syntax
void NormalColorDpq3(
SVECTOR *v0, SVECTOR *v1, SVECTOR *v2, Pointer to normal vectors (input)
CVECTOR *v3, Pointer to primary color vector (input)
long p, Interpolation value (input)
CVECTOR *v4, CVECTOR *v5, CVECTOR *v6) Pointer to color vectors (output)

void NormalColorDpq3_nom(
SVECTOR *v0, SVECTOR *v1, SVECTOR *v2, Pointer to normal vectors (input)
CVECTOR *v3, Pointer to primary color vector (input)
long p) Interpolation value (input)

Explanation
(LLV0, LLV1, LLV2) = LLM x (v0, v1, v2)

(LC0, LC1, LC2) = BK + LCM x (LLV0, LLV1, LLV2)

(v4, v5, v6) = (1 -p) x v3 x (LC0, LC1, LC2) + p x FC

v0, v1, v2 -> vx, vy, vz : (1, 3, 12)
v3 -> r, g, b : (0, 8, 0)
p : (0, 20, 12)
NormalColorDpq3(): v4, v5, v6 -> r, g, b) : (0, 8, 0)

NormalColorDpq3_nom():The operation result(s) must be retrieved from the GTE (For further information,
refer to the Inline Reference documentation):

• For (v4,v5,v6) use the read_rgb_fifo macro.

See also
NormalColor(), NormalColor3(), NormalColorCol(), NormalColorCol3(), NormalColorDpq()

Basic Geometry Library Functions 8-81

Run-Time Library Reference

otz2p
Get depth cueing interpolation value p from OTZ value.

Library Header File Introduced Documentation Date
libgte.lib libgte.h 2.x 12/14/98

Syntax
long otz2p(
long otz, OTZ
long projection) Distance between visual point and screen

Explanation
Get the approximate depth cueing interpolation value p from otz, which is 1/4 of sz, the z element of the
screen coordinates.

Depending on the fog setting, errors can increase and the results are not necessarily the same as with
RotTransPers() functions.

Return value
Depth cueing interpolation value p (0: 0%, 4096 : 100%).

See also
p2otz()

8-82 Basic Geometry Library Functions

Run-Time Library Reference

OuterProduct0
Outer product of two vectors.

Library Header File Introduced Documentation Date
libgte.lib libgte.h 2.x 12/14/98

Syntax
void OuterProduct0(
VECTOR *v0, VECTOR *v1, Pointer to vectors (input)
VECTOR *v2) Pointer to vector (output)

Explanation
Returns the outer product vector of two vectors v0 and v1 to v2.

v0, v1 -> vx, vy, vz : (1, 31, 0)
v2 -> vx, vy, vz : (1, 31, 0)

See also
NormalClip(), OuterProduct12()

Basic Geometry Library Functions 8-83

Run-Time Library Reference

OuterProduct12
Outer product of two vectors.

Library Header File Introduced Documentation Date
libgte.lib libgte.h 2.x 12/14/98

Syntax
void OuterProduct12(
VECTOR *v0, VECTOR *v1, Pointer to vectors (input)
VECTOR *v2) Pointer to vector (output)

Explanation
Returns the outer product vector of two vectors, v0 and v1, to v2.

v0, v1, v2 -> vx, vy, vz : (1, 19, 12)

See also
NormalClip(), OuterProduct0()

8-84 Basic Geometry Library Functions

Run-Time Library Reference

p2otz
Get otz from depth cueing interpolation value.

Library Header File Introduced Documentation Date
libgte.lib libgte.h 2.x 12/14/98

Syntax
long p2otz(
long p, Interpolation value (0 to 4096)
long projection) Distance between visual point and screen

Explanation
Gets the otz value, which is 1/4 of sz (screen coordinate z element) from the depth cueing interpolation
value p.

Depending on the fog setting, errors can increase and the results are not necessarily the same as with
RotTransPers() functions.

otz when P=0 or p=4096 is not theoretically decided as identification, but with this function a convenient
value is returned.

Return value
OTZ value.

See also
otz2p()

Basic Geometry Library Functions 8-85

Run-Time Library Reference

pers_map
Perspective conversion texture mapping.

Library Header File Introduced Documentation Date
libgte.lib libgte.h 3.2 12/14/98

Syntax
void pers_map(
int abuf, ID of displayed buffer
SVECTOR **vertex, 3 dimensional coordinates of 4 vertices
int tex[4][2], Texture address of 4 vertices
u_short *dtext) Pointer to texture storage location converted to direct color

Explanation
Performs texture mapping with no distortion.

Flat texture, with no light source calculations only.

The 4 vertices are only square, rectangle and parallelogram locations.

Z sort by OT is not possible.

See also

8-86 Basic Geometry Library Functions

Run-Time Library Reference

PhongLine
Phong shading.

Library Header File Introduced Documentation Date
libgte.lib libgte.h 3.2 12/14/98

Syntax
void PhongLine(
int istart_x, X coordinate of starting point
int iend_x, X coordinate of finishing point
int p, Differential X coordinate of fs value
int q, Differential caused by X coordinate of ft value
u_short *pixx, Pixel pointer
int fs, Interpolation coefficient at start point
int ft, Interpolation coefficient at start point
int i4, (Line number) %4 due to dithering
int det) Queue method of edge queue

Explanation
Performs one line Phong shading. For more information, refer to sample program (sample/graphics/phong)

See also

Basic Geometry Library Functions 8-87

Run-Time Library Reference

PopMatrix
Reset a constant rotation matrix from a stack.

Library Header File Introduced Documentation Date
libgte.lib libgte.h 2.x 12/14/98

Syntax
void PopMatrix(void)

Explanation
Resets a constant rotation matrix from a stack.

See also
PushMatrix()

8-88 Basic Geometry Library Functions

Run-Time Library Reference

PushMatrix
Save a constant rotation matrix in a stack.

Library Header File Introduced Documentation Date
libgte.lib libgte.h 2.x 12/14/98

Syntax
void PushMatrix(void)

Explanation
Saves a constant rotation matrix on a stack. The stack has 20 slots.

See also
PopMatrix()

Basic Geometry Library Functions 8-89

Run-Time Library Reference

ratan2
Arctan.

Library Header File Introduced Documentation Date
libgte.lib libgte.h 3.0 12/14/98

Syntax
long ratan2(
long x, long y) Value

Explanation
Uses PlayStation format (4096 = 360 degrees = 2pai) to finish the x/y arctan function (-180 degrees and
+180 degrees, -pai...pai).

Return value
atan2 (x, y) : (1, 19, 12)

The return value is incorrect if either x or y is -2147483648 (0x80000000 = long negative maximum value).

See also
catan(), rcos(), rsin()

8-90 Basic Geometry Library Functions

Run-Time Library Reference

rcos
Library Header File Introduced Documentation Date
libgte.lib libgte.h 3.0 12/14/98

Syntax
int rcos(
int a) Angle (in PlayStation format)

Explanation
Finds the cosine function of the angle (in PlayStation format) (4096 = 360 degrees = 2pai) using fixed-point
math (where 4096=1.0).

Compared to ccos(),rcos() is faster and takes up more space.

a : PlayStation format (4096 = 360 degrees = 2pai)

Return value
cos (a) : (1, 19, 12)

See also
ccos(), ratan2(), rsin()

Basic Geometry Library Functions 8-91

Run-Time Library Reference

RCpolyF3, RCpolyFT3, RCpolyG3, RCpolyGT3
Triangle division functions.

Library Header File Introduced Documentation Date
libgte.lib libgte.h 3.0 12/14/98

Syntax
u_long *RcpolyF3(POLY_F3 *s,DIVPOLYGON3 *divp) Flat triangle.
u_long *RcpolyFT3(POLY_FT3 *s,DIVPOLYGON3 *divp) Flat, textured triangle.
u_long *RcpolyG3(POLY_G3 *s,DIVPOLYGON3 *divp) Gouraud-shaded triangle
u_long *RcpolyGT3(POLY_GT3 *s,DIVPOLYGON3 *divp) Gouraud-shaded, textured triangle

Explanation
These are recursive functions for division of triangles. s is a pointer to the GPU packet buffer address. divp
is a pointer to a division work area. You must set the data below in the divp work area:

u_long ndiv Number of divisions
u_long pih, piv Display screen resolution (for clipping)
u_short clut, tpage CBA & TSB
CVECTOR rgbc Color vector (+code)
u_long *ot OT entry
RVECTOR r0, r1, r2 Division vertex vector data
CRVECTOR3 cr[5] 2D and 3D texture coordinates and color

for each vertex

Assign the vertex vector data of CRVECTOR3 (cr[5]) to the value of the vertex vector data of RVECTORs r0,
r1, and r2.

Note: See DIVPOLYGON3 for a full description of divp.

Return value
Updated GPU packet buffer address

See also
RCpolyF4()

8-92 Basic Geometry Library Functions

Run-Time Library Reference

RCpolyF4, RCpolyFT4, RCpolyG4, RCpolyGT4
Quadrilateral division functions.

Library Header File Introduced Documentation Date
libgte.lib libgte.h 3.0 12/14/98

Syntax
u_long *RcpolyF4(POLY_F4 *s,DIVPOLYGON4 *divp) Flat quadrilateral.
u_long *RcpolyFT4(POLY_FT4 *s,DIVPOLYGON4 *divp) Flat, textured quadrilateral.
u_long *RcpolyG4(POLY_G4 *s,DIVPOLYGON4 *divp) Gouraud-shaded quadrilateral
u_long *RcpolyGT4(POLY_GT4 *s,DIVPOLYGON4 *divp) Gouraud-shaded, textured quadrilateral

Explanation
These are recursive functions for division of quadrilaterals. s is a pointer to the GPU packet buffer address.
divp is a pointer to a division work area. You must set the data below in the divp work area:

u_long ndiv Number of divisions
u_long pih, piv Display screen resolution (for clipping)
u_short clut, tpage CBA & TSB
CVECTOR rgbc Color vector (+code)
u_long *ot OT entry
RVECTOR r0, r1, r2 Division vertex vector data
CRVECTOR4 cr[5] 2D and 3D texture coordinates and color

for each vertex

Assign the vertex vector data of CRVECTOR4 (cr[5]) to the value of the vertex vector data of RVECTORs r0,
r1, r2 and r3.

Note: See DIVPOLYGON4 for a full description of divp.

Return value
Updated GPU packet buffer address

See also
RCpolyF3()

Basic Geometry Library Functions 8-93

Run-Time Library Reference

ReadColorMatrix
Read a local color matrix.

Library Header File Introduced Documentation Date
libgte.lib libgte.h 2.x 12/14/98

Syntax
void ReadColorMatrix(
MATRIX *m) Pointer to matrix (input)

Explanation
Reads the current local color matrix, and saves it in m.

m -> m [i] [j] : (1, 3, 12)

See also

8-94 Basic Geometry Library Functions

Run-Time Library Reference

ReadGeomOffset
Read GTE offset value.

Library Header File Introduced Documentation Date
libgte.lib libgte.h 3.0 12/14/98

Syntax
void ReadGeomOffset(
long *ofx, Pointer to offset X coordinate
long *ofy) Pointer to offset Y coordinate

Explanation
Reads the GTE offset value.

ofx, ofy : (0, 32, 0)

See also

Basic Geometry Library Functions 8-95

Run-Time Library Reference

ReadGeomScreen
Read distance from viewpoint to screen.

Library Header File Introduced Documentation Date
libgte.lib libgte.h 3.0 12/14/98

Syntax
long
ReadGeomScreen(void)

Explanation
Reads the distance h from the viewpoint (eye) to the screen.

Return value
h value

See also

8-96 Basic Geometry Library Functions

Run-Time Library Reference

ReadLightMatrix
Read a local light matrix.

Library Header File Introduced Documentation Date
libgte.lib libgte.h 2.x 12/14/98

Syntax
void ReadLightMatrix(
MATRIX *m) Pointer to matrix (input)

Explanation
Reads the current local light matrix, and saves it in m.

m -> m [i] [j] : (1, 3, 12)

See also

Basic Geometry Library Functions 8-97

Run-Time Library Reference

ReadRGBfifo
Read RGBcd values.

Library Header File Introduced Documentation Date
libgte.lib libgte.h 2.x 12/14/98

Syntax
void ReadRGBfifo(
CVECTOR *v0, CVECTOR *v1, CVECTOR *v2) Pointer to vectors (output)

Explanation
Stores the RGBcd0, RGBcd1, and RGBcd2 values in v0, v1, and v2.

v0, v1, v2 -> r, g, b, cd: (0, 8, 0)

See also
ReadSXSYfifo(), ReadSZfifo3(), ReadSZfifo4()

8-98 Basic Geometry Library Functions

Run-Time Library Reference

ReadRotMatrix
Read a constant rotation matrix.

Library Header File Introduced Documentation Date
libgte.lib libgte.h 2.x 12/14/98

Syntax
void ReadRotMatrix(
MATRIX *m) Pointer to matrix (output)

Explanation
Reads the current rotation matrix, and saves it in m.

m -> m [i] [j] :(1, 3, 12)
m -> t [i] : (1, 31, 0)

See also

Basic Geometry Library Functions 8-99

Run-Time Library Reference

ReadSXSYfifo
Read SXSY values.

Library Header File Introduced Documentation Date
libgte.lib libgte.h 2.x 12/14/98

Syntax
void ReadSXSYfifo(
long *sxy0, long*sxy1, long *sxy2) Pointers to screen x,y values

Explanation
Stores the sx0, sy0, sx1, sy1, sx2, and sy2 values in sxy0, sxy1, and sxy2.

 (sxy0, sxy1, sxy2) : (1, 15, 0)

See also
ReadRGBfifo(), ReadSZfifo3(), ReadSZfifo4()

8-100 Basic Geometry Library Functions

Run-Time Library Reference

ReadSZfifo3
Read SZ values.

Library Header File Introduced Documentation Date
libgte.lib libgte.h 2.x 12/14/98

Syntax
void ReadSZfifo3(
long *sz0, *sz1, *sz2) Pointers to SZ values

Explanation
Stores the sz0, sz1, and sz2 values in sz0, sz1, and sz2.

 (sz0, sz1, sz2) : (0, 16, 0)

See also
ReadRGBfifo(), ReadSXSYfifo(), ReadSZfifo4()

Basic Geometry Library Functions 8-101

Run-Time Library Reference

ReadSZfifo4
Read SZ values.

Library Header File Introduced Documentation Date
libgte.lib libgte.h 2.x 12/14/98

Syntax
void ReadSZfifo4(
long *szx, long *sz0, long *sz1, long *sz2) Pointers to SZ values

Explanation
Stores the szx, sz0, sz1, and sz2 values in szx, sz0, sz1, and sz2.

 (szx, sz0, sz1, sz2) : (0, 16, 0)

See also
ReadRGBfifo(), ReadSXSYfifo(), ReadSZfifo3()

8-102 Basic Geometry Library Functions

Run-Time Library Reference

RotAverage3, RotAverage3_nom
Perform coordinate and perspective transformation for 3 points, and get interpolation value and average of
Z values for depth cueing.

Library Header File Introduced Documentation Date
libgte.lib libgte.h 2.x 12/14/98

Syntax
long RotAverage3(
SVECTOR *v0, SVECTOR *v1, SVECTOR *v2, Pointers to vectors (input)
long *sxy0, long *sxy1, long *sxy2, Pointers to coordinates (output)
long *p, Pointers to interpolation values (output)
long *flag) Pointer to flag (output)

long RotAverage3_nom
(SVECTOR *v0, SVECTOR *v1, SVECTOR *v2) Pointer to vectors (input)

Explanation
A coordinate transformation of three points v0, v1, v2 is performed using a rotation matrix. Next a
perspective transformation is performed and three screen coordinates sxy0, sxy1, and sxy2 are returned.
An interpolation value for depth cueing on v2 to p is also returned. The return value becomes the average
of three screen coordinate Z values.

v0, v1, v2 -> vx, vy, vz : (1, 15, 0)
sxy0, sxy1, sxy2 : (1, 15, 0), (1, 15, 0)
 p : (0, 20, 12)
flag : (0, 32, 0)

RotAverage3_nom():The operation result(s) must be retrieved from the GTE. (For further information, refer
to the Inline Reference documentation.)

• For (sz0,sz1,sz2) use macro read_sz_fifo3
• For ((sx0,sy0),(sx1,sy1),(sx2,sy2)) use macro read_sxsy_fifo3
• For p use macro read_p
• For otz use macro read_otz.
• flag is returned in register v0.

Return value
OTZ value

(RogAverage3_nom() returns no value)

See also
RotAverage4(), RotAverageNclip3(), RotAverageNclipColorCol3(), RotAverageNclipColorDpq3(),
RotColorDpq3()

Basic Geometry Library Functions 8-103

Run-Time Library Reference

RotAverage4
Perform coordinate transformation for 3 points and perspective transformation, and find an interpolation
value and an average of Z values for depth cueing.

Library Header File Introduced Documentation Date
libgte.lib libgte.h 2.x 12/14/98

Syntax
long RotAverage4(
SVECTOR *v0, SVECTOR *v1, SVECTOR *v2, SVECTOR *v3, Pointer to vectors (input)
long *sxy0, long *sxy1, long *sxy2, long *sxy3, Pointer to coordinates (output)
long *p, Pointer to interpolation (output)
long *flag) Pointer to flag (output)

Explanation
A coordinate transformation of four points v0, v1, v2 and v3 is performed using a rotation matrix. Next a
perspective transformation is performed and four screen coordinates sxy0, sxy1, sxy2, and sxy3 are
returned. An interpolation value for depth cueing on v2 to p is also returned.

v0, v1, v2, v3 -> vx, vy, vz : (1, 15, 0)
sxy0, sxy1, sxy2, sxy3 : (1, 15, 0), (1, 15, 0)
p : (0, 20, 12)
flag : (0, 32, 0)

Return value
1/4 (OTZ value) average of four screen coordinate Z values.

See also
RotAverage3(),RotAverageNclip4()

8-104 Basic Geometry Library Functions

Run-Time Library Reference

RotAverageNclip3
Perform coordinate transformation and perspective transformation for three points, and find an interpolation
value, average of Z values, and outer product.

Library Header File Introduced Documentation Date
libgte.lib libgte.h 2.x 12/14/98

Syntax
long RotAverageNclip3(
SVECTOR *v0, SVECTOR *v1, SVECTOR *v2, Pointer to vectors (input)
long *sxy0, long *sxy1, long *sxy2, Pointer coordinates (output)
long *p, Pointer to interpolation (output)
long *otz, Pointer to OTZ value (output)
long *flag) Pointer to flag (output)

Explanation
A coordinate transformation of three points v0, v1, v2 is performed using a rotation matrix. Next a
perspective transformation is performed and three screen coordinates sxy0, sxy1, and sxy2 are returned.
An interpolation value for depth cueing on v2 to p is also returned. Finally, we also receive 1/4 of the Z value
of the screen coordinates for v2 to otz.

v0, v1, v2 -> vx, vy, vz : (1, 15, 0)
sxy0, sxy1, sxy2 : (1, 15, 0), (1, 15, 0)
p : (0, 20, 12)
otz : (0, 32, 0)
flag : (0, 32, 0)

When the return value is negative, SX, SY, etc. are incorrect. When SX and SY are required, use
RotAverage3().

Return value
Outer product of (sx0, sy0), (sx1, sy1), (sx2, sy2).

See also
RotAverage3(), RotAverageNclip4(), RotAverageNclip3_nom(), RotAverageNclipColorCol3(),
RotAverageNclipColorDpq3(), RotColorDpq3()

Basic Geometry Library Functions 8-105

Run-Time Library Reference

RotAverageNclip3_nom
Perform coordinate transformation and perspective transformation for three points, and find an interpolation
value, average of Z values, and outer product. Results obtained through GTE.

Library Header File Introduced Documentation Date
libgte.lib libgte.h 2.x 12/14/98

Syntax
long RotAverageNclip3_nom
(SVECTOR *v0, SVECTOR *v1, SVECTOR *v2) Pointer to vectors (input)

Explanation
After performing coordinate transformation for local coordinate vectors v0, v1, and v2 using a rotation
matrix, this function performs perspective transformation and stores three screen coordinates sx0, sy0,
sz0, sx1, sy1, sz1, sx2, sy2, and sz2, the interpolation value p for depth cueing corresponding to v2, an
average of Z values (otz) for the three screen coordinates, and an outer product value (opz) for (sx0,sy0),
(sx1,sy1), and (sx2,sy2) in GTE's internal register.

The argument format and data format are as follows:

v0, v1, v2 -> vx, vy, vz : (1, 15, 0)
sy0, sx0, sz0 : (1, 15, 0), (1, 15, 0), (0, 16, 0)
sx1, sx1, sz1 : (1, 15, 0), (1, 15, 0) (0, 16, 0)
sx2, sy2, sz2 : (1, 15, 0), (1, 15, 0) (0, 16, 0)
p : (0, 20, 12)
otz : (0, 32, 0)
flag : (0, 32, 0)

The operation result(s) must be retrieved from the GTE. (For further information, refer to the Inline
Reference documentation.)

• (sz0,sz1,sz2) is read by macro read_sz_fifo3
• ((sx0,sy0),(sx1,sy1),(sx2,sy2)) is read by macro read_sxsy_fifo3
• p is read by macro read_p
• otz is read by macro read_otz
• opz is read by macro read_opz

Return value
None

See also
RotAverage3(),RotAverageNclip3(), RotAverageNclip4(), RotAverageNclipColorCol3(),
RotAverageNclipColorDpq3(), RotColorDpq3()

8-106 Basic Geometry Library Functions

Run-Time Library Reference

RotAverageNclip4
Perform a coordinate transformation and perspective transformation for four points; find an interpolation
value, average of Z values, and outer product.

Library Header File Introduced Documentation Date
libgte.lib libgte.h 2.x 12/14/98

Syntax
long RotAverageNclip4(
SVECTOR *v0, SVECTOR *v1, SVECTOR *v2, SVECTOR *v3, Pointer to vectors (input)
long *sxy0, *sxy1, *sxy2, *sxy3, Pointer to coordinates (output)
long *p, Pointer to interpolation value

(output)
long *otz, Pointer to OTZ value (output)
long *flag) Pointer to flag (output)

Explanation
A coordinate transformation of four points v0, v1, v2, and v3 is performed using a rotation matrix. Next a
perspective transformation is performed and four screen coordinates sxy0, sxy1, sxy2 and sxy3 are
returned. An interpolation value for depth cueing on v2 to p is also returned. Finally, we also receive 1/4 of
the Z value of the screen coordinates for v2 to otz.

v0, v1, v2, v3 -> vx, vy, vz : (1, 15, 0)
sxy0, sxy1, sxy2, sxy3 : (1, 15, 0), (1, 15, 0)
p : (0, 20, 12)
otz : (0, 32, 0)
flag : (0, 32, 0)

When the return value is negative, SX, SY, etc., are incorrect. When SX and SY are required, use
RotAverage4().

Return value
Outer product of (sx0, sy0), (sx1, sy1), (sx2, sy2).

See also
RotAverage4(), RotAverageNclip3()

Basic Geometry Library Functions 8-107

Run-Time Library Reference

RotAverageNclipColorCol3
Perform a coordinate transformation for three points, perspective transformation, and find a color.

Library Header File Introduced Documentation Date
libgte.lib libgte.h 2.x 12/14/98

Syntax
long RotAverageNclipColorCol3(
SVECTOR *v0, SVECTOR *v1, SVECTOR *v2, Pointer to vectors (input)
SVECTOR *v3, *v4, *v5, Pointer to normal vectors (input)
CVECTOR *v6, Pointer to primary color vector (input)
long *sxy0, *sxy1, *sxy2, Pointer to coordinate values (output)
CVECTOR *v7, *v8, *v9, Pointer to color vectors (output)
long *otz, Pointer to OTZ value (output)
long *flag) Pointer to flag (output)

Explanation
A coordinate transformation of three points v0, v1, v2 is performed using a rotation matrix. Next a
perspective transformation is performed and four screen coordinates sxy0, sxy1, sxy2 are returned. The
remaining values are calculated as follows:

(LLV0, LLV1, LLV2) = LLM x (v3, v4, v5)

(LC0, LC1, LC2) = BK + LCM x (LLV0, LLV1, LLV2)

(v7, v8, v9) = v6 x (LC0, LC1, LC2)
(separate multiplications)

The function also returns an average of Z values of three screen coordinates to otz.

v0, v1, v2 -> vx, vy, vz : (1, 15, 0)
v3, v4, v5 -> vx, vy, vz : (1, 3, 12)
v6 -> r, g, b : (0, 8, 0)
sxy0, sxy1, sxy2 : (1, 15, 0), (1, 15, 0)
v7, v8, v9 -> r, g, b : (0, 8, 0)
otz : (0, 32, 0)
flag : (0, 32, 0)

When the return value is negative, SX, SY, etc., are incorrect.

Return value
Outer product of (sx0, sy0), (sx1, sy1), (sx2, sy2)

See also
RotAverage3(),RotAverageNclip3(), RotAverageNclipColorCol3_nom(), RotAverageNclipColorDpq3(),
RotColorDpq3()

8-108 Basic Geometry Library Functions

Run-Time Library Reference

RotAverageNclipColorCol3_nom
Perform a coordinate transformation for three points, perspective transformation, and find a color. Results
obtained through GTE.

Library Header File Introduced Documentation Date
libgte.lib libgte.h 2.x 12/14/98

Syntax
long RotAverageNclipColorCol3_nom(
SVECTOR *v0, SVECTOR *v1, SVECTOR *v2, Pointer to vectors (input)
SVECTOR *v3, SVECTOR *v4, SVECTOR *v5, Pointer to normal vectors (input)
CVECTOR *v6) Pointer to primary color vector (input)

Explanation
After performing coordinate transformation for local coordinate vectors v0, v1, and v2 using a rotation
matrix, this function performs perspective transformation and stores three screen coordinates sx0, sy0,
sz0, sx1, sy1, sz1, sx2, sy2, and sz2, an average of Z values (otz) for the three screen coordinates, and an
outer product value (opz) for (sx0,sy0), (sx1,sy1), and (sx2,sy2) in GTE's internal register.

 (LLV0, LLV1, LLV2) = LLM x (v3, v4, v5)

(LC0, LC1, LC2) = BK + LCM x (LLV0, LLV1, LLV2)

(v7, v8, v9) = v6 x (LC0, LC1, LC2)

v0, v1, v2 -> vx, vy, vz : (1, 15, 0)
v3, v4, v5 -> vx, vy, vz : (1, 3, 12)
sx0, sy0,sz0 : (1,15,0), (1,15,0), (0,16,0)
sx1, sy1,sz1 : (1,15,0), (1,15,0), (0,16,0)
sx2, sy2,sz2 : (1,15,0), (1,15,0), (0,16,0)
v6 -> r, g, b : (0, 8, 0)
v7, v8, v9 -> r,g,b : (0,8,0)
otz : (0,32,0)
flag : (0,32,0)

The operation result(s) must be retrieved from the GTE (For further information, refer to the Inline Reference
documentation):

• (sz0,sz1,sz2) is read by macro read_sz_fifo3
• ((sx0,sy0),(sx1,sy1),(sx2,sy2)) is read by macro read_sxsy_fifo3
• ((r0,g0,b0), (r1,g1,b1), (r2,g2,b2)) is read by macro read_rgb_fifo
• p is read by macro read_p
• otz is read by macro read_otz
• opz is read by macro read_opz
• flag is returned in register v0.

Return value
None.

See also
RotAverage3(), RotAverageNclip3(), RotAverageNclipColorCol3(), RotAverageNclipColorDpq3(),
RotColorDpq3()

Basic Geometry Library Functions 8-109

Run-Time Library Reference

RotAverageNclipColorDpq3
Perform coordinate transformation for three points, perspective transformation, and depth cueing.

Library Header File Introduced Documentation Date
libgte.lib libgte.h 2.x 12/14/98

Syntax
long RotAverageNclipColorDpq3(
SVECTOR *v0, SVECTOR *v1, SVECTOR *v2, Pointer to vectors (input)
SVECTOR *v3, SVECTOR *v4, SVECTOR *v5, Pointer to normal vectors (input)
CVECTOR *v6, Pointer to primary color vector (input)
long *sxy0, long *sxy1, long *sxy2, Pointer to coordinate values (output)
CVECTOR *v7, CVECTOR *v8, CVECTOR *v9, Pointer to color vectors (output)
long *otz, Pointer to OTZ value output)
long *flag) Pointer to flag (output)

Explanation
A coordinate transformation of three points v0, v1, v2 is performed using a rotation matrix. Next a
perspective transformation is performed and three screen coordinates sxy0, sxy1, and sxy2 are returned.
The function uses the interpolation value p for depth cueing; p is found by the following calculations:

(LLV0, LLV1, LLV2) = LLM x (v3, v4, v5)

(LC0, LC1, LC2) = BK + LCM x (LLV0, LLV1, LLV2)

(v7, v8, v9) = (1-p) x v6 x (LC0, LC1, LC2) + p x FC

where v6 x (LC0, LC1, LC2) indicates a separate multiplication.

The function also returns an average of the Z values of the three screen coordinates to otz.

v0, v1, v2 -> vx, vy, vz : (1, 15, 0)
v3, v4, v5 -> vx, vy, vz : (1, 3, 12)
v6 -> r, g, b : (0, 8, 0)
sxy0, sxy1, sxy2 : (1, 15, 0), (1, 15, 0)
v7, v8, v9 -> r, g, b : (0, 8, 0)
otz : (0, 32, 0)
flag : (0, 32, 0)

When the return value is negative, SX, SY, etc. are incorrect.

Return value
Outer product of (sx0, sy0), (sx1, sy1), (sx2, sy2)

See also
RotAverage3(), RotAverageNclip3(), RotAverageNclipColorCol3(), RotAverageNclipColorDpq3_nom(),
RotColorDpq3()

8-110 Basic Geometry Library Functions

Run-Time Library Reference

RotAverageNclipColorDpq3_nom
Perform coordinate transformation for three points, perspective transformation, and depth cueing. Results
obtained through GTE.

Library Header File Introduced Documentation Date
libgte.lib libgte.h 2.x 12/14/98

Syntax
long RotAverageNclipColorDpq3_nom(
SVECTOR *v0, SVECTOR *v1, SVECTOR *v2, Pointer to vectors (input)
SVECTOR *v3, SVECTOR *v4, SVECTOR *v5, Pointer to normal vectors (input)
CVECTOR *v6) Pointer to primary color vector (input)

Explanation
After performing coordinate transformation for local coordinate vectors v0, v1, and v2 using a rotation
matrix, this function performs perspective transformation and stores three screen coordinates sx0, sy0,
sz0, sx1, sy1, sz1, sx2, sy2, and sz2, an average of Z values (otz) for the three screen coordinates, and an
outer product value (opz) for (sx0,sy0), (sx1,sy1), and (sx2,sy2) in GTE's internal register. The interpolation
value p is used in the calculation below for the desired depth cueing.

(LLV0, LLV1, LLV2) = LLM x (v3, v4, v5)

(LC0, LC1, LC2) = BK + LCM x (LLV0, LLV1, LLV2)

(v7, v8, v9) = (1-p) x v6 x (LC0, LC1, LC2) + p x FC

The argument and internal data format is as follows:

v0, v1, v2 -> vx, vy, vz : (1, 15, 0)
v3, v4, v5 -> vx, vy, vz : (1, 3, 12)
v6 -> r, g, b : (0, 8, 0)
sx0, sy0, sz0 : (1,15,0), (1,15,0), (0,16,0)
sx1, sy1, sz1 : (1,15,0), (1,15,0), (0,16,0)
sx2, sy2, sz2 : (1,15,0), (1,15,0), (0,16,0)
v7,v8,v9 -> r,g,b : (0,8,0)
otz : (0,32,0)
flag : (0,32,0)

The operation result(s) must be retrieved from the GTE (For further information, refer to the Inline Reference
documentation):

• (sz0,sz1,sz2) is read by macro read_sz_fifo3
• ((sx0,sy0),(sx1,sy1),(sx2,sy2)) is read by macro read_sxsy_fifo3
• ((r0,g0,b0), (r1,g1,b1), (r2,g2,b2)) is read by macro read_rgb_fifo
• p is read by macro read_p
• otz is read by macro read_otz
• opz is read by macro read_opz
• flag is returned in register v0.

Return value
None.

See also
RotAverage3(), RotAverageNclip3(), RotAverageNclipColorCol3(), RotAverageNclipColorDpq3(),
RotColorDpq3()

Basic Geometry Library Functions 8-111

Run-Time Library Reference

RotColorDpq
Perform coordinate transformation for one point, perspective transformation, and depth cueing.

Library Header File Introduced Documentation Date
libgte.lib libgte.h 2.x 12/14/98

Syntax
long RotColorDpq(
SVECTOR *v0, Pointer to vector (input)
SVECTOR *v1, Pointer to normal vector (input)
CVECTOR *v2, Pointer to primary color vector (input)
long *sxy, Pointer to coordinate values (output)
CVECTOR *v3, Pointer to color vector (output)
long *flag) Pointer to flag (output)

Explanation
A coordinate transformation for the point v0 is performed using a rotation matrix. Next a perspective
transformation is performed and the screen coordinate sxy is returned. The function uses the interpolation
value p for depth cueing, which is found by the following calculations:

LLV = LLM x v1

LC = BK + LCM x LLV

v3 = (1-p) x v2 x LC + p x FC

where v2 x LC indicates a separate multiplication.

v0 -> vx, vy, vz : (1, 15, 0)
v1 -> vx, vy, vz : (1, 3, 12)
v2 -> r, g, b : (0, 8, 0)
sxy : (1, 15, 0), (1, 15, 0)
v3 -> r, g, b : (0, 8, 0)
flag : (0, 32, 0)

Return value
1/4 of the Z component sz of the screen coordinates.

See also
RotColorDpq_nom(), RotColorDpq3()

8-112 Basic Geometry Library Functions

Run-Time Library Reference

RotColorDpq_nom
Perform coordinate transformation for one point, perspective transformation, and depth cueing. Results
obtained through GTE.

Library Header File Introduced Documentation Date
libgte.lib libgte.h 2.x 12/14/98

Syntax
long
RotColorDpq_nom(
SVECTOR *v0, Pointer to vector (input)
SVECTOR *v1, Pointer to normal vector (input)
CVECTOR *v2) Pointer to primary color vector (input)

Explanation
A coordinate transformation for the point v0 is performed using a rotation matrix. Next a perspective
transformation is performed and the screen coordinates (sx,sy,sz) are stored in the GTE internal register.
The function uses the interpolation value p for depth cueing and stores the obtained color vector v3 in the
internal register which is found by the following calculations:

LLV = LLM x v1

LC = BK + LCM x LLV

v3 = (1-p) x v2 x LC + p x FC

where v2 x LC indicates a separate multiplication.

v0 -> vx, vy, vz : (1, 15, 0)
v1 -> vx, vy, vz : (1, 3, 12)
sx,sy,sz : (1,15,0), (1,15,0), (0,16,0)
v2 -> r, g, b : (0, 8, 0)
v3 -> r, g, b : (0, 8, 0)
flag : (0, 32, 0)

The operation result(s) must be retrieved from the GTE (For further information, refer to the Inline Reference
documentation):

• sz is read by macro read_sz2
• (sx,sy) is read by macro read_sxsy2
• p is read by macro read_p
• v3 is read by macro read_rgb2
• flag is returned in register v0.

Return value
None.

See also
RotColorDpq(), RotColorDpq3()

Basic Geometry Library Functions 8-113

Run-Time Library Reference

RotColorDpq3
Perform coordinate transformation for three points, perspective transformation, and depth cueing.

Library Header File Introduced Documentation Date
libgte.lib libgte.h 2.x 12/14/98

Syntax
long RotColorDpq3(
SVECTOR *v0, SVECTOR *v1, SVECTOR *v2, Pointer to vectors (input)
SVECTOR *v3, SVECTOR *v4, SVECTOR *v5, Pointer to normal vectors (input)
CVECTOR *v6, Pointer to primary color vector (input)
long *sxy0, long *sxy1, long *sxy2, Pointer to coordinates (output)
CVECTOR *v7, CVECTOR *v8, CVECTOR *v9, Pointer to color vectors (output)
long *flag) Pointer to flag (output)

Explanation
A coordinate transformation of three points v0, v1, v2 is performed using a rotation matrix. Next a
perspective transformation is performed and three screen coordinates sxy0, sxy1, and sxy2 are returned.
The function uses the interpolation value p for depth cueing, which is found by the following calculations:

LLV0, LLV1, LLV2) = LLM x (v3, v4, v5)

(LC0, LC1, LC2) = BK + LCM x (LLV0, LLV1, LLV2)

(v7, v8, v9) = (1-p) x v6 x (LC0, LC1, LC2) + p x FC

where v6 x (LC0, LC1, LC2) indicates a separate multiplication.

v0, v1, v2 -> vx, vy, vz : (1, 15, 0)
v3, v4, v5 -> vx, vy, vz : (1, 3, 12)
v6 -> r, g, b : (0, 8, 0)
sxy0, sxy1, sxy2 : (1, 15, 0), (1, 15, 0)
v7, v8, v9 -> r, g, b : (0, 8, 0)
flag : (0, 32, 0)

Return value
1/4 of the Z component sz of the screen coordinates.

See also
RotColorDpq(), RotColorDpq3_nom()

8-114 Basic Geometry Library Functions

Run-Time Library Reference

RotColorDpq3_nom
Perform coordinate transformation for three points, perspective transformation, and depth cueing. Results
obtained through GTE.

Library Header File Introduced Documentation Date
libgte.lib libgte.h 2.x 12/14/98

Syntax
long RotColorDpq3_nom
SVECTOR *v0, SVECTOR *v1, SVECTOR *v2, Pointer to vectors (input)
SVECTOR *v3, SVECTOR *v4, SVECTOR *v5, Pointer to normal vectors (input)
CVECTOR *v6) Pointer to primary color vector (input)

Explanation
A coordinate transformation of three points v0, v1, v2 is performed using a rotation matrix. Next a
perspective transformation is performed and three screen coordinates sx0, sy0, sz0, sx1, sy1, sz1, sx2, sy2
and sz2 are stored in the GTE internal register. The function uses the interpolation value p for depth cueing
and stores the obtained color vector in the internal register which is found by the following calculations:

LLV0, LLV1, LLV2) = LLM x (v3, v4, v5)

(LC0, LC1, LC2) = BK + LCM x (LLV0, LLV1, LLV2)

(v7, v8, v9) = (1-p) x v6 x (LC0, LC1, LC2) + p x FC

v0, v1, v2 -> vx, vy, vz : (1, 15, 0)
v3, v4, v5 -> vx, vy, vz : (1, 3, 12)
v6 -> r, g, b : (0, 8, 0)
sxy0, sxy1, sxy2 : (1, 15, 0), (1, 15, 0)
v7, v8, v9 -> r, g, b : (0, 8, 0)
flag : (0, 32, 0)

The operation result(s) must be retrieved from the GTE (For further information, refer to the Inline Reference
documentation):

• sz0,sz1,sz2) is read by macro read_sz_fifo3
• ((sx0,sy0),(sx2,sy2), (sx2,sy2)) is read by macro read_sxsy_fifo3
• p is read by macro read_p and v7,v8,v9 is read by macro read_rgb_fifo. flag is returned in register v0.

See also
RotColorDpq(), RotColorDpq3()

Basic Geometry Library Functions 8-115

Run-Time Library Reference

RotColorMatDpq
Perform oordinate transformation, perspective transformation, and depth cueing.

Library Header File Introduced Documentation Date
libgte.lib libgte.h 2.x 12/14/98

Syntax
long RotColorMatDpq(
SVECTOR *v0, Pointer to vector (input)
SVECTOR *v1, Pointer to normal vector (input)
SVECTOR *v2, Pointer to primary color vector (input)
long *sxy, Pointer to coordinate values (output)
CVECTOR *v3, Pointer to color vector (output)
long matc, Material (input)
long flag) Address where a flag will be stored

Explanation
A coordinate transformation for the point v0 is performed using a rotation matrix. Next a perspective
transformation is performed and the coordinate sxy is returned. The function uses the interpolation value p,
found by the following calculations, for depth cueing.

LLV = LLM x v1

LLV = LLV^ (2^matc)

LC = BK + LCM x LLV

v3 = (1-p) x v2 x LC + p x FC

where v2 x LC indicates a separate multiplication.

v0 -> vx, vy, vz : (1, 15, 0)
v1 -> vx, vy, vz : (1, 3, 12)
v2 -> r, g, b : (0, 8, 0)
sxy : (1, 15, 0), (1, 15, 0)
v3 -> r, g, b : (0, 8, 0)
matc : (0, 32, 0)
flag : (0, 32, 0)

Return value
1/4 of the Z component sz of screen coordinates.

See also
RotColorDpq()

8-116 Basic Geometry Library Functions

Run-Time Library Reference

RotMatrix...
Find rotation matrix from a rotation angle.

Library Header File Introduced Documentation Date
libgte.lib libgte.h 4.3 12/14/98

Syntax
MATRIX *RotMatrix(
SVECTOR *r, Input: rotation angle
MATRIX *m) Output: rotation matrix

MATRIX *RotMatrixXZY(SVECTOR *r, MATRIX *m)

MATRIX *RotMatrixYXZ(SVECTOR *r, MATRIX *m)

MATRIX *RotMatrixYZX(SVECTOR *r, MATRIX *m)

MATRIX *RotMatrixZXY(SVECTOR *r, MATRIX *m)

MATRIX *RotMatrixZYX(SVECTOR *r, MATRIX *m)

Explanation
Matrix m is set to a rotation matrix according to the rotation angle (r[0],r[1],r[2]).

A rotation angle value of 4096 is equivalent to 360 degrees. A matrix element value of 4096 is equivalent to
1.0.

When matrix is:















 −
=

















−
=
















−=

==
==
==

100

0c2s2

0s2c2

mZ

c10s1

010

s10c1

mY

c0s00

s0c00

001

mX

sin(r[2])s2cos(r[2]),c2

sin(r[1])s1cos(r[1]),c1

sin(r[0])s0cos(r[0]),c0

it is the result of the following product:

Table 8-2

Function name Matrix calculation formula Rotation sequence
RotMatrix mX × mY × mZ Z axis -> Y axis -> X axis
RotMatrixXZY mX × mZ × mY Y axis -> Z axis -> X axis
RotMatrixYXZ mY × mX × mZ Z axis -> X axis -> Y axis
RotMatrixYZX mY × mZ × mX X axis -> Z axis -> Y axis
RotMatrixZXY mZ × mX × mY Y axis -> X axis -> Z axis
RotMatrixZYX mZ × mY × mX X axis -> Y axis -> Z axis

In GTE coordinate conversion functions such as RotTransPers(), the vector is applied from the
right side. For example, with RotMatrix(), the rotation is performed in the following sequence: Z
axis, Y axis, X axis.

Basic Geometry Library Functions 8-117

Run-Time Library Reference

Parameter format:

m->m[i][j] : (1,3,12)
r->vx,vy,vz : (1,3,12) (where 360 degrees is 1.0)

Return value
m

See also
RotMatrix_gte(), RotMatrixC(), RotMatrixX(), RotMatrixY(), RotMatrixYXZ_gte(), RotMatrixZ(),
RotMatrixZYX_gte()

8-118 Basic Geometry Library Functions

Run-Time Library Reference

RotMatrix_gte
Find a rotation matrix from a rotation angle. Approximately 2 X faster than RotMatrix().

Library Header File Introduced Documentation Date
libgte.lib libgte.h 4.1 12/14/98

Syntax
MATRIX *RotMatrix_gte(
SVECTOR *r, Pointer to rotation angle (input)
MATRIX *m) Pointer to rotation matrix (output)

Explanation
Generates a rotation queue from the rotation angle (r[0], r[1], r[2]) in matrix m. A value of 4096 represents
360 degrees; and in matrices, 4096 represents 1.0.

The matrix is obtained by doing the following multiplication. In a coordinate conversion function such as
RotTransPers() for GTE, a vector is multiplied beginning with the rightmost end. So, it is rotated around the
Z-, Y-, and X-axes.

















c0s00

s0-c00

001

 x
















− c10s1

010

s10c1

 x














 −

100

0c2s2

0s2c2

However,

c0=cos (r[0]) ,s0=sin (r[0])
c1=cos (r[1]) ,s1=sin (r[1])
c2=cos (r[2]) ,s2=sin (r[2])
m -> m [i] [j] : (1, 3, 12)
r -> vx, vy, vz : (1, 3, 12) (where 1.0 stands for 360

degrees)

RotMatrix_gte() is approximately 2 X faster than RotMatrix() but the result can be different by up to 2/4096.

RotMatrix() uses the same sincos table.

Return value
m

See also
RotMatrix…(), RotMatrixC(), RotMatrixX(), RotMatrixY(), RotMatrixYXZ_gte(), RotMatrixZ(),
RotMatrixZYX_gte()

Basic Geometry Library Functions 8-119

Run-Time Library Reference

RotMatrixC
Find a rotation matrix from a rotation angle.

Library Header File Introduced Documentation Date
libgte.lib libgte.h 3.0 12/14/98

Syntax
MATRIX *RotMatrixC(
SVECTOR *r, Pointer to rotation angle (input)
MATRIX *m) Pointer to rotation matrix (output)

Explanation
Same as RotMatrix(), but results in a small table and slower speed.

Return value
m.

See also
RotMatrix…(), RotMatrix_gte(), RotMatrixX(), RotMatrixY(), RotMatrixYXZ_gte(), RotMatrixZ(),
RotMatrixZYX_gte()

8-120 Basic Geometry Library Functions

Run-Time Library Reference

RotMatrixX
Find a rotation matrix around the X axis.

Library Header File Introduced Documentation Date
libgte.lib libgte.h 3.0 12/14/98

Syntax
MATRIX *RotMatrixX(
long r, Rotation angle (input)
MATRIX *m) Pointer to rotation matrix (output)

Explanation
Generates a rotation queue in matrix m as the product of a rotation matrix around the X axis at rotation
angle r. A value of 4096 represents a rotation angle of 360 degrees and as a matrix element, 4096
represents 1.0.

















cs0

s-c0

001

 x m

However,

c = cos (r) , s = sin (r)
m -> m [i] [j] : (1, 3, 12)
r : (1, 3, 12) (where 1.0 stands for 360

degrees)

Return value
m.

See also
RotMatrix…(), RotMatrix_gte(), RotMatrixC(), RotMatrixY(), RotMatrixYXZ_gte(), RotMatrixZ(),
RotMatrixZYX_gte()

Basic Geometry Library Functions 8-121

Run-Time Library Reference

RotMatrixY
Find a rotation matrix around the Y axis.

Library Header File Introduced Documentation Date
libgte.lib libgte.h 3.0 12/14/98

Syntax
MATRIX *RotMatrixY(
long r, Rotation angle (input)
MATRIX *m) Pointer to rotation matrix (input/output)

Explanation
Generates a rotation queue in matrix m as the product of a rotation matrix around the Y axis at rotation
angle r. A value of 4096 represents a rotation angle of 360 degrees and as a matrix element, 4096
represents 1.0.

















c0s

010

s-0c

 x m

However,

c = cos (r) , s = sin (r)
m -> m [i] [j] : (1, 3, 12)
r : (1, 3, 12) (where 1.0 stands for 360

degrees)

Return value
m

See also
RotMatrix…()), RotMatrix_gte(), RotMatrixC(), RotMatrixX(), RotMatrixYXZ_gte(), RotMatrixZ(),
RotMatrixZYX_gte()

8-122 Basic Geometry Library Functions

Run-Time Library Reference

RotMatrixYXZ_gte
Find a rotation matrix from a rotation angle. Approximately 2 X faster than RotMatrixYXZ().

Library Header File Introduced Documentation Date
libgte.lib libgte.h 4.1 12/14/98

Syntax
MATRIX *RotMatrixYXZ_gte(
SVECTOR *r, Pointer to rotation angle (input)
MATRIX *m) Pointer to rotation matrix (output)

Explanation
Generates a rotation queue in matrix m from the rotation angle (r[0], r[1], r[2]). A value of 4096 represents a
rotation angle of 360 degrees, and as a matrix element, 4096 represents 1.0.

The matrix is found by performing the following multiplication. In GTE's coordinate transformation functions
(such as RotTransPers()) a vector is multiplied beginning with the rightmost end. This produces rotation
around the Z axis, Y axis, and X axis.

















− c10s1

010

s10c1

 x















−
c0s00

s0c00

001

 x














 −

100

0c2s2

0s2c2

However,

c0 = cos (r[0]), s0 = sin (r[0])
c1 = cos (r[1]), s1 = sin (r[1])
c2 = cos (r[2]), s2 = sin (r[2])
m -> m [i] [j] : (1, 3, 12)
r -> vx, vy, vz : (1, 3, 12) (where 1.0 stands for 360

degrees)

RotMatrixYXZ_gte() is approximately 2 X faster than RotMatrixYXZ() but the result can be different (by
2/4096 or less).

RotMatrixYXZ() uses the same lookup table.

Return value
m

See also
RotMatrix…(), RotMatrix_gte(), RotMatrixC(), RotMatrixX(), RotMatrixY(), RotMatrixZ(), RotMatrixZYX_gte()

Basic Geometry Library Functions 8-123

Run-Time Library Reference

RotMatrixZ
Find a rotation matrix around the Z axis.

Library Header File Introduced Documentation Date
libgte.lib libgte.h 3.0 12/14/98

Syntax
MATRIX *RotMatrixZ(
long r, Rotation angle input
MATRIX *m) Pointer to rotation matrix output

Explanation
Generates a rotation queue in matrix m as the product of a rotation matrix around the Z axis at rotation
angle r. A value of 4096 represents a rotation angle of 360 degrees and as a matrix element, 4096
represents 1.0.















 −

100

0cs

0sc

 x m

However,

c = cos (r), s = sin (r)
m -> m [i] [j] : (1, 3, 12)
r : (1, 3, 12) (where 1.0 stands for 360

degrees)

Return value
m.

See also
RotMatrix…(), RotMatrix_gte(), RotMatrixC(), RotMatrixX(), RotMatrixY(), RotMatrixYXZ_gte(),
RotMatrixZYX_gte()

8-124 Basic Geometry Library Functions

Run-Time Library Reference

RotMatrixZYX_gte
Find a rotation matrix around the z, y, and x axis. Approximately 2 X faster than RotMatrixZYX.

Library Header File Introduced Documentation Date
libgte.lib libgte.h 4.1 12/14/98

Syntax
MATRIX *RotMatrixZYX_gte(
SVECTOR *r, Rotation angle (input)
MATRIX *m) Pointer to rotation matrix (output)

Explanation
Generates a rotation queue from the rotation angle (r[0], r[1], r[2]) in matrix m. A value of 4096 represents
360 degrees; and in matrices, 4096 represents 1.0.

The matrix is obtained by doing the following multiplication. In a coordinate conversion function (such as
RotTransPers) for GTE, a vector is multiplied beginning with the rightmost end. So, it is rotated around the
X axis, Y axis, and Z axis.

















100

0c2s2

0s2-c2

 x
















c10s1-

010

s10c1

 x
















c0s00

s0-c00

001

However,

c0 = cos (r[0]), s0 = sin (r[0])
c1 = cos (r[1]), s1 = sin (r[1])
c2 = cos (r[2]), s2 = sin (r[2])
m -> m [i] [j] : (1, 3, 12)
r -> vx, vy, vz : (1, 3, 12) (where 1.0 stands for 360

degrees)

RotMatrixZYX_gte() is approximately 2 X faster than RotMatrixZYX() but the results can be different by up to
2/4096.

RotMatrixZYX() uses the same lookup table.

Return value
m

See also
RotMatrix…(), RotMatrix_gte(), RotMatrixC(), RotMatrixX(), RotMatrixY(), RotMatrixYXZ_gte(), RotMatrixZ()

Basic Geometry Library Functions 8-125

Run-Time Library Reference

RotMeshH
Perform coordinate transformation and perspective transformation.

Library Header File Introduced Documentation Date
libgte.lib libgte.h 3.0 12/14/98

Syntax
void RotMeshH(
short *Yheight, Pointer to vertex Y coordinate (input)
DVECTOR *Vo, Pointer to screen coordinate (output)
u_short *sz, Pointer to SZ value (output)
u_short *flag, Pointer to flag (output)
short Xoffset, short Zoffset, Offsets for X and Z (input)
short m, short n, Number of vertices (input)
DVECTOR *base) Pointer to base address

Explanation
Performs coordinate transformation and perspective transformation for the number of quadrilateral mesh
vertices indicated by m x n.

Vo, sz and flag are not scalar quantities but represent m x n meshes. In other words, this function returns
various vertex parameters such as DVECTOR vo[n][m], u_short sz[n][m] and u_short flag[n][m].

Arguments and internal data format are as follows:

Yheight : (1, 15, 0)
Vo -> vx, vy : (1, 15, 0)
sz : (0, 16, 0)
flag : (0, 16, 0)
Xoffset, Zoffset : (1, 15, 0)
m, n : (1, 15, 0)
base : (1, 15, 0)

The flag must normally be set between bit 27 and bit 12 of the 32-bit flag.

See also
RotMeshPrimQ_T(), RotMeshPrimR_…(), RotMeshPrimS_…()

8-126 Basic Geometry Library Functions

Run-Time Library Reference

RotMeshPrimQ_T
Two-dimensional mesh.

Library Header File Introduced Documentation Date
libgte.lib libgte.h 3.2 12/14/98

Syntax
void RotMeshPrimQ_T(
QMESH *msh, Pointer to mesh model data
POLY_FT4 *prim, Pointer to GPU packet that should be created
u_long *ot, Pointer to ordering table
u_long otlen, Ordering table length
long dpq, Specifies whether depth cueing will be done (1 = yes, 0 = no)
long backc, Specifies whether back clip will be done (1 = yes, 0 = no)
SCLIP *sclip, Pointer to screen clip area
LINE_BUF *line_sxy) Pointer to one line buffer for internal processing

Explanation
Perform coordinate conversion, perspective conversion, normal line clip, clipping by screen coordinates (x,
y, z) and linking to OT of the following two-dimensional mesh (QMESH) data.

The H direction vertex number must be a multiple of 3 (msh -> lenh = 3 x n).

Write texture as is (fog gathers, but do not calculate light source). Set the texture coordinates.

Use the following structures. (The line buffer is secured above 1H + 3 vertices). If scratch pad is used as a
line buffer, it is faster.

typedef struct {
long sminX;
long smaxS;
long sminY;
long smaxY;
long sminZ;
long smaxZ;
} SCLIP;

typedef struct {
long sxy;
long code;
} LINE_BUF;

See also
RotMeshH(), RotMeshPrimR_…(), RotMeshPrimS_…()

Basic Geometry Library Functions 8-127

Run-Time Library Reference

RotMeshPrimR_...
The round mesh series of functions.

Library Header File Introduced Documentation Date
libgte.lib libgte.h 4.1 12/14/98

Syntax
void RotMeshPrimR_...(
TMESH *msh, Pointer to mesh model data
POLY_... *prim, Pointer to GPU packet that should be created
u_long *ot, Pointer to ordering table
u_long otlen, Ordering table length
long dpq, Specifies whether depth cueing will be done (1 = yes; 0 = no)
u_long backc) Specifies whether back clip will be done (1 = yes; 0 = no)

Explanation
Perform coordinate conversion, perspective conversion, and linking to ot of the following round model
mesh (rmesh) data.

The following round mesh functions are supported in libgte:

Table 8-3: Libgte Round Mesh Functions

Function name Type of prim
(2nd arg)

Description

RotMeshPrimR_F3 POLY_F3 Perform flat shading with one vertex color (light source
calculation).

RotMeshPrimR_FC3 POLY_F3 Perform complete painting with one vertex color (no light
source calculation).

RotMeshPrimR_FCT3 POLY_FT3 Multiply texture with one vertex color (no light source
calculation).

RotMeshPrimR_FT3 POLY_FT3 Multiply the flat-shaded items and the texture with one
vertex color (light source calculation).

RotMeshPrimR_G3 POLY_G3 Perform Gouraud shading with vertex color (light source
calculation).

RotMeshPrimR_GC3 POLY_G3 Perform complete Gouraud painting with vertex color (no
light source calculation).

RotMeshPrimR_GCT3 POLY_GT3 Multiply the Gouraud completely painted items and the
texture with vertex color (no light source calculation).

RotMeshPrimR_GT3 POLY_GT3 Multiply the Gouraud-shaded items and the texture with
vertex color (light source calculation).

RotMeshPrimR_T3 POLY_FT3 Write out texture as-is.

See also
RotMeshH(), RotMeshPrimQ_T(), RotMeshPrimS_…()

8-128 Basic Geometry Library Functions

Run-Time Library Reference

RotMeshPrimS_...
The strip mesh series of functions.

Library Header File Introduced Documentation Date
libgte.lib libgte.h 4.1 12/14/98

Syntax
void RotMeshPrimS_...(
TMESH *msh, Pointer to mesh model data
POLY_... *prim, Pointer to GPU packet that should be created
u_long *ot, Pointer to ordering table
u_long otlen, Ordering table length
long dpq, Specifies depth cueing (1 = yes; 0 = no)
u_long backc) Specifies back clip (1 = yes; 0 = no)

Explanation
Perform coordinate conversion, perspective conversion, and linking to ot of the following strip model mesh
(rmesh) data.

The following strip mesh functions are supported in libgte:

Table 8-4: Libgte Strip Mesh Functions

Function name Type of prim
(2nd arg)

Description

RotMeshPrimS_F3 POLY_F3 Perform flat shading with one vertex color (light source calc.).
RotMeshPrimS_FC3 POLY_F3 Perform complete painting with one vertex color (no light

source calculation).
RotMeshPrimS_FCT3 POLY_FT3 Multiply texture with one vertex color (no light source calc).
RotMeshPrimS_FT3 POLY_FT3 Multiply the flat-shaded items and the texture with 1 vertex

color (light source calculation).
RotMeshPrimS_G3 POLY_G3 Perform Gouraud shading with vertex color (light source calc).
RotMeshPrimS_GC3 POLY_G3 Perform complete Gouraud painting with vertex color (no light

source calculation).
RotMeshPrimS_GCT3 POLY_GT3 Multiply the Gouraud completely painted items and the texture

with vertex color (no light source calculation).
RotMeshPrimS_GT3 POLY_GT3 Multiply the Gouraud-shaded items and the texture with vertex

color (light source calculation).
RotMeshPrimS_T3 POLY_FT3 Write out texture as-is.

See also
RotMeshH(), RotMeshPrimQ_T(), RotMeshPrimR_…()

Basic Geometry Library Functions 8-129

Run-Time Library Reference

RotNclip3
Perform coordinate transformation and perspective transformation for three points, and find an interpolation
value and outer product for depth cueing.

Library Header File Introduced Documentation Date
libgte.lib libgte.h 2.x 12/14/98

Syntax
long RotNclip3(
SVECTOR *v0, SVECTOR *v1, SVECTOR *v2, Pointer to vectors (input)
long *sxy0, long *sxy1, long *sxy2, Pointer to coordinates (output)
long *p, Pointer to interpolation value (output)
long *otz, Pointer to OTZ value (output)
long *flag) Pointer to flag (output)

Explanation
A coordinate transformation of three points v0, v1, v2 is performed using a rotation matrix. Next a
perspective transformation is performed and three screen coordinates sx0, sx1, and sx2 are returned. An
interpolation value for depth cueing on v2 to p is also returned. Finally, we also receive 1/4 of the Z value of
the screen coordinates for v2 to otz.

v0, v1, v2 -> vx, vy, vz : (1, 15, 0)
sxy0, sxy1, sxy2 : (1, 15, 0), (1, 15, 0)
p : (0, 20, 12)
otz : (0, 32, 0)
flag : (0, 32, 0)

When the return value is negative, SX, SY, etc. are incorrect. When SX and SY are needed, use
RotTransPer3().

Return value
Outer product of (sx0, sy0), (sx1, sy1), (sx2, sy2)

See also
RotNclip3_nom(), RotNclip4()

8-130 Basic Geometry Library Functions

Run-Time Library Reference

RotNclip3_nom
Perform coordinate and perspective transformation for three points; get interpolation value and outer
product for depth cueing. Results obtained through GTE.

Library Header File Introduced Documentation Date
libgte.lib libgte.h 2.x 12/14/98

Syntax
long RotNclip3_nom
(SVECTOR *v0, SVECTOR *v1, SVECTOR *v2) Pointer to vectors (input)

Explanation
After performing coordinate transformation for local coordinate vectors v0, v1, and v2 using a rotation
matrix, this function performs perspective transformation and stores three screen coordinates sx0, sy0,
sz0, sx1, sy1, sz1, sx2, sy2, and sz2, the interpolation value p for depth cueing corresponding to v2, and
an outer product value (opz) for (sx0,sy0), (sx1,sy1), and (sx2,sy2) in GTE's internal register.

v0, v1, v2 -> vx, vy, vz : (1, 15, 0)
sx0, sy0, sz0 : (1, 15, 0), (1, 15, 0), (0,16,0)
sx1, sy1, sz1 : (1, 15, 0), (1, 15, 0), (0,16,0)
sx2,sy2, sz2 : (1, 15, 0), (1, 15, 0), (0,16,0)
p : (0, 20, 12)
otz : (0, 32, 0)
flag : (0, 32, 0)

The operation result(s) must be retrieved from the GTE (for further information, refer to the Inline Reference
documentation):

• (sz0,sz1,sz2) is read by macro read_sz_fifo3
• ((sx0,sy0), (sx1,sy1), (sx2,sy2)) is read by macro read_sxsy_fifo3
• p is read by macro read_p
• opz is read by macro read_opz
• flag is returned in register v0.

Return value
None.

See also
RotNclip3(), RotNclip4()

Basic Geometry Library Functions 8-131

Run-Time Library Reference

RotNclip4
Perform coordinate transformation and perspective transformation for four points, and find an interpolation
value and outer product for depth cueing.

Library Header File Introduced Documentation Date
libgte.lib libgte.h 2.x 12/14/98

Syntax
long RotNclip4(
SVECTOR *v0, SVECTOR *v1, SVECTOR *v2, SVECTOR *v3, Pointer to vectors (input)
long *sxy0, long *sxy1, long *sxy2, long *sxy3, Pointer to coordinates (output)
long *p, Pointer to interpolation value

(output)
long *otz, Pointer to OTZ value (output)
long *flag) Pointer to flag (output)

Explanation
A coordinate transformation of four points v0, v1, v2, v3 is performed using a rotation matrix. Next a
perspective transformation is performed and three screen coordinates sx0, sx1, sx2, and sx3 are returned.
An interpolation value for depth cueing on v2 to p is also returned. Finally, we also receive 1/4 of the Z value
of the screen coordinates for v2 to otz.

v0, v1, v2, v3 -> vx, vy, vz : (1, 15, 0)
sxy0, sxy1, sxy2, sxy3 : (1, 15, 0), (1, 15, 0)
p : (0, 20, 12)
otz : (0, 32, 0)
flag : (0, 32, 0)

When the return value is negative, SX, SY, etc. are incorrect. When SX and SY are required, use
RotTransPers4().

Return Value
Outer product of (sx0, sy0), (sx1, sy1), (sx2, sy2)

See also
RotNclip3()

8-132 Basic Geometry Library Functions

Run-Time Library Reference

RotPMD_...
The independent vertex PMD data series of functions.

Library Header File Introduced Documentation Date
libgte.lib libgte.h 4.1 12/14/98

Syntax
void RotPMD_...(
long *pa, Pointer to starting address of PRIMITIVE Gp
u_long *ot, Pointer to starting address of OT
int otlen, Length of OT (number of bits)
int id, Double buffer ID
int backc) Normal line clipping ON/OFF (0: ON)

Explanation
These functions perform coordinate transformations and perspective transformations on all three and four-
side polygons included in the independent vertex PRIMITIVE Gp, then complete the GPU packet and link it
to OT.

Only polygons with an SZ value within the range [h/2, 2^16] may be linked.

The following independent vertex PMD functions are supported in libgte:

Table 8-5: Libgte Independent Vertex PMD Functions

Function Name Description
RotPMD_F3 Flat triangle
RotPMD_F4 Flat quadrilateral
RotPMD_FT3 Flat textured triangle
RotPMD_FT4 Flat textured quadrilateral
RotPMD_G3 Gouraud triangle
RotPMD_G4 Gouraud quadrilateral
RotPMD_GT3 Gouraud textured triangle
RotPMD_GT4 Gouraud textured quadrilateral

An error may occur when placing model data (PRIMITIVEGp) on the scratch pad.

See also
RotPMD_SV_…(), RotRMD_…(), RotRMD_SV_…(), RotSMD_…(), RotSMD_SV_…()

Basic Geometry Library Functions 8-133

Run-Time Library Reference

RotPMD_SV_...
The shared vertex PMD data series of functions.

Library Header File Introduced Documentation Date
libgte.lib libgte.h 4.1 12/14/98

Syntax
void RotPMD_SV_...(
long *pa, Pointer to starting address of PRIMITIVE Gp
long *va, Pointer to starting address of VERTEX Gp
u_long *ot, Pointer to starting address of OT
int otlen, Length of OT (number of bits)
int id, Double buffer ID
int backc) Normal line clipping ON/OFF (0: ON)

Explanation
These functions perform coordinate and perspective transformations on all three- and four-sided polygons
included in the shared vertex PRIMITIVE Gp, then complete the GPU packet and link it to OT.

Only polygons with an SZ value within the range [h/2, 2^16] may be linked.

The following shared vertex PMD functions are supported:

Table 8-6: Libgte Independent Vertex PMD Functions

Function Name Description
RotPMD_SV_F3 Flat triangle
RotPMD_SV_F4 Flat quadrilateral
RotPMD_SV_FT3 Flat textured triangle
RotPMD_SV_FT4 Flat textured quadrilateral
RotPMD_SV_G3 Gouraud triangle
RotPMD_SV_G4 Gouraud quadrilateral
RotPMD_SV_GT3 Gouraud textured triangle
RotPMD_SV_GT4 Gouraud textured quadrilateral

See also
RotPMD_…(), RotRMD_…(), RotRMD_SV_…(), RotSMD_…(), RotSMD_SV_…()

8-134 Basic Geometry Library Functions

Run-Time Library Reference

RotRMD_...
The independent vertex RMD data series of functions.

Library Header File Introduced Documentation Date
libgte.lib libgte.h 4.1 12/14/98

Syntax
void RotRMD_...(
long *pa, Pointer to starting address of PRIMITIVE Gp
u_long *ot, Pointer to starting address of OT
int otlen, Length of OT (number of bits)
int id, Double buffer ID
int sclip, Screen clip ON/OFF (ON=1)
int hclip, H direction clip ([0,hclip]=display)
int vclip, V direction clip ([0,vclip]=display)
int nclipmode) Near Z clip mode (0=0,SCRZ/2=1)

Explanation
These functions perform coordinate transformations and perspective transformations on all three and four-
sided polygons included in independent vertex type PRIMITIVE Gp, then create GPU packets and link them
to OT.

If sclip = 0, all polygons are displayed.

If sclip = 1, only polygons having at least one vertex that is included in the square ([0,hclip],[0,vclip]) are
displayed.

If nclipmode = 0, polygons are far and near clipped by sz=[0,2^16].

If nclipmode = 1, polygons are far and near clipped by sz=[h,2^16] (h=distance of eye to screen).

No polygons are backface clipped.

The following independent vertex RMD functions are supported:

Table 8-7: Libgte Independent Vertex RMD Functions

Function Name Description
RotRMD_F3 Flat triangle
RotRMD_F4 Flat quadrilateral
RotRMD_FT3 Flat textured triangle
RotRMD_FT4 Flat textured quadrilateral
RotRMD_G3 Gouraud triangle
RotRMD_G4 Gouraud quadrilateral
RotRMD_GT3 Gouraud textured triangle
RotRMD_GT4 Gouraud textured quadrilateral

An error may occur when placing model data (PRIMITIVEGp) on the scratch pad.

See also
RotPMD_…(),RotPMD_SV_…(), RotRMD_SV_…(), RotSMD_…(), RotSMD_SV_…()

Basic Geometry Library Functions 8-135

Run-Time Library Reference

RotRMD_SV_...
The shared vertex RMD data series of functions.

Library Header File Introduced Documentation Date
libgte.lib libgte.h 4.1 12/14/98

Syntax
void RotRMD_SV_...(
long *pa, Pointer to starting address of PRIMITIVE Gp
u_long *ot, Pointer to starting address of OT
int otlen, Length of OT (number of bits)
int id, Double buffer ID
int sclip, Screen clip ON/OFF (ON=1)
int hclip, H direction clip ([0,hclip]=display)
int vclip, V direction clip ([0,vclip]=display)
int nclipmode) Near Z clip mode (0=0,SCRZ/2=1)

Explanation
These functions perform coordinate and perspective transformations on all three and four-sided polygons
included in shared vertex type PRIMITIVE Gp, then create GPU packets and link them to OT.

If sclip = 0, all polygons are displayed.

If sclip = 1, only polygons having at least one vertex that is included in the square ([0,hclip],[0,vclip]) are
displayed.

If nclipmode = 0, polygons are far&near clipped by sz=[0,2^16].

If nclipmode = 1, polygons are far&near clipped by sz=[h,2^16] (h=distance of eye to screen).

No polygons are backface clipped.

The following shared vertex RMD functions are supported:

Table 8-8: Libgte Shared Vertex RMD Functions

Function Name Description
RotRMD_SV_F3 Flat triangle
RotRMD_SV_F4 Flat quadrilateral
RotRMD_SV_FT3 Flat textured triangle
RotRMD_SV_FT4 Flat textured quadrilateral
RotRMD_SV_G3 Gouraud triangle
RotRMD_SV_G4 Gouraud quadrilateral
RotRMD_SV_GT3 Gouraud textured triangle
RotRMD_SV_GT4 Gouraud textured quadrilateral

See also
RotPMD_…(), RotPMD_SV_…(), RotRMD_…(), RotSMD_…(), RotSMD_SV_…()

8-136 Basic Geometry Library Functions

Run-Time Library Reference

RotSMD_...
The independent vertex SMD data series of functions.

Library Header File Introduced Documentation Date
libgte.lib libgte.h 4.1 12/14/98

Syntax
void RotSMD_...(
long *pa, Pointer to starting address of PRIMITIVE Gp
u_long *ot, Pointer to starting address of OT
int otlen, Length of OT (number of bits)
int id, Double buffer ID
int sclip, Screen clip ON/OFF (ON=1)
int hclip, H direction clip ([0,hclip]=display)
int vclip, V direction clip ([0,vclip]=display)
int nclipmode) Near Z clip mode (0=0,SCRZ/2=1)

Explanation
These functions perform coordinate transformations and perspective transformations on all three and four-
sided polygons included in independent vertex type PRIMITIVE Gp, then create GPU packets, and link
them to OT.

If sclip = 0, all polygons are displayed.

If sclip = 1, only polygons with at least one vertex that is included in the square ([0,hclip],[0,vclip]) are
displayed.

If nclipmode = 0, polygons are far&near clipped by sz=[0,2^16].

If nclipmode = 1, polygons are far&near clipped by sz=[h,2^16] (h=distance of eye to screeen).

All polygons are backface clipped.

The following independent vertex SMD functions are supported in libgte:

Table 8-9: Libgte Independent Vertex SMD Functions

Function Name Description
RotSMD_F3 Flat triangle
RotSMD_F4 Flat quadrilateral
RotSMD_FT3 Flat textured triangle
RotSMD_FT4 Flat textured quadrilateral
RotSMD_G3 Gouraud triangle
RotSMD_G4 Gouraud quadrilateral
RotSMD_GT3 Gouraud textured triangle
RotSMD_GT4 Gouraud textured quadrilateral

An error may occur when placing model data (PRIMITIVEGp) on the scratch pad.

See also
RotPMD_…(), RotPMD_SV_…(), RotRMD_…(), RotRMD_SV_…(), RotSMD_SV_…()

Basic Geometry Library Functions 8-137

Run-Time Library Reference

RotSMD_SV_...
The shared vertex SMD data series of functions.

Library Header File Introduced Documentation Date
libgte.lib libgte.h 4.1 12/14/98

Syntax
void RotSMD_SV_...(
long *pa, Pointer to starting address of PRIMITIVE Gp
u_long *ot, Pointer to starting address of OT
int otlen, Length of OT (number of bits)
int id, Double buffer ID
int sclip, Screen clip ON/OFF (ON=1)
int hclip, H direction clip ([0,hclip]=display)
int vclip, V direction clip ([0,vclip]=display)
int nclipmode) Near Z clip mode (0=0,SCRZ/2=1)

Explanation
These functions perform coordinate transformations and perspective transformations on all three and four-
sided polygons included in shared vertex type PRIMITIVE Gp, then create GPU packets, and link them to
OT.

If sclip = 0, all polygons are displayed.

If sclip = 1, only polygons with at least one vertex that is included in the square ([0,hclip],[0,vclip]) are
displayed.

If nclipmode = 0, polygons are far&near clipped by sz=[0,2^16].

If nclipmode = 1, polygons are far&near clipped by sz=[h,2^16] (h=distance of eye to screeen).

All polygons are backface clipped.

The following shared vertex SMD functions are supported in libgte:

Table 8-10: Libgte Shared Vertex SMD Functions

Function Name Description
RotSMD_SV_F3 Flat triangle
RotSMD_SV_F4 Flat quadrilateral
RotSMD_SV_FT3 Flat textured triangle
RotSMD_SV_FT4 Flat textured quadrilateral
RotSMD_SV_G3 Gouraud triangle
RotSMD_SV_G4 Gouraud quadrilateral
RotSMD_SV_GT3 Gouraud textured triangle
RotSMD_SV_GT4 Gouraud textured quadrilateral

See also
RotPMD_…(), RotPMD_SV_…(), RotRMD_…(), RotRMD_SV_…(), RotSMD_…()

8-138 Basic Geometry Library Functions

Run-Time Library Reference

RotTrans
Perform coordinate transformation using a rotation matrix.

Library Header File Introduced Documentation Date
libgte.lib libgte.h 2.x 12/14/98

Syntax
void RotTrans(
SVECTOR *v0, Pointer to vector (input)
VECTOR *v1, Pointer to vector (output)
long *flag) Pointer to flag

Explanation
Calculates v1 = RTM x v0.

v0 -> vx, vy, vz : (1, 15, 0)
v1 -> vx, vy, vz : (1, 31, 0)
flag : (0, 32, 0)

See also
RotTrans_nom(), RotTransPers(), RotTransPers3(), RotTransPers3N(), RotTransPers4(), RotTransPersN(),
RotTransSV(), TransRot_32()

Basic Geometry Library Functions 8-139

Run-Time Library Reference

RotTrans_nom
Perform coordinate transformation using a rotation matrix. Results obtained through GTE.

Library Header File Introduced Documentation Date
libgte.lib libgte.h 2.x 12/14/98

Syntax
void RotTrans_nom (
SVECTOR *v0) Pointer to vector (input)

Explanation
Calculates v1 = RTM x v0.

v0 -> vx, vy, vz : (1, 15, 0)
v1 -> vx, vy, vz : (1, 31, 0)
flag : (0, 32, 0)

The operation result(s) must be retrieved from the GTE. (For further information, refer to the Inline Reference
documentation.)

• (v1->vx,v1->vy,v1->vz) is read by macro read_mt
• flag is read by macro read_flag.

See also
RotTrans(), RotTransPers(), RotTransPers3(), RotTransPers3N(), RotTransPers4(), RotTransPersN(),
RotTransSV()

8-140 Basic Geometry Library Functions

Run-Time Library Reference

RotTransPers
Perform coordinate and perspective transformation for one vertex.

Library Header File Introduced Documentation Date
libgte.lib libgte.h 2.x 12/14/98

Syntax
long RotTransPers(
SVECTOR *v0, Pointer to vertex coordinate vector (input)
long *sxy, Pointer to screen coordinates
long *p, Pointer to interpolated value
long *flag) Pointer to flag

Explanation
After converting the coordinate vector v0 with a rotation matrix, the function performs perspective
transformation, and returns screen coordinates sx, sy. It also returns an interpolated value for depth cueing
in p.

v0 -> vx, vy, vz : (1, 15, 0)
sxy : (1, 15, 0), (1, 15, 0)
p : (0, 20, 12)
flag : (0, 32, 0)

Return value
1/4 of the screen coordinate Z component sz.

See also
RotTrans(), RotTransPers_nom(), RotTransPers3(), RotTransPers3N(), RotTransPers4(), RotTransPersN(),
RotTransSV(), TransRotPers()

Basic Geometry Library Functions 8-141

Run-Time Library Reference

RotTransPers_nom
Perform coordinate and perspective transformation for one vertex. Results obtained through GTE.

Library Header File Introduced Documentation Date
libgte.lib libgte.h 2.x 12/14/98

Syntax
long RotTransPers_nom(
SVECTOR *v0) Pointer to vertex coordinate vector (input)

Explanation
After converting the coordinate vector v0 with a rotation matrix, the function performs perspective
transformation, and stores screen coordinates sx, sy, sz and the interpolated value p for depth cueing in
the GTE internal register.

The argument and internal data format is as follows:

v0 -> vx, vy, vz : (1, 15, 0)
sx : (1, 15, 0)
sy : (1, 15, 0)
sz : (0, 16, 0)
p : (0, 20, 12)
flag : (0, 32, 0)

sz is read by macro read_sz2, (sx,sy) is read by macro read_sxsy2, p is read by macro read_p and flag is
read by macro read_flag.

The operation result(s) must be retrieved from the GTE.

For further information, refer to the Inline Reference documentation.

Return value
None.

See also
RotTrans(), RotTransPers_nom(), RotTransPers3(), RotTransPers3N(), RotTransPers4(), RotTransPersN(),
RotTransSV()

8-142 Basic Geometry Library Functions

Run-Time Library Reference

RotTransPers3
Perform coordinate and perspective transformation of three vertices.

Library Header File Introduced Documentation Date
libgte.lib libgte.h 2.x 12/14/98

Syntax
long RotTransPers3(
SVECTOR *v0, SVECTOR *v1, SVECTOR *v2, Pointer to vertex coordinate vectors
long *sxy0, long *sxy1, long *sxy2, Pointer to screen coordinates
long *p, Pointer to depth cueing interpolated value
long *flag) Pointer to flag

Explanation
Transforms the three coordinate vectors v0, v1, and v2 using a rotation matrix, performs perspective
transformation, and returns three screen coordinates sxy0, sxy1, and sxy2. It also returns to p an
interpolated value for depth cueing corresponding to v2.

v0, v1, v2 -> vx, vy, vz : (1, 15, 0)
sxy0, sxy1, sxy2 : (1, 15, 0), (1, 15, 0)
p : (0, 20, 12)
flag : (0, 32, 0)

Return value
1/4 of the screen coordinate Z component sz corresponding to v2.

See also
RotTrans(), RotTransPers(), RotTransPers3_nom(), RotTransPers3N(), RotTransPers4(), RotTransPersN(),
RotTransSV(), TransRotPers3()

Basic Geometry Library Functions 8-143

Run-Time Library Reference

RotTransPers3_nom
Perform coordinate and perspective transformation of three vertices. Results obtained through GTE.

Library Header File Introduced Documentation Date
libgte.lib libgte.h 2.x 12/14/98

Syntax
long RotTransPers3_nom(
SVECTOR *v0, SVECTOR *v1, SVECTOR *v2) Pointers to vertex coordinate vectors

Explanation
After performing coordinate transformation for local coordinate vectors v0, v1, and v2 using a rotation
matrix, this function performs perspective transformation and stores three screen coordinates sx0, sy0,
sz0, sx1, sy1, sz1, sx2, sy2, sz2 and the interpolation value p for depth cueing corresponding to v2 in
GTE's internal register.

The argument and internal data format is as follows:

v0, v1, v2 -> vx, vy, vz : (1, 15, 0)
sx0, sy0, sz0 : (1, 15, 0), (0, 16, 0)
sx1, sy1, sz1 : (1, 15, 0), (0, 16, 0)
sx2, sy2, sz2 : (1, 15, 0), (0, 16, 0)
p : (0, 20, 12)
flag : (0, 32, 0)

 (sz0,sz1,sz2) is read by macro read_sz_fifo3, ((sx0,sy0), (sx1,sy1),(sx2,sy2) is read by macro
read_sxsy_fifo3, p is read by macro read_p and flag is read by macro read_flag.

The operation result(s) must be retrieved from the GTE.

For further information, refer to the Inline Reference documentation.

Return value
None.

See also
RotTrans(), RotTransPers(), RotTransPers3(), RotTransPers3N(), RotTransPers4(), RotTransPersN(),
RotTransSV()

8-144 Basic Geometry Library Functions

Run-Time Library Reference

RotTransPers3N
Perform coordinate and perspective transformation for multiple triangles

Library Header File Introduced Documentation Date
libgte.lib libgte.h 3.0 12/14/98

Syntax
void RotTransPers3N(
SVECTOR *v0, Pointer to vertex coordinate vector (input)
DVECTOR *v1, Pointer to vertex coordinate vector (output)
u_short *sz, Pointer to SZ value (output)
u_short *flag, Pointer to flag (output)
long n) Number of triangles to process (number of input vertices/3)

Explanation
Executes RotTransPers3() for the number of triangles specified by n. It transforms 3 vertices at a time and
stores 3 screen coordinates, an sz value and a flag value.

v0 points to an array of SVECTOR that must be 3 times n in length. v1 points to an array of DVECTOR
(screen coordinates) that must be 3 times n in length. sz and flag point to arrays of shorts that must each
be n in length.

Arguments and internal data formats are as follows:

v0 -> vx, vy, vz : (1, 15, 0)
v1 -> vx, vy : (1, 15, 0)
sz : (0, 16, 0)
flag : (0, 16, 0)

Since the flag is a short, it has been right-shifted 12 places, so the information returned is that normally
found between bits 27 and 12 in the 32-bit flag.

See also
RotTrans(), RotTransPers(), RotTransPers3(), RotTransPers4(), RotTransPersN(), RotTransSV()

Basic Geometry Library Functions 8-145

Run-Time Library Reference

RotTransPers4
Perform coordinate and perspective transformation for 4 vertices.

Library Header File Introduced Documentation Date
libgte.lib libgte.h 2.x 12/14/98

Syntax
long RotTransPers4(
SVECTOR *v0, SVECTOR *v1, SVECTOR *v2,
SVECTOR *v3,

Pointer to vectors (input)

long *sxy0, long *sxy1, long *sxy2, long *sxy3, Pointer to screen coordinates
long *p, Pointer to interpolated value for depth cueing
long *flag) Pointer to flag

Explanation
After transforming the four coordinate vectors v0, v1, v2, and v3 using a rotation matrix, the function
performs perspective transformation, and returns four screen coordinates sxy0, sxy1, sxy2, and sxy3. It
also returns an interpolation value for depth cueing to p corresponding to v3. The argument format is as
follows:

v0, v1, v2, v3 -> vx, vy, vz : (1, 15, 0)
sxy0, sxy1, sxy2, sxy3 : (1, 15, 0), (1,15,0)
p : (0, 20, 12)
flag : (0, 16, 0)

Return value
1/4 of the Z component sz of the screen coordinates corresponding to v3.

See also
RotTrans(), RotTransPers(), RotTransPers3(), RotTransPers3N(), RotTransPers4_nom(), RotTransPersN(),
RotTransSV()

8-146 Basic Geometry Library Functions

Run-Time Library Reference

RotTransPers4_nom
Perform coordinate and perspective transformation for 4 vertices. Results obtained through GTE.

Library Header File Introduced Documentation Date
libgte.lib libgte.h 2.x 12/14/98

Syntax
long RotTransPers4_nom(
SVECTOR *v0, SVECTOR *v1, SVECTOR *v2, SVECTOR *v3) Pointer to vectors (input)

Explanation
After performing coordinate transformation for local coordinate vectors v0, v1, v2 and v3 using a rotation
matrix, this function performs perspective transformation and stores three screen coordinates (sz0),
(sx1,sy1,sz1), (sx2,sy2,sz2),(sx3,sy3,sz3), and the interpolation value p for depth cueing corresponding to
v3 in GTE's internal register.

The argument and internal data format is as follows:

v0,v1,v2-> vx, vy, v : (1, 15, 0)
sx0,sy0,sz0 : (1,15,0), (1,15,0), (0,16,0)
sx1,sy1,sz1 : (1,15,0), (1,15,0), (0,16,0)
sx2,sy2,sz2 : (1,15,0), (1,15,0), (0,16,0)
sx3,sy3,sz3 : (1,15,0), (1,15,0), (0,16,0)
p : (0,20,12)
flag : (0,32,0)

 (sz0,sz1,sz2,sz3) is read by macro read_sz_fifo4, ((sx1,sy1),(sx2,sy2),(sx3,sy3) is read by macro
read_sxsy_fifo3 and p is read by macro read_p. (sx0,sy0) is returned in register v1. flag is returned in
register v0.

The operation result(s) must be retrieved from the GTE.

For further information, refer to the Inline Reference documentation.

Return value
flag

See also
RotTrans(), RotTransPers(), RotTransPers3(), RotTransPers3N(), RotTransPers4(), RotTransPersN(),
RotTransSV()

Basic Geometry Library Functions 8-147

Run-Time Library Reference

RotTransPersN
Perform coordinate and perspective transformation.

Library Header File Introduced Documentation Date
libgte.lib libgte.h 3.0 12/14/98

Syntax
void RotTransPersN(
SVECTOR *v0, Pointer to vertex coordinate vector (input)
DVECTOR *v1, Pointer to vertex coordinate vector (output)
u_short *sz, Pointer to SZ value (output)
u_short *p, Pointer to intepolation value (output)
u_short *flag, Pointer to flag (output)
long n) Number of vertices (output)

Explanation
Executes RotTransPers() for the number of vertices specified by n.

The arguments and internal data formats are as follows:

v0 -> vx, vy, vz : (1, 15, 0)
v1 -> vx, vy : (1, 15, 0)
sz : (0, 16, 0)
flag : (0, 16, 0)

The flag must normally be set between bits 27 and 12 of the 32-bit flag.

See also
RotTrans(), RotTransPers(), RotTransPers3(), RotTransPers3N(), RotTransPers4(), RotTransSV()

8-148 Basic Geometry Library Functions

Run-Time Library Reference

RotTransSV
Perform coordinate translation with rotation matrix.

Library Header File Introduced Documentation Date
libgte.lib libgte.h 3.2 12/14/98

Syntax
void RotTransSV(
SVECTOR *v0, Pointer to input: vector
SVECTOR *v1, Pointer to output: vector
long *flag) Pointer to output: flag

Explanation
RotTrans output short vector edition

v1 = RTM x v0

v0>vx,vy,vy : (1,15,0)
v1->vx,vy,vz : (1,15,0)
flag : (0,32,0)

See also
RotTrans(), RotTransPers(), RotTransPers3(), RotTransPers3N(), RotTransPers4(), RotTransPersN()

Basic Geometry Library Functions 8-149

Run-Time Library Reference

rsin
Sine.

Library Header File Introduced Documentation Date
libgte.lib libgte.h 3.0 12/14/98

Syntax
int rsin(
int a) Angle (in PlayStation format)

Explanation
Finds the sine function of the angle (in PlayStation format) (4096 = 360 degrees = 2pai) using fixed-point
math (where 4096=1.0).

a : PlayStation format (4096 = 360 degrees = 2pai)

Compared to csin(), rsin() is faster and takes up more space.

Return value
sin (a) : (1, 19, 12)

See also
csin(), rcos(), ratan2()

8-150 Basic Geometry Library Functions

Run-Time Library Reference

ScaleMatrix
Scale a matrix.

Library Header File Introduced Documentation Date
libgte.lib libgte.h 2.x 12/14/98

Syntax
MATRIX *ScaleMatrix(
MATRIX *m, Pointer to matrix (output)
VECTOR *v) Pointer to scale vector (input)

Explanation
Scales m by v. The components of v are fixed point decimals in which 1.0 represents 4096.

If:

m =
















a22a21a20

a12a11a10

a02a01a00

, v = [sx, sy sz]

Then:

m =
















sz x a22sy x a21sx x a20

sz x a12sy x a11sx x a10

sz x a02sy x a01sx x a00

m -> m [i] [j] : (1, 19, 12)
v -> vx, vy, vz : (1, 19, 12)

Return value
m

See also
ScaleMatrixL()

Basic Geometry Library Functions 8-151

Run-Time Library Reference

ScaleMatrixL
Scale a matrix.

Library Header File Introduced Documentation Date
libgte.lib libgte.h 3.0 12/14/98

Syntax
MATRIX *ScaleMatrixL(
MATRIX *m, Pointer to matrix (output)
VECTOR *v) Pointer to scale vector (input)

Explanation
Scales matrix m by v. The elements of v are fixed point numbers in which 4096 represents a value of 1.0.

If:

m =
















a22a21a20

a12a11a10

a02a01a00

, v = [sx sy sz]

Then:

m =
















sz x a22sz x a21sz x a20

sy x a12sy x a11sy x a10

sx x a02sx x a01sx x a00

m -> m [i] [j] : (1, 19, 12)
v -> vx, vy, vz : (1, 19, 12)

Return value
m

See also
ScaleMatrix()

8-152 Basic Geometry Library Functions

Run-Time Library Reference

SetBackColor
Set back color vector.

Library Header File Introduced Documentation Date
libgte.lib libgte.h 2.x 12/14/98

Syntax
void SetBackColor(
long rbk, long gbk, long bbk) Colors (input)

Explanation
Sets the back color vector to (rbk, gbk, bbk). Color values are in the range 0 to 255.

 (rbk, gbk, bbk) : (0, 32, 0)

See also
SetFarColor()

Basic Geometry Library Functions 8-153

Run-Time Library Reference

SetColorMatrix
Set a local color matrix.

Library Header File Introduced Documentation Date
libgte.lib libgte.h 2.x 12/14/98

Syntax
void SetColorMatrix(
MATRIX *m)

Arguments
m Pointer to matrix (input)

Explanation
Sets a local color matrix specified by m.

m -> m [i] [j] : (1, 3, 12)

See also

8-154 Basic Geometry Library Functions

Run-Time Library Reference

SetFarColor
Set far color vectors.

Library Header File Introduced Documentation Date
libgte.lib libgte.h 2.x 12/14/98

Syntax
void SetFarColor(
long rfc, long gfc, long bfc) Color values (input)

Explanation
Sets the far color vector to (rfc, gfc, bfc). Color values are in the range 0 to 255.

(rfc, gfc, bfc) : (0, 32, 0)

See also
SetBackColor()

Basic Geometry Library Functions 8-155

Run-Time Library Reference

SetFogFar
Set a fog parameter.

Library Header File Introduced Documentation Date
libgte.lib libgte.h 2.x 12/14/98

Syntax
void SetFogFar(
long a, Z value (0 – 65536)
long h) Distance between visual point and screen

Explanation
a defines the Z value at which fog is 100%. A Z value of 0.2 x a will automatically make fog 0%.

a : (0, 32, 0)
h : (0, 32, 0)

See also
SetFogNear(), SetFogNearFar()

8-156 Basic Geometry Library Functions

Run-Time Library Reference

SetFogNear
Set a fog parameter.

Library Header File Introduced Documentation Date
libgte.lib libgte.h 2.x 12/14/98

Syntax
void SetFogNear(
long a, Z value (0 – 65536 x .2)
long h) Distance between visual point and screen

Explanation
a defines the Z value at which fog is 0%. A Z value of 5 x a will automatically make fog 100%.

a : (0, 32, 0)
h : (0, 32, 0)

See also
SetFogFar(), SetFogNearFar()

Basic Geometry Library Functions 8-157

Run-Time Library Reference

SetFogNearFar
Set the fog parameters.

Library Header File Introduced Documentation Date
libgte.lib libgte.h 3.2 12/14/98

Syntax
void SetFogNearFar(
long a, Z value with fog at 0% (0 – 65536)
long b, Z value with fog at 100% (0 – 65536)
long h) Distance between visual point and screen

Explanation
a defines the Z value with fog at 0%. b defines the Z value with fog at 100%.

(b-a) > = 100.

The actual value set to the DQA and DQB GTE register is calculated using the method below:

K = - a * b / (b - a)

c = (b << 12) / (b - a)

DQA = (K / h) << 8

DQB = c << 12

However, since the DQA register is 16 bit, a limit of 16 bits is set.
a : (0, 32, 0)
b : (0, 32, 0)
h : (0, 32, 0)

See also
SetFogFar(), SetFogNear()

8-158 Basic Geometry Library Functions

Run-Time Library Reference

SetGeomOffset
Set offset values.

Library Header File Introduced Documentation Date
libgte.lib libgte.h 2.x 12/14/98

Syntax
void SetGeomOffset(
long ofx, long ofy) Offset input values

Explanation
Sets the offset values (ofx, ofy).

ofx, ofy : (1, 31, 0)

See also
SetGeomScreen()

Basic Geometry Library Functions 8-159

Run-Time Library Reference

SetGeomScreen
Set the projection.

Library Header File Introduced Documentation Date
libgte.lib libgte.h 2.x 12/14/98

Syntax
void SetGeomScreen(
long h) Distance

Explanation
Sets the distance h (projection) from a visual point (the eye) to the screen.

h : (0, 32, 0)

See also
SetGeomOffset()

8-160 Basic Geometry Library Functions

Run-Time Library Reference

SetLightMatrix
Set a local light matrix.

Library Header File Introduced Documentation Date
libgte.lib libgte.h 2.x 12/14/98

Syntax
void SetLightMatrix(
MATRIX *m) Pointer to matrix (input)

Explanation
Sets a local light matrix specified by m.

m -> m [i] [j] : (1, 3, 12)

See also

Basic Geometry Library Functions 8-161

Run-Time Library Reference

SetMulMatrix
Multiply two matrices and set one rotation matrix.

Library Header File Introduced Documentation Date
libgte.lib libgte.h 3.0 12/14/98

Syntax
MATRIX *SetMulMatrix(
MATRIX *m0, MATRIX *m1) Pointer to input matrices

Explanation
Multiplies two matrices and stores that value in one constant rotation matrix.

m0, m1 -> m [i] [j] : (1, 3, 12)

Return value
Returns m0.

See also
SetMulRotMatrix()

8-162 Basic Geometry Library Functions

Run-Time Library Reference

SetMulRotMatrix
Multiply constant rotation matrix by a matrix and set one constant rotation matrix.

Library Header File Introduced Documentation Date
libgte.lib libgte.h 3.6 12/14/98

Syntax
MATRIX *SetMulRotMatrix(
MATRIX *m0) Pointer to input matrix

Explanation
Multiplies constant rotation matrix and a matrix and stores that value in one constant rotation matrix.

m0 -> m [i] [j] : (1, 3, 12)

Return value
m0

See also
SetMulMatrix()

Basic Geometry Library Functions 8-163

Run-Time Library Reference

SetRGBcd
Set primary color vector and GPU code.

Library Header File Introduced Documentation Date
libgte.lib libgte.h 2.x 12/14/98

Syntax
void SetRGBcd(
CVECTOR *v) Pointer to color vector and GPU code input.

Explanation
Sets the primary color vector and GPU code v.

v -> r, g, b, cd : (0, 8, 0)

See also

8-164 Basic Geometry Library Functions

Run-Time Library Reference

SetRotMatrix
Set a constant rotation matrix.

Library Header File Introduced Documentation Date
libgte.lib libgte.h 2.x 12/14/98

Syntax
void SetRotMatrix(
MATRIX *m) Pointer to matrix (input)

Explanation
Sets a 3x3 matrix m as a constant rotation matrix.

m -> m [i] [j] : (1, 3, 12)

See also
SetTransMatrix()

Basic Geometry Library Functions 8-165

Run-Time Library Reference

SetTransMatrix
Set a constant parallel transfer vector.

Library Header File Introduced Documentation Date
libgte.lib libgte.h 2.x 12/14/98

Syntax
void SetTransMatrix(
MATRIX *m) Pointer to matrix (input)

Explanation
Sets a constant parallel transfer vector specified by m.

m -> t [i] : (1, 31, 0)

See also
SetRotMatrix()

8-166 Basic Geometry Library Functions

Run-Time Library Reference

Square0
Square a vector.

Library Header File Introduced Documentation Date
libgte.lib libgte.h 2.x 12/14/98

Syntax
void Square0(
VECTOR *v0, Pointer to vector (L1, L2, L3) (input)
VECTOR *v1) Pointer to vector (L1^2, L2^2, L3^2) (output)

Explanation
Returns a vector, obtained by squaring each term of the vector v0, to v1.

v0 -> vx, vy, vz : (1, 31, 0)
v1 -> vx, vy, vz : (1, 31, 0)

Return value
Returns v1

See also
Square12(), SquareSL0(), SquareSL12(), SquareSS0(), SquareSS12()

Basic Geometry Library Functions 8-167

Run-Time Library Reference

Square12
Square a vector.

Library Header File Introduced Documentation Date
libgte.lib libgte.h 2.x 12/14/98

Syntax
void Square12(
VECTOR *v0, Pointer to vector (L1, L2, L3) (input)
VECTOR *v1) Pointer to vector (L1^2, L2^2, L3^2) (output)

Explanation

Returns a vector, obtained by dividing the square of each term of the vector v0 by 4096, to v1.

v0 -> vx, vy, vz : (1, 19, 12)
v1 -> vx, vy, vz : (1, 19, 12)

Return value
Returns v1

See also
Square0(), SquareSL0(), SquareSL12(), SquareSS0(), SquareSS12()

8-168 Basic Geometry Library Functions

Run-Time Library Reference

SquareRoot0
Square root.

Library Header File Introduced Documentation Date
libgte.lib libgte.h 2.x 12/14/98

Syntax
long SquareRoot0(
long a) Value

Explanation
Returns the square root of a value a.

a : (0, 32, 0)

Return value
Returns the square root of a

See also
csqrt(), InvSquareRoot(), SquareRoot12()

Basic Geometry Library Functions 8-169

Run-Time Library Reference

SquareRoot12
Square root.

Library Header File Introduced Documentation Date
libgte.lib libgte.h 2.x 12/14/98

Syntax
long SquareRoot12(
long a) Value

Explanation
Returns the square root of a value a, which has (0, 20, 12) format, in (0, 20, 12) format.

a : (0, 20, 12)

Return value
Square root of a.

See also
csqrt(), InvSquareRoot()

8-170 Basic Geometry Library Functions

Run-Time Library Reference

SquareSL0
Square a short vector.

Library Header File Introduced Documentation Date
libgte.lib libgte.h 4.0 12/14/98

Syntax
VECTOR *SquareSL0(
SVECTOR *v0, Input: short vector (L1, L2, L3)
VECTOR *v1) Output: vector (L1^2, L2^2, L3^2)

Explanation
Returns a vector, obtained by squaring each term of the short vector v0, to v1.

v0 -> vx, vy, vz : (1, 15, 0)
v1 -> vx, vy, vz : (1, 31, 0)

Return value
v1

See also
Square0(), Square12(), SquareSL12(), SquareSS0(), SquareSS12()

Basic Geometry Library Functions 8-171

Run-Time Library Reference

SquareSL12
Square a short vector.

Library Header File Introduced Documentation Date
libgte.lib libgte.h 4.0 12/14/98

Syntax
VECTOR *SquareSL12(
SVECTOR *v0, Input: short vector (L1, L2, L3)
VECTOR *v1) Output: vector (L1^2, L2^2, L3^2)

Explanation
Returns a vector divided by 4096, obtained by squaring each term of the short vector v0, to v1.

v0 -> vx, vy, vz : (1, 3,12)
v1 -> vx, vy, vz : (1,19,12)

Return value
v1

See also
Square0(), Square12(), SquareSL0(), SquareSS0(), SquareSS12()

8-172 Basic Geometry Library Functions

Run-Time Library Reference

SquareSS0
Square a short vector.

Library Header File Introduced Documentation Date
libgte.lib libgte.h 4.0 12/14/98

Syntax
SVECTOR *SquareSS0(
SVECTOR *v0, Input: short vector (L1, L2, L3)
SVECTOR *v1) Output: vector (L1^2, L2^2, L3^2)

Explanation
Returns a short vector, obtained by squaring each term of the short vector v0, to v1.

v0 -> vx,vy,vz : (1,15, 0)
v1 -> vx, vy, vz : (1,15, 0)

Return value
v1

See also
Square0(), Square12(), SquareSL0(), SquareSL12(), SquareSS12()

Basic Geometry Library Functions 8-173

Run-Time Library Reference

SquareSS12
Square a short vector.

Library Header File Introduced Documentation Date
libgte.lib libgte.h 4.0 12/14/98

Syntax
SVECTOR *SquareSS12(
SVECTOR *v0, Input: short vector (L1, L2, L3)
SVECTOR *v1) Output: vector (L1^2, L2^2, L3^2)

Explanation
Returns a short vector divided by 4096, obtained by squaring each term of the short vector v0, to v1.

v0 -> vx, vy, vz : (1, 3, 12)
v1 -> vx, vy, vz : (1, 3, 12)

Return value
v1.

See also
Square0(), Square12(), SquareSL0(), SquareSL12(), SquareSS0()

8-174 Basic Geometry Library Functions

Run-Time Library Reference

SubPol3
Subdivide a triangle.

Library Header File Introduced Documentation Date
libgte.lib libgte.h 2.x 12/14/98

Syntax
void SubPol3(
POL3 *p, Pointer to a 3-vertex polygon
SPOL *sp, Pointer to subdivision vertex array
int ndiv) Number after subdivision

0: None
1: 2x2
2: 4x4

Explanation
Subdivides a three-sided polygon p by the number 2**ndiv, and returns the subdivision vertex coordinates,
texture coordinates, and RGB to a triangle in an array indicated by sp.

Figure 8-1 Triangle subdivision

p[0] p[1]

p[2]

sp[1] sp[2]sp[0]

sp[3] sp[4]

sp[6]

p -> sxy : (1, 15, 0), (1, 15, 0)
p -> sz : (0, 16, 0)
p -> uv : (1, 15, 0), (1, 15, 0)
p -> rgb : (0, 8, 0), (0, 8, 0), (0, 8, 0)
p -> code : (0, 32, 0)
sp -> xy : (1, 15, 0), (1, 15, 0)
sp -> uv : (1, 15, 0), (1, 15, 0)
sp -> rgb : (0, 8, 0), (0, 8, 0), (0, 8, 0)

See also
SubPol4()

Basic Geometry Library Functions 8-175

Run-Time Library Reference

SubPol4
Subdivide a quadrilateral.

Library Header File Introduced Documentation Date
libgte.lib libgte.h 2.x 12/14/98

Syntax
void SubPol4(
POL4 *p, Pointer to a 4-vertex polygon
SPOL *sp, Pointer to subdivision vertex array
int ndiv) Number after subdivision

0: None, 1: 2x2, 2: 4x4

Explanation
Subdivides a four-sided polygon p by the number 2**ndiv, and returns the subdivision vertex coordinates,
texture coordinates, and RGB to an array indicated by sp.

Figure 8-2 Quadrilateral subdivision

p[0] p[1]

p[2] p[3]

sp[1] sp[2]

sp[7] sp[8]

sp[0]

sp[6]

sp[3] sp[4] sp[5]

p -> sxy : (1, 15, 0), (1, 15, 0)
p -> sz : (0, 16, 0)
p -> uv : (1, 15, 0), (1, 15, 0)
p -> rgb : (0, 8, 0), (0, 8, 0), (0, 8, 0)
p -> code : (0, 32, 0)
sp -> xy : (1, 15, 0), (1, 15, 0)
sp -> uv : (1, 15, 0), (1, 15, 0)
sp -> rgb : (0, 8, 0), (0, 8, 0), (0, 8, 0)

See also
SubPol3()

8-176 Basic Geometry Library Functions

Run-Time Library Reference

TransMatrix
Set the amount of parallel transfer.

Library Header File Introduced Documentation Date
libgte.lib libgte.h 2.x 12/14/98

Syntax
MATRIX *TransMatrix(
MATRIX *m, Pointer to matrix (output)
VECTOR *v) Pointer to transfer vector (input)

Explanation
Gives an amount of parallel transfer expressed by v to the matrix m.

m -> m [i] [j] : (1, 3, 12)
m -> t [i] : (1, 31, 0)
v -> vx, vy, vz : (1, 31, 0)

Return value
m.

See also
TransposeMatrix()

Basic Geometry Library Functions 8-177

Run-Time Library Reference

TransposeMatrix
Transpose a matrix.

Library Header File Introduced Documentation Date
libgte.lib libgte.h 2.x 12/14/98

Syntax
MATRIX *TransposeMatrix(
MATRIX *m0, Pointer to matrix (input)
MATRIX *m1) Pointer to matrix (output)

Explanation
Transposes matrix m0 into m1.

m0 -> m [i] [j] : (1, 3, 12)
m1 -> m [i] [j] : (1, 3, 12)

Return value
Returns m1.

See also
TransMatrix()

8-178 Basic Geometry Library Functions

Run-Time Library Reference

TransRotPers
Inversely perform rotation parallel move of RotTransPers().

Library Header File Introduced Documentation Date
libgte.lib libgte.h 3.2 12/14/98

Syntax
long TransRotPers(
SVECTOR *v0, Pointer to vertex coordinate vector (input)
long *sxy, Pointer to screen coordinate value (output)
long *p, Pointer to interpolation value for depth cueing(output)
long *flag) Pointer to flag (output)

Explanation
Rotates after performing a parallel move of the coordinate vector v0 with the rotation matrix.

Performs a perspective conversion and then a coordinate conversion and returns screen coordinates sx,
sy.

Also, returns the interpolation value for depth cueing to p.

v0 -> vx, vy, vz : (1, 15, 0)
sxy : (1, 15, 0), (1, 15, 0)
p : (0, 20, 12)
flag : (0, 32, 0)

Return value
1/4 of the screen coordinate Z component sz corresponding to v2.

See also
RotTransPers(), TransRotPers3(), TransRot_32()

Basic Geometry Library Functions 8-179

Run-Time Library Reference

TransRotPers3
Inversely perform rotation parallel move of RotTransPers3().

Library Header File Introduced Documentation Date
libgte.lib libgte.h 3.2 12/14/98

Syntax
long TransRotPers3(
SVECTOR *v0, SVECTOR *v1, SVECTOR *v2, Pointer to vertex coordinate vector (input)
long *sxy0, long *sxy1, long *sxy2, Pointer to screen coordinate value (output)
long *p, Pointer to interpolation value for depth cueing

(output)
long *flag) Pointer to flag (output)

Explanation
Rotates after performing a parallel move of the three coordinate vectors v0,v1,v2 with the rotation matrix.
Performs a perspective conversion and then a coordinate conversion and returns the three screen
coordinates sxy0, sxy1, and sxy2.

Also, returns the interpolation value for depth cueing compatible with v2 to p.

Also, returns the screen coordinate Z item sz 1/4 compatible with v2 as the return value.

v0, v1, v2n -> vx, vy, vz : (1, 15, 0)
sxy0, sxy1, sxy2 : (1, 15, 0), (1, 15, 0)
p : (0, 20, 12)
flag : (0, 32, 0)

Return value
1/4 of the screen coordinate Z component sz corresponding to v2.

See also
TransRotPers(), RotTransPers3(), TransRot_32()

8-180 Basic Geometry Library Functions

Run-Time Library Reference

TransRot_32
Inversely perform rotation parallel move of RotTrans().

Library Header File Introduced Documentation Date
libgte.lib libgte.h 3.2 12/14/98

Syntax
void TransRot(
VECTOR *v0, Pointer to vector (input)
VECTOR *v1, Pointer to vector (output)
long *flag) Pointer to flag (output)

Explanation
After adding the 32 bit parallel move volume to v0, performs rotation with constant rotation matrix.

v0 -> vx, vy, vz : (1, 31, 0)
v1 -> vx, vy, vz : (1, 31, 0)
flag : (0, 32, 0)

See also
TransRotPers(), TransRotPers3(), RotTrans()

Basic Geometry Library Functions 8-181

Run-Time Library Reference

VectorNormal
Normalize a vector.

Library Header File Introduced Documentation Date
libgte.lib libgte.h 2.x 12/14/98

Syntax
void VectorNormal(
VECTOR *v0, Pointer to vector (input)
VECTOR *v1) Pointer to vector (output)

Explanation
Normalizes a vector v0 and returns the result in v1.

v0 -> vx, vy, vz : (1, 31, 0)
v1 -> vx, vy, vz : (1, 19, 12)
Warning: if ((v0->vx)^2 + (v1->vx)^2 +(v2->vx)^2) > 0x7FFFFFF, a processor exception will occur.

Return value
Sum of squared v0 elements.

See also
VectorNormalS(), VectorNormalSS()

8-182 Basic Geometry Library Functions

Run-Time Library Reference

VectorNormalS
Normalize a vector.

Library Header File Introduced Documentation Date
libgte.lib libgte.h 3.0 12/14/98

Syntax
long VectorNormalS(
VECTOR *v0, Pointer to vector (input)
SVECTOR *v1) Pointer to vector (output)

Explanation
Normalizes a vector v0 and returns the result in v1.

v0 -> vx, vy, vz : (1, 31, 0)
v1 -> vx, vy, vz : (1, 3, 12)
Warning: if ((v0->vx)^2 + (v1->vx)^2 +(v2->vx)^2) > 0x7FFFFFF, a processor exception will occur.

Return value
Sum of squared v0 elements

See also
VectorNormal(), VectorNormalSS()

Basic Geometry Library Functions 8-183

Run-Time Library Reference

VectorNormalSS
Normalize a vector.

Library Header File Introduced Documentation Date
libgte.lib libgte.h 2.x 12/14/98

Syntax
long VectorNormalSS(
SVECTOR *v0, Pointer to vector (input)
SVECTOR *v1) Pointer to vector (output)

Explanation
Normalizes a vector v0 and returns the result in v1.

v0 -> vx, vy, vz : (1, 16, 0)
v1 -> vx, vy, vz : (1, 3, 12)
Warning: if ((v0->vx)^2 + (v1->vx)^2 +(v2->vx)^2) > 0x7FFFFFF, a processor exception will occur.

Return value
Sum of squared v0 elements

See also
VectorNormal(), VectorNormalS()

8-184 Basic Geometry Library Functions

Run-Time Library Reference

Run-Time Library Reference

Chapter 9: Extended Graphics Library
Table of Contents

Structures
GsBG 9-3
GsBOXF 9-4
GsCELL 9-5
GsCOORD2PARAM 9-6
GsCOORDINATE2 9-7
GsDOBJ2 9-8
GsDOBJ3 9-10
GsDOBJ5 9-11
GsFOGPARAM 9-13
GsF_LIGHT 9-14
GsGLINE 9-15
GsIMAGE 9-16
GsLINE 9-17
GsMAP 9-18
GsOBJTABLE2 9-19
GsOT 9-20
GsOT_TAG 9-21
GsRVIEW2 9-22
GsSPRITE 9-23
GsVIEW2 9-25
TMD_STRUCT 9-26
_GsFCALL 9-27
_GsPOSITION 9-30

Functions
dmyGsPrst... 9-31
dmyGsTMD... 9-32
GsA4div... 9-33
GsClearOt 9-36
GsClearVcount 9-37
GsCutOt 9-38
GsDefDispBuff 9-39
GsDefDispBuff2 9-40
GsDrawOt 9-41
GsDrawOtIO 9-42
GsGetActiveBuffer 9-43
GsGetLs 9-44
GsGetLw 9-45
GsGetLws 9-46
GsGetTimInfo 9-47
GsGetVcount 9-48
GsGetWorkBase 9-49
GsInit3D 9-50
GsInitCoordinate2 9-51
GsInitFixBg16, GsInitFixBg32 9-52
GsInitGraph 9-53
GsInitGraph2 9-54
GsInitVcount 9-55
GsLinkObject3 9-56
GsLinkObject4 9-57
GsLinkObject5 9-58
GsMapModelingData 9-59
GsMulCoord0 9-60

9-2

Run-Time Library Reference

GsMulCoord2 9-61
GsMulCoord3 9-62
GsPresetObject 9-63
GsPrst... 9-64
GsScaleScreen 9-67
GsSetAmbient 9-68
GsSetClip 9-69
GsSetClip2 9-70
GsSetClip2D 9-71
GsSetDrawBuffClip 9-72
GsSetDrawBuffOffset 9-73
GsSetFlatLight 9-74
GsSetFogParam 9-75
GsSetLightMatrix 9-76
GsSetLightMatrix2 9-77
GsSetLightMode 9-78
GsSetLsMatrix 9-79
GsSetOffset 9-80
GsSetOrign 9-81
GsSetProjection 9-82
GsSetRefView2 9-83
GsSetRefView2L 9-84
GsSetView2 9-85
GsSetWorkBase 9-86
GsSortBg, GsSortFastBg 9-87
GsSortBoxFill 9-88
GsSortClear 9-89
GsSortFixBg16, GsSortFixBg32 9-90
GsSortGLine, GsSortLine 9-91
GsSortObject3 9-92
GsSortObject4 9-93
GsSortObject4J 9-94
GsSortObject5 9-95
GsSortObject5J 9-96
GsSortOt 9-97
GsSortPoly 9-98
GsSortSprite, GsSortFastSprite, GsSortFlipSprite 9-99
GsSwapDispBuffer 9-100
GsTMDdiv… 9-101
GsTMDfast..., GsTMDfastN… 9-105

Macros
GsClearDispArea 9-110
GsIncFrame 9-111
GsSetAzwh 9-112

External Variables

Extended Graphics Library Structures 9-3

Run-Time Library Reference

Structures

GsBG
BG (background surface) handler.

Library Header File Introduced Documentation Date
libgs.lib libgs.h 2.x 12/14/98

Structure
struct GsBG {

u_long attribute; Attribute
short x, y; Top left point display position
short w, h; BG display size
short scrollx, scrolly; x and y scroll values
u_char r, g, b; Display brightness is set in r, g, b. (Normal brightness is 128.)
GsMAP *map; Pointer to map data
short mx, my; Rotation and enlargement central point coordinates
short scalex, scaley; Scale values in x and y directions
long rotate; Rotation angle (4096 = 1 degree)

};

Explanation
For attribute, see the description in GsSPRITE.

A BG (background) is drawn as a large rectangle based on GsMAP data on a combination of small
rectangles defined by GsCELL data. There is a GsBG for each BG. The BG may be manipulated via the
GsBG structure.

To register a GsBG object in the ordering table, use GsSortBg().

x, y specifies the screen display position.

w, h specifies BG display size in pixels, and is not dependent on cell size or map size.

If the display area is larger than the map, the content of the map is repeatedly displayed. (Tiling function)

scrollx, scrolly specifies offset from the map display position in dots.

r, g, b specifies brightness values for red, green, and blue. The range is 0 to 255. 128 is the brightness of
the original pattern; 255 doubles the brightness.

map specifies the starting address of map data with a pointer to GsMAP format map data.

mx, my specify the center of rotation and scaling as relative coordinates. The top left point of the BG is the
point of origin. For example, if rotation is around the center of the BG, specify w/2 and h/2.

scalex, scaley specifies enlargement/reduction values in the x and y directions. These values are expressed
in units of 4096, which stands for 1.0 (i.e. is the same size as 1.0). You can set these values up to 8 times
the original size.

rotate specifies a rotation angle around the z-axis (4096 = 1 degree).

See also
GsInitFixBg16(), GsSortBg(), GsSortFixBg16()

9-4 Extended Graphics Library Structures

Run-Time Library Reference

GsBOXF
Rectangle handler.

Library Header File Introduced Documentation Date
libgs.lib libgs.h 2.x 12/14/98

Structure
struct GsBOXF {

u_long attribute; Attribute (see GsLINE attributes)
short x, y; Display position (top left point)
u_short w, h; Size of rectangle (width, height)
u_char r, g, b; Drawing color

};

Explanation
GsBOXF is a structure used to draw a rectangle in a single color. To register GsBOXF in the ordering table,
use GsSortBoxFill().

See also
GsSortBoxFill()

Extended Graphics Library Structures 9-5

Run-Time Library Reference

GsCELL
Cells constituting BG.

Library Header File Introduced Documentation Date
libgs.lib libgs.h 2.x 12/14/98

Structure
struct GsCELL {

u_short u Offset (X-direction) within the page
u_short v; Offset (Y-direction) within the page
u_short cba; CLUT ID
u_short flag; An option at the time of drawing
u_short tpage; Texture page number

};

Explanation
A rectangular array of GsCELL structures is used to describe individual cells that fit together to create a
BG. Each individual GsCELL structure defines a rectangular portion of the overall BG.

cba specifies the position within the frame buffer of a CLUT corresponding to the cell. Bits 0-5 are the X
position of the CLUT divided by 16. Bits 6-15 are the Y position of the CLUT.

tpage is a page number that indicates the position of a Sprite pattern within a frame buffer.

The u and v parameters specify the offset position for the sprite pattern within the texture page defined by
tpage.

flag specifies drawing options. Bit 0 is Vertical flip (0: no flip; 1: flip). Bit 1 is Horizontal flip (0: no flip; 1: flip).

See also

9-6 Extended Graphics Library Structures

Run-Time Library Reference

GsCOORD2PARAM
GsCOORDINATE2 parameter format.

Library Header File Introduced Documentation Date
libgs.lib libgs.h 4.0 12/14/98

Structure
struct {

VECTOR scale; Retains coordinate scaling information
SVECTOR rotate; Retains coordinate rotation information
VECTOR trans; Retains coordinate parallel shift information

} GsCOORD2PARAM;

Explanation
This structure is used in order to retain information for GSCOORDINATE2 when TOD animation is used.

See also

Extended Graphics Library Structures 9-7

Run-Time Library Reference

GsCOORDINATE2
Matrix type coordinate system.

Library Header File Introduced Documentation Date
libgs.lib libgs.h 2.x 12/14/98

Structure
struct GsCOORDINATE2 {

u_long flg; Flag indicating whether coord was rewritten
MATRIX coord; Matrix
MATRIX workm; Result of multiplication from this coordinate system to the

WORLD coordinate system
GsCOORD2PARAM *param; Pointer for scale, rotation, and transfer parameters
GsCOORDINATE2 *super; Pointer to superior coordinates
GsCOORDINATE2 *sub; Not in current use

};

Explanation
GsCOORDINATE2 has superior coordinates and is defined by the matrix type coord.

workm retains the result of multiplication of matrices performed by GsGetLw() and GsGetLs() in each node
of GsCOORDINATE2 using the WORLD coordinates.

flg is referenced to omit calculations for a node for which calculations were already made, during GsGetLw()
calculations. 1 means the flag is set; 0 clears the flag. The programmer must clear this flag when he has
changed coord. If you neglect to clear it, GsGetLw() and GsGetLs() will fail to execute normally.

param is used for setting coord values with layout tools. It may be freely used if TOD animation is not used.

See also
GsGetLs(), GsGetLw(), GsGetLws(), GsInitCoordinate2()

9-8 Extended Graphics Library Structures

Run-Time Library Reference

GsDOBJ2
Three-dimensional object handler

Library Header File Introduced Documentation Date
libgs.lib libgs.h 3.0 12/14/98

Structure
struct GsDOBJ2 {

u_long attribute; Object attribute (32-bit)
GsCOORDINATE2 *coord2; Pointer to a local coordinate system
u_long *tmd; Pointer to model data
u_long id; Reserved by the layout tool

};

Explanation
Used to manipulate objects in a three-dimensional model. There is a GsDOBJ2 for each object in a model.

Use GsLinkObject4() to link a GsDOBJ2 to TMD-format model data. It sets tmd to the starting address of
the TMD model object in memory.

Use GsSortObject4() to register GsDOBJ2 in the ordering table.

coord2 is a pointer to a GsCOORDINATE2 structure defining the object’s coordinate system. The location,
inclination, and size of the object is defined in coord2->coord..

attribute is a 32-bit value containing various display attributes:

Bits 0-2: material attenuation. (Note: currently not supported)

Sets the relationship between the normal gradient and brightness attenuation for light source
calculations. Values range from 0 (no attenuation) to 3 (steepest attenuation). This value affects an
object's material quality: for example, a steep attenuation generally produces a metallic quality. Also
note that the higher the value, the longer the processing time.

Note: This parameter is invalid unless the lighting mode sets material attenuation on.

Bits 3-5: lighting mode

Sets the light source calculation formula. Bit 5 is a switch to validate the default lighting mode set by
GsSetLightMode(). The values of bits 3-4 can be:

Table 9-1: Lighting modes

Value Operation
0 Normal (fastest) mode.
1 Fog only mode. Use GsSetFogParam() to

set the fog parameter GsFOGPARAM.
2 Material attenuation only mode.
3 Applies both fog and material attenuation.

Not currently supported.

Bit 6: Light source calculation ON/OFF switch (1 = off)

Improves processing speed by eliminatin light source calculation. A texture-mapped polygon is
displayed in the original texture color; an unmapped polygon is displayed in the model data color.

Bit 7: Near clipping

If this bit is set, in cases where the polygon end point is very close to the viewpoint (distance between
viewpoint and polygon < (distance between viewpoint and screen) /2), a polygon that has overflowed

Extended Graphics Library Structures 9-9

Run-Time Library Reference

during perspective transformation will not be simply clipped, but can be forcibly displayed, even if its
shape is distorted.

Bit 8: Back clipping

A polygon has a front and back determined by the order of its vertices. In the case of a convex object,
it is not necessary to display the back face, so a back-facing polygon will be clipped. However, if this
bit is set, a back-facing polygon can be displayed.

The current version does not support back clipping.

Bits 9-11: Automatic division

This operation subdivides an object’s component polygons at the time of execution. The number of
divisions possible are: 2x2 (1), 4x4 (2), 8x8 (3), 16x16 (4), or 32x32 (5).

You can use this operation to eliminate the problems accompanying a perspective transformation,
such as texture distortion and Near clipping. You must take care that memory use and processing
speed are not adversely impacted as the number of divisions increase.

GsSortObject4() and GsSortObject5() are functions that create packets capable of automatic division.
When using automatic division, you must pass the scratch pad address, used as a working argument,
in the last argument of the packet creation function.

Bits 28-29: Semi-transparency rate (Note: currently not supported)

Sets the pixel-blending formula when semi-transparency is set to ON in bit 30.

Table 9-2: Semi-transparency Rate

Value Background Primitive Processing
0 0.5 0.5 Normal semi-

transparency
processing

1 1.0 1.0 Pixel addition
2 1.0 -1.0 50% addition
3 1.0 0.25 Pixel subtraction

Bit 30: Semi-transparency ON/OFF

Used with the high (STP) bit of the texture color field (direct texture pattern or CLUT color field when
indexed) to set semi-transparency. The semi-transparency and non-transparency of each pixel unit
may be controlled using this STP bit.

Bit 31: Display ON/OFF

When the object is not displayed, speed is improved.

See also
GsLinkObject4(), GsSortObject4(),GsSortObject4J(), GsSetLightMode()

9-10 Extended Graphics Library Structures

Run-Time Library Reference

GsDOBJ3
Three-dimensional object handler for use with PMD format.

Library Header File Introduced Documentation Date
libgs.lib libgs.h 3.0 12/14/98

Structure
struct GsDOBJ3 {

u_long attribute; Object attribute (32-bit)
GsCOORDINATE2 *coord2; Pointer to a local coordinate system
u_long *pmd; Pointer to model data (PMD FORMAT)
u_long *base; Pointer to object base address
u_long *sv; Pointer to shared vertex base address
u_long id; Reserved by the layout tool

};

Explanation
There is a GsDOBJ3 for each object of a 3-dimensional model; GsDOBJ3 structures may be used to
manipulate the 3-dimensional model.

Use GsLinkObject3() to link GsDOBJ3 to PMD file model data.

You can use GsDOBJ3 to access PMD data linked by GsLinkObject3(). Use GsSortObject3() to register
GsDOBJ3 in the ordering table.

coord2 is a pointer to a coordinate system unique to an object. The location, inclination, and size of the
object is reflected in a matrix set in the coordinate system to point to coord2.

pmd retains the starting address of PMD model data stored in memory. pmd is calculated and set using
GsLinkObject3().

attribute is 32-bit; various display attributes are set here.

Only the attribute shown below is currently available.

(a) Bits 0-30: Reserved, set to zero

(b) Bit 31: Display ON/OFF

This turns display ON and OFF.

id is not used unless the layout funtion is used.

See also
GsLinkObject3(), GsSortObject3()

Extended Graphics Library Structures 9-11

Run-Time Library Reference

GsDOBJ5
Three-dimensional object handler for use with GsSortObject5().

Library Header File Introduced Documentation Date
libgs.lib libgs.h 3.0 12/14/98

Structure
struct GsDOBJ5 {

u_long attribute; Object attribute (32-bit)
GsCOORDINATE2 *coord2; Pointer to local coordinate system
u_long *tmd; Pointer to model data
u_long *packet; Pointer to preset packet area
u_long id; Reserved by the layout tool

};

Explanation
There is a GsDOBJ5 for each object of a 3-dimensional model; GsDOBJ5 structures may be used to
manipulate the 3-dimensional model.

Use GsLinkObject5() to link GsDOBJ5 to TMD file model data.

You can use GsDOBJ5 to access TMD data linked by GsLinkObject5(). Use GsSortObject5() to register
GsDOBJ5 in the ordering table.

coord2 is a pointer to a coordinate system unique to an object. The location, inclination, and size of the
object is reflected in a matrix set in the coordinate system to point to coord2.

tmd retains the starting address of TMD model data stored in memory. tmd is calculated and set using
GsLinkObject5().

packet retains the starting address of a preset packet copied into memory. A preset packet is copied by
GsPresetObject(), and is set in a GsDOBJ5 packet.

attribute is 32-bit; various display attributes are set here. An explanation of each bit follows.

• Bits 0-2: Material attenuation (not currently supported)

This sets the relationship between the normal gradient and brightness attenuation when light source
calculation is performed. This takes a value of 0-3. With 0 there is no attenuation; the steepest
attenuation is with 3. This parameter can be used to display an object's material quality. In general,
making the attenuation steep produces a metallic quality.

Note the following points:

(1) If the material attenuation value is high, calculation takes longer and the processing requires a
lot of resources.

(2) This parameter is invalid In lighting mode unless material ON is set.

• Bits 3-5: Lighting mode

This sets the light source calculation formula. It takes a value of 0-3. The values are as listed below.

• Bit 5, the highest ranking bit, is a switch to validate the lighting mode set by GsSetLightMode().

Table 9-3: Lighting Modes

Value Operation
0 Normal mode without fog or material attenuation. This is

the fastest mode and calculation takes least time.
1 Fog only mode. The fog parameter is GsFOGPARAM;

set the parameter with GsSetFogParam().

9-12 Extended Graphics Library Structures

Run-Time Library Reference

Value Operation
2 Material attenuation only mode. The amount of

attenuation is set by the material attenuation bit. Not
currently supported.

3 Applies both fog and material attenuation. Not currently
supported.

• Bit 6: Light source calculation ON/OFF switch

This bit is used when light source calculation is not performed. When light source calculation is
removed, a texture-mapped polygon is displayed in the original texture color. An unmapped polygon is
displayed in the model data color.

• Bits 7-30: Reserved, set to zero.
• Bits 31: Display ON/OFF

This turns display ON and OFF.

id is not used unless the layout functon is used.

See also
GsLinkObject5(), GsSortObject5(), GsSortObject5J()

Extended Graphics Library Structures 9-13

Run-Time Library Reference

GsFOGPARAM
Fog (depth cueing) information.

Library Header File Introduced Documentation Date
libgs.lib libgs.h 2.x 12/14/98

Structure
struct GsFOGPARAM {

short dqa; Parameter for the degree of merging due to depth
long dqb; Parameter for the degree of merging due to depth.
u_char rfc, gfc, bfc; Background colors

};

Explanation
dqa and dqb are background color attenuation coefficients. They can be calculated using the following
formulas:

DQA = -df * 4096/64/h

DQB = 1.25 * 4096 * 4096

df is the distance where the attenuation coefficient is 1; that is, the distance from the viewpoint to where
the background colors are completely blended. h indicates a projection, or a distance from the visual point
to the screen.

See also
GsSetFogParam()

9-14 Extended Graphics Library Structures

Run-Time Library Reference

GsF_LIGHT
Parallel light source.

Library Header File Introduced Documentation Date
libgs.lib libgs.h 2.x 12/14/98

Structure
struct GsF_LIGHT {

int vx, vy, vz; Directional vectors for light source
u_char r, g, b; Light source colors

};

Explanation
Holds information about a parallel light source. Use GsSetFlatLight() to assign the values to one of three
light sources..

The light source directional vectors are specified by vx, vy, vz. It is unnecessary for the programmer to
perform normalization, because the system does it. A polygon whose normal vectors are opposite to these
directional vectors is exposed to the strongest light.

See also
GsSetFlatLight()

Extended Graphics Library Structures 9-15

Run-Time Library Reference

GsGLINE
Straight line handler with gradation.

Library Header File Introduced Documentation Date
libgs.lib libgs.h 3.5 12/14/98

Structure
struct GsLINE {

u_long attribute; Attribute (see GsLINE attributes)
short x0, y0; Drawing start point position
short x1, y1; Drawing end point position
u_char r0, g0, b0; Drawing colors of start point
u_char r1, g1, b1; Drawing colors of end point

};

Explanation
GsGLINE is a structure used to draw straight lines with gradation. It is the same as GsLINE except that
drawing colors for the starting point and end point may be specified separately.

See also
GsSortGLine()

9-16 Extended Graphics Library Structures

Run-Time Library Reference

GsIMAGE
Information on image data composition.

Library Header File Introduced Documentation Date
libgs.lib libgs.h 2.x 12/14/98

Structure
struct GsIMAGE {

u_long pmode; Pixel mode.
0: 4-bit CLUT
1: 8-bit CLUT
2: 16-bit DIRECT
3: 24-bit DIRECT
4: Coexistence of multiple modes

short px, py; Pixel data storage location within the frame buffer
u_short pw, ph; Pixel data width and height
u_long *pixel; Pointer to pixel data
short cx, cy; CLUT data storage location within the frame buffer
u_short cw, ch; CLUT data width and height
u_long *clut; Pointer to CLUT data

};

Explanation
A structure in which TIM format data information is stored by GsGetTimInfo().

See also
GsGetTimInfo()

Extended Graphics Library Structures 9-17

Run-Time Library Reference

GsLINE
Straight line handler.

Library Header File Introduced Documentation Date
libgs.lib libgs.h 2.x 12/14/98

Structure
struct GsLINE {

u_long attribute; Attribute (see Explanation)
short x0, y0; Drawing start point position
short x1, y1; Drawing end point position
u_char r, g, b; Drawing color

};

Explanation
GsLINE is a structure for drawing straight lines. Use GsSortLine() to register a GsLINE in the ordering table.

attribute is 32 bits, and sets various attributes for display:

Bits 0-27: Reserved, set to 0.

Bits 28-29: Semi-transparency rate

If semi-transparency is turned on using bit 30, bits 28 and 29 are used to set the pixel blending method.

0 50% x Back + 50% x Line
1 100% x Back + 100% x Line
2 100% x Back + 50% x Line
3 100% x Back - 100% x Line

Bit 30: Semi-transparency ON/OFF: 1 = ON; 0 = OFF

Bit 31: Display ON/OFF: 0 = displayed; 1 = not displayed

See also
GsSortLine()

9-18 Extended Graphics Library Structures

Run-Time Library Reference

GsMAP
Map comprising BG.

Library Header File Introduced Documentation Date
libgs.lib libgs.h 2.x 12/14/98

Structure
struct GsMAP {

u_char cellw, cellh; Cell size (0 is treated as 256.)
u_short ncellw, ncellh; Size of BG (in cells) (Not displayed if w or h is 0.)
GsCELL *base; Pointer to GsCELL structure array
u_short *index; Pointer to cell information

};

Explanation
GsMAP is map data used to compose BG from GsCELL. Map data are managed by cell index array
information.

cellw, cellh specify the size of one cell in pixels. Note that one BG is made up of cells of the same size.

ncellw and ncellh set the size of the BG map in cells.

base sets the starting address of the GsCELL array.

index sets the starting address of the cell data table. Cell data is a list of index values whose size is
equivalent to (ncellw*ncellh) for the array specified by base. If a cell value is 0xFFFF it indicates a NULL
(transparent) cell.

See also

Extended Graphics Library Structures 9-19

Run-Time Library Reference

GsOBJTABLE2
Object table information.

Library Header File Introduced Documentation Date
libgs.lib libgs.h 2.x 12/14/98

Structure
struct GsOBJTABLE2 {

GsDOBJ2 *top; Pointer to object array
int nobj; Number of valid objects in array
int maxobj; Size of object array

};

Explanation
When the three-dimensional animation function group is used, a three-dimensional object must be in the
array in order to give effect to the object ID number specification. This array is called an object table.
GsOBJTABLE2 contains information relating to the object table.

top is a pointer to the GsDOBJ2 array, within which the three-dimensional object managed by ID is
created. The GsDOBJ2 array must be allocated prior to object table initialization.

maxobj is the size of array indicated by top; its value must be greater than the maximum value of the object
handled.

nobj is the number of valid objects within the array.

GsOBJTABLE2 is initialized by GsInitObjTable2().

See also

9-20 Extended Graphics Library Structures

Run-Time Library Reference

GsOT
Ordering table header.

Library Header File Introduced Documentation Date
libgs.lib libgs.h 2.x 12/14/98

Structure
struct GsOT {

u_long length; Bit length of OT
GsOT_TAG *org; Pointer to start address of GsOT_TAG table
u_long offset; OT screen coordinate system Z-axis offset
u_long point; OT screen coordinate system Z-axis typical value
GsOT_TAG *tag; Pointer to current GsOT_TAG element

};

Explanation
The GsOT structure describes the header of the ordering table format supported by libgs. This header has
pointers to the actual ordering table array, specified by the org and tag members. These members are
initialized using GsClearOT().

org always points to the start of the ordering table. tag points to the element within the ordering table at
which drawing takes place.

length sets the size of the ordering table, in values from 1-14. The actual ordering table size is 2**length (i.e.
a value of 14 indicates an array of 16384 GsOT_TAG items, while a value of 8 indicates an array of 256
GsOT_TAG items).

length and org values should be set first. The other members are set by GsClearOt().

GsClearOt() initializes memory from org through to the size indicated by length. Note that memory will be
destroyed if the size of the GsOT_TAG array pointed to by org is greater than that specified by length.

point is used by GsSortOt() in the sorting of ordering tables.

The ordering table Z-axis offset is set by offset. For example, if offset = 256, the start of the ordering table is
Z = 256. (Not yet supported.)

See also
GsClearOt(), GsDrawOt(), GsSortOt(), GsCutOt().

Extended Graphics Library Structures 9-21

Run-Time Library Reference

GsOT_TAG
Ordering table unit.

Library Header File Introduced Documentation Date
libgs.lib libgs.h 2.x 12/14/98

Structure
struct GsOT_TAG {

unsigned p : 24; Pointer to next item in ordering table list
u_char num : 8; Number of words in current GPU packet (i.e. primitive)

};

Explanation
A libgs ordering table is a linked list of GsOT_TAG structures and various types of GPU primitive structures.
The p field of a GsOT_TAG structure indicates the least significant 24-bits of a pointer to the next item in
the list. A value of 0xFFFFFF indicates the end of the list.

The GsOT structure is used by libgs to manage an array of GsOT_TAG items. Allocate an array of
GsOT_TAG structures after initializing your GsOT structure.

See also

9-22 Extended Graphics Library Structures

Run-Time Library Reference

GsRVIEW2
View handler (Reference type).

Library Header File Introduced Documentation Date
libgs.lib libgs.h 2.x 12/14/98

Structure
struct GsRVIEW2 {

long vpx, vpy, vpz; Viewpoint coordinates
long vrx, vry, vrz; Reference point coordinates
long rz; Viewpoint twist
GsCOORDINATE2 *super; Pointer to the coordinate system that sets the viewpoint

};

Explanation
GsRVIEW2 holds viewpoint information, and is set in libgs by GsSetRefView2(). vpx, vpy, vpz are the
viewpoint coordinates in the coordinate system displayed by super.

vrx, vry, vrz are the reference point coordinates in the coordinate system displayed by super.

When the z axis is a vector from the viewpoint to the reference point, rz specifies the screen inclination
against the z axis in fixed decimal format, with 4096 equivalent to one degree.

Viewpoint and reference point coordinate systems are set in super. As an example of using this function, an
airplane cockpit view can be realized simply by setting super to the airplane coordinate system.

See also
GsSetRefView2(), GsSetRefView2L()

Extended Graphics Library Structures 9-23

Run-Time Library Reference

GsSPRITE
Sprite handler.

Library Header File Introduced Documentation Date
libgs.lib libgs.h 2.x 12/14/98

Structure
struct GsSPRITE {

u_long attribute; 32 bits (see Explanation)
short x, y; Screen display position of the top left point
u_short w, h; Width and height of Sprite in pixels (Not displayed if w or h is 0.)
u_short tpage; Sprite pattern texture page number (0-31)
u_char u, v; Sprite pattern offset within the page from top left point. Range is ((0, 0) -

(255, 255).
short cx, cy; Starting position of CLUT in VRAM. (Valid for 4-bit/8-bit mode only)
u_char r, g, b; Red, green, blue brightness values (0-255; original brightness is 128.)
short mx, my; Rotation and enlargement central point coordinates
short scalex, scaley; Scaling values in x and y directions (4096 = 1.0); can be up to 8 times

original size
long rotate; Sets rotation around the z-axis in fixed-decimal format (4096 = 1 degree)

};

Explanation
A structure used to handle a Sprite. Makes it possible to manipulate each Sprite via its parameters.

To register a GsSPRITE in the ordering table, use GsSortFlipSprite(), GsSortSprite(), or GsSortFastSprite().

mx, my specify the coordinates used as the center of rotation and scaling. For example, if rotation is
desired around the center of the Sprite, specify w/2 and h/2 as mx and my.

attribute is 32 bits, and sets various attributes for display. An explanation of each bit follows.

• Bits 0-5: Reserved, set to zero.

• Bit 6: Brightness adjustment ON/OFF switch

This bit sets Sprite pattern pixel colors according to (r, g, b) values. If this bit is set to 1, brightness is
not adjusted, and (r, g, b) values are ignored.

• Bits 7-21: Reserved, set to zero.

• Bits 22-23: Vertical flipping, horizontal flipping

0 = not flipped; 1 = flipped

• Bits 24-25: Color mode

A Sprite pattern has 4-bit mode and 8-bit mode, both of which use the color table, and 15-bit mode,
which directly displays colors. These bits are used to select any of these modes.

0 = 4-bit CLUT; 1 = 8-bit CLUT; 2 = 15-bit direct.

• Bit 26: Reserved, set to zero.

• Bit 27: Rotation enlargement/reduction function

This bit turns on or off the Sprite enlargement function (0 = on, 1 = off). If rotation or enlargement of the
Sprite is not needed, this bit should be set to OFF for high speed processing.

GsSortFastSprite() and GsSortFlipSprite() ignore this bit and always set the enlargement function to off.

• Bits 28-29: Semi-transparency rate

When semi-transparency is set to ON with bit 30, the semi-transparency rate sets the pixel-blending
formula:

9-24 Extended Graphics Library Structures

Run-Time Library Reference

Table 9-4: Semi-transparency Rate

0 Normal semi-transparency processing 50% x Back + 50% x Sprite
1 Pixel addition 100% x Back + 100% x Sprite
2 50% addition 100% x Back + 50% x Sprite
3 Pixel subtraction 100% x Back - 100% x Sprite

• Bit 30: Semi-transparency ON/OFF (1 = on, 0 = off)

This bit must be used with the uppermost bit (STP bit) of the texture color field (texture pattern when
direct and CLUT color field when indexed) to set semi-transparency,. Also, the semi-transparency and
non-transparency of each pixel unit may be controlled using this STP bit.

• Bit 31: Display ON/OFF (0 = displayed, 1 = not displayed)

This turns display ON and OFF.

SPRT primitives are used when neither rotation, enlargement, nor reduction are performed by
GsSortSprite(). Consequently, it is necessary to keep track of whether the uv, wh of a texture is odd or
even.

GsSortFlipSprite() uses POLY_FT4 unconditionally.

With GsSortSprite(), w, h are set to 1 less than the desired dimensions, to handle the lower-right texture
page problem. Consequently, the texture is displayed slightly enlarged. (When programming, the lower-
right line can be included, since reduction takes place within the function.)

Since GsSortFlipSprite() displays POLY_FT4 at the original scale, the rendering rules dictate that the lower
right corner cannot be used. When flipping, to ensure proper display, the lower left line should not be used
either.

See also
GsSortFlipSprite(), GsSortSprite(), GsSortFastSprite()

Extended Graphics Library Structures 9-25

Run-Time Library Reference

GsVIEW2
View handler (matrix type).

Library Header File Introduced Documentation Date
libgs.lib libgs.h 2.x 12/14/98

Structure
struct GsVIEW2 {

MATRIX view; Matrix used to change from superior coordinates to viewpoint
coordinates

GsCOORDINATE *super; Pointer to the coordinate system that sets viewpoint
};

Explanation
Sets the viewpoint coordinate system, and specifies the matrix used by view to change from superior
coordinates to viewpoint coordinates.

The function that sets GsVIEW2 is GsSetView2().

See also
GsSetView2()

9-26 Extended Graphics Library Structures

Run-Time Library Reference

TMD_STRUCT
TMD data object header.

Library Header File Introduced Documentation Date
libgs.lib libgs.h 4.0 12/14/98

Structure
typedef struct {

u_long *vertop; VERTEX start address
u_long vern; VERTEX coefficient
u_long *nortop; NORMAL start address
u_long norn; NORMAL coefficient
u_long *primtop; PRIMITIVE start address
u_long primn; PRIMITIVE coefficient
u_long scale; Scaling factor

} TMD_STRUCT;

Explanation
A structure in the OBJ TABLE section within the TMD data. It contains information regarding the pointer
which displays where each object is stored.

See also

Extended Graphics Library Structures 9-27

Run-Time Library Reference

_GsFCALL
The function table for GsSortObject4J() and GsSortObject5J().

Library Header File Introduced Documentation Date
libgs.lib libgs.h 3.2 12/14/98

Structure
struct _GsFCALL {

PACKET *(*f3[2][3])(),*(*nf3[2])(),*(*g3[2][3])(),*(*ng3[2])();
PACKET *(*tf3[2][3])(),*(*ntf3[2])(),*(*tg3[2][3])(),*(*ntg3[2])();
PACKET *(*f4[2][3])(),*(*nf4[2])(),*(*g4[2][3])(),*(*ng4[2])();
PACKET *(*tf4[2][3])(),*(*ntf4[2])(),*(*tg4[2][3])(),*(*ntg4[2])();
PACKET *(*f3g[3])(),*(*g3g[3])();
PACKET *(*f4g[3])() *(*g4g[3])();

};

Members
Each member is a pointer to a low-level function.

f3, g3, tf3, tg3, f4, g4, tf4, tg4 Pointer to polygon types
First matrix:
GsDivMODE_DIV/GsDivMode_NDIV

Division/no division

Second matrix:
GsLMODE_NORMAL/GsLMODE_FOG/Gs
LMODE_LOFF

Light source calculation mode

nf3, ng3, ntf3, ntg3, nf4, ng4, ntf4, ntg4 Pointer to polygon types
First matrix:
GsDivMODE_DIV/GsDivMode_NDIV

Division/no division

f3g, g3g, f4g, g4g Gradation polygon type
First array:
GsLMODE_NORMAL/GsLMODE_FOG/Gs
LMODE_LOFF

Light source calculation mode

Explanation
GsSortObject4() and GsSortObject5() dispatch attributes, pre-set data, etc. and call low-level functions.
There are 64 low-level functions, and a single application is unlikely to use all of them.

With GsSortObject4J() and GsSortObject5J(), you don't need to link with unnecessary low-level functions,
thereby making the code more compact. These functions are compatible with GsSortObject4() and
GsSortObject5(), which organize low-level functions as tables.

_GsFCALL is the structure in which the function table is defined.The function table is organized according
to polygon type, whether or not division is performed, and light-source calculation mode.

The relevant functions are linked by entering the pointers of the appropriate low-level functions in each of
the elements. It is possible to avoid linking by not including the pointers and not making extern
declarations. However, if a function that does not have a pointer is called, a BUS ERROR is generated.

The example below shows the use of GsSortObject5() with appropriate functions in all the elements. In this
example, GsSortObject5J() functions the same as GsSortObject5(). This example is included in comments
in the file libgs.h.

/* extern and fook only using functions */
extern _GsFCALL GsFCALL5; /* GsSortObject5J Func Table */
jt_init() /* Gs SortObject5J Fook Func */
{
PACKET *GsPrstF3NL(),*GsPrstF3LFG(),*GsPrstF3L(),*GsPrstNF3();
PACKET *GsTMDdivF3NL(),*GsTMDdivF3LFG(),*GsTMDdivF3L(),*GsTMDdivNF3();
PACKET *GsPrstG3NL(),*GsPrstG3LFG(),*GsPrstG3L(),*GsPrstNG3();

9-28 Extended Graphics Library Structures

Run-Time Library Reference

PACKET *GsTMDdivG3NL(),*GsTMDdivG3LFG(),*GsTMDdivG3L(),*GsTMDdivNG3();
PACKET *GsPrstTF3NL(),*GsPrstTF3LFG(),*GsPrstTF3L(),*GsPrstTNF3();
PACKET *GsTMDdivTF3NL(),*GsTMDdivTF3LFG(),*GsTMDdivTF3L(),*GsTMDdivTNF3();
PACKET *GsPrstTG3NL(),*GsPrstTG3LFG(),*GsPrstTG3L(),*GsPrstTNG3();
PACKET *GsTMDdivTG3NL(),*GsTMDdivTG3LFG(),*GsTMDdivTG3L(),*GsTMDdivTNG3();
PACKET *GsPrstF4NL(),*GsPrstF4LFG(),*GsPrstF4L(),*GsPrstNF4();
PACKET *GsTMDdivF4NL(),*GsTMDdivF4LFG(),*GsTMDdivF4L(),*GsTMDdivNF4();
PACKET *GsPrstG4NL(),*GsPrstG4LFG(),*GsPrstG4L(),*GsPrstNG4();
PACKET *GsTMDdivG4NL(),*GsTMDdivG4LFG(),*GsTMDdivG4L(),*GsTMDdivNG4();
PACKET *GsPrstTF4NL(),*GsPrstTF4LFG(),*GsPrstTF4L(),*GsPrstTNF4();
PACKET *GsTMDdivTF4NL(),*GsTMDdivTF4LFG(),*GsTMDdivTF4L(),*GsTMDdivTNF4();
PACKET *GsPrstTG4NL(),*GsPrstTG4LFG(),*GsPrstTG4L(),*GsPrstTNG4();
PACKET *GsTMDdivTG4NL(),*GsTMDdivTG4LFG(),*GsTMDdivTG4L(),*GsTMDdivTNG4();
PACKET *GsPrstF3GNL(),*GsPrstF3GLFG(),*GsPrstF3GL();
PACKET *GsPrstG3GNL(),*GsPrstG3GLFG(),*GsPrstG3GL();

 /* flat triangle */
 GsFCALL5.f3[GsDivMODE_NDIV][GsLMODE_NORMAL] = GsPrstF3L;
 GsFCALL5.f3[GsDivMODE_NDIV][GsLMODE_FOG] = GsPrstF3LFG;
 GsFCALL5.f3[GsDivMODE_NDIV][GsLMODE_LOFF] = GsPrstF3NL;
 GsFCALL5.f3[GsDivMODE_DIV][GsLMODE_NORMAL] = GsTMDdivF3L;
 GsFCALL5.f3[GsDivMODE_DIV][GsLMODE_FOG] = GsTMDdivF3LFG;
 GsFCALL5.f3[GsDivMODE_DIV][GsLMODE_LOFF] = GsTMDdivF3NL;
 GsFCALL5.nf3[GsDivMODE_NDIV] = GsPrstNF3;
 GsFCALL5.nf3[GsDivMODE_DIV] = GsTMDdivNF3;
 /* gour triangle */
 GsFCALL5.g3[GsDivMODE_NDIV][GsLMODE_NORMAL] = GsPrstG3L;
 GsFCALL5.g3[GsDivMODE_NDIV][GsLMODE_FOG] = GsPrstG3LFG;
 GsFCALL5.g3[GsDivMODE_NDIV][GsLMODE_LOFF] = GsPrstG3NL;
 GsFCALL5.g3[GsDivMODE_DIV][GsLMODE_NORMAL] = GsTMDdivG3L;
 GsFCALL5.g3[GsDivMODE_DIV][GsLMODE_FOG] = GsTMDdivG3LFG;
 GsFCALL5.g3[GsDivMODE_DIV][GsLMODE_LOFF] = GsTMDdivG3NL;
 GsFCALL5.ng3[GsDivMODE_NDIV] = GsPrstNG3;
 GsFCALL5.ng3[GsDivMODE_DIV] = GsTMDdivNG3;
 /* texture flat triangle */
 GsFCALL5.tf3[GsDivMODE_NDIV][GsLMODE_NORMAL] = GsPrstTF3L;
 GsFCALL5.tf3[GsDivMODE_NDIV][GsLMODE_FOG] = GsPrstTF3LFG;
 GsFCALL5.tf3[GsDivMODE_NDIV][GsLMODE_LOFF] = GsPrstTF3NL;
 GsFCALL5.tf3[GsDivMODE_DIV][GsLMODE_NORMAL] = GsTMDdivTF3L;
 GsFCALL5.tf3[GsDivMODE_DIV][GsLMODE_FOG] = GsTMDdivTF3LFG;
 GsFCALL5.tf3[GsDivMODE_DIV][GsLMODE_LOFF] = GsTMDdivTF3NL;
 GsFCALL5.ntf3[GsDivMODE_NDIV] = GsPrstTNF3;
 GsFCALL5.ntf3[GsDivMODE_DIV] = GsTMDdivTNF3;
 /* texture gour triangle */
 GsFCALL5.tg3[GsDivMODE_NDIV][GsLMODE_NORMAL] = GsPrstTG3L;
 GsFCALL5.tg3[GsDivMODE_NDIV][GsLMODE_FOG] = GsPrstTG3LFG;
 GsFCALL5.tg3[GsDivMODE_NDIV][GsLMODE_LOFF] = GsPrstTG3NL;
 GsFCALL5.tg3[GsDivMODE_DIV][GsLMODE_NORMAL] = GsTMDdivTG3L;
 GsFCALL5.tg3[GsDivMODE_DIV][GsLMODE_FOG] = GsTMDdivTG3LFG;
 GsFCALL5.tg3[GsDivMODE_DIV][GsLMODE_LOFF] = GsTMDdivTG3NL;
 GsFCALL5.ntg3[GsDivMODE_NDIV] = GsPrstTNG3;
 GsFCALL5.ntg3[GsDivMODE_DIV] = GsTMDdivTNG3;
 /* flat quad */
 GsFCALL5.f4[GsDivMODE_NDIV][GsLMODE_NORMAL] = GsPrstF4L;
 GsFCALL5.f4[GsDivMODE_NDIV][GsLMODE_FOG] = GsPrstF4LFG;
 GsFCALL5.f4[GsDivMODE_NDIV][GsLMODE_LOFF] = GsPrstF4NL;
 GsFCALL5.f4[GsDivMODE_DIV][GsLMODE_NORMAL] = GsTMDdivF4L;
 GsFCALL5.f4[GsDivMODE_DIV][GsLMODE_FOG] = GsTMDdivF4LFG;
 GsFCALL5.f4[GsDivMODE_DIV][GsLMODE_LOFF] = GsTMDdivF4NL;
 GsFCALL5.nf4[GsDivMODE_NDIV] = GsPrstNF4;
 GsFCALL5.nf4[GsDivMODE_DIV] = GsTMDdivNF4;
 /* gour quad */
 GsFCALL5.g4[GsDivMODE_NDIV][GsLMODE_NORMAL] = GsPrstG4L;
 GsFCALL5.g4[GsDivMODE_NDIV][GsLMODE_FOG] = GsPrstG4LFG;
 GsFCALL5.g4[GsDivMODE_NDIV][GsLMODE_LOFF] = GsPrstG4NL;
 GsFCALL5.g4[GsDivMODE_DIV][GsLMODE_NORMAL] = GsTMDdivG4L;
 GsFCALL5.g4[GsDivMODE_DIV][GsLMODE_FOG] = GsTMDdivG4LFG;
 GsFCALL5.g4[GsDivMODE_DIV][GsLMODE_LOFF] = GsTMDdivG4NL;

Extended Graphics Library Structures 9-29

Run-Time Library Reference

 GsFCALL5.ng4[GsDivMODE_NDIV] = GsPrstNG4;
 GsFCALL5.ng4[GsDivMODE_DIV] = GsTMDdivNG4;
 /* texture flat quad */
 GsFCALL5.tf4[GsDivMODE_NDIV][GsLMODE_NORMAL] = GsPrstTF4L;
 GsFCALL5.tf4[GsDivMODE_NDIV][GsLMODE_FOG] = GsPrstTF4LFG;
 GsFCALL5.tf4[GsDivMODE_NDIV][GsLMODE_LOFF] = GsPrstTF4NL;
 GsFCALL5.tf4[GsDivMODE_DIV][GsLMODE_NORMAL] = GsTMDdivTF4L;
 GsFCALL5.tf4[GsDivMODE_DIV][GsLMODE_FOG] = GsTMDdivTF4LFG;
 GsFCALL5.tf4[GsDivMODE_DIV][GsLMODE_LOFF] = GsTMDdivTF4NL;
 GsFCALL5.ntf4[GsDivMODE_NDIV] = GsPrstTNF4;
 GsFCALL5.ntf4[GsDivMODE_DIV] = GsTMDdivTNF4;
 /* texture gour quad */
 GsFCALL5.tg4[GsDivMODE_NDIV][GsLMODE_NORMAL] = GsPrstTG4L;
 GsFCALL5.tg4[GsDivMODE_NDIV][GsLMODE_FOG] = GsPrstTG4LFG;
 GsFCALL5.tg4[GsDivMODE_NDIV][GsLMODE_LOFF] = GsPrstTG4NL;
 GsFCALL5.tg4[GsDivMODE_DIV][GsLMODE_NORMAL] = GsTMDdivTG4L;
 GsFCALL5.tg4[GsDivMODE_DIV][GsLMODE_FOG] = GsTMDdivTG4LFG;
 GsFCALL5.tg4[GsDivMODE_DIV][GsLMODE_LOFF] = GsTMDdivTG4NL;
 GsFCALL5.ntg4[GsDivMODE_NDIV] = GsPrstTNG4;
 GsFCALL5.ntg4[GsDivMODE_DIV] = GsTMDdivTNG4;
 /* gradation triangle */
 GsFCALL5.f3g[GsLMODE_NORMAL] = GsPrstF3GL;
 GsFCALL5.f3g[GsLMODE_FOG] = GsPrstF3GLFG;
 GsFCALL5.f3g[GsLMODE_LOFF] = GsPrstF3GNL;
 GsFCALL5.g3g[GsLMODE_NORMAL] = GsPrstG3GL;
 GsFCALL5.g3g[GsLMODE_FOG] = GsPrstG3GLFG;
 GsFCALL5.g3g[GsLMODE_LOFF] = GsPrstG3GNL;
}

See also
GsSortObject4J(), GsSortObject5J().

9-30 Extended Graphics Library Structures

Run-Time Library Reference

_GsPOSITION
Two-dimensional offset.

Library Header File Introduced Documentation Date
libgs.lib libgs.h 4.0 12/14/98

Structure
struct _GsPOSITION {

short offx; Rendering offset (x direction)
short offy; Rendering offset (y direction)

};

Explanation
Two-dimensional rendering offset.

See also

Extended Graphics Library Functions 9-31

Run-Time Library Reference

Functions

dmyGsPrst...
Jump Table dummy function group (PMD)

Library Header File Introduced Documentation Date
libgs.lib libgs.h 3.2 12/14/98

Syntax
PACKET *dmyGsPrst... (void)

Explanation
When this function is called for the first time, the jump table entry name is printed to standard output. It is
used as a low-level dummy function and is used when distinguishing which entry is being called.

For debugging use.

Return value
Pointer to the packet.

See also

9-32 Extended Graphics Library Functions

Run-Time Library Reference

dmyGsTMD...
Jump Table dummy function group (TMD).

Library Header File Introduced Documentation Date
libgs.lib libgs.h 3.2 12/14/98

Syntax
PACKET *dmyGsTMD... (void)

Explanation
When this function is called for the first time, the jump table entry name is printed in standard output. It is
used as a low-level function dummy and is utilized when distinguishing which entry is being called.

For debugging use.

Return value
Pointer to the packet.

See also

Extended Graphics Library Functions 9-33

Run-Time Library Reference

GsA4div...
Low-level functions for GsSortObject4J() (performs automatic division).

Library Header File Introduced Documentation Date
libgs.lib libgs.h 4.1 12/14/98

Syntax
PACKET *GsA4div...(
TMD_P_… *op, Pointer to starting address of TMD data primitives
VERT *vp, Pointer to starting address of TMD data vertices TMD
VERT *np, Pointer to starting address of TMD data normals
PACKET *pk, Pointer to top address of GPU packet buffer
int n, Number of primitives
int shift, OT shift bit
GsOT *ot, Pointer to GsOT
u_long *scratch) Pointer to starting address of unused scratch pad

PACKET *GsA4divN...(
TMD_P_… *op, Pointer to starting address of TMD data primitives
VERT *vp, Pointer to starting address of TMD data vertices TMD
PACKET *pk, Pointer to top address of GPU packet buffer
int n, Number of primitives
int shift, OT shift bit
GsOT *ot, Pointer to GsOT
u_long *scratch) Pointer to starting address of unused scratch pad

Explanation
Performs active automatic division based on Z-values, polygon size, etc.

To use these functions, they must be registered in GsFCALL4 as low-order functions, and the number of
divisions must be specified in the attributes of GsDOBJ4.

Because each of these functions uses a relatively large amount of code, it would be more efficient to use
only the code needed for the polygon types used.

Parameters for division include Z-values, polygon size, and GTE calculation overflow flags. These are set
using the GsSetAzwh (az, aw, ah) macro.

The active division algorithm is as follows:

1. Do not divide polygons that are further away than az and that do not cause overflow in GTE
calculations.

2. If cases other than 1, perform divisions (go to step 3).
3. If polygon size does not exceed aw, ah, and there is no overflow in GTE calculations, then halt division

there.

Otherwise, reduce by 1/2 in the x and y directions, and divide into four sections. Call step 3 recursively. If
the maximum value for divisions (the number of divisions in attribute) is reached, then halt division.

For function types which do not operate on normals within the data (e.g. GsA4divN…), light source
calculations are not performed so fewer parameters are passed compared to those function types which
operate on normals (e.g. GsA4div…),

Low-level functions in libgs that support automatic division are shown below.

9-34 Extended Graphics Library Functions

Run-Time Library Reference

Table 9-5: GsA4div…() [have normals]

Low-level function
name

First arg (op)
type

Description

GsA4divF3L TMD_P_F3 Flat triangle (light source calculation)
GsA4divF3LFG TMD_P_F3 Flat triangle (light source calculation

+FOG)
GsA4divF3NL TMD_P_F3 Flat triangle
GsA4divF4L TMD_P_F4 Flat quadrilateral (light source

calculation)
GsA4divF4LFG TMD_P_F4 Flat quadrilateral (light source

calculation +FOG)
GsA4divF4NL TMD_P_F4 Flag quadrilateral
GsA4divG3L TMD_P_G3 Gouraud triangle (light source

calculation)
GsA4divG3LFG TMD_P_G3 Gouraud triangle (light source

calculation +FOG)
GsA4divG3NL TMD_P_G3 Gouraud triangle
GsA4divG4L TMD_P_G4 Gouraud quadrilateral (light source

calculation)
GsA4divG4LFG TMD_P_G4 Gouraud quadrilateral (light source

calculation +FOG)
GsA4divG4NL TMD_P_G4 Gouraud quadrilateral
GsA4divTF3L TMD_P_TF3 Textured flat triangle

(light source calculation)
GsA4divTF3LFG TMD_P_TF3 Textured flat triangle

(light source calculation +FOG)
GsA4divTF3NL TMD_P_TF3 Textured flat triangle
GsA4divTF4L TMD_P_TF4 Textured flat quadrilateral

(light source calculation)
GsA4divTF4LFG TMD_P_TF4 Flat quadrilateral

(light source calculation +FOG)
GsA4divTF4NL TMD_P_TF4 Textured flat quadrilateral
GsA4divTF4LM TMD_P_TF4 Textured flat quadrilateral

(light source calculation +mip-map)
GsA4divTF4LFGM TMD_P_TF4 Textured flat quadrilateral

(light source calculation +FOG+mip-
map)

GsA4divTF4NLM TMD_P_TF4 Textured flat quadrilateral
(mip-map)

GsA4divTG3L TMD_P_TG3 Textured Gouraud triangle
(light source calculation)

GsA4divTG3LFG TMD_P_TG3 Textured Gouraud triangle
(light source calculation +FOG)

GsA4divTG3NL TMD_P_TG3 Textured Gouraud triangle
GsA4divTG4L TMD_P_TG4 Textured Gouraud quadrilateral

(light source calculation)
GsA4divTG4LFG TMD_P_TG4 Textured Gouraud quadrilateral

(light source calculation +FOG)
GsA4divTG4NL TMD_P_TG4 Textured Gouraud quadrilateral
GsA4divTG4LM TMD_P_TG4 Textured Gouraud quadrilateral

(light source calculation +mip-map)

Extended Graphics Library Functions 9-35

Run-Time Library Reference

Low-level function
name

First arg (op)
type

Description

GsA4divTG4LFGM TMD_P_TG4 Textured Gouraud quadrilateral
(light source calculation+FOG+mip-
map)

GsA4divTG4NLM TMD_P_TG4 Textured Gouraud quadrilateral
(mip-map)

Table 9-6: GsA4divN…() [no normals]

Low-level function
name

First arg (op)
type

Description

GsA4divNF3 TMD_P_NF3 Flat triangle
GsA4divNF4 TMD_P_NF4 Flat quadrilateral
GsA4divNG3 TMD_P_NG3 Gouraud triangle
GsA4divNG4 TMD_P_NG4 Gouraud quadrilateral
GsA4divTNF3 TMD_P_TNF3 Textured flat triangle
GsA4divTNF4 TMD_P_TNF4 Textured flat quadrilateral
GsA4divTNF4M TMD_P_TNF4 Textured flat quadrilateral

(mip-map)
GsA4divTNG3 TMD_P_TNG3 Textured Gouraud triangle
GsA4divTNG4 TMD_P_TNG4 Textured Gouraud quadrilateral
GsA4divTNG4M TMD_P_TNG4 Textured Gouraud quadrilateral

(mip-map)

GsTMDdiv functions must be registered in GsFCALL4 when using the conventional fixed division method.

Return value
Starting address of unused packet area.

See also
GsTMDdiv...(), GsSetAzwh(), GsSortObject4J().

9-36 Extended Graphics Library Functions

Run-Time Library Reference

GsClearOt
Initialize a libgs ordering table structure.

Library Header File Introduced Documentation Date
libgs.lib libgs.h 2.x 12/14/98

Syntax
void GsClearOt(
u_short offset, Ordering table offset value
u_short point, Ordering table average Z value
GsOT *otp) Pointer to ordering table

Explanation
Initializes the libgs-style ordering table specified by the otp parameter. The length field of the GsOT
structure must be properly set before this function is called. offset specifies the Z-depth value used for the
start of the ordering table. point represents the average Z-depth of the entire ordering table and is used to
determine depth priority when linking multiple ordering tables together.

See also
GsDrawOt(), GsCutOt(), GsSortOt()

Extended Graphics Library Functions 9-37

Run-Time Library Reference

GsClearVcount
Clear vertical retrace counter.

Library Header File Introduced Documentation Date
libgs.lib libgs.h 3.2 12/14/98

Syntax
void GsClearVcount(void)

Explanation
Clears the vertical retrace counter.

See also
GsGetVcount(), GsInitVcount()

9-38 Extended Graphics Library Functions

Run-Time Library Reference

GsCutOt
OT separation.

Library Header File Introduced Documentation Date
libgs.lib libgs.h 2.x 12/14/98

Syntax
GsOT *GsCutOt(
GsOT *ot_src, Pointer to old OT
GsOT *ot_dest) Pointer to new OT

Explanation
Moves the drawing commands registered in the ot_src ordering table to the ot_dest ordering table. The
length and tag fields of ot_src are reset to zero. The tag field of ot_dest is updated to point at the drawing
command which was at the start of ot_src. Afterwards, ot_dest can be used to access the ordering table.

Return value
ot_dest starting address.

See also
GsClearOt(), GsDrawOt(), GsSortOt()

Extended Graphics Library Functions 9-39

Run-Time Library Reference

GsDefDispBuff
Define double buffers.

Library Header File Introduced Documentation Date
libgs.lib libgs.h 2.x 12/14/98

Syntax
void GsDefDispBuff (
u_short x0, u_short y0, Buffer 0 origin point coordinates (top left point)
u_short x1, u_short y1) Buffer 1 origin point coordinates (top left point)

Explanation
Defines the display areas used for double-buffering.

x0 and y0 specify the frame buffer coordinates for buffer #0. x1 and y1 specify the frame buffer coordinates
for buffer #0. Normally, buffer #0 is located at (0,0) and buffer #1 is located at (0, yres), where yres is the
vertical resolution specified using GsInitGraph().

If x0, y0 and x1, y1 are specified as the same coordinates, the double buffers are released. However,
double-buffer swapping of even-numbered and odd-numbered fields is performed automatically when x0,
y0 and x1, y1 are specified as the same coordinates in interlace mode.

GsSwapDispBuffer() is used to swap double buffers. The double buffer is implemented by the GPU or GTE
offset. Set the libgpu or libgte offset with GsInitGraph(). When using the libgpu offset, coordinate values
based on the coordinate system using the upper left point in the double buffer as the origin are created in
the packet (add the offset at the time of drawing, not at the time of packet preparation).

See also
GsInitGraph(), GsDefDispBuff2(), GsSwapDispBuffer(), GsGetActiveBuffer()

9-40 Extended Graphics Library Functions

Run-Time Library Reference

GsDefDispBuff2
Define double buffers.

Library Header File Introduced Documentation Date
libgs.lib libgs.h 3.0 12/14/98

Syntax
void GsDefDispBuff2(
u_short x0, u_short y0, Buffer 0 origin point coordinates (top left point)
u_short x1, u_short y1) Buffer 1 origin point coordinates (top left point)

Explanation
Defines the double buffer. Differs from GsDefDispBuff() only in the modification of internal variables. These
modifications are not updated in libgpu and libgte until GsSwapDispBuff() is called; for immediate update,
call GsDefDispBuff() instead.

Settings can be changed in the middle of the program without affecting the screen.

See also
GsDefDispBuff(), GsSwapDispBuffer(), GsGetActiveBuffer()

Extended Graphics Library Functions 9-41

Run-Time Library Reference

GsDrawOt
Process GPU commands registered to OT.

Library Header File Introduced Documentation Date
libgs.lib libgs.h 2.x 12/14/98

Syntax
void GsDrawOt(
GsOT *ot) Pointer to OT

Explanation
Starts execution of commands registered in OT, specified by ot. Because processing is performed in the
background, GsDrawOt() returns immediately.

See also
GsClearOt(), GsCutOt(), GsSortOt(), GsDrawOtIO

9-42 Extended Graphics Library Functions

Run-Time Library Reference

GsDrawOtIO
Process GPU commands (I/O version) allocated to OT.

Library Header File Introduced Documentation Date
libgs.lib libgs.h 3.5 12/14/98

Syntax
void GsDrawOtIO(
GsOT *ot) Pointer to OT

Explanation
Starts the execution of commands registered in OT, indicated by ot. Unlike GsDrawOt(), the processing is
performed in the foreground; thus this function does not return until drawing is completed.

Mainly used for debugging.

See also
GsDrawOt()

Extended Graphics Library Functions 9-43

Run-Time Library Reference

GsGetActiveBuffer
Get a buffer number during drawing.

Library Header File Introduced Documentation Date
libgs.lib libgs.h 2.x 12/14/98

Syntax
int GsGetActiveBuffer(void)

Explanation
Gets a double buffer index. Index values are either 0 or 1.

By entering indexes in the external variables, PSDBASEX[] and PSDBASEY[], it is possible to determine the
two-dimensional address of the double buffer origin point (top left coordinates) in the frame buffer.

Return value
Index of a double buffer (0 for buffer 0, and 1 for buffer 1)

See also
GsDefDispBuff(), GsSwapDispBuffer()

9-44 Extended Graphics Library Functions

Run-Time Library Reference

GsGetLs
Calculate a local screen matrix.

Library Header File Introduced Documentation Date
libgs.lib libgs.h 2.x 12/14/98

Syntax
void GsGetLs(
GsCOORDINATE2 *coord, Pointer to local coordinates
MATRIX *m) Pointer to matrix

Explanation
Calculates a local screen perspective transformation matrix from the GsCOORDINATE2 structure pointed
to by the coord argument and stores the result in the MATRIX structure pointed to by the m argument.

For high speed operation, the function retains the result of calculation at each node of the hierarchical
coordinate system. When the next GsGetLs() function is called, calculation up to the node to which no
changes have been made is omitted. This is controlled by a GsCOORDINATE2 member flag (libgs replaces
1 in flags already calculated by GsCOORDINATE2).

If the contents of a superior node are changed, the effect on a subordinate node is handled by libgs, so it is
not necessary to clear the flags of all subordinate nodes of the changed superior node.

See also
GsGetLw(), GsGetLws()

Extended Graphics Library Functions 9-45

Run-Time Library Reference

GsGetLw
Calculate a local world matrix.

Library Header File Introduced Documentation Date
libgs.lib libgs.h 2.x 12/14/98

Syntax
void GsGetLw(
GsCOORDINATE2 *coord, Pointer to local coordinate system
MATRIX *m) Pointer to matrix

Explanation
Calculates a local world perspective transformation matrix from the GsCOORDINATE2 structure pointed to
by the coord argument and stores the result in the MATRIX structure pointed to by the m argument.

For high speed operation, the function retains the result of calculation at each node of the hierarchical
coordinate system. When the next GsGetLw() function is called, calculation up to the node to which no
changes have been made is omitted. This is controlled by a GsCOORDINATE2 member flag (libgs replaces
1 in flags already calculated by GsCOORDINATE2).

If the contents of a superior node are changed, the effect on a subordinate node is handled by libgs, so it is
not necessary to clear the flags of all subordinate nodes of the changed superior node.

See also
GsGetLs(), GsGetLws()

9-46 Extended Graphics Library Functions

Run-Time Library Reference

GsGetLws
Calculate local world and local screen matrices.

Library Header File Introduced Documentation Date
libgs.lib libgs.h 3.0 12/14/98

Syntax
void GsGetLws(
GsCOORDINATE2 *coord2, Pointer to local coordinates
MATRIX *lw, Pointer to matrix that stores the local world coordinates
MATRIX *ls) Pointer to matrix that stores the local screen coordinates

Explanation
GsGetLws() calculates local world and local screen coordinates. It is faster than calling GsGetLw() followed
by calling GsGetLs(). When you use GsSetLightMatrix(), you pass it the lw matrix.

See also
GsGetLw(), GsGetLs(), GsSetLightMatrix()

Extended Graphics Library Functions 9-47

Run-Time Library Reference

GsGetTimInfo
Find TIM format header.

Library Header File Introduced Documentation Date
libgs.lib libgs.h 2.x 12/14/98

Syntax
void GsGetTimInfo(
u_long *tim, Pointer to TIM data
GsIMAGE *im) Pointer to an image Structure

Explanation
Fills in the GsIMAGE structure pointed to by the im parameter with the appropriate information obtained
from the TIM data located at the address specified by the tim parameter.

See also

9-48 Extended Graphics Library Functions

Run-Time Library Reference

GsGetVcount
Get the value of the vertical retrace counter.

Library Header File Introduced Documentation Date
libgs.lib libgs.h 2.x 12/14/98

Syntax
long GsGetVcount(void)

Explanation
Gets the value of the vertical retrace counter.

Return value
Value of the vertical retrace counter.

See also
GsClearVcount(), GsInitVcount()

Extended Graphics Library Functions 9-49

Run-Time Library Reference

GsGetWorkBase
Get address for storing current drawing commands.

Library Header File Introduced Documentation Date
libgs.lib libgs.h 2.x 12/14/98

Syntax
PACKET *GsGetWorkBase(void)

Explanation
Allocates and returns a pointer to a buffer used for generating a drawing primitive GPU packet.

Return value
Address to prepare the next drawing primitive packet.

See also

9-50 Extended Graphics Library Functions

Run-Time Library Reference

GsInit3D
Initialize the graphics system.

Library Header File Introduced Documentation Date
libgs.lib libgs.h 2.x 12/14/98

Syntax
void GsInit3D(void)

Explanation
Initializes the libgs three-dimensional graphics system. It must be called before using other 3D functions
such as GsSetRefView2(), GsInitCoordinate2(), and GsSortObject3(). It does the following:

• Brings the screen point of origin to the center of the screen.
• Sets the light source to the LIGHT_NORMAL default.

See also

Extended Graphics Library Functions 9-51

Run-Time Library Reference

GsInitCoordinate2
Initialize a local coordinate system

Library Header File Introduced Documentation Date
libgs.lib libgs.h 2.x 12/14/98

Syntax
void GsInitCoordinate2(
GsCOORDINATE2 *super, Pointer to a superior coordinate system
GsCOORDINATE2 *base) Pointer to a coordinate system (to be initialized)

Explanation
Initializes the coordinate system base. base->coord is set to an identity matrix (GsIDMATRIX). super->sub
is set to base.

See also

9-52 Extended Graphics Library Functions

Run-Time Library Reference

GsInitFixBg16, GsInitFixBg32
Initialize BG work area (high-speed)

Library Header File Introduced Documentation Date
libgs.lib libgs.h 3.0 12/14/98

Syntax
void GsInitFixBg16(
GsBG *bg, Pointer to GsBG
u_long *work) Pointer to work area (primitive area)

void GsInitFixBg32(
GsBG *bg, Pointer to GsBG
u_long *work) Pointer to work area (primitive area)

Explanation
These functions initialize the work area used by the functions GsSortFixBg16() and GsSortFixBg32(),
respectively. The size of the array differs with the screen mode as follows:

size (in long units)=(((ScreenW/CellW+1)•(ScreenH/CellH+1+1)•6+4)•2+2)
ScreenH: screen height in pixels (240/480)
ScreenW: screen width in pixels (256/320/384/512/640)
CellH: cell height (in pixels)
CellW: cell width (in pixels)

Executing GsInitFixBg16()/GsInitFixBg32() once is sufficient; you need not execute it for every frame.

See also
GsSortFixBg16()

Extended Graphics Library Functions 9-53

Run-Time Library Reference

GsInitGraph
Initialize the graphics system.

Library Header File Introduced Documentation Date
libgs.lib libgs.h 2.x 12/14/98

Syntax
void GsInitGraph(
u_short x_res, Horizontal resolution (256/320/384/512/640)
u_short y_res, Vertical resolution (240/480 NTSC or 256/512 PAL)
u_short int1, see Explanation
u_short dither, Dithering processing flag. 0: OFF, 1: ON
u_short vram) VRAM mode. 0: 16-bit, 1: 24-bit

Explanation
Resets libgpu and initializes the libgs graphic system. libgpu settings are maintained by the global variables
GsDISPENV and GsDRAWENV. The programmer can verify and/or modify libgpu by referencing the
settings.

The bits of the int1 argument are as follows:

Interlace display flag (bit 0)
0: Non-interlace GsNONINTER
1: Interlace GSINTER

Double buffer offset mode (bit 2)
0: GTE offset GsOFSGTE
1: GPU offset GsOFSGPU

GPU Initialize Parameter (bits 4-5)
0: ResetGraph(0) GsRESET0
3: ResetGraph(3) GsRESET3

Vertical 480 line non-interlace mode is effective only when a VGA monitor is connected. In 240-line mode,
the top and bottom 8 lines are almost invisible on home-use TV monitors. For PAL mode, the display
position should be shifted down by 24 lines.

The double buffer offset mode is either GTE or GPU offset; when it is GPU, the packet does not include the
offset value and therefore be handled easily.

For 24-bit mode, only the memory image display is available and polygon drawing cannot be done.

Since initialization of the graphic system involves initialization of GsIDMATRIX and GsIDMATRIX2 as well,
GsInitGraph() must be called prior to all other libgs functions for correct operation.

See also
GsInitGraph2()

9-54 Extended Graphics Library Functions

Run-Time Library Reference

GsInitGraph2
Initialize the graphics system.

Library Header File Introduced Documentation Date
libgs.lib libgs.h 3.0 12/14/98

Syntax
void GsInitGraph2(
u_short x_res, Horizontal resolution (256/320/384/512/640)
u_short y_res, Vertical resolution (240/480)
u_short int1, Interlace display flag (bit 0) 0: Non-interlace, 1: Interlace

Double buffer offset mode (bit 2) 0: GTE offset, 1: GPU offset
u_short dither, Dithering. 0: OFF, 1: ON
u_short vram) VRAM mode. 0: 16-bit, 1: 24-bit

Explanation
GsInitGraph2() is different from GsInitGraph() in that the GPU is not initialized COLD. This function is useful
for changing libgs resolution without affecting screen synchronization.

Always use GsInitGraph() for the first initialization.

See also
GsInitGraph()

Extended Graphics Library Functions 9-55

Run-Time Library Reference

GsInitVcount
Initialize vertical retrace counter.

Library Header File Introduced Documentation Date
libgs.lib libgs.h 2.x 12/14/98

Syntax
void GsInitVcount(void)

Explanation
Initializes the vertical retrace counter, and starts it.

See also
GsClearVcount(), GsGetVcount()

9-56 Extended Graphics Library Functions

Run-Time Library Reference

GsLinkObject3
Link an object with PMD data; for GsSortObject3().

Library Header File Introduced Documentation Date
libgs.lib libgs.h 3.0 12/14/98

Syntax
void GsLinkObject3(
u_long *pmd, Pointer to the PMD data to be linked
GsDOBJ3 *obj_base) Pointer to the object structure to be linked

Explanation
Links all objects contained in PMD data to a GsDOBJ3 object structure.

Note: Unlike GsLinkObject4(), it is not possible to select and link a single object in the PMD data.

See also
GsSortObject3(), GsLinkObject4()

Extended Graphics Library Functions 9-57

Run-Time Library Reference

GsLinkObject4
Link an object to TMD data; for GsSortObject4().

Library Header File Introduced Documentation Date
libgs.lib libgs.h 3.0 12/14/98

Syntax
void GsLinkObject4(
u_long tmd, Starting address of the TMD data to be linked
GsDOBJ2 *obj_base, Array of the object structure to be linked
int n) Index of the object to be linked

Explanation
Links the n-th object of TMD-format three-dimensional data to a GSDOBJ2 object structure.

An object linked using this function uses GsSortObject4() to create a packet.

See also
GsSortObject4()

9-58 Extended Graphics Library Functions

Run-Time Library Reference

GsLinkObject5
Link an object to TMD data; or GsSortObject5().

Library Header File Introduced Documentation Date
libgs.lib libgs.h 3.0 12/14/98

Syntax
void GsLinkObject5(
u_long tmd, Starting address of the TMD data to be linked
GsDOBJ5 *obj_base, Array of the object structure to be linked
int n) Index of the object to be linked

Explanation
Links the n-th object of TMD-format three-dimensional data to a GSDOBJ5 object structure.

An object linked using this function uses GsSortObject5() to create a packet.

See also
GsSortObject5()

Extended Graphics Library Functions 9-59

Run-Time Library Reference

GsMapModelingData
Map TMD data to real addresses.

Library Header File Introduced Documentation Date
libgs.lib libgs.h 2.x 12/14/98

Syntax
void GsMapModelingData(
u_long *p) Pointer to starting address of TMD data

Explanation
TMD data includes several fields containing addresses of data. During the preparation of TMD data, the
load addresses of the data are not yet known; therefore, the address fields are stored as offsets from the
start of the data. GsMapModelingData() changes these offsets into actual addresses after the TMD data
has been loaded into memory, so that the TMD data may be used.

A flag is set in the TMD data to indicate when offset addresses have been converted into real addresses.
Therefore, no side effect occurs even if GsMapModelingData() is called again.

See also

9-60 Extended Graphics Library Functions

Run-Time Library Reference

GsMulCoord0
MATRIX multiplication.

Library Header File Introduced Documentation Date
libgs.lib libgs.h 3.0 12/14/98

Syntax
void GsMulCoord2(
MATRIX *m1, MATRIX *m2) Pointers to starting addresses of TMD data

Explanation
Multiplies MATRIX m2 by the translation matrix. The results are stored in m3.

m3 = m1 x m2

See also
GsMulCoord2(), GsMulCoord3()

Extended Graphics Library Functions 9-61

Run-Time Library Reference

GsMulCoord2
MATRIX multiplication.

Library Header File Introduced Documentation Date
libgs.lib libgs.h 2.x 12/14/98

Syntax
void GsMulCoord2(
MATRIX *m1, MATRIX *m2) Pointers to matrices

Explanation
GsMulCoord2 multiplies the MATRIX m2 by the translation matrix m1and stores the result in m2.

m2 = m1 x m2

See also
GsMulCoord0(), GsMulCoord3()

9-62 Extended Graphics Library Functions

Run-Time Library Reference

GsMulCoord3
MATRIX multiplication.

Library Header File Introduced Documentation Date
libgs.lib libgs.h 2.x 12/14/98

Syntax
void GsMulCoord3(
MATRIX *m1, MATRIX *m2) Pointers to matrices

Explanation
GsMulCoord3 multiplies the MATRIX m2 by the translation matrix m1and stores the result in m2.

m1 = m1 x m2

See also
GsMulCoord0(), GsMulCoord2()

Extended Graphics Library Functions 9-63

Run-Time Library Reference

GsPresetObject
Create a preset packet for a GsDOBJ5-type object.

Library Header File Introduced Documentation Date
libgs.lib libgs.h 3.0 12/14/98

Syntax
u_long *GsPresetObject(
GsDOBJ5 *objp, Pointer to the object to be preset
u_long *addr) Pointer to starting address of the area in which the preset packet is to

be prepared.

Explanation
Presetting refers to the advance preparation of polygons of all objects as packets. The areas that need not
be rewritten (e.g., U and V of texture) for each frame are not rewritten, thus ensuring high speed.

The return value points to the address next to the last preset address, so when presetting the next object,
preserve the return value and pass it as an argument of the next GsPresetObject(). The return value
indicates how large an area must be allocated for the preset area.

A GsDOBJ5 type object pointer is exclusively used for presetting.

Return value
Pointer that indicates the next to last preset address.

See also
GsPrst…()

9-64 Extended Graphics Library Functions

Run-Time Library Reference

GsPrst...
Low-level functions for GsSortObject5J().

Library Header File Introduced Documentation Date
libgs.lib libgs.h 4.1 12/14/98

Syntax
PACKET *GsPrst…(
TMD_P_… *op, Pointer to starting address of TMD data primitives
VERT *vp, Pointer to starting address of TMD data vertices TMD
VERT *np, Pointer to starting address of TMD data normals
PACKET *pk, Pointer to top address of GPU packet buffer
int n, Number of primitives
int shift, OT shift bit
GsOT *ot, Pointer to GsOT
u_long *scratch) Pointer to starting address of unused scratch pad

PACKET *GsPrstN...(
TMD_P_… *op, Pointer to starting address of TMD data primitives
VERT *vp, Pointer to starting address of TMD data vertices TMD
PACKET *pk, Pointer to top address of GPU packet buffer
int n, Number of primitives
int shift, OT shift bit
GsOT *ot, Pointer to GsOT
u_long *scratch) Pointer to starting address of unused scratch pad

Explanation
These are low-level functions for GsSortObject5J().

To use these functions, they must be registered in GsFCALL5 as low-level functions.

These functions perform coordinate and perspective transformation, backface clipping, and light source
calculation for n primitives, create the GPU packet in the buffer, and link it into the OT. There must be two
preset packets in the buffer per polygon.

For function types which do not operate on normals within the data (e.g. GsPrstN…), light source
calculations are not performed, so fewer parameters are passed compared to those function types which
operate on normals (e.g. GsPrst…),

Low-level functions in libgs that are supported are shown below.

Extended Graphics Library Functions 9-65

Run-Time Library Reference

Table 9-7: GsPrst…() [have normals]

Low-level function
name

First arg (op)
type

Description

GsPrstF3L TMD_P_F3 Flat triangle (light source calculation)
GsPrstF3LFG TMD_P_F3 Flat triangle (light source calculation

+FOG)
GsPrstF3NL TMD_P_F3 Flat triangle
GsPrstF4L TMD_P_F4 Flat quadrilateral (light source

calculation)
GsPrstF4LFG TMD_P_F4 Flat quadrilateral (light source

calculation +FOG)
GsPrstF4NL TMD_P_F4 Flag quadrilateral
GsPrstG3L TMD_P_G3 Gouraud triangle (light source

calculation)
GsPrstG3LFG TMD_P_G3 Gouraud triangle (light source

calculation +FOG)
GsPrstG3NL TMD_P_G3 Gouraud triangle
GsPrstG4L TMD_P_G4 Gouraud quadrilateral (light source

calculation)
GsPrstG4LFG TMD_P_G4 Gouraud quadrilateral (light source

calculation +FOG)
GsPrstG4NL TMD_P_G4 Gouraud quadrilateral
GsPrstTF3L TMD_P_TF3 Textured flat triangle

(light source calculation)
GsPrstTF3LFG TMD_P_TF3 Textured flat triangle

(light source calculation +FOG)
GsPrstTF3NL TMD_P_TF3 Textured flat triangle
GsPrstTF4L TMD_P_TF4 Textured flat quadrilateral

(light source calculation)
GsPrstTF4LFG TMD_P_TF4 Flat quadrilateral

(light source calculation +FOG)
GsPrstTF4NL TMD_P_TF4 Textured flat quadrilateral
GsPrstTG3L TMD_P_TG3 Textured Gouraud triangle

(light source calculation)
GsPrstTG3LFG TMD_P_TG3 Textured Gouraud triangle

(light source calculation +FOG)
GsPrstTG3NL TMD_P_TG3 Textured Gouraud triangle
GsPrstTG4L TMD_P_TG4 Textured Gouraud quadrilateral

(light source calculation)
GsPrstTG4LFG TMD_P_TG4 Textured Gouraud quadrilateral

(light source calculation +FOG)
GsPrstTG4NL TMD_P_TG4 Textured Gouraud quadrilateral
GsPrstF3GL TMD_P_F3G Flat gradation triangle

(light source calculation)
GsPrstF3GLFG TMD_P_F3G Flat gradation triangle

(light source calculation +FOG)
GsPrstF3GNL TMD_P_F3G Flat gradation triangle
GsPrstG3GL TMD_P_G3G Gouraud gradation triangle

(light source calculation)
GsPrstG3GLFG TMD_P_G3G Gouraud gradation triangle

(light source calculation +FOG)
GsPrstG3GNL TMD_P_G3G Gouraud gradation triangle

9-66 Extended Graphics Library Functions

Run-Time Library Reference

Table 9-8: GsPrstN…() [no normals]

Low-level function
name

First arg (op)
type

Description

GsPrstNF3 TMD_P_NF3 Flat triangle
GsPrstNF4 TMD_P_NF4 Flat quadrilateral
GsPrstNG3 TMD_P_NG3 Gouraud triangle
GsPrstNG4 TMD_P_NG4 Gouraud quadrilateral
GsPrstTNF3 TMD_P_TNF3 Textured flat triangle
GsPrstTNF4 TMD_P_TNF4 Textured flat quadrilateral
GsPrstTNG3 TMD_P_TNG3 Textured Gouraud triangle
GsPrstTNG4 TMD_P_TNG4 Textured Gouraud quadrilateral

Return value
Starting address of unused packet area.

With gradation, each vertex of the TMD polygon has a different RGB value.

For high speed operation, libgte contains tuned assembly-level low-level functions.

See also
GsPresetObject(), GsSortObject5J()

Extended Graphics Library Functions 9-67

Run-Time Library Reference

GsScaleScreen
Scale the screen coordinate system.

Library Header File Introduced Documentation Date
libgs.lib libgs.h 3.2 12/14/98

Syntax
void GsScaleScreen(
SVECTOR *scale) Pointer to the scale factor (12 bit fixed radix point format). Always set the

factor in relation to the original screen coordinate systems set on
GsSetView2() and GsSetRefView2(). When ONE (4096) is inserted into
scale->vx, vy or vz, it returns to the original scale.

Explanation
Scales the screen coordinate system against the world coordinates.

World coordinates are 32-bit values and screen coordinates are 16-bit values. This difference brings about
problems such as FarClip being close.

To solve these problems, this function scales the screen coordinates to cover a larger area than world.

For example, when specifying ONE/2 to vx, vy or vz, the screen coordinate system is expanded to the
equivalent of 17 bits. However, since the precision is 16 bits, the lower 1 bit is invalid.

Note: Make sure that the screen coordinate system which has a different scale is not registered to the OT
with the same scale. For example, before registering an object calculated with the normal scaling screen
coordinate system to the OT which has already registered an object with a 1/2 screen coordinate system
scale, it is necessary to shift the excess 1 bit.

When the scaling matrix set by this function to the external variable GsWSMATRIX, and the screen
coordinates set by GsSetView2() and GsSetRevView2() to the external variable GsWSMATRIX_ORG are
defined, the WSMATRIX is held.

See also

9-68 Extended Graphics Library Functions

Run-Time Library Reference

GsSetAmbient
Set color and brightness of ambient lighting.

Library Header File Introduced Documentation Date
libgs.lib libgs.h 2.x 12/14/98

Syntax
void GsSetAmbient(
u_long r, g, b) Ambient color RGB values (0-4095)

Explanation
Sets the color and brightness of the ambient lighting in the 3D world. Values for red, green, and blue are
set independently. A value of 4096 corresponds to normal ambient brightness, 0 to minimum brightness.
Values greater than 4096 strengthen that color. For example, 1/1 is 4096 and 1/8 is 4096/8.

See also

Extended Graphics Library Functions 9-69

Run-Time Library Reference

GsSetClip
Set drawing clipping area.

Library Header File Introduced Documentation Date
libgs.lib libgs.h 3.0 12/14/98

Syntax
void GsSetClip(
RECT *clip) Beginning address of a RECT structure for setting a clipping area

Explanation
Sets clipping for drawing. This function is different from GsSetDrawBuffClip() in that its argument can be
used to specify a clip area. Note that this clipping value is a relative one within the double buffer, and thus
the clip position doesn’t change if the double buffer is swapped.

Clipping is done by libgpu.

See also
GsSetDrawBuffClip(), GsSetClip2()

9-70 Extended Graphics Library Functions

Run-Time Library Reference

GsSetClip2
Set a drawing clipping area.

Library Header File Introduced Documentation Date
libgs.lib libgs.h 3.0 12/14/98

Syntax
DRAWENV *GsSetClip2(
RECT *clip) Beginning address of a RECT structure for setting a clipping area

Explanation
Sets the clipping rectangle for drawing to the rectangle specified by clip. This function is different from
GsSetClip() in that the DRAWENV and DISPENV structures are not updated. The return value of
GsSetClip2() is a pointer to a DRAWENV structure that can be used if necessary to set the system
DRAWENV structure using PutDrawEnv(). The global DRAWENV must have been previously specified in
order for the information in this structure to be valid.

Note: This clipping rectangle is relative to whichever is the current buffer, even if double-buffering is used.

Return value
A pointer to an updated DRAWENV structure (which can be used to update the system DRAWENV
structure if desired).

Clipping is done by libgpu.

See also
PutDrawEnv(), GsSetClip()

Extended Graphics Library Functions 9-71

Run-Time Library Reference

GsSetClip2D
Set two-dimensional clipping.

Library Header File Introduced Documentation Date
libgs.lib libgs.h 2.x 12/14/98

Syntax
GsSetClip2D(
RECT *rectp) Pointer to the area to be clipped

Explanation
Sets the area given by rectp as the area to be clipped.

When swapping double buffers, clipping occurs in the same relative position in both buffers.

GsSetDrawBuffClip() must be called in order to validate this setting immediately afterwards. If it is not
called, the setting is valid from the next frame.

See also
GsSetDrawBuffClip()

9-72 Extended Graphics Library Functions

Run-Time Library Reference

GsSetDrawBuffClip
Set drawing clipping area.

Library Header File Introduced Documentation Date
libgs.lib libgs.h 2.x 12/14/98

Syntax
void GsSetDrawBuffClip(void)

Explanation
Sets clipping for drawing. The clipping value set by GsSetClip2D() is set in libgs.

This value is a relative one within the double buffers, so the clipping position does not change when buffers
are swapped.

This function does not execute correctly if GPU drawing is in progress. Use ResetGraph(1) to terminate any
current drawing process or DrawSync() to wait until the process is completed.

See also
GsSetClip2D(), ResetGraph(), DrawSync()

Extended Graphics Library Functions 9-73

Run-Time Library Reference

GsSetDrawBuffOffset
Set the drawing offset.

Library Header File Introduced Documentation Date
libgs.lib libgs.h 2.x 12/14/98

Syntax
void GsSetDrawBuffOffset(void)

Explanation
Sets the drawing offset stored in the global variable POSITION. This offset is relative within the double
buffer, so it is preserved if the buffers are swapped.

It sets the libgte or libgpu offset, depending on the value of the third argument of GsInitGraph(), either
GsOFSGPU or GsOFSGTE.

This function does not execute correctly if GPU drawing is in progress. Use ResetGraph(1) to terminate any
current drawing process or DrawSync() to wait until the process is completed.

See also
ResetGraph(), DrawSync(), GsSetOffset()

9-74 Extended Graphics Library Functions

Run-Time Library Reference

GsSetFlatLight
Set a parallel light source.

Library Header File Introduced Documentation Date
libgs.lib libgs.h 2.x 12/14/98

Syntax
void GsSetFlatLight(
u_int id, Light source number (0, 1, 2)
GsF_LIGHT *lt) Pointer to light source data

Explanation
Sets the values for one of up to three parallel light sources. Light source data is specified in the
GsF_LIGHT structure.

See also

Extended Graphics Library Functions 9-75

Run-Time Library Reference

GsSetFogParam
Set the fog parameter.

Library Header File Introduced Documentation Date
libgs.lib libgs.h 2.x 12/14/98

Syntax
void GsSetFogParam(
GsFOGPARAM *fogparam) Pointer to a fog parameter structure

Explanation
Sets the fog parameter. Fog is valid only in lighting modes 1 and 3. (However, lighting mode 3 is currently
not supported.)

See also

9-76 Extended Graphics Library Functions

Run-Time Library Reference

GsSetLightMatrix
Set a light matrix.

Library Header File Introduced Documentation Date
libgs.lib libgs.h 2.x 12/14/98

Syntax
void GsSetLightMatrix(
MATRIX *mp) Pointer to matrix

Explanation
The three light source vectors and the local screen light matrix mp are multiplied and placed in the GTE.
When using libgte to do light source calculations, call GsSetLightMatrix() first.

Depending on the type of model data, some of the GsSortObject...() routines do light source calculations
(there are no preset light calculations). In this case, also, you must use GsSetLightMatrix() to set a light
matrix in advance.

Generally, mp is a local-world matrix.

See also
GsSetLightMatrix2()

Extended Graphics Library Functions 9-77

Run-Time Library Reference

GsSetLightMatrix2
Set a light matrix.

Library Header File Introduced Documentation Date
libgs.lib libgs.h 3.0 12/14/98

Syntax
void GsSetLightMatrix2(
MATRIX *mp) Pointer to matrix

Explanation
The three light source vectors and the local screen light matrix mp are multiplied and placed in the GTE.
When using libgte to do light source calculations, call GsSetLightMatrix() first.

Depending on the type of model data, some of the GsSortObject...() routines do light source calculations
(there are no preset light calculations). In this case, also, you must use GsSetLightMatrix2() to set a light
matrix in advance.

Generally, mp is a local-world matrix.

The difference between GsSetLightMatrix() and this function is whether the GTE rotation matrix and the
parameter mp are destroyed or not. GsSetLightMatrix2() destroys these values, however,
GsSetLightMatrix2() is faster than GsSetLightMatrix().

You must call GsSetLightMatrix() before GsSetLsMatrix().

See also
GsSetLightMatrix(), GsSetLsMatrix()

9-78 Extended Graphics Library Functions

Run-Time Library Reference

GsSetLightMode
Set light source mode.

Library Header File Introduced Documentation Date
libgs.lib libgs.h 2.x 12/14/98

Syntax
void GsSetLightMode(
int mode) Light source mode value:

0: Normal lighting
1: Normal lighting with fog ON
2: Material lighting (not currently supported)
3: Material lighting with fog ON (not currently supported)

Explanation
Sets the default light source mode. The method of light source calculation can be also set using status bits
for each object. The setting of the status bit overrides the default setting.

See also

Extended Graphics Library Functions 9-79

Run-Time Library Reference

GsSetLsMatrix
Set a local screen matrix.

Library Header File Introduced Documentation Date
libgs.lib libgs.h 2.x 12/14/98

Syntax
void GsSetLsMatrix(
MATRIX *mp) Pointer to local screen matrix to be set

Explanation
Sets a GTE local screen matrix. When you use this function for libgte perspective transform processing, you
must first set a local screen matrix in libgte.

For GsSortObject…() calls to perform perspective transformations and use them in libgte, you must first call
this function.

See also
GsSetLightMatrix2()

9-80 Extended Graphics Library Functions

Run-Time Library Reference

GsSetOffset
Set an offset.

Library Header File Introduced Documentation Date
libgs.lib libgs.h 3.0 12/14/98

Syntax
void GsSetOffset(
long offx, Drawing offset X
long offy) Drawing offset Y

Explanation
Specifies a drawing offset. This function is different from GsSetDrawBuffOffset() in that it sets an offset
provided as an argument while GsSetDrawBuffOffset() sets a value for the global variable, POSITION. The
offset to be provided as an argument is a relative offset inside the double buffer. In other words, the double
buffer base offset is added to the offset provided by the argument.

Using the GsOFSGPU or GsOFSGTE macro for the third argument of GsInitGraph() determines whether the
libgte or libgpu offset should be set.

This function does not execute correctly if GPU drawing is in progress. Use ResetGraph(1) to terminate any
current drawing process of DrawSync() to wait until the process is completed.

See also
GsSetDrawBuffOffset()

Extended Graphics Library Functions 9-81

Run-Time Library Reference

GsSetOrign
Set offset that is valid if the screen is switched.

Library Header File Introduced Documentation Date
libgs.lib libgs.h 3.2 12/14/98

Syntax
void GsSetOrign(
long x , Drawing offset X
long y) Drawing offset Y

Explanation
Specifies a drawing offset. This offset value is valid until the GsSetOrign() is called again, unlike
GsSetOffset(), where the offset value is temporary and becomes invalid when GsSwapDispBuff() and
GsSetDrawBuffOffset() are called.

The x, y offset provided is relative inside the double buffer; that is, the double buffer base offset is added to
the offset provided.

Note: The third argument of GsInitGraph() determines whether the libgte or libgpu offset should be set
(either GsOFSGPU or GsOFSGTE)

This function does not execute correctly when GPU drawing is in progress.

See also
GsInitGraph(), GsSetClip2D()

9-82 Extended Graphics Library Functions

Run-Time Library Reference

GsSetProjection
Set the projection plane position.

Library Header File Introduced Documentation Date
libgs.lib libgs.h 2.x 12/14/98

Syntax
void GsSetProjection(
u_long h) Distance (projection) between the viewpoint and projection plane

Default: 1000

Explanation
Sets the distance between the projection plane and the viewpoint. This results in a change in field of view.

Figure 9–1: Projection

 h

Viewpoint

SCREEN

The size of the projection plane is specified by (x_res, y_res) in GsInitGraph(). The size of the projection
plane is constant with respect to the resolution, so the drawing angle is reduced as projection is increased,
and the drawing angle is increased as projection is decreased.

See also
GsInitGraph()

Extended Graphics Library Functions 9-83

Run-Time Library Reference

GsSetRefView2
Set world-to-screen matrix.

Library Header File Introduced Documentation Date
libgs.lib libgs.h 2.x 12/14/98

Syntax
int GsSetRefView2(
GsRVIEW2 *pv) Pointer to view information

Explanation
Calculates GsWSMATRIX using viewpoint information in pv. GsWSMATRIX doesn’t change unless the
viewpoint is moved, so this function should be called every frame only if the viewpoint is moved, in order for
changes to be updated.

It should also be called every frame if the GsRVIEW2 member super is set to anything other than WORLD,
because even if the other parameters are not changed, if the parameters of the superior coordinate system
are changed, the viewpoint will have moved.

Return value
0 on success; 2 on failure.

See also
GsSetRefView2L()

9-84 Extended Graphics Library Functions

Run-Time Library Reference

GsSetRefView2L
Set viewpoint (high-precision version).

Library Header File Introduced Documentation Date
libgs.lib libgs.h 3.5 12/14/98

Syntax
int GsSetRefView2L(
GsRVIEW2 *pv) Pointer to viewpoint location information (view/reference point type)

Explanation
Calculates GsWSMATRIX using the viewpoint information in pv. GsWSMATRIX doesn’t change unless the
viewpoint is moved, so this function should be called every frame only if the viewpoint is moved, in order for
changes to be updated.

It should also be called every frame if the GsRVIEW2 member super is set to anything other than WORLD,
because even if the other parameters are not changed, if the parameters of the superior coordinate system
are changed, the viewpoint will have moved.

Compared to GsSetRefView2(), GsSetRefView2L() has higher precision: viewpoint wobbling caused by
insufficient precision is improved. However, its execution time is doubled.

Return value
0 for successful viewpoint set, 1 for error.

See also
GsSetRefView2()

Extended Graphics Library Functions 9-85

Run-Time Library Reference

GsSetView2
Set viewpoint.

Library Header File Introduced Documentation Date
libgs.lib libgs.h 2.x 12/14/98

Syntax
int GsSetView2(
GsVIEW2 *pv) Pointer to viewpoint position data (matrix form)

Explanation
Sets GsWSMATRIX directly.

If you use GsSetRefView2() to determine the WS matrix from the viewpoint and the focal point, insufficient
precision may cause errors when you move the viewpoint; it is more effective to use GsSetView2().

If the GsVIEW2 super member is anything besides WORLD, you must call this function in each frame in
which the parent coordinate system parameters are changed.

If GsIDMATRIX2 is used as the base matrix, then the aspect ratio of the screen is adjusted automatically.

Return value
0 if successful; 1 if unsuccessful.

See also
GsSetRefView2()

9-86 Extended Graphics Library Functions

Run-Time Library Reference

GsSetWorkBase
Set address for storing drawing commands.

Library Header File Introduced Documentation Date
libgs.lib libgs.h 2.x 12/14/98

Syntax
void GsSetWorkBase(
PACKET *base_addr) Pointer to an address storing drawing commands

Explanation
Sets the memory address for storing drawing primitives generated by functions like GsSortObject...(),
GsSortSprite(), and GsSortBg().

Primitives must be stored at the starting address of a packet area reserved by the user at the beginning of
processing for each frame.

See also
GsSortSprite(), GsSortBg()

Extended Graphics Library Functions 9-87

Run-Time Library Reference

GsSortBg, GsSortFastBg
Register BG in the OT.

Library Header File Introduced Documentation Date
libgs.lib libgs.h 3.0 12/14/98

Syntax
void GsSortBg(
GsBG *bg, Pointer to BG
GsOT *otp, Pointer to OT
u_short pri) Position in OT

void GsSortFastBg(
GsBG *bg, Pointer to BG
GsOT *otp, Pointer to OT
u_short pri) Position in OT

Explanation
Assigns BG indicated by bg to the ordering table indicated by otp. pri refers to the priority of the Sprite in
the ordering table. The highest priority is zero, with the lowest priority depending on the size of the ordering
table. Values beyond the ordering table size are clipped to the available maximum value.

Turning off extension and rotation functions in the bg attributes gives higher-speed processing.

In GsSortFastBg(), not using enlargement, rotation, and reduction functions results in higher-speed
processing. The Sprite structure members values mx, my, scalex, scaley, and rotate are ignored.

See also
GsSortFixBg16()

9-88 Extended Graphics Library Functions

Run-Time Library Reference

GsSortBoxFill
Register a rectangle in the OT.

Library Header File Introduced Documentation Date
libgs.lib libgs.h 2.x 12/14/98

Syntax
void GsSortBoxFill(
GsBOXF *bp, Pointer to GsBOXF
GsOT *ot, Pointer to OT
u_short pri) Position in OT

Explanation
Assigns a rectangle indicated by bp to the ordering table indicated by ot.

See also

Extended Graphics Library Functions 9-89

Run-Time Library Reference

GsSortClear
Register a screen clear command in the OT.

Library Header File Introduced Documentation Date
libgs.lib libgs.h 2.x 12/14/98

Syntax
void GsSortObject(
u_char r, u_char g, u_char b, Background color RGB values
GsOT *otp) Pointer to OT

Explanation
Sets a screen clear command at the start of the OT indicated by otp. Should be called after
GsSwapDispBuff(). Note: Actual clearing isn’t executed until GsDrawOt() is used to start drawing.

See also
GsSwapDispBuff(), GsDrawOt()

9-90 Extended Graphics Library Functions

Run-Time Library Reference

GsSortFixBg16, GsSortFixBg32
Register BG in the OT (high-speed)

Library Header File Introduced Documentation Date
libgs.lib libgs.h 3.0 12/14/98

Syntax
void GsSortFixBg16(
GsBG *bg, Pointer to GsBG
u_long *work, Pointer to work area (primitive area)
GsOT *otp, Pointer to OT
u_short pri) Position in OT

void GsSortFixBg32(
GsBG *bg, Pointer to GsBG
u_long *work, Pointer to work area (primitive area)
GsOT *otp, Pointer to OT
u_short pri) Position in OT

Explanation
These functions perform high-speed BG registration. They are less CPU-intensive than GsSortFastBg(),
with the following restrictions.

• BG rotation/enlargement/reduction is not possible
• Fixed cell size: 16 for GsSortFixBg16(), 32 for GsSortFixBg32()
• Texture pattern color mode is only 4-bit/8-bit
• Map size is optional
• Scroll is possible (in 1-pixel units)
• Only full-screen

These functions use the work area to store drawing primitives. The work area uses an unsigned long array;
this must be initialized beforehand by GsInitFixBg16() or GsInitFixBg32(). These functions do not use the
packet area (an area set by GsSetWorkBase()).

See also
GsSortBg(), GsSetWorkBase()

Extended Graphics Library Functions 9-91

Run-Time Library Reference

GsSortGLine, GsSortLine
Register a straight line in the OT.

Library Header File Introduced Documentation Date
libgs.lib libgs.h 3.0 12/14/98

Syntax
void GsSortGLine(
GsLINE *lp, Pointer to GsLINE/GsGLINE
GsOT *ot, Pointer to OT
u_short pri) Position in OT

void GsSortLine(
GsLINE *lp, Pointer to GsLINE/GsGLINE
GsOT *ot, Pointer to OT
u_short pri) Position in OT

Explanation
Assigns the straight line indicated by lp to the ordering table indicated by ot.

GsSortLine() registers single-color straight lines in OT, and GsSortGLine() graded straight lines in OT.

See also

9-92 Extended Graphics Library Functions

Run-Time Library Reference

GsSortObject3
Register an object to the ordering table (for use with GsDOBJ3).

Library Header File Introduced Documentation Date
libgs.lib libgs.h 3.0 12/14/98

Syntax
void GsSortObject3(
GsDOBJ3 *objp, Pointer to an object
GsOT *otp, Pointer to OT
int shift) Specifies how many bits the Z value must be shifted to the right when

assigning an object to the OT

Explanation
Performs perspective transformation and light source calculation for a three-dimensional object handled by
GsDOBJ3, and creates a drawing command within the PMD format packet memory. Performs Z-sort of the
drawing commands generated immediately afterwards and assigns them to the OT indicated by otp.

The accuracy of Z may be adjusted with the value of shift. The maximum size of the ordering table
(resolution) is 14 bits, but if this value is set to 12 bits, for example, the shift value must be set at 2 (=14-
12), so that it will not be larger than the ordering table area.

See also

Extended Graphics Library Functions 9-93

Run-Time Library Reference

GsSortObject4
Register an object to the ordering table (for use with GsDOBJ2).

Library Header File Introduced Documentation Date
libgs.lib libgs.h 3.0 12/14/98

Syntax
void GsSortObject4(
GsDOBJ2 *objp, Pointer to an object
GsOT *otp, Pointer to OT
int shift, Specifies how many bits the Z value must be shifted to the right when

assigning an object to the OT
u_long *scratch) Pointer to address of scratch pad

Explanation
Performs perspective transformation and light source calculation for a three-dimensional object handled by
GsDOBJ2, and creates a drawing command within the packet area specified by GsSetWorkBase().
Performs Z-sort of the drawing commands generated immediately afterwards and assigns them to the OT
indicated by otp.

The accuracy of Z may be adjusted with the value of shift. The maximum size of the ordering table
(resolution) is 14 bits. If this value is set to 12 bits, for example, the shift value must be set at 2 (=14-12), so
that it will not be larger than the ordering table area.

scratch is the specified scratchpad address used as work when automatic division is being performed. The
scratchpad runs for 256 words from 0x1f800000 in cache memory.

To use the GsOBJ2 member attribute to enable division, perform an OR operation on the macros GsDIV1
through GsDIV5 (defined in libgs.h). For GsDIV1, a single polygon is divided into four segments of 2 x 2. For
GsDIV5, a single polygon is divided into 1,024 segments of 32 x 32.

For a triangle, the scratch area usage is 96 + 88*N, where N is the number of the macro used (GsDIV1 = 1,
GsDIV2 = 5, etc.) For a quadrilateral, the scratch area used is 120 + 140*N.

See also
GsSortObject4J()

9-94 Extended Graphics Library Functions

Run-Time Library Reference

GsSortObject4J
Register an object to ordering table (jump table version).

Library Header File Introduced Documentation Date
libgs.lib libgs.h 3.2 12/14/98

Syntax
void GsSortObject4J(
GsDOBJ2 *objp, Pointer to an object
GsOT *otp, Pointer to OT
int shift, Specifies how many bits the Z value must be shifted to the right when

assigning an object to the OT
u_long *scratch) Pointer to the address of the scratch pad

Explanation
Same functionality as GsSortObject4(), when all the low-level functions have been registered. Allows
programmer to increase code efficiency by not calling unnecessary low-level functions (up to 40 kbytes can
be saved.)

To do this, test which low-level routines are being called by prepending ‘dmy’ to the function names in
GsFCALL4, the reference function table. The names of all functions called are printed out; for those
functions, delete ‘dmy’, and only those functions used will be llinked in.

See also
GsSortObject4(), GsSortObject5J()

Extended Graphics Library Functions 9-95

Run-Time Library Reference

GsSortObject5
Register an object to the ordering table (for use with GsDOBJ5).

Library Header File Introduced Documentation Date
libgs.lib libgs.h 3.0 12/14/98

Syntax
void GsSortObject5(
GsDOBJ5 *objp, Pointer to an object
GsOT *otp, Pointer to OT
int shift, Specifies how many bits the Z value must be shifted to the right when

assigning an object to the OT
u_long *scratch) Pointer to the address of the scratch pad

Explanation
Performs transparency transformation and light source calculation for a three-dimensional object to be
handled by GsDOBJ5. It creates in the preset packet area drawing commands that do not divide, and in
the packet area specified by GsSetWorkBase() those drawing commands that do divide. Performs Z-sort of
the drawing commands generated immediately afterwards and assigns them to the OT indicated by otp.

The accuracy of Z may be adjusted using the shift value. The maximum size of the ordering table
(resolution) is 14 bits. If this value is set to 12 bits, for example, the shift value must be set at 2 (=14-12), so
that it will not be larger than the ordering table area.

scratch is the specified scratchpad address used as work when automatic division is being performed. (The
scratchpad is 256 words starting from 0x1f800000 in cache memory.) To use GSdOBJ5.attribute to
enable division, perform an OR operation on the macros GsDIV1-GsDIV5 of libgs.h. For GsDIV1, a single
polygon is divided into four segments of 2 x 2. For GsDIV5, a single polygon is divided into 1, 024
segments of 32 x 32.

For a triangle, the scratch area usage is 96 + 88*N, where N is the number of the macro used (GsDIV1 = 1,
GsDIV2 = 5, etc.) For a quadrilateral, the scratch area used is 120 + 140*N.

See also
GsSortObject5J()

9-96 Extended Graphics Library Functions

Run-Time Library Reference

GsSortObject5J
Register an object to the ordering table (jump table version).

Library Header File Introduced Documentation Date
libgs.lib libgs.h 3.2 12/14/98

Syntax
void GsSortObject5J(
GsDOBJ5 *objp, Pointer to an object
GsOT *otp, Pointer to OT
int shift, Specifies how many bits the Z value must be shifted to the right when

assigning an object to the OT
u_long *scratch) Pointer to the address of the scratch pad

Explanation
Same functionality as GsSortObject5(), when all the low-level functions have been registered. Allows
programmer to increase code efficiency by not calling unnecessary low-level functions (up to 40 kbytes can
be saved.)

To do this, test which low-level routines are being called by prepending ‘dmy’ to the function names in
GsFCALL5, the reference function table. The names of all functions called are printed out; for those
functions, delete ‘dmy’, and only those functions used will be llinked in.

See also
GsSortObject5(), GsSortObject4J()

Extended Graphics Library Functions 9-97

Run-Time Library Reference

GsSortOt
Insert an OT into another OT.

Library Header File Introduced Documentation Date
libgs.lib libgs.h 3.3 12/14/98

Syntax
GsOT *GsSortOt(
GsOT *ot_src, Pointer to source OT
GsOT *ot_dest) Pointer to destination OT

Explanation
Inserts the OT given by ot_src into the OTZ location within ot_dest.

The OTZ value used at this time is calculated as follows:

OTZ = ot_src->point - ot_dest ->offset

Return value
Pointer to the integrated OT.

See also
GsClearOt(), GsDrawOt(), GsCutOt()

9-98 Extended Graphics Library Functions

Run-Time Library Reference

GsSortPoly
Register a polygon drawing primitive in the OT.

Library Header File Introduced Documentation Date
libgs.lib libgs.h 2.x 12/14/98

Syntax
void GsSortPoly(
void *prim, Pointer to drawing primitive
GsOT *ot, Pointer to OT
u_short pri) Location in OT

Explanation
Assigns the drawing primitive prim to the ordering table ot. Corresponds to libgpu drawing primitives
(POLY_....).

libgs requires no double buffering, since the contents of the primitive structure are copied in the packet
generation area. Drawing coordinate values match the drawing coordinate system handled by libgs.

See also

Extended Graphics Library Functions 9-99

Run-Time Library Reference

GsSortSprite, GsSortFastSprite, GsSortFlipSprite
Register a Sprite in the OT.

Library Header File Introduced Documentation Date
libgs.lib libgs.h 2.x 12/14/98

Syntax
void GsSortSprite(
GsSPRITE *sp, Pointer to a Sprite
GsOT *otp, Pointer to OT
u_short pri) Position in OT

void GsSortFastSprite(
GsSPRITE *sp, Pointer to a Sprite
GsOT *otp, Pointer to OT
u_short pri) Position in OT

void GsSortFlipSprite(
GsSPRITE *sp, Pointer to a Sprite
GsOT *otp, Pointer to OT
u_short pri) Position in OT

Explanation
Assigns the sprite sp to the ordering table otp.

pri refers to the priority of the Sprite in the ordering table. The highest priority value is zero, with the lowest
value depending on the size of the ordering table. Values beyond the size of the ordering table are clipped
to the maximum ordering table value.

GsSortFastSprite()provides high-speed processing, though enlargement, rotation, and reduction cannot be
used. The Sprite structure members nx, my, scalex, scaley, and rotate are ignored.

GsSortFlipSprite() does not use the enlargement / rotation / reduction functions, and only supports flipping.

See also

9-100 Extended Graphics Library Functions

Run-Time Library Reference

GsSwapDispBuffer
Swaps double buffers.

Library Header File Introduced Documentation Date
libgs.lib libgs.h 2.x 12/14/98

Syntax
void GsSwapDispBuffer(void)

Explanation
Exchanges the display buffer with the drawing buffer according to data set by GsDefDispBuff(). Normally,
swapping is done immediately after beginning vertical blanking. This function

• Sets display starting address
• Cancels blanking
• Sets double buffer index
• Switches two-dimensional clipping
• Sets libgte or libgpu offset
• Sets libgs offset

Note: Using the GsOFSGPU or GsOFSGTE macro for the third argument of GsInitGraph() determines
whether the libgte or libgpu offset should be set.

This function does not execute correctly when GPU drawing is in progress, so it is necessary to call this
function after terminating drawing using ResetGraph (1).

See also
GsDefDispBuff()

Extended Graphics Library Functions 9-101

Run-Time Library Reference

GsTMDdiv…
Low-level functions for GsSortObject4J() (performs fixed division).

Library Header File Introduced Documentation Date
libgs.lib libgs.h 4.1 12/14/98

Syntax
PACKET *GsTMDdiv...(
TMD_P_… *op, Pointer to starting address of TMD data primitives
VERT *vp, Pointer to starting address of TMD data vertices TMD
VERT *np, Pointer to starting address of TMD data normals
PACKET *pk, Pointer to top address of GPU packet buffer
int n, Number of primitives
int shift, OT shift bit
GsOT *ot, Pointer to GsOT
DIVPOLYGON... *divp) Pointer to DIVPOLYGON3 or DIVPOLYGON4

PACKET *GsTMDdivN...(
TMD_P_… *op Pointer to starting address of TMD data primitives
VERT *vp, Pointer to starting address of TMD data vertices TMD
PACKET *pk, Pointer to top address of GPU packet buffer
int n, Number of primitives
int shift, OT shift bit
GsOT *ot, Pointer to GsOT
DIVPOLYGON... *divp) Pointer to DIVPOLYGON3 or DIVPOLYGON4

Explanation
These are low-level functions for GsSortObject4J().To be used, they must be registered in GsFCALL4 as
low-level functions.

These functions perform fixed division based on the number of divisions (GsNDIV).

These functions perform polygon division (based on the value of GsNDIV), coordinate and perspective
transformation, backface clipping, and light source calculation for n primitives, complete the GPU packet in
the buffer, and link it into the OT.

ndiv=1: 2x2 division

ndiv=2: 4x4 division

ndiv=3: 8x8 division

ndiv=4: 16x16 division

ndiv=5: 32x32 division

For function types which do not operate on normals within the data (e.g. GsTMDdivN…), light source
calculations are not performed so fewer parameters are passed compared to those function types which
operate on normals (e.g. GsTMDdiv…),

Low-level functions in libgs that support fixed division are shown below.

Table 9-9: GsTMDdiv…() [have normals]

Low-level function
name

First arg (op)
type

Description

GsTMDdivF3L TMD_P_F3 Flat triangle (light source calculation)
GsTMDdivF3LB TMD_P_F3 Flat triangle (light source calculation +

2face)

9-102 Extended Graphics Library Functions

Run-Time Library Reference

Low-level function
name

First arg (op)
type

Description

GsTMDdivF3LFG TMD_P_F3 Flat triangle (light source calculation
+FOG)

GsTMDdivF3LFGB TMD_P_F3 Flat triangle (light source calculation
+FOG + 2face)

GsTMDdivF3NL TMD_P_F3 Flat triangle
GsTMDdivF3NLB TMD_P_F3 Flat triangle (2face)
GsTMDdivF4L TMD_P_F4 Flat quadrilateral (light source

calculation)
GsTMDdivF4LB TMD_P_F4 Flat quadrilateral (light source

calculation + 2face)
GsTMDdivF4LFG TMD_P_F4 Flat quadrilateral (light source

calculation +FOG)
GsTMDdivF4LFGB TMD_P_F4 Flat quadrilateral (light source

calculation +FOG + 2face)
GsTMDdivF4NL TMD_P_F4 Flag quadrilateral
GsTMDdivF4NLB TMD_P_F4 Flag quadrilateral (2face)
GsTMDdivG3L TMD_P_G3 Gouraud triangle (light source

calculation)
GsTMDdivG3LB TMD_P_G3 Gouraud triangle (light source

calculation + 2face)
GsTMDdivG3LFG TMD_P_G3 Gouraud triangle (light source

calculation +FOG)
GsTMDdivG3LFGB TMD_P_G3 Gouraud triangle (light source

calculation +FOG + 2face)
GsTMDdivG3NL TMD_P_G3 Gouraud triangle
GsTMDdivG3NLB TMD_P_G3 Gouraud triangle (2face)
GsTMDdivG4L TMD_P_G4 Gouraud quadrilateral (light source

calculation)
GsTMDdivG4LB TMD_P_G4 Gouraud quadrilateral (light source

calculation + 2face)
GsTMDdivG4LFG TMD_P_G4 Gouraud quadrilateral (light source

calculation +FOG)
GsTMDdivG4LFGB TMD_P_G4 Gouraud quadrilateral (light source

calculation +FOG + 2face)
GsTMDdivG4NL TMD_P_G4 Gouraud quadrilateral
GsTMDdivG4NLB TMD_P_G4 Gouraud quadrilateral (2face)
GsTMDdivTF3L TMD_P_TF3 Textured flat triangle

(light source calculation)
GsTMDdivTF3LB TMD_P_TF3 Textured flat triangle

(light source calculation + 2face)
GsTMDdivTF3LFG TMD_P_TF3 Textured flat triangle

(light source calculation +FOG)
GsTMDdivTF3LFGB TMD_P_TF3 Textured flat triangle

(light source calculation +FOG + 2face)
GsTMDdivTF3NL TMD_P_TF3 Textured flat triangle
GsTMDdivTF3NLB TMD_P_TF3 Textured flat triangle (2face)
GsTMDdivTF4L TMD_P_TF4 Textured flat quadrilateral

(light source calculation)
GsTMDdivTF4LB TMD_P_TF4 Textured flat quadrilateral

(light source calculation + 2face)

Extended Graphics Library Functions 9-103

Run-Time Library Reference

Low-level function
name

First arg (op)
type

Description

GsTMDdivTF4LM TMD_P_TF4 Textured flat quadrilateral
(light source calculation +mip-map)

GsTMDdivTF4LFG TMD_P_TF4 Textured flat quadrilateral
(light source calculation +FOG)

GsTMDdivTF4LFGB TMD_P_TF4 Textured flat quadrilateral
(light source calculation +FOG + 2face)

GsTMDdivTF4LFGM TMD_P_TF4 Textured flat quadrilateral
(light source calculation +FOG+mip-
map)

GsTMDdivTF4NL TMD_P_TF4 Textured flat quadrilateral
GsTMDdivTF4NLB TMD_P_TF4 Textured flat quadrilateral (2face)
GsTMDdivTF4NLM TMD_P_TF4 Textured flat quadrilateral

(mip-map)
GsTMDdivTG3L TMD_P_TG3 Textured Gouraud triangle

(light source calculation)
GsTMDdivTG3LB TMD_P_TG3 Textured Gouraud triangle

(light source calculation + 2face)
GsTMDdivTG3LFG TMD_P_TG3 Textured Gouraud triangle

(light source calculation +FOG)
GsTMDdivTG3LFGB TMD_P_TG3 Textured Gouraud triangle

(light source calculation +FOG + 2face)
GsTMDdivTG3NL TMD_P_TG3 Textured Gouraud triangle
GsTMDdivTG3NLB TMD_P_TG3 Textured Gouraud triangle (2face)
GsTMDdivTG4L TMD_P_TG4 Textured Gouraud quadrilateral

(light source calculation)
GsTMDdivTG4LB TMD_P_TG4 Textured Gouraud quadrilateral

(light source calculation + 2face)
GsTMDdivTG4LM TMD_P_TG4 Textured Gouraud quadrilateral

(light source calculation +mip-map)
GsTMDdivTG4LFG TMD_P_TG4 Textured Gouraud quadrilateral

(light source calculation +FOG)
GsTMDdivTG4LFGB TMD_P_TG4 Textured Gouraud quadrilateral

(light source calculation +FOG + 2face)
GsTMDdivTG4LFGM TMD_P_TG4 Textured Gouraud quadrilateral

(light source calculation +FOG + mip-
map)

GsTMDdivTG4NL TMD_P_TG4 Textured Gouraud quadrilateral
GsTMDdivTG4NLB TMD_P_TG4 Textured Gouraud quadrilateral (2face)
GsTMDdivTG4NLM TMD_P_TG4 Textured Gouraud quadrilateral

(mip-map)

Table 9-10: GsTMDdivN…() [no normals]

Low-level function
name

First arg (op)
type

Description

GsTMDdivNF3 TMD_P_NF3 Flat triangle
GsTMDdivNF3B TMD_P_NF3 Flat triangle (2face)
GsTMDdivNF4 TMD_P_NF4 Flat quadrilateral
GsTMDdivNF4B TMD_P_NF4 Flat quadrilateral (2face)
GsTMDdivNG3 TMD_P_NG3 Gouraud triangle
GsTMDdivNG3B TMD_P_NG3 Gouraud triangle (2face)

9-104 Extended Graphics Library Functions

Run-Time Library Reference

Low-level function
name

First arg (op)
type

Description

GsTMDdivNG4 TMD_P_NG4 Gouraud quadrilateral
GsTMDdivNG4B TMD_P_NG4 Gouraud quadrilateral (2face)
GsTMDdivTNF3 TMD_P_TNF3 Textured flat triangle
GsTMDdivTNF3B TMD_P_TNF3 Textured flat triangle (2face)
GsTMDdivTNF4 TMD_P_TNF4 Textured flat quadrilateral
GsTMDdivTNF4B TMD_P_TNF4 Textured flat quadrilateral (2face)
GsTMDdivTNF4M TMD_P_TNF4 Textured flat quadrilateral

(mip-map)
GsTMDdivTNG3 TMD_P_TNG3 Textured Gouraud triangle
GsTMDdivTNG3B TMD_P_TNG3 Textured Gouraud triangle (2face)
GsTMDdivTNG4 TMD_P_TNG4 Textured Gouraud quadrilateral
GsTMDdivTNG4B TMD_P_TNG4 Textured Gouraud quadrilateral

(2face)
GsTMDdivTNG4M TMD_P_TNG4 Textured Gouraud quadrilateral

(mip-map)

Number of divisions is specified in the GsDOBJ2 attribute.

Return value
Starting address of unused packet area.

See also
GsSortObject4J()

Extended Graphics Library Functions 9-105

Run-Time Library Reference

GsTMDfast..., GsTMDfastN…
Low-level functions for GsSortObject4J().

Library Header File Introduced Documentation Date
libgte.lib libgte.h 4.1 12/14/98

Syntax
PACKET *GsTMDfast...(
TMD_P_… *op, Pointer to starting address of TMD data primitives
VERT *vp, Pointer to starting address of TMD data vertices TMD
VERT *np, Pointer to starting address of TMD data normals
PACKET *pk, Pointer to top address of GPU packet buffer
int n, Number of primitives
int shift, OT shift bit
GsOT *ot, Pointer to GsOT
u_long *scratch) Pointer to starting address of unused scratch pad

PACKET *GsTMDfastN...(
TMD_P_… *op, Pointer to starting address of TMD data primitives
VERT *vp, Pointer to starting address of TMD data vertices TMD
PACKET *pk, Pointer to top address of GPU packet buffer
int n, Number of primitives
int shift, OT shift bit
GsOT *ot, Pointer to GsOT
u_long *scratch) Pointer to starting address of unused scratch pad

Explanation
These are low-level functions for GsSortObject4J(). They are tuned assembly-level functions for high speed
operation in libgte.

To be used, they must be registered in GsFCALL4 as low-level functions.

These functions perform coordinate and perspective transformation, backface clipping, and light source
calculation for n primitives, complete the GPU packet in the buffer, and link it into the OT.

For low-level functions that provide material attenuation, the lighting mode must be “material ON.” This
attenuates the brightness during light source calculation based on the parameter which is provided in the
attribute of GsDOBJ2.

For low-level functions that FLIP, the direction of the normal clip is reversed.

For function types which do not operate on normals within the data (e.g. GsTMDfastN…), light source
calculations are not performed so fewer parameters are passed compared to those function types which
operate on normals (e.g. GsTMDfast…),

Low-level functions supported in libgs are shown below.

Table 9-11: GsTMDfast…() [have normals]

Low-level function name First arg (op)
type

Description

GsTMDfastF3L TMD_P_F3 Flat triangle (light source
calculation)

GsTMDfastF3LB TMD_P_F3 Flat triangle (light source calculation
+ 2face)

GsTMDfastF3LFG TMD_P_F3 Flat triangle (light source calculation
+FOG)

9-106 Extended Graphics Library Functions

Run-Time Library Reference

Low-level function name First arg (op)
type

Description

GsTMDfastF3LFGB TMD_P_F3 Flat triangle (light source calculation
+FOG + 2face)

GsTMDfastF3NL TMD_P_F3 Flat triangle
GsTMDfastF3NLB TMD_P_F3 Flat triangle (2face)
GsTMDfastF4L TMD_P_F4 Flat quadrilateral (light source

calculation)
GsTMDfastF4LB TMD_P_F4 Flat quadrilateral (light source

calculation + 2face)
GsTMDfastF4LFG TMD_P_F4 Flat quadrilateral (light source

calculation +FOG)
GsTMDfastF4LFGB TMD_P_F4 Flat quadrilateral (light source

calculation +FOG + 2face)
GsTMDfastF4NL TMD_P_F4 Flag quadrilateral
GsTMDfastF4NLB TMD_P_F4 Flag quadrilateral (2face)
GsTMDfastG3L TMD_P_G3 Gouraud triangle (light source

calculation)
GsTMDfastG3LB TMD_P_G3 Gouraud triangle (light source

calculation + 2face)
GsTMDfastG3LFG TMD_P_G3 Gouraud triangle (light source

calculation +FOG)
GsTMDfastG3LFGB TMD_P_G3 Gouraud triangle (light source

calculation +FOG + 2face)
GsTMDfastG3NL TMD_P_G3 Gouraud triangle
GsTMDfastG3NLB TMD_P_G3 Gouraud triangle (2face)
GsTMDfastG4L TMD_P_G4 Gouraud quadrilateral (light source

calculation)
GsTMDfastG4LB TMD_P_G4 Gouraud quadrilateral (light source

calculation + 2face)
GsTMDfastG4LFG TMD_P_G4 Gouraud quadrilateral (light source

calculation +FOG)
GsTMDfastG4LFGB TMD_P_G4 Gouraud quadrilateral (light source

calculation +FOG + 2face)
GsTMDfastG4NL TMD_P_G4 Gouraud quadrilateral
GsTMDfastG4NLB TMD_P_G4 Gouraud quadrilateral (2face)
GsTMDfastTF3L TMD_P_TF3 Textured flat triangle

(light source calculation)
GsTMDfastTF3LB TMD_P_TF3 Textured flat triangle

(light source calculation + 2face)
GsTMDfastTF3LFG TMD_P_TF3 Textured flat triangle

(light source calculation +FOG)
GsTMDfastTF3LFGB TMD_P_TF3 Textured flat triangle

(light source calculation +FOG +
2face)

GsTMDfastTF3NL TMD_P_TF3 Textured flat triangle
GsTMDfastTF3NLB TMD_P_TF3 Textured flat triangle (2face)
GsTMDfastTF4L TMD_P_TF4 Textured flat quadrilateral

(light source calculation)
GsTMDfastTF4LB TMD_P_TF4 Textured flat quadrilateral

(light source calculation + 2face)
GsTMDfastTF4LM TMD_P_TF4 Textured flat quadrilateral

(light source calculation +mip-map)

Extended Graphics Library Functions 9-107

Run-Time Library Reference

Low-level function name First arg (op)
type

Description

GsTMDfastTF4LFG TMD_P_TF4 Textured flat quadrilateral
(light source calculation +FOG)

GsTMDfastTF4LFGB TMD_P_TF4 Textured flat quadrilateral
(light source calculation +FOG +
2face)

GsTMDfastTF4LFGM TMD_P_TF4 Textured flat quadrilateral
(light source calculation
+FOG+mip-map)

GsTMDfastTF4NL TMD_P_TF4 Textured flat quadrilateral
GsTMDfastTF4NLB TMD_P_TF4 Textured flat quadrilateral (2face)
GsTMDfastTF4NLM TMD_P_TF4 Textured flat quadrilateral

(mip-map)
GsTMDfastTG3L TMD_P_TG3 Textured Gouraud triangle

(light source calculation)
GsTMDfastTG3L_FLIP TMD_P_TG3 Textured Gouraud triangle

(light source calculation + FLIP)
GsTMDfastTG3LB TMD_P_TG3 Textured Gouraud triangle

(light source calculation + 2face)
GsTMDfastTG3LFG TMD_P_TG3 Textured Gouraud triangle

(light source calculation +FOG)
GsTMDfastTG3LFG_FLIP TMD_P_TG3 Textured Gouraud triangle

(light source calculation +FOG +
FLIP)

GsTMDfastTG3LFGB TMD_P_TG3 Textured Gouraud triangle
(light source calculation +FOG +
2face)

GsTMDfastTG3NL TMD_P_TG3 Textured Gouraud triangle
GsTMDfastTG3NL_FLIP TMD_P_TG3 Textured Gouraud triangle (FLIP)
GsTMDfastTG3NLB TMD_P_TG3 Textured Gouraud triangle (2face)
GsTMDfastTG4L TMD_P_TG4 Textured Gouraud quadrilateral

(light source calculation)
GsTMDfastTG4LB TMD_P_TG4 Textured Gouraud quadrilateral

(light source calculation + 2face)
GsTMDfastTG4LM TMD_P_TG4 Textured Gouraud quadrilateral

(light source calculation +mip-map)
GsTMDfastTG4LFG TMD_P_TG4 Textured Gouraud quadrilateral

(light source calculation +FOG)
GsTMDfastTG4LFGB TMD_P_TG4 Textured Gouraud quadrilateral

(light source calculation +FOG +
2face)

GsTMDfastTG4LFGM TMD_P_TG4 Textured Gouraud quadrilateral
(light source calculation +FOG +
mip-map)

GsTMDfastTG4NL TMD_P_TG4 Textured Gouraud quadrilateral
GsTMDfastTG4NLB TMD_P_TG4 Textured Gouraud quadrilateral

(2face)
GsTMDfastTG4NLM TMD_P_TG4 Textured Gouraud quadrilateral

(mip-map)
GsTMDfastF3GL TMD_P_F3G Flat gradation triangle (light source

calculation)
GsTMDfastF3GLFG TMD_P_F3G Flat gradation triangle (light source

calculation + FOG)

9-108 Extended Graphics Library Functions

Run-Time Library Reference

Low-level function name First arg (op)
type

Description

GsTMDfastF3GNL TMD_P_F3G Flat gradation triangle
GsTMDfastG3GL TMD_P_G3G Gouraud gradation triangle (light

source calculation)
GsTMDfastG3GLFG TMD_P_G3G Gouraud gradation triangle (light

source calculation + FOG)
GsTMDfastG3GNL TMD_P_G3G Gouraud gradation triangle
GsTMDfastF4GL TMD_P_F4G Flat gradation quadrilateral (light

source calculation)
GsTMDfastF4GLFG TMD_P_F4G Flat gradation quadrilateral (light

source calculation + FOG)
GsTMDfastF4GNL TMD_P_F4G Flat gradation quadrilateral
GsTMDfastG4GL TMD_P_G4G Gouraud gradation quadrilateral

(light source calculation)
GsTMDfastG4GLFG TMD_P_G4G Gouraud gradation quadrilateral

(light source calculation + FOG)
GsTMDfastG4GNL TMD_P_G4G Gouraud gradation quadrilateral
GsTMDfastF3M TMD_P_F3 Flat triangle (light source + material

attenuation)
GsTMDfastF3MFG TMD_P_F3 Flat triangle (light source + FOG +

material attenuation)
GsTMDfastF4M TMD_P_F4 Flat quadrilateral (light source +

material attenuation)
GsTMDfastF4MFG TMD_P_F4 Flat quadrilateral (light source +

FOG + material attenuation)
GsTMDfastG3M TMD_P_G3 Gouraud triangle (light source +

material attenuation)
GsTMDfastG3MFG TMD_P_G3 Gouraud triangle (light source +

FOG + material attenuation)
GsTMDfastG4M TMD_P_G4 Gouraud quadrilateral (light source

+ material attenuation)
GsTMDfastG4MFG TMD_P_G4 Gouraud quadrilateral (light source

+ FOG + material attenuation)
GsTMDfastTF3M TMD_P_TF3 Textured flat triangle (light source +

material attenuation)
GsTMDfastTF3MFG TMD_P_TF3 Textured flat triangle (light source +

FOG + material attenuation)
GsTMDfastTF4M TMD_P_TF4 Textured flat quadrilateral (light

source + material attenuation)
GsTMDfastTF4MFG TMD_P_TF4 Textured flat quadrilateral (light

source + FOG + material
attenuation)

GsTMDfastTG3M TMD_P_TG3 Textured Gouraud triangle (light
source + material attenuation)

GsTMDfastTG3MFG TMD_P_TG3 Textured Gouraud triangle (light
source + FOG + material
attenuation)

GsTMDfastTG4M TMD_P_TG4 Textured Gouraud quadrilateral
(light source + material attenuation)

GsTMDfastTG4MFG TMD_P_TG4 Textured Gouraud quadrilateral
(light source + FOG + material
attenuation)

Extended Graphics Library Functions 9-109

Run-Time Library Reference

Table 9-12: GsTMDfastN…() [no normals]

Low-level function
name

First arg (op)
type

Description

GsTMDfastNF3 TMD_P_NF3 Flat triangle
GsTMDfastNF3B TMD_P_NF3 Flat triangle (2face)
GsTMDfastNF4 TMD_P_NF4 Flat quadrilateral
GsTMDfastNF4B TMD_P_NF4 Flat quadrilateral (2face)
GsTMDfastNG3 TMD_P_NG3 Gouraud triangle
GsTMDfastNG3B TMD_P_NG3 Gouraud triangle (2face)
GsTMDfastNG4 TMD_P_NG4 Gouraud quadrilateral
GsTMDfastNG4B TMD_P_NG4 Gouraud quadrilateral (2face)
GsTMDfastTNF3 TMD_P_TNF3 Textured flat triangle
GsTMDfastTNF3B TMD_P_TNF3 Textured flat triangle (2face)
GsTMDfastTNF4 TMD_P_TNF4 Textured flat quadrilateral
GsTMDfastTNF4B TMD_P_TNF4 Textured flat quadrilateral (2face)
GsTMDfastTNF4M TMD_P_TNF4 Textured flat quadrilateral

(mip-map)
GsTMDfastTNG3 TMD_P_TNG3 Textured Gouraud triangle
GsTMDfastTNG3_FLIP TMD_P_TNG3 Textured Gouraud triangle (FLIP)
GsTMDfastTNG3B TMD_P_TNG3 Textured Gouraud triangle (2face)
GsTMDfastTNG4 TMD_P_TNG4 Textured Gouraud quadrilateral
GsTMDfastTNG4B TMD_P_TNG4 Textured Gouraud quadrilateral

(2face)
GsTMDfastTNG4M TMD_P_TNG4 Textured Gouraud quadrilateral

(mip-map)

With gradation, each vertex of the TMD polygon has a different RGB value.

Return value
Starting address of unused packet area.

See also
GsSortObject4J()

9-110 Extended Graphics Library Macros

Run-Time Library Reference

Macros

GsClearDispArea
Clears screen.

Library Header File Introduced Documentation Date
libgs.lib libgs.h 3.0 12/14/98

Syntax
GsClearDispArea(
u_char r, u_char g, u_char b) Background color RGB values

Explanation
The display area is cleared using IO.

Unlike GsSortClear(), a clear command is issued when GsClearDispArea() is called.

See also
GsSortClear()

Extended Graphics Library Macros 9-111

Run-Time Library Reference

GsIncFrame
Updates the frame ID.

Library Header File Introduced Documentation Date
libgs.lib libgs.h 3.2 12/14/98

Syntax
GsIncFrame()

Explanation
GsIncFrame() is a macro called from within GsSwapDispBuff(). It increments the global variable PSDCNT
by 1. PSDCNT is 32 bits in length, and restarts at 1 rather than 0 when it overflows.

PSDCNT is used by GsGetLw(),GsGetLs(),GsGetLws() when determining the validity of the matrix cache.

If you are not using GsSwapDispBuff() to swap double buf you must call GsIncFrame to swap the buffers
when you use GsGetLw(), GsGetLs(), and GsGetLws().

Use GsDefDispBuff() to establish settings the first time.

See also
GsGetLw(), GsGetLs(), GsGetLws(), GsSwapDispBuff()

9-112 Extended Graphics Library Macros

Run-Time Library Reference

GsSetAzwh
Sets conditions for active subdivision.

Library Header File Introduced Documentation Date
libgs.lib libgs.h 3.3 12/14/98

Syntax
void GsSetAzwh(
int z, Critical near z value for activate subdivision
short w, short h) Size of polygon within subdivision routine at which no more subdivision

will be done

Explanation
Sets the conditions for active subdivision.

z is the near z value for the start of the subdivision fragmentation and w, h is the polygon size for halting the
subdivision.

See also
GsA4Div…()

Extended Graphics Library External Variables 9-113

Run-Time Library Reference

External Variables
Table 9-13: List of External Variables

Name of external variable Type Description
CLIP2 RECT Two-dimensional clipping area.

Can be set with GsSetClip2D()
PSDBASEX[2] short Double buffer origin (X

coordinate)
Set with GsDefDispbuff()

PSDBASEY[2] short Double buffer origin (Ycoordinate)
Set with GsDefDispbuff()

PSDIDX short Double buffer index
PSDCNT u_long Incremented with each frame

switch
POSITION _GsPOSITION Two-dimensional offset
GsDRAWENV DRAWENV Gs draw environment
GsDISPENV DISPENV Gs display environment
GsLSMATRIX MATRIX Gs local screen matrix

Set with GsSetLs()
GsWSMATRIX MATRIX Gs world-to-screen matrix

Set with GsSetRefView2(), etc.
GsLIGHT_MODE int Default light mode
HWD0 long Horizontal resolution
VWD0 long Vertical resolution
GsLIGHTWSMATRIX MATRIX Gs light matrix.

Set with GsSetFlatLight()
GsIDMATRIX MATRIX Unit matrix
GsIDMATRIX2 MATRIX Unit matrix (includes aspect

conversion)
GsLIGHT_FUNC Function pointer Pointer to default light-source

calculation routines used by
GsDOBJ1, GsDOBJ2

GsOUT_PACKET_P u_long Pointer for saving start of packet
area.
Set with GsSetWorkBase()

GsMATE_C u_long Result of decoding attribute
(attenuation coefficient)

GsLMODE u_long Result of decoding attribute
(Light mode)

GsLIGNR u_long Result of decoding attribute
(Ignore light)

GsLIOFF u_long Result of decoding attribute
(No shading)

GsZOVER u_long Result of decoding attribute
(nearZ)

GsBACKC u_long Result of decoding attribute
(Two-sided polygons)

GsNDIV u_long Result of decoding attribute
(Number of divisions)

GsTRATE u_long Result of decoding attribute
(Semi-transparency rate)

GsTON u_long Result of decoding attribute
(Semi-transparency)

9-114 Extended Graphics Library External Variables

Run-Time Library Reference

Name of external variable Type Description
GsDISPON u_long Result of decoding attribute

(Display ON/OFF)
GsADIVH short Condition for active automatic

divisions: Vertical size
Set with GsSetAzwh(z,w,h)

GsADIVW short Condition for active automatic
divisions: Horizontal size
Set with GsSetAzwh(z,w,h)

GsADIVZ long Condition for active automatic
divisions: Z value
Set with GsSetAzwh(z,w,h)

GsFCALL5 Structure Function table for
GsSortObject5J()

GsFCALL4 Structure Function table for
GsSortObject4J()

Run-Time Library Reference

Chapter 10: CD/Streaming Library
Table of Contents

Structures
CdlATV 10-3
CdlFILE 10-4
CdlFILTER 10-5
CdlLOC 10-6
StHEADER 10-7

Functions
CdComstr 10-8
CdControl 10-9
CdControlB 10-11
CdControlF 10-12
CdDataCallback 10-13
CdDataSync 10-14
CdDiskReady 10-15
CdFlush 10-16
CdGetDiskType 10-17
CdGetSector 10-18
CdGetSector2 10-19
CdGetToc 10-20
CdInit 10-21
CdIntstr 10-22
CdIntToPos 10-23
CdLastCom 10-24
CdLastPos 10-25
CdMix 10-26
CdMode 10-27
CdPlay 10-28
CdPosToInt 10-29
CdRead 10-30
CdRead2 10-31
CdReadBreak 10-32
CdReadCallback 10-33
CdReadExec 10-34
CdReadFile 10-35
CdReadSync 10-36
CdReady 10-37
CdReadyCallback 10-38
CdReset 10-39
CdSearchFile 10-40
CdSetDebug 10-41
CdStatus 10-42
CdSync 10-43
CdSyncCallback 10-44
StCdInterrupt 10-45
StClearRing 10-46
StFreeRing 10-47
StGetBackloc 10-48
StGetNext 10-49
StGetNextS 10-50
StNextStatus 10-51
StRingStatus 10-52
StSetChannel 10-53
StSetEmulate 10-54

10-2

Run-Time Library Reference

StSetMask 10-55
StSetRing 10-56
StSetStream 10-57
StUnSetRing 10-58

CD/Streaming Library Structures 10-3

Run-Time Library Reference

Structures

CdlATV
Audio attenuation structure.

Library Header File Introduced Documentation Date
libcd.lib libcd.h 2.x 12/14/98

Structure
typedef struct {

u_char val0; CD (L) --> SPU (L)
u_char val1; CD (L) --> SPU (R) (CD left sound transferred to right)
u_char val2; CD (R) --> SPU (R)
u_char val3; CD (R) --> SPU (L) (CD right sound transferred to left)

} CdlATV;

Explanation
Sets CD audio volume (consisting of CD-DA audio and CD-XA audio).

Val0 - val3 can range from 0 (minimum volume) to 255 (maximum volume).

For adjusting normal stereo volume, set the L channel volume in val0 and the R channel volume in val2.
Val1and val3 should be set to 0.

See also
CdMix()

10-4 CD/Streaming Library Structures

Run-Time Library Reference

CdlFILE
ISO-9660 file system file descriptor.

Library Header File Introduced Documentation Date
libcd.lib libcd.h 2.x 12/14/98

Structure
typedef struct {

CdlLOC pos; File position
u_long size; File size
char name[16]; File name

} CdlFILE;

Explanation
Position and size of ISO-9660 CD-ROM file.

See also
CdSearchFile()

CD/Streaming Library Structures 10-5

Run-Time Library Reference

CdlFILTER
ADPCM channel.

Library Header File Introduced Documentation Date
libcd.lib libcd.h 3.0 12/14/98

Structure
typedef struct {

u_char file; File ID
u_char chan; Channel ID
u_short pad; System reserved

} CdlFILTER;

Explanation
Defines a multi-channel ADPCM play channel. Use CdlSetfilter command of CdControl() to set.

See also
CdControl()

10-6 CD/Streaming Library Structures

Run-Time Library Reference

CdlLOC
Time-code based CD-ROM disc position.

Library Header File Introduced Documentation Date
libcd.lib libcd.h 2.x 12/14/98

Structure
typedef struct {

u_char minute; Minute
u_char second; Second
u_char sector; Sector
u_char track; Track number

} CdlLOC;

Explanation
Defines a time-code position on a CD-ROM, based on the time needed to reach that position when playing
the disc from the beginning at normal speed.

The track member is not used at present.

Use CdlSetloc command of CdControl() to set.

See also
CdControl()

CD/Streaming Library Structures 10-7

Run-Time Library Reference

StHEADER
Sector header.

Library Header File Introduced Documentation Date
libcd.lib libcd.h 2.x 12/14/98

Structure
typedef struct {

u_short id; Reserved by system
u_short type; Data type (always 0x0160)
u_short secCount; Sector offset within 1 frame
u_short nSectors; Number of sectors comprising one frame
u_long frameCount; Movie absolute frame number
u_long frameSize; Movie data size (in long words)
u_short width; Movie horizontal size
u_short height; Movie vertical size
u_long dummy1; Reserved by system
u_long dummy2; Reserved by system
CdlLOC loc; File location

} StHEADER;

Explanation
Movie sector header. If a header obtained with StGetNext() is written to this structure, the data can be
accessed through the structure members.

For details of the structure, refer to “STR: Streaming (Movie) Data” in the File Formats document.

See also

10-8 CD/Streaming Library Functions

Run-Time Library Reference

Functions

CdComstr
Get character string corresponding to command code (for debugging).

Library Header File Introduced Documentation Date
libcd.lib libcd.h 2.x 12/14/98

Syntax
char *CdComstr(
u_char com) Command completion code

Explanation
For debugging. Get corresponding character string from processing status code. Example: CdlNop returns
“CdlNop”, CdlSetloc returns “CdlSetloc”, and so on.

Return value
Pointer to start of character string.

See also
CdIntstr(), CdSetDebug()

CD/Streaming Library Functions 10-9

Run-Time Library Reference

CdControl
Issue primitive command to CD-ROM system.

Library Header File Introduced Documentation Date
libcd.lib libcd.h 2.x 12/14/98

Syntax
int CdControl(
u_char com, Command code
u_char *param, Pointer to command arguments
u_char *result) Pointer to return value storage buffer (requires 8 bytes)

Explanation
Issues the primitive command com to the CD-ROM system. param points to the arguments of the
command, if any; set param to 0 for commands that do not require arguments. result points to a buffer
used to hold the return value; if result is 0, the return value is not stored.

The values of command (com), arguments (param), and return value (result) are listed below. For the
functions that are non-blocking, the actual transmission completion must be detected by CdSync()

Table 10–1: Primitive commands

Symbol Code Type of Operation Contents
CdlNop 0x01 Blocking NOP (No Operation)
CdlSetloc 0x02 Blocking Set the seek target

position
CdlPlay 0x03 Blocking Commence CD-DA

play
CdlForward 0x04 Blocking Forward
CdlBackward 0x05 Blocking Rewind
CdlReadN 0x06 Blocking Start data read

(with retry)
CdlStandby 0x07 Nonblocking Stand by with disk

rotating
CdlStop 0x08 Nonblocking Disk stopped
CdlPause 0x09 Nonblocking Pause at current

position
CdlMute 0x0b Blocking CD-DA mute
CdlDemute 0x0c Blocking Cancel mute
CdlSetfilter 0x0d Blocking Choose ADPCM

play sector
CdlSetmode 0x0e Blocking Set basic mode

(see Table 10-4)
CdlGetparam 0x0f Blocking Gets current CD

subsystem mode
CdlGetlocL 0x10 Blocking Get logical location

(data sector)

10-10 CD/Streaming Library Functions

Run-Time Library Reference

Symbol Code Type of Operation Contents
CdlGetlocP 0x11 Blocking Get physical

location (audio
sector)

CdlSeekL 0x15 Nonblocking Logical seek (data
sector seek)

CdlSeekP 0x16 Nonblocking Physical seek
(audio sector seek)

CdlReadS 0x1b Blocking Commence data
read (no retry)

Table 10–2: Primitive commands that take arguments and their arguments

Symbol Argument Type Contents
CdlSetloc CdlLOC Start sector location
CdlReadN CdlLOC Start sector location
CdlReadS CdlLOC Start sector location
CdlPlay CdlLOC Start sector location
CdlSetfilter CdlFILTER Set ADPCM sector play
CdlSetmode u_char Set basic mode

Table 10–3: Return values of primitive commands

Return Value and Stored Byte Position

Symbol 0 1 2 3 4 5 6 7
CdlGetparam Status Mode
CdlGetlocL Min Sec Sector Mode File Chan
CdlGetlocP Track Index Min Sec Frame Amin Asec Aframe
CdlSeekL Status Btrack Etrack
CdlSeekP Status Min Sec

Note: all other commands return Status in the first byte.

Return value
1 if the command is issued successfully; 0 if failed.

See also
CdControlB(), CdControlF()

CD/Streaming Library Functions 10-11

Run-Time Library Reference

CdControlB
Issue primitive command to CD-ROM system (Blocking-type function).

Library Header File Introduced Documentation Date
libcd.lib libcd.h 2.x 12/14/98

Syntax
int CdControlB(
u_char com, Command code
u_char *param, Pointer to command arguments
u_char *result) Pointer to return value storage buffer (requires 8 bytes)

Explanation
Issues the primitive command com to the CD-ROM system. param points to the arguments of the
command, if any; set param to 0 for commands that do not require arguments. result points to a buffer
used to hold the return value; if result is 0, the return value is not stored.

CdControlB() is identical to CdControl() except that it is blocking; that is, it waits for all commands to
terminate before returning. For details, see CdControl().

Return value
1 if issued successfully; 0 if failed.

See also
CdControl(), CdControlF()

10-12 CD/Streaming Library Functions

Run-Time Library Reference

CdControlF
Issue primitive command to CD-ROM system (high speed).

Library Header File Introduced Documentation Date
libcd.lib libcd.h 2.x 12/14/98

Syntax
int CdControlF(
u_char com, Command code (see separate item)
u_char *param) Pointer to an argument for command

Explanation
Issues the primitive command com to the CD-ROM system. param points to the arguments of the
command, if any; set param to 0 for commands that do not require arguments. result points to a buffer
used to hold the return value; if result is 0, the return value is not stored.

CdControlF() is fast because it does no handshaking with the subsystem (it does not even wait for
command acknowledgement (ACK)). For details, see the commands and arguments of CdControl(), and
the Run-time Library Overview.

Return value
Always returns 1.

See also
CdControl(), CdControlB()

CD/Streaming Library Functions 10-13

Run-Time Library Reference

CdDataCallback
Define a routine to be executed when data transfer is completed.

Library Header File Introduced Documentation Date
libcd.lib libcd.h 3.0 12/14/98

Syntax
void *CdDataCallback (
void (*func) ()) Pointer to address of callback function

Explanation
Defines a routine func to be executed when the data transfer initiated by CdGetSector() or CdGetSector2()
has been completed. If func is 0, then any previous callback routine is disabled.

While func is executing, subsequent data transfer complete interrupts are masked. Therefore, func should
return as soon as the necessary processing is completed.

Return Value
Address of previously set callback

See also
CdGetSector(), CdGetSector2(), CdDataSync()

10-14 CD/Streaming Library Functions

Run-Time Library Reference

CdDataSync
Wait for or check a data transfer initiated by CdGetSector2().

Library Header File Introduced Documentation Date
libcd.lib libcd.h 3.2 12/14/98

Syntax
int CdDataSync(
int mode) Polling mode

Explanation
If mode is 0, the function waits for a data transfer initiated by CdGetSector2() to be completed. If mode is 1,
the function polls the current status and returns.

Return Value
0 if transfer is completed; 1 if transfer is still being performed; -1 if an error occurred.

See also
CdGetSector2(), CdDataCallback()

CD/Streaming Library Functions 10-15

Run-Time Library Reference

CdDiskReady
Determine CD-ROM status after disc change.

Library Header File Introduced Documentation Date
libcd.lib libcd.h 3.5 12/14/98

Syntax
int CdDiskReady(
int mode) 0: Blocking type, 1: Non-blocking type

Explanation
Checks the CD-ROM status after a disc change to determine whether a command can be issued safely.
(Immediately after a disc is changed, there is a delay of a few seconds during which commands may not be
issued.)

When mode is 0, this function waits until the CD-ROM status has stabilized and commands may be issued
before returning. When the mode parameter is 1, this function simply returns the current status.

It is recommended that your program use this function immediately after initiating a disc change to wait for
the disc cover to be closed and the CD-ROM status to stabilize. After this is done, check the disc format
using the CDGetDiskType() and proceed accordingly.

The maximum wait time required for returning from a blocking type function call is:

DebuggingStation:

CD-R Maximum of 12 seconds
CD-DA Maximum of 12 seconds
No disc Approximately 5 seconds

PlayStation:

Black CD Maximum of 3 seconds
CD-DA Maximum of 5 seconds
No disc Approximately 5 seconds

Although non-blocking type function returns immediately after checking the disc status, it cannot
differentiate two error cases, the non-stable status and no disc case. Thus it is recommended to manage
the time out according to the wait time shown above.

Note: This function does not operate correctly on the DTL-H2000 development system.

Return value
CdlComplete The state where a command can be issued

CdlDiskError Blocking type: No discs or defected disc
Non-blocking type: Not stable, no discs, or defected disc

CdlStatShellOpen Disc cover is open

See also

10-16 CD/Streaming Library Functions

Run-Time Library Reference

CdFlush
CD-ROM command flush.

Library Header File Introduced Documentation Date
libcd.lib libcd.h 3.2 12/14/98

Syntax
void CdFlush(void)

Explanation
Cancels the CD-ROM subsystem command being issued. The command being issued is invalidated and
the subsystem can immediately accept commands.

Since the data receipt mode is reset to CdlDataReady, be careful not to use this function when reading
from the CD-ROM.

See also

CD/Streaming Library Functions 10-17

Run-Time Library Reference

CdGetDiskType
Get disc format.

Library Header File Introduced Documentation Date
libcd.lib libcd.h 3.5 12/14/98

Syntax
int CdGetDiskType(void)

Explanation
Obtains the disc format. Currently only CD-ROM format can be recognized.

On DebuggingStation, although PlayStation disc (black disc), CD-R, and other CD-ROM (ISO9600 format)
can be recognized as a CD-ROM, on PlayStation (consumer model), only the PlayStation disc can be
recognized as CD-ROM. CD-DA is always recognized as "Other Format".

Note: Immediately after changing discs, it is recommended that your program call CdDiskReady(),
followed by CdDiskType().

Note: This function does not operate correctly on the DTL-H2000 development system.

Return value
CdlCdromFormat CD-ROM format
CdlOtherFormat Other format
CdlStatShellOpen Disc cover is open
CdlStatNoDisk No discs

See also

10-18 CD/Streaming Library Functions

Run-Time Library Reference

CdGetSector
Transfer sector buffer data to main memory.

Library Header File Introduced Documentation Date
libcd.lib libcd.h 2.x 12/14/98

Syntax
int CdGetSector(
void *madr, Main memory address to which the data is transferred
int size) Size of data to be transferred (long words)

Explanation
Transfers data in the sector buffer to main memory. Transferring is processed in background.

Sector size differs from mode to mode. See Table 10-4 for a list of modes.

Although the data transfer can be divided several times to different memory addresses, the sector data
must be read after the buffer becomes ready and before the buffer is overwritten by the next sector data.
This function blocks until data transfer is complete.

If less than a full sector is transferred during the callback, it is no longer necessary to issue dummy reads to
update the pointer to the next sector. (In previous versions of CdGetSector() it was necessary to read
excess data into a dummy area of RAM.)

Return Value
Always returns 1.

See also
CdDataSync(), CdDataCallback(), CdGetSector2()

CD/Streaming Library Functions 10-19

Run-Time Library Reference

CdGetSector2
Transfer sector buffer data to main memory (Non-blocking type).

Library Header File Introduced Documentation Date
libcd.lib libcd.h 4.0 12/14/98

Syntax
int CdGetSector2(
void *madr, Main memory address to which data is transferred
int size) Size of data to be transferred (long words)

Explanation
Transfers sector buffer data to main memory. Since the transfer is carried out in cycle steal mode (a DMA
mode that allows more sharing of the bus with other devices), an interrupt can be inserted within the
transfer. Because this function is non-blocking, transfer completion must be monitored by CdDataSync() or
CdDataCallback().

Furthermore, although an interrupt can be inserted during transfer in cycle steal mode, since a normal
program cannot use a data bus, if there is a command to access the memory through a bus, processing is
blocked at that point.

Data transfer in cycle steal mode takes longer than in block mode (the mode used by CdGetSector().

If less than a full sector is transferred during the callback, it is no longer necessary to issue dummy reads to
update the pointer to the next sector. (In previous versions of CdGetSector2() it was necessary to read
excess data into a dummy area of RAM.)

Return value
Always returns 1.

See also
CdDataCallback(), CdDataSync(), CdGetSector().

10-20 CD/Streaming Library Functions

Run-Time Library Reference

CdGetToc
Read CD-ROM table of contents information.

Library Header File Introduced Documentation Date
libcd.lib libcd.h 2.x 12/14/98

Syntax
int CdGetToc(
CdlLOC *loc) Pointer to location table

Explanation
Get starting position of each track on the CD-ROM disc.

The maximum number of tracks is 100.

Return value
Positive integer is a track number; anything else is an error.

See also
CdSearchFile()

CD/Streaming Library Functions 10-21

Run-Time Library Reference

CdInit
Initialize CD-ROM system.

Library Header File Introduced Documentation Date
libcd.lib libcd.h 2.x 12/14/98

Syntax
void CdInit(
CdInit mode) Reset mode (use 0)

Explanation
Resets the CD-ROM subsystem. The mode parameter is not used by current versions of the library and
should be set to 0.

When initialization fails, up to four retries are performed. Since CdInit() and CdReset() reset the SPU sound
volume and CD input volume to the SPU, etc., they must be called before libspu/libsnd initialization and
setting functions.

Return value
1 if initialization is successful; 0 on failure.

See also
CdReset()

10-22 CD/Streaming Library Functions

Run-Time Library Reference

CdIntstr
Get character string corresponding to command status code (for debugging).

Library Header File Introduced Documentation Date
libcd.lib libcd.h 2.x 12/14/98

Syntax
char *CdIntstr(
u_char intr) Processing status code

Explanation
For debugging. Get character string corresponding to processing status code intr. For debugging.

For example, CdlNoIntr returns "CdlNoIntr", and so on.

Return value
Pointer to start of character string

See also
CdComstr(), CdSetDebug()

CD/Streaming Library Functions 10-23

Run-Time Library Reference

CdIntToPos
Translate an absolute sector number to a minute/seconds/sector time code.

Library Header File Introduced Documentation Date
libcd.lib libcd.h 2.x 12/14/98

Syntax
CdlLOC *CdIntToPos(
int i, Absolute sector number
CdlLOC *p) Pointer to a CdlLOC structure that will be set to the position time code

Explanation
Calculate value for minute/second/sector from absolute sector number.

Return value
p

See also
CdPosToInt()

10-24 CD/Streaming Library Functions

Run-Time Library Reference

CdLastCom
Get last command issued by CDControl()/CDControlB()

Library Header File Introduced Documentation Date
libcd.lib libcd.h 3.2 12/14/98

Syntax
int CdLastCom(void)

Explanation
Returns the last command issued by CDControl()/CDControlB().

See Table 10–1 under CDControl() for a list of the commands.

Return Value
Last command.

See also
CdControl(), CdControlB()

CD/Streaming Library Functions 10-25

Run-Time Library Reference

CdLastPos
Get CD-ROM location most recently specified.

Library Header File Introduced Documentation Date
libcd.lib libcd.h 3.5 12/14/98

Syntax
CdlLOC *CdLastPos(void)

Explanation
Returns the latest location specified by one of the sub commands
CdlSetloc/CdlPlay/CdlSeekL/CdlSeekP/CdlRead/CdlReadS.

Return value
Pointer to the CdlLOC structure containing the CD-ROM location.

See also

10-26 CD/Streaming Library Functions

Run-Time Library Reference

CdMix
Set attenuation for CD audio.

Library Header File Introduced Documentation Date
libcd.lib libcd.h 2.x 12/14/98

Syntax
int CdMix(
CdlATV *vol) Pointer to attenuator volume

Explanation
Set audio volume value for CD audio (CD-DA, ADPCM).

Return value
1.

See also

CD/Streaming Library Functions 10-27

Run-Time Library Reference

CdMode
Get latest CD-ROM mode.

Library Header File Introduced Documentation Date
libcd.lib libcd.h 3.5 12/14/98

Syntax
int CdMode(void)

Explanation
Returns the latest CD-ROM mode set.

High speed since this function only refers to the status in the main memory. The mode buffer is updated
when a CdlSetMode command is issued and also when the mode is specified in the arguments as in
CdRead(), etc.

Table 10-4: CD Mode Settings

Symbol Code Details
CdlModeStream 0x100 Normal streaming
CdlModeStream2 0x120 SUB HEADER

information
includes

CdlModeSpeed 0x80 Transfer speed 0: Normal speed 1: Double speed
CdlModeRT 0x40 ADPCM play 0: ADPCM OFF 1: ADPCM ON
CdlModeSize1 0x20 Sector size 0: 2048 byte 1: 2340byte
CdlModeSize0 0x10 Sector size 0: — 1: 2328byte
CdlModeSF 0x08 Subheader filter 0: Off 1: On
CdlModeRept 0x04 Report mode 0: Off 1: On
CdlModeAP 0x02 Autopause 0: Off 1: On
CdlModeDA 0x01 CD-DA play 0: CD-DA off 1: CD-DA on

Return value
CD-ROM mode.

See also
CdRead()

10-28 CD/Streaming Library Functions

Run-Time Library Reference

CdPlay
Play CD-DA tracks.

Library Header File Introduced Documentation Date
libcd.lib libcd.h 3.5 12/14/98

Syntax
int CdPlay(
int mode, 0: Stops playing

1: Plays tracks in tracks array in the specified order. Stop at end.
2: Plays tracks in tracks array in the specified order. Repeat at end.
3: Returns an index of the array corresponding to the track currently
being played.

int *tracks, Pointer to array specifying the tracks to be played. Must end with 0.
int offset) Index of the tracks to be played.

Explanation
Plays multiple tracks specified by the array tracks in order. After playing the last track of the array, it repeats
or stops playing according to the mode specified.

All playing is done in units of tracks. Playing or stopping in the middle of a track is not allowed.

Return value
Index of the track currently being played (not the track number). -1 when it has already stopped playing.

See also

CD/Streaming Library Functions 10-29

Run-Time Library Reference

CdPosToInt
Translate time code to an absolute sector number.

Library Header File Introduced Documentation Date
libcd.lib libcd.h 2.x 12/14/98

Syntax
int CdPosToInt(
CdlLOC *p) Pointer to a CdlLOC structure containing the position time code

Explanation
Translates a minutes/seconds/sectors time code contained in a cdlLOC structure pointed to by the p
parameter into an absolute sector value.

Return value
Absolute sector number

See also
CdIntToPos()

10-30 CD/Streaming Library Functions

Run-Time Library Reference

CdRead
Read multiple sectors from the CD-ROM.

Library Header File Introduced Documentation Date
libcd.lib libcd.h 2.x 12/14/98

Syntax
int CdRead(
int sectors, Read sector count
u_long *buf, Pointer to read buffer
int mode) CD-ROM subsystem mode, as defined for CdlSetMode command of

CdControl()

Explanation
Reads one or more sectors of data from the CD-ROM to the specified buffer in memory. The starting
position for the read is the position last specified for CdlSetloc. Each CdRead() requires a separate
CdlSetloc command.

CdRead() is non-blocking. Check for completion using CdReadSync() or CdReadCallback(). CdRead() uses
CdReadyCallback() internally, so that function cannot be used with CdRead().

The return code from CdRead() only indicates if the command was issued successfully or not. For
information about CD-ROM errors which occur during reading, check the result array of CdReadSync().

Return value
1 if command issued successfully, otherwise 0.

See also
CdControl(), CdRead2(), CdReadSync(), CdReadCallback()

CD/Streaming Library Functions 10-31

Run-Time Library Reference

CdRead2
Start reading data from the CD-ROM.

Library Header File Introduced Documentation Date
libcd.lib libcd.h 2.x 12/14/98

Syntax
int CdRead2(
int mode) CD-ROM subsystem mode, as defined for CdlSetMode command of

CdControl()

Explanation
Seeks to the position specified by CdlSetloc and starts reading data into the internal sector buffer. Starts
streaming when the CdlModeStream flag is set in mode (see Table 10-4 for a list of modes). Starts ADPCM
audio play when the CdlModeRT flag is set in the mode parameter. CdlModeSpeed can be used for multi-
speed play.

This function must be used in conjunction with CdGetSector() to transfer data from the internal sector buffer
to the program’s desired destination buffer. CdGetSector() should be called to transfer data as soon as
either CdReady() or CdReadyCallback() return the CdlDataReady flag.

Return value
1 if command issued successfully, otherwise 0.

See also
CdControl(), CdRead(), CdGetSector(), CdReady(), CdReadyCallback()

10-32 CD/Streaming Library Functions

Run-Time Library Reference

CdReadBreak
Interrupt CdRead().

Library Header File Introduced Documentation Date
libcd.lib libcd.h 4.0 12/14/98

Syntax
void CdReadBreak(void)

Explanation
Used to interrupt CdRead(). Data which was read up until the interrupt is not secured.

Executing CdReadBreak() immediately after executing CdRead() (when 1 sector has not been read), can
cause an error.

See also
CdRead()

CD/Streaming Library Functions 10-33

Run-Time Library Reference

CdReadCallback
Define a callback function to be executed on completion of CdRead().

Library Header File Introduced Documentation Date
libcd.lib libcd.h 2.x 12/14/98

Syntax
u_long CdReadCallback(
void(*func) Pointer to callback function address
(int status, Return code of the CdReadSync()
u_char *result)) Pointer to an 8-byte array containing status and result information

Explanation
func defines the function to be called when CdRead() completes. If func is 0, callback does not occur. func
is passed two arguments:

• status is either CdlComplete or CdlDiskError, corresponding to the return code of CdReadSync().
• result is a pointer to an 8-byte array containing status and result information, corresponding to the

result argument of CdReadSync().

While func is executing, subsequent data transfer complete interrupts are masked. Therefore, func should
return as soon as the necessary processing is completed.

Return value
Address of previously set callback. Can be used to restore the previous callback when processing ends.

See also
CdRead(), CdReadSync()

10-34 CD/Streaming Library Functions

Run-Time Library Reference

CdReadExec
Load PlayStation-format executable program file from CD-ROM.

Library Header File Introduced Documentation Date
libcd.lib libcd.h 3.5 12/14/98

Syntax
struct EXEC *CdReadExec(
char *file) Pointer to executable file name

Explanation
Loads the executable program specified by file into main memory at the address specified by the program
file header. It is a blocking function.

After loading, the program can be executed as a child process using Exec(). The load address of the
executable file should not overlap with the region of its parent process.

Return value
Pointer to an EXEC structure that describes the loaded program.

See also

CD/Streaming Library Functions 10-35

Run-Time Library Reference

CdReadFile
Read a CD-ROM file.

Library Header File Introduced Documentation Date
libcd.lib libcd.h 3.5 12/14/98

Syntax
int CdReadFile(
char *file, Pointer to file name
u_long *addr, Pointer to main memory address to be read-in
int nbyte) Data size to be read-in

Explanation
Reads nbyte of the file on CD-ROM. nbyte must be a multiple of 2048; reads the entire file if nbyte is 0. file
must contain a full path specification. All lowercase letters are converted to uppercase. When file is NULL,
it starts reading from the next byte after the byte read by the last CdReadFile().

Although reading is performed in the background, because CdSearchFile() is called internally before reading
begins, it is blocked for that period. Use CdReadSync() to determine when reading is completed.

Return value
Number of bytes read, if successful. On error, returns 0.

See also
CdSearchFile(), CdReadSync()

10-36 CD/Streaming Library Functions

Run-Time Library Reference

CdReadSync
Check completion of CdRead() and related functions.

Library Header File Introduced Documentation Date
libcd.lib libcd.h 2.x 12/14/98

Syntax
int CdReadSync(
int mode, Await read completion
u_char *result) Pointer to status storage buffer of command most recently completed

Explanation
Checks the current status of a data read operation initiated by CdRead(), CdReadFile(), and related
functions. If mode is 0, the function waits for the operation to complete. If mode is 1, it returns the current
status immediately.

Return value
Number of sectors remaining. If operation completed, 0 is returned. On error, -1 is returned.

See also
CdRead(), CdReadSync()

CD/Streaming Library Functions 10-37

Run-Time Library Reference

CdReady
Wait for CD-ROM data to be ready.

Library Header File Introduced Documentation Date
libcd.lib libcd.h 2.x 12/14/98

Syntax
int CdReady(
int mode, Wait until data is prepared
u_char *result) Pointer to status storage buffer of command most recently completed.

Explanation
Used after a CD-ROM read is initiated using CdRead2(), CdControl (CdlReadS), or CdControl (CdlReadN)
to determine if there is data available in the sector buffer which is ready to be transferred using
CdGetSector().

If mode is 0, the function waits for the operation to complete. If mode is 1, it returns the current status
immediately.

Return value
Status can be one of the following:

CdlDataReady There is data available for transfer
CdlDiskError Error detected
CdlNoIntr No preparation-completed data

See also
CdReadyCallback(), CdRead2(), CdControl(), CdGetSector()

10-38 CD/Streaming Library Functions

Run-Time Library Reference

CdReadyCallback
Define CdReady callback function.

Library Header File Introduced Documentation Date
libcd.lib libcd.h 2.x 12/14/98

Syntax
u_long CdReadyCallback(
void(*func) Pointer to callback function address
(int status, Processing status of read command
u_char *result)) Pointer to an 8-byte array containing status and result information

Explanation
Defines a callback routine func to be executed when data is available in the sector buffer following a CD-
ROM read initiated using CdRead2(), CdControl (CdlReadS) or CdControl (CdlReadN). If func is NULL, any
previous callback routine is disabled.

func is passed two arguments:

• status is either CdlComplete or CdlDiskError, corresponding to the return code of CdSync() (although
CdSync() is not called).

• result is a pointer to an 8-byte array containing status and result information, corresponding to the
result argument of CdSync().

While func is executing, subsequent data available interrupts are masked. Therefore func should return as
soon as the necessary processing is completed.

Return value
Address of previously set callback. Can be used to restored the previous callback.

See also
CdReady(), CdRead2(), CdControl(), CdSync()

CD/Streaming Library Functions 10-39

Run-Time Library Reference

CdReset
Initialize CD-ROM subsystem.

Library Header File Introduced Documentation Date
libcd.lib libcd.h 2.x 12/14/98

Syntax
int CdReset(
int mode) Reset mode

Explanation
Initializes the CD-ROM subsystem. Lower-level alternative to CdInit().

Unlike CdInit(), this function does not initialize the event environment related to CD-ROM.

mode can be:

• 0: Initialization of CD subsystem only (volume settings specified in previous sound libraries are saved)
• 1: Initialization of CD subsystem and CD audio volume (CD-DA, ADPCM)

No retry is carried out. Since CdInit() and CdReset() reset the SPU sound volume and CD input volume to
the SPU, etc., they must be called before libspu/libsnd initialization and setting functions.

Return value
1 if initialization successful; 0 if unsuccessful.

See also
CdInit()

10-40 CD/Streaming Library Functions

Run-Time Library Reference

CdSearchFile
Get location and size from CD-ROM file name.

Library Header File Introduced Documentation Date
libcd.lib libcd.h 2.x 12/14/98

Syntax
CdlFILE *CdSearchFile(
CdlFILE *fp, Pointer to CD-ROM file structure pointer
char *name) Pointer to a file name

Explanation
Determines the position time code (minutes, seconds, sectors) and total length of the specified file on the
CD-ROM. The result is stored in the CdlFILE structure pointed to by fp.

name must be a complete path to the file.

CdSearchFile() caches directory information, so subsequent consecutive calls for files in the same directory
do not require additional CD-ROM reads. Only one directory is cached at a time, and reading information
for a file in another directory invalidates the entire cache.

For the best possible performance, include file location and size information in your program at compile
time instead of using CdSearchFile().

Return value
Pointer to the CD-ROM file structure obtained; 0 if file not found.

See also

CD/Streaming Library Functions 10-41

Run-Time Library Reference

CdSetDebug
Set debug level.

Library Header File Introduced Documentation Date
libcd.lib libcd.h 2.x 12/14/98

Syntax
int CdSetDebug(
int level) Debug level

Explanation
Set debug level for CD-ROM subsystem. The possible values of level are:

0: No checks performed
1: Check primitive commands
2: Print execution status of primitive

commands

Return value
Previously set debug mode

See also

10-42 CD/Streaming Library Functions

Run-Time Library Reference

CdStatus
Get latest CD-ROM status.

Library Header File Introduced Documentation Date
libcd.lib libcd.h 3.0 12/14/98

Syntax
int CdStatus(void)

Explanation
Obtains the latest reported CD-ROM status.

This function operates at high speed because it simply returns the status code maintained by the CD-ROM
system. The status buffer is updated whenever a CD-ROM command is issued. To explicitly obtain the
absolute most current status, issue a CdControl(CdlNop) command immediately before your CdStatus()
call.

Return value
CD-ROM Status.

See also

CD/Streaming Library Functions 10-43

Run-Time Library Reference

CdSync
Wait for or check completion of CD-ROM command.

Library Header File Introduced Documentation Date
libcd.lib libcd.h 2.x 12/14/98

Syntax
int CdSync(
int mode, Waits for command termination
u_char *result) Pointer to status storage buffer of command most recently completed.

Explanation
If mode is 0, waits for command termination and returns. If mode is 1, determines current status and
promptly returns.

Return value
Command execution status is indicated by the following values:

CdlComplete: Command complete
CdlDiskError: Error detected
CdlNoIntr: Command is being executed

See also
CdSyncCallback()

10-44 CD/Streaming Library Functions

Run-Time Library Reference

CdSyncCallback
Define CdSync callback function.

Library Header File Introduced Documentation Date
libcd.lib libcd.h 2.x 12/14/98

Syntax
u_long CdSyncCallback(
void(*func) Callback function address
(int status, Return code of CdSync()
u_char *result)) Pointer to an 8-byte array containing status and result information

Explanation
Defines a callback routine func to be executed when a CdControl() command is completed. If func is NULL,
any previous callback routine is disabled.

func is passed two arguments:

• status is either CdlComplete or CdlDiskError, corresponding to the return code of CdSync().
• result is a pointer to an 8-byte array containing status and result information, corresponding to the

result argument of CdSync().

While func is executing, subsequent CD-ROM command complete interrupts are masked. Therefore, func
should return as soon as the necessary processing is completed.

Return value
Address of previously set callback. Can be used to restore previous callback.

See also
CdSync()

CD/Streaming Library Functions 10-45

Run-Time Library Reference

StCdInterrupt
Handler for interrupts from CD-ROM (internal function).

Library Header File Introduced Documentation Date
libcd.lib libcd.h 2.x 12/14/98

Syntax
void StCdInterrupt(void)

Explanation
Used as the CdReadyCallback routine by StSetStream() and StSetEmulate(). It transfers sectors from the
CD controller to the streaming ring buffer as they become available. This function does not need to be
called directly by the user when playing movies in 16-bit mode.

When playing a movie in 24-bit mode, there is a potential hardware conflict between the CD subsystem
and the MDEC image decompression system which can result in corrupted data. To avoid this,
StCdInterrupt() may defer transferring a sector and instead set a flag variable called StCdInterFlag to
indicate that a CD sector is ready to be transferred. Once the MDEC is finished transferring data, your
application should check StCdIntrFlag and call StCdInterrupt() directly if it is set. Please see the Sony
sample code for movie playback for examples of the proper workaround.

See also
CdGetSector(), DsGetSector()

10-46 CD/Streaming Library Functions

Run-Time Library Reference

StClearRing
Flush ring buffer.

Library Header File Introduced Documentation Date
libcd.lib libcd.h 2.x 12/14/98

Syntax
void StClearRing(void)

Explanation
Flush ring buffer. Flushing the ring buffer when jumping tracks is effective in preventing excess frames from
showing up.

See also

CD/Streaming Library Functions 10-47

Run-Time Library Reference

StFreeRing
Release ring buffer.

Library Header File Introduced Documentation Date
libcd.lib libcd.h 2.x 12/14/98

Syntax
u_long StFreeRing(
u_long *base) Pointer to starting address of user data area of released 1 frame

Explanation
The area obtained by StGetNext() is locked. StFreeRing() releases this locked region. The released region is
the region for one frame's worth of data which is used as the base for the starting address of the user
region. Linked sector header regions are also released.

If a region locked by StGetNext() is not released when its use ends, the ring buffer will overflow and
streaming will come to a halt.

Return value
0 if release succeeded; 1 if release failed (for example, trying to release something that wasn’t locked).

See also

10-48 CD/Streaming Library Functions

Run-Time Library Reference

StGetBackloc
Return location and ID of first frame in the ring buffer in order to avoid any frame skip.

Library Header File Introduced Documentation Date
libcd.lib libcd.h 3.5 12/14/98

Syntax
int StGetBackloc(
CdlLOC *loc) Pointer to latest location of the first frame.

(use DslLOC *loc when using libds)

Explanation
Returns the latest location information and ID of the first frame in the current ring buffer.

The location information is used as the access target value in order to avoid frame skip due to ring buffer
overflow. The frame skip due to ring buffer overflow can be avoided by re-accessing the frame location
obtained by this function. This function is not appropriate for data with XA audio since it requires data
access.

Please refer to \psx\sample\cd\movie\tuto3.c for usage example.

This function is valid only for CdlModeStream2 mode.

Return value
Frame ID that should be used on restart of streaming. -1 for error indicating non-StModeStream2 mode.

See also

CD/Streaming Library Functions 10-49

Run-Time Library Reference

StGetNext
Get one frame of ring buffer data.

Library Header File Introduced Documentation Date
libcd.lib libcd.h 2.x 12/14/98

Syntax
u_long StGetNext(
u_long *addr, Pointer to starting address of user data region for 1 frame of

retrieved data
u_long *header) Pointer to starting address of sector header region for 1 frame of

retrieved data

Explanation
Gets one frame of ring buffer data. If the next frame of data is ready in the ring buffer, the starting address
of the user data and the sector header are stored in addr and header respectively.

The region the data is taken from is locked until StFreeRing() is called, so it cannot be destroyed by new
data.

The data region has a contiguous address and the ring buffer does not loop in mid-frame.

Return value
0, if a frame of data is taken from the ring buffer. If it is not ready, 1 is returned.

See also
StGetNextS(), StFreeRing()

10-50 CD/Streaming Library Functions

Run-Time Library Reference

StGetNextS
Get one frame of ring buffer data from memory.

Library Header File Introduced Documentation Date
libcd.lib libcd.h 3.5 12/14/98

Syntax
u_long StGetNext(
u_long *addr, Pointer to user data region starting address for 1 frame of retrieved

data
u_long *header) Pointer to sector header region starting address for 1 frame of

retrieved data

Explanation
Gets one frame of ring buffer data. The starting addresses and the sector header are stored in addr and
header respectively.

Return value
0, when one frame of data is taken from the ring buffer.

See also
StGetNext()

CD/Streaming Library Functions 10-51

Run-Time Library Reference

StNextStatus
Return status of the next frame.

Library Header File Introduced Documentation Date
libcd.lib libcd.h 3.5 12/14/98

Syntax
u_long StNextStatus(
u_long *addr, Pointer to starting address of the user data region for 1 frame of retrieved

data
u_long *header) Pointer to starting address of sector header region for 1 frame of

retrieved data

Explanation
Obtains the status of the next frame of ring buffer data. The internal state is not affected by calling this
function.

Return value
Status can be:

StFREE Next frame is not in the ring buffer.
StCOMPLETE Next frame is completely read into the ring

buffer.
StBUSY Next frame is being read into the ring

buffer.
StLOCK Next frame is being processed; i.e. one

frame is obtained by calling StGetNext()
but StFreeRing() has not been called.

See also

10-52 CD/Streaming Library Functions

Run-Time Library Reference

StRingStatus
Return status of ring buffer.

Library Header File Introduced Documentation Date
libcd.lib libcd.h 3.5 12/14/98

Syntax
void StRingStatus(
short *free_sectors, Pointer to the number of free sectors on the ring buffer.
short *over_sectors) Pointer to the difference between the sector positions of CD-ROM data

read in and the sector positions currently being processed.

Explanation
Reports the ring buffer status with two variables specified as arguments:

• free_sectors is the number of sectors with no data in the unused area of the ring buffer. The larger
free_sectors is, the more free space in the ring buffer.

• over_sectors is the difference between the sector positions for CD-ROM data read in and the sector
positions currently being processed. The larger over_sectors is, the more unprocessed data in the ring
buffer.

The sum of free_sectors and over_sectors and the total ring buffer size is nearly equal. The reason for not
having an exact match in size is that when one frame cannot fit in completely close to the end, rewind
occurs.

Frame skip caused by insufficient free space in the ring buffer can be detected by calling this function.

See also

CD/Streaming Library Functions 10-53

Run-Time Library Reference

StSetChannel
Set streaming channel.

Library Header File Introduced Documentation Date
libcd.lib libcd.h 2.x 12/14/98

Syntax
int StSetChannel(
u_long ch) Playback channel

Explanation
Sets streaming playback channel to ch (0-31). The channel stores the STR data at the authoring level.

Return value
0 if the channel is set; 1 otherwise.

See also

10-54 CD/Streaming Library Functions

Run-Time Library Reference

StSetEmulate
Set parameters for streaming emulation.

Library Header File Introduced Documentation Date
libcd.lib libcd.h 2.x 12/14/98

Syntax
void StStartEmulate(
u_long *addr, Pointer to emulation data starting address
u_long loc, Set color mode
u_long start_frame, Streaming start frame
u_long end_frame; Streaming end frame
void (*func1)(), Address of function called back for each frame of data. If 0, no callback

occurs.
void (*func2)()) Address of function called back when streaming ends. If 0, no callback

occurs.

Explanation
Sets parameters for streaming emulation. Emulation means that CD-ROM data is put into memory in
advance and data streaming is performed from memory, not from the CD-ROM, which provides only data-
ready timing. In streaming emulation, play time is limited to a few seconds because of limits in memory
capacity. Still, emulation is easier than using a CD-ROM emulator.

STR-format data needs to be loaded to addr in advance. See StSetStream() for details on other arguments.
(loc is the same as mode.)

See also
StSetStream()

CD/Streaming Library Functions 10-55

Run-Time Library Reference

StSetMask
Control the playing of streaming.

Library Header File Introduced Documentation Date
libcd.lib libcd.h 2.x 12/14/98

Syntax
void StSetMask(
u_long mask, Streaming play on/off
u_long start, StSetStream() start_frame
u_long end) StSetStream() end_frame

Explanation
Turns streaming play ON/OFF. There is no mechanical timing lag compared to CD-ROM drive pause and
playback, and instant ON/OFF is possible.

mask is 0 for Play, and 1 for Pause.

Resets start and end of StSetStream() trigger frame values.

See also
StSetStream()

10-56 CD/Streaming Library Functions

Run-Time Library Reference

StSetRing
Set ring buffer.

Library Header File Introduced Documentation Date
libcd.lib libcd.h 2.x 12/14/98

Syntax
void StSetRing(
u_long *ring_addr, Pointer to ring buffer starting address
u_long ring_size) Ring buffer size (in sectors)

Explanation
Secures a ring buffer of a size specified by ring_size from an address specified by ring_addr. To use the
Streaming Library, you must first call this function.

Because only form-1 CD-ROM sectors are supported at present, one sector of data area is 2048 bytes.

See also
StUnSetRing()

CD/Streaming Library Functions 10-57

Run-Time Library Reference

StSetStream
Set streaming parameters.

Library Header File Introduced Documentation Date
libcd.lib libcd.h 2.x 12/14/98

Syntax
void StSetStream(
u_long mode, Set color mode
u_long start_frame, Frame to start streaming
u_long end_frame, Frame to end streaming
void (*func1)(), Address of function called back for each frame of data. If 0, no callback

occurs.
void (*func2)()) Address of function called back when streaming ends. If 0, no callback

occurs.

Explanation
Sets streaming parameters. Argument are as follows:

• mode sets color mode. 0 = 16-bit mode; 1 = 24-bit mode.
• start_frame specifies the frame number (stored in STR data) that starts streaming. Streaming doesn’t

begin until this frame is reached. If you want to play the data starting in the middle, you must specify an
appropriate frame number. When you specify 0, streaming commences no matter what the frame
number is.

• end_frame specifies the frame number (stored in STR data) that ends streaming. Streaming ends when
this frame is reached. If you specify a number large enough, it plays the CD-ROM data to the end and
terminates. When you specify 0, all the data is stored in the ring buffer and the function automatically
terminates. This takes a large ring buffer, and the function is successful when streaming is from
memory.

• func1 is the address of the callback function called when one frame’s worth of data is generated.
• func2 is the address of the callback function called when streaming is completed.

To correctly exit from a streaming application, the end of streaming should not be set by end_frame. Set
end_frame to 0xffffffff, and code an appropriate endpoint from within the loop.

See also

10-58 CD/Streaming Library Functions

Run-Time Library Reference

StUnSetRing
Release interrupt used by streaming library.

Library Header File Introduced Documentation Date
libcd.lib libcd.h 2.x 12/14/98

Syntax
void StUnSetRing(void)

Explanation
Release two interrupt functions CdDataCallback() and CdReadyCallback() hooked by
CDRead2(CdlModeStream) and return to initial state.

If the streaming library is not used when streaming ends and control transfers to another program, the
interrupt hooks which call this function need to be returned to the initial state.

It is necessary to link libds when using this function.

See also
StSetRing(), StSetStream()

Run-Time Library Reference

Chapter 11: Extended CD-ROM Library
Table of Contents

Structures
DslATV 11-3
DslFILE 11-4
DslFILTER 11-5
DslLOC 11-6

Functions
DsClose 11-7
DsCommand 11-8
DsComstr 11-9
DsControl 11-10
DsControlB 11-11
DsControlF 11-12
DsDataCallback 11-13
DsDataSync 11-14
DsEndReadySystem 11-15
DsFlush 11-16
DsGetDiskType 11-17
DsGetSector 11-18
DsGetSector2 11-19
DsGetToc 11-20
DsInit 11-21
DsInstr 11-22
DsIntToPos 11-23
DsLastCom 11-24
DsLastPos 11-25
DsMix 11-26
DsPacket 11-27
DsPlay 11-28
DsPosToInt 11-29
DsQueueLen 11-30
DsRead 11-31
DsRead2 11-32
DsReadBreak 11-33
DsReadCallback 11-34
DsReadExec 11-35
DsReadFile 11-36
DsReadSync 11-37
DsReady 11-38
DsReadyCallback 11-39
DsReadySystemMode 11-40
DsReset 11-41
DsSearchFile 11-42
DsSetDebug 11-43
DsShellOpen 11-44
DsStartReadySystem 11-45
DsStatus 11-46
DsSync 11-47
DsSyncCallback 11-48
DsSystemStatus 11-49

11-2

Run-Time Library Reference

Extended CD-ROM Library Structures 11-3

Run-Time Library Reference

Structures

DslATV
Audio attenuator.

Library Header File Introduced Documentation Date
libds.lib libds.h 4.0 12/14/98

Structure
typedef struct {

u_char val0; CD (L) -> SPU (L) attenuation
u_char val1; CD (L) -> SPU (R) attenuation
u_char val2; CD (R) -> SPU (R) attenuation
u_char val3; CD (R) -> SPU (L) attenuation

} DslATV;

Explanation
Structure for setting the CD volume (CD-DA and CD-XA).

The values for val0 - val3 can range from 0 to 128. For standard stereo volume adjustments,

val0 is set to the L channel volume
val1 is set to 0
val2 is set to the R channel volume
val3 is set to 0

See also

11-4 Extended CD-ROM Library Structures

Run-Time Library Reference

DslFILE
9660 file descriptor.

Library Header File Introduced Documentation Date
libds.lib libds.h 4.0 12/14/98

Structure
typedef struct {

DslLOC pos; File position
u_long size; File size (in bytes)
char name[16]; Filename

} DslFILE;

Explanation
Stores the position and size of a type 9660 CD-ROM.

See also

Extended CD-ROM Library Structures 11-5

Run-Time Library Reference

DslFILTER
ADPCM channel.

Library Header File Introduced Documentation Date
libds.lib libds.h 4.0 12/14/98

Structure
typedef struct {

u_char file; File number
u_char chan; Channel number
u_short pad; Reserved for system use

} DslFILTER;

Explanation
Specifies the ADPCM sector channel to be played back.

See also

11-6 Extended CD-ROM Library Structures

Run-Time Library Reference

DslLOC
CD-ROM location.

Library Header File Introduced Documentation Date
libds.lib libds.h 4.0 12/14/98

Structure
typedef struct {

u_char minute; Minutes
u_char second; Seconds
u_char sector; Sectors
u_char track; Track number (currently unused)

} DslLOC;

Explanation
Specifies the CD-ROM position. Each element is specified using BCD

See also

Extended CD-ROM Library Functions 11-7

Run-Time Library Reference

Functions

DsClose
Close the libds system.

Library Header File Introduced Documentation Date
libds.lib libds.h 4.0 12/14/98

Syntax
void DsClose(void)

Explanation
Closes the libds system, resets the libds kernel state machine, and detaches the callback function which
controls the libds kernel that has been forked in the system.

This function must be called whenever control is passed to a child process, LoadExec() is performed, or
when CD control functions outside of libds are used. Call DsInit() to reopen libds.

See also
DsInit()

11-8 Extended CD-ROM Library Functions

Run-Time Library Reference

DsCommand
Add primitive command to the command queue.

Library Header File Introduced Documentation Date
libds.lib libds.h 4.0 12/14/98

Syntax
int DsCommand(
u_char com, Command code
u_char *param, Pointer to argument for command (u_char[4])
DslCB cbsync, Pointer to callback function
int count) Number of retries (0: no retries, -1: unlimited retries)

Explanation
Adds a command to the queue to be performed in the background. If execution of the command fails, it is
retried count times. An error is returned if the command failed to complete after it was retried.

Separate callback functions can be set for each command. The callback triggers when the command
completes (or returns an error). The execution status of a command can be obtained with DsSync().

Return value
The command ID (>0) if the command issued successfully, otherwise 0.

See also
DsSync()

Extended CD-ROM Library Functions 11-9

Run-Time Library Reference

DsComstr
Get the character string corresponding to each command code (for debugging)

Library Header File Introduced Documentation Date
libds.lib libds.h 4.3 12/14/98

Syntax
char *DsComstr(
u_char com)

Command completion code

Explanation
Gets the corresponding character string from the process status code (used for debugging). For example,
DslNop returns “DslNop”, DslSetloc returns “DslSetLoc”, and so forth.

Return value
Pointer to start of character string.

See also
DsInit()

11-10 Extended CD-ROM Library Functions

Run-Time Library Reference

DsControl
CdControl() compatibility function.

Library Header File Introduced Documentation Date
libds.lib libds.h 4.0 12/14/98

Syntax
int DsControl(
u_char com, Command code
u_char *param, Pointer to arguments for command (u_char[4])
u_char *result) Pointer to storage for the return value (u_char[8])

Explanation
Provides the same interface as CdControl(). Unlike CdControl(), however, the command is handled such
that the function blocks until the end of the operation, even if the command itself is non-blocking.

Return value
1: Execution of command was successful. 0: Execution of command failed.

See also
CdControl() (see libcd), DsControlB(), DsControlF()

Extended CD-ROM Library Functions 11-11

Run-Time Library Reference

DsControlB
CdControlB() compatibility function.

Library Header File Introduced Documentation Date
libds.lib libds.h 4.0 12/14/98

Syntax
int DsControlB(
u_char com, Command code
u_char *param, Arguments for command (u_char[4])
u_char *result) Return value for command (u_char[8])

Explanation
Provides the same interface as CdControlB(). The actual timing differs somewhat since the command
queue is used.

Return value
1: Execution of command was successful. 0: Execution of command failed

See also
CdControlB() (see libcd), DsControl(), DsControlF()

11-12 Extended CD-ROM Library Functions

Run-Time Library Reference

DsControlF
CdControlF() compatibility function.

Library Header File Introduced Documentation Date
libds.lib libds.h 4.0 12/14/98

Syntax
int DsControlF(
u_char com, Command code
u_char *param) Pointer to arguments for command (u_char[4])

Explanation
Provides the same interface as CdControlF() except for a few differences such as timing.

Internally, the specified command is simply added to the command queue. Note that the command ID is
provided in the return value.

CdControlF() waits for the previous command to complete execution before issuing the new command.
DsControlF(), on the other hand, adds the new command to the queue if the previous command has not
completed execution.

Return value
The command ID (>0) if the command was successfully added to the queue; 0 otherwise.

See also
CdControlF() (see libcd), DsControl(), DsControlB()

Extended CD-ROM Library Functions 11-13

Run-Time Library Reference

DsDataCallback
Set exit callback for DsGetSector() and DsGetSector2().

Library Header File Introduced Documentation Date
libds.lib libds.h 4.0 12/14/98

Syntax
void (*DsDataCallback(
void(*func)())) Pointer to callback function

Explanation
Defines func as the callback to be executed on completion of a read operation initiated by DsGetSector() or
DsGetSector2(). No callback is generated when func is set to 0.

This callback is really only useful with DsSector2(), since the transfer of data is finished when DsGetSector()
exits.

Return value
Pointer to previous callback.

See also
DsGetSector(), DsGetSector2(), DsDataSync()

11-14 Extended CD-ROM Library Functions

Run-Time Library Reference

DsDataSync
Wait for completion of DsGetSector2.

Library Header File Introduced Documentation Date
libds.lib libds.h 4.0 12/14/98

Syntax
int DsDataSync(
int mode) 0: Wait for end of transfer

1: Check current status and return immediately

Explanation
Waits for the transfer performed by DsGetSector2() to complete.

Return value
1: transfer is in progress. 0: transfer is complete

See also
DsGetSector(), DsGetSector2(), DsDataCallback()

Extended CD-ROM Library Functions 11-15

Run-Time Library Reference

DsEndReadySystem
End simple callback system.

Library Header File Introduced Documentation Date
libds.lib libds.h 4.0 12/14/98

Syntax
void DsEndReadySystem(void)

Explanation
Ends simple callback system.

This function is executed within the callback function provided to DsStartReadySystem().

See also
DsStartReadySystem()

11-16 Extended CD-ROM Library Functions

Run-Time Library Reference

DsFlush
Flush the command queue.

Library Header File Introduced Documentation Date
libds.lib libds.h 4.0 12/14/98

Syntax
void DsFlush(void)

Explanation
All commands that have been entered in the command queue are flushed. Currently executing commands
are allowed to complete, but the results are not saved and callbacks are not invoked.

If a command is executing when this function is called, it is allowed to complete. Subsequent commands
are put into a new queue.

See also

Extended CD-ROM Library Functions 11-17

Run-Time Library Reference

DsGetDiskType
Get CD type.

Library Header File Introduced Documentation Date
libds.lib libds.h 4.0 12/14/98

Syntax
int DsGetDiskType(void)

Explanation
Gets the type of CD currently installed: either a PlayStation (black) or non-PlayStation disk.

This function blocks until the system status (the status obtained from DsSystemStatus()) changes to
DslReady.

The debugging station recognizes ISO9660 CDs (including CD-Rs) as type DslCdromFormat.

This function does not operate properly on the DTL-H2000.

Return value
DslCdromFormat PlayStation disk
DslOtherFormat Any other type of CD
DslStatNoDisk CD is not installed
DslStatShellOpen CD cover is open

See also

11-18 Extended CD-ROM Library Functions

Run-Time Library Reference

DsGetSector
Transfer data from the sector buffer to main memory.

Library Header File Introduced Documentation Date
libds.lib libds.h 4.0 12/14/98

Syntax
int DsGetSector(
void *madr, Pointer to destination area in main memory
int size) Transfer size (long word)

Explanation
Data is transferred from the sector buffer to the storage area in main memory pointed to by madr.

This function blocks until the end of the transfer operation.

The sector size varies according to the mode.

The data from the sector buffer can be transferred to memory over a number of iterations. The sector data
in the buffer must be transferred to memory before it is overwritten by data from the next sector.

The transfer is complete when the function returns.

Return value
Always returns 1.

See also
DsDataCallback(), DsDataSync(), DsGetSector2()

Extended CD-ROM Library Functions 11-19

Run-Time Library Reference

DsGetSector2
Transfer data from the sector buffer to main memory (non-blocking).

Library Header File Introduced Documentation Date
libds.lib libds.h 4.0 12/14/98

Syntax
int DsGetSector2(
void *madr, Pointer to destination area in main memory
int size) Transfer size (long word)

Explanation
Data is transferred from the sector buffer to the storage area in main memory pointed to by madr.

The transfer is performed in cycle-stealing mode so interrupts may be received during the transfer.

Since DsGetSector2() is a non-blocking function that can return after the transfer starts, the completion of
transfer must be determined using DsDataSync() or DsDataCallback().

Receiving interrupts and accessing memory from the CPU are possible even during transfers in cycle-
stealing mode. However, other DMA’s are blocked until the transfer is completed.

Data transfers in cycle-stealing mode are more time-consuming compared to those in blocking mode (the
mode used by DsGetSector()).

Return value
Always returns 1.

See also
DsDataCallback(), DsDataSync(), DsGetSector()

11-20 Extended CD-ROM Library Functions

Run-Time Library Reference

DsGetToc
TOC read.

Library Header File Introduced Documentation Date
libds.lib libds.h 4.1 12/14/98

Syntax
int DsGetToc(
DslLOC *loc) Location table

Explanation
The starting position of each track on the CD-ROM is obtained.

The largest track number is 100.

Return value
Positive integer: track number; Other values: error

See also

Extended CD-ROM Library Functions 11-21

Run-Time Library Reference

DsInit
Perform system initialization.

Library Header File Introduced Documentation Date
libds.lib libds.h 4.0 12/14/98

Syntax
int DsInit(void)

Explanation
Initializes the libds system.

DsInit() needs to be called just once at the beginning of a program or when restarting a system that was
stopped with DsClose().

Calling DsInit() in the middle of a program may cause improper operation. DsReset() should be used if
initialization needs to be performed in the middle of a program.

Because DsInit() resets the SPU sound volume and the CD input volume to SPU, etc., it should either be
called before libspu and libsnd initialization/setting functions or they should be reset after DsInit() is called.

Return value
1 if successful; 0 if the operation failed.

See also
DsClose(), DsReset()

11-22 Extended CD-ROM Library Functions

Run-Time Library Reference

DsInstr
Get the corresponding character string for the command process status (for debugging).

Library Header File Introduced Documentation Date
libds.lib libds.h 4.3 12/14/98

Syntax
char * DsIntStr(
u_char intr)

Execution status code

Explanation
For debugging. Gets the corresponding character string from the process status code.

Table 11-1

Process status Character string
DslNoIntr ”NoIntr”
DslComplete “Complete”
DslDiskError “Disk Error”

Return value
Pointer to start of character string.

See also
DsComstr(), DsSetDebug()

Extended CD-ROM Library Functions 11-23

Run-Time Library Reference

DsIntToPos
Get minutes, seconds, sectors from absolute sector number.

Library Header File Introduced Documentation Date
libds.lib libds.h 4.0 12/14/98

Syntax
DslLOC *DsIntToPos(
int i, Absolute sector number
DslLOC *p) Pointer to buffer for storing result

Explanation
The absolute sector number specified by i is converted to minutes, seconds, and sectors and the result is
stored in the DslLOC structure pointed to by p.

Return value
Pointer to result buffer

See also
DsPosToInt()

11-24 Extended CD-ROM Library Functions

Run-Time Library Reference

DsLastCom
Get the command issued last.

Library Header File Introduced Documentation Date
libds.lib libds.h 4.3 12/14/98

Syntax
u_char DsLastCom (void)

Explanation
Returns the primitive command code issued last.

Return value
Primitive command code

See also
DsControl()

Extended CD-ROM Library Functions 11-25

Run-Time Library Reference

DsLastPos
Get the last setloc position.

Library Header File Introduced Documentation Date
libds.lib libds.h 4.0 12/14/98

Syntax
DslLOC *DsLastPos(
DslLOC *p) Pointer to buffer in which position is stored

Explanation
The last setloc position is obtained and the result is stored in the DslLOC structure pointed to by p.

Return value
Pointer to result buffer

See also
DslLOC()

11-26 Extended CD-ROM Library Functions

Run-Time Library Reference

DsMix
Set attenuator.

Library Header File Introduced Documentation Date
libds.lib libds.h 4.0 12/14/98

Syntax
int DsMix(
DslATV *vol) Attenuator volume

Explanation
The CD audio volume (CD-DA/ADPCM) is set to the value in the DslATV structure pointed to by vol.

Return value
1.

See also

Extended CD-ROM Library Functions 11-27

Run-Time Library Reference

DsPacket
Add a sequence of commands to the queue.

Library Header File Introduced Documentation Date
libds.lib libds.h 4.0 12/14/98

Syntax
int DsPacket(
u_char mode, Operating mode
DslLOC *pos, Pointer to DslLOC structure specifying target position
u_char com, Last command to be executed
DslCB *cbsync, Callback function to be triggered when all the commands have been

executed
int count) Retry count (0: no retries, -1: unlimited retries)

Explanation
Adds a sequence of commands that perform a data read (playback) to the queue.

The commands added to the queue are: DslPause; DslSetmode mode; DslSetloc pos; com.

The commands that can be specified for com are: DslPlay, DslReadN, DslReadS, DslSeekP, or DslSeekL.
If com is DslPlay, DslReadN, or DslReadS, execution is performed up to and including the data read
(playback). If com is DslSeekP or DslSeekL, the seek is performed and the system enters a pause state.

If any command in the sequence generates an error, a retry is performed starting with the first command,
up to a maximum of count times (or unlimited times if count=-1). An error is generated if the operation is
not successful after count retries.

DsSync() can be used to obtain the execution status. When all the commands in the sequence are
successful or if an error is generated, the callback function cbsync is triggered.

An error is generated if the queue does not have enough space for the command sequence.

Return value
The command ID (>0) if the command was added to the queue; 0 if the command failed.

See also
DsCommand(), DsQueueLen()

11-28 Extended CD-ROM Library Functions

Run-Time Library Reference

DsPlay
Play back CD-DA tracks.

Library Header File Introduced Documentation Date
libds.lib libds.h 4.0 12/14/98

Syntax
int DsPlay(
int mode, Mode
int *tracks, Pointer to array specifying the tracks to be played back; the last element

of the array must be 0.
int offset) Index for track to begin playback

Explanation
The tracks specified by the tracks array are played in sequence in the background.

When the final track in the series is done, playback is repeated or is stopped, depending on mode. The
values available for mode are shown below.

Table 11-2

Mode Description
0 Stop playback
1 Play back the tracks in sequence; then stop playback.
2 Play back the tracks in sequence; then repeat from beginning.
3 Return the index of the track currently being played

Playback is performed in increments of tracks. Playback cannot start or stop in the middle of a track.

Return value
The track currently being played (the index in the tracks array rather than the absolute track number).

-1 means that all tracks have finished playing.

See also

Extended CD-ROM Library Functions 11-29

Run-Time Library Reference

DsPosToInt
Get absolute sector number from minutes, seconds, sectors.

Library Header File Introduced Documentation Date
libds.lib libds.h 4.0 12/14/98

Syntax
int DsPosToInt(
DslLOC *p) Pointer to DslLoc structure containing minutes, seconds, sectors

Explanation
Calculates the absolute sector number from the minutes, seconds, and sectors in the DslLOC structure
pointed to by p.

Return value
The absolute sector number.

See also
DsIntToPos()

11-30 Extended CD-ROM Library Functions

Run-Time Library Reference

DsQueueLen
Get the number of commands stored in the command queue.

Library Header File Introduced Documentation Date
libds.lib libds.h 4.0 12/14/98

Syntax
int DsQueueLen(void)

Explanation
Obtains the number of primitive commands stored in the command queue.

The commands issued by DsPacket() are not removed from the queue until they all successfully complete.
Therefore the number of commands returned by DsQueueLen() remains unchanged during execution of the
packet.

The currently executing command is considered to be in the queue. The maximum number of commands
that the queue can hold is defined by the DslMaxCOMMANDS macro constant.

Return value
Number of commands in queue.

See also
DsPacket()

Extended CD-ROM Library Functions 11-31

Run-Time Library Reference

DsRead
Read data.

Library Header File Introduced Documentation Date
libds.lib libds.h 4.0 12/14/98

Syntax
int DsRead(
DslLOC *pos, Pointer to DslLOC structure specifying starting position of CD
int sectors, Number of sectors to read
u_long *buf, Pointer to buffer to store read data
int mod) Operating mode to be used when data is being read

Explanation
Reads CD data starting at the location specified by the DslLOC structure pointed to by p. The data is
stored in the buffer pointed to by buf.

The operation is performed in sectors, so the size of buf must be a multiple of 1 sector=2048 bytes (512
words).

Reading is performed in the background after DsRead() has executed and exited. Successful execution of
the function does not indicate that the data has been successfully read.

Note: The arguments are different from CdRead(). With DsRead(), the starting position of the data must be
specified.

Return value
Positive integer: the id of the packet that was issued within the function, if execution was successful.
0: function execution failed.

See also
DsReadBreak(), DsReadCallback(), DsReadSync(), CdRead() (see libcd)

11-32 Extended CD-ROM Library Functions

Run-Time Library Reference

DsRead2
Begin playback of movie.

Library Header File Introduced Documentation Date
libds.lib libds.h 4.0 12/14/98

Syntax
int DsRead2(
DslLOC *pos, Pointer to DslLOC structure specifying starting position of CD
int mod) Operating mode during playback

Explanation
Plays back the movie starting at the location specified by the DslLOC structure pointed to by pos.

A libds streaming library callback is set and the reading of data is begun with DslReadS.

Note: The arguments are different from CdRead2(). With DsRead2(), the starting position of the data must
be specified.

Return value
The command ID (>0) if the function succeeded; 0 if the command failed.

See also
DsCommand(), CdRead2() (see libcd)

Extended CD-ROM Library Functions 11-33

Run-Time Library Reference

DsReadBreak
Interrupt DsRead() operation.

Library Header File Introduced Documentation Date
libds.lib libds.h 4.0 12/14/98

Syntax
void DsReadBreak(void)

Explanation
Interrupts a DsRead() operation.

See also
DsRead()

11-34 Extended CD-ROM Library Functions

Run-Time Library Reference

DsReadCallback
Set a callback function to be called when DsRead() is finished.

Library Header File Introduced Documentation Date
libds.lib libds.h 4.0 12/14/98

Syntax
DslCB DsReadCallback(
DslCB func) Pointer to callback function

Explanation
Defines func as the callback to be triggered when DsRead() completes.

Return value
Pointer to previous callback function

See also
DsRead()

Extended CD-ROM Library Functions 11-35

Run-Time Library Reference

DsReadExec
Read an executable file.

Library Header File Introduced Documentation Date
libds.lib libds.h 4.0 12/14/98

Syntax
struct EXEC *DsReadExec(
char *file) Filename

Explanation
Loads the executable file specified by file from the CD-ROM and stores it in main memory. It is a blocking
function.

The loaded file is executed as a child process using Exec(). The load address of the executable file must
not overlap with the area used by the parent process.

Return value
Pointer to EXEC structure of the loaded executable file.

See also
Exec() (see libapi)

11-36 Extended CD-ROM Library Functions

Run-Time Library Reference

DsReadFile
Read a file from CD-ROM.

Library Header File Introduced Documentation Date
libds.lib libds.h 4.0 12/14/98

Syntax
int DsReadFile(
char *file, Filename
u_long *addr, Pointer to buffer in memory for storing read data
int nbyte) Number of bytes to read

Explanation
Reads nbyte bytes from the CD-ROM file specified by file and stores them at the buffer pointed to by addr.

nbyte must be a multiple of 2048; if it is 0, the entire file is read. If file is NULL, the read operation begins
from the point where the previous DsReadFile() left off.

The filenames must all be represented by absolute paths. Lowercase characters are automatically
converted to uppercase.

Although the read is performed in the background, DsSearchFile() is called internally before the read begins,
so it is blocked for that period. Use DsReadSync() to check for completion of reading.

Return value
The number of bytes read, or 0 if an error occurred.

See also
DsRead(), DsReadSync(), DsSearchFile()

Extended CD-ROM Library Functions 11-37

Run-Time Library Reference

DsReadSync
Wait for completion of DsRead().

Library Header File Introduced Documentation Date
libds.lib libds.h 4.0 12/14/98

Syntax
int DsReadSync(
u_char *result) Pointer to buffer holding execution results (u_char[8])

Explanation
Waits for completion of DsRead(). Returns the execution status of DsRead() at the point when
DsReadSync() was called.

Return value
Positive integer: the remaining number of sectors.
0: DsRead() has completed.
–1: an error was detected (DsRead() was interrupted).

See also
DsRead()

11-38 Extended CD-ROM Library Functions

Run-Time Library Reference

DsReady
Check for arrival of data.

Library Header File Introduced Documentation Date
libds.lib libds.h 4.0 12/14/98

Syntax
int DsReady(
u_char *result) Pointer to buffer for storing results (u_char[8])

Explanation
Determines the status of a data read operation (DslReadS/DslReadN) and stores the result in the buffer
pointed to by result.

In report mode, DsReady() checks for arrival of the report from DA playback.

The sector buffer value is meaningful only for data reads.

Return value
DslDataReady New data has arrived in the sector buffer.
DslNoIntr New data has not arrived.
DslDataEnd Final sector has been confirmed (only for

DA playback).

See also
DsReadyCallback()

Extended CD-ROM Library Functions 11-39

Run-Time Library Reference

DsReadyCallback
Set up Ready callback function.

Library Header File Introduced Documentation Date
libds.lib libds.h 4.0 12/14/98

Syntax
DslCB DsReadyCallback(
DslCB func) Pointer to callback function

Explanation
Sets the Ready callback to the function pointed to by func. It is called for data ready interrupts, data end
interrupts (generated only for DA playback), and all error interrupts.

Return value
Pointer to previous callback function.

See also
DsReady()

11-40 Extended CD-ROM Library Functions

Run-Time Library Reference

DsReadySystemMode
Set action of cover open/close for the simple callback.

Library Header File Introduced Documentation Date
libds.lib libds.h 4.1 12/14/98

Syntax
int DsReadySystemMode(
int mode) 0: When the cover is open, end the simple callback

1: After the cover opens or closes, perform an automatic retry

Explanation
Sets the action of cover open/close for the simple callback.

When mode = 0, if the cover is opened during execution, stop processing and end the simple callback.
Then call the user-specified callback function with intr = DslDiskError.

When mode = 1, if the cover is opened or closed, reissue the command with an error and continue
processing. The user-specified callback function is not called.

When mode = 1 and the cover is closed, if the disk is not present, the simple callback is completed and the
user-specified callback function is called with intr = DslDiskError.

Initial value of mode is 0.

The mode is valid until the next time it is set.

Return value
Previously updated mode.

See also
DsStartReadySystem(), DsEndReadySystem()

Extended CD-ROM Library Functions 11-41

Run-Time Library Reference

DsReset
Reset system.

Library Header File Introduced Documentation Date
libds.lib libds.h 4.0 12/14/98

Syntax
int DsReset(void)

Explanation
Resets the libds system.

Always use DsReset() when initializing the system in the middle of a program. DsInit() cannot be used in the
middle of a program.

Return value
1 if the reset was successful, 0 otherwise.

See also
DsInit()

11-42 Extended CD-ROM Library Functions

Run-Time Library Reference

DsSearchFile
Get position and size of CD-ROM file.

Library Header File Introduced Documentation Date
libds.lib libds.h 4.0 12/14/98

Syntax
DslFILE *DsSearchFile(
DslFILE *fp, Pointer to CD-ROM file structure
char *name) Filename

Explanation
Obtains the absolute position (minutes, seconds, sectors) and size of the CD-ROM file specified by name
and stores the result in the DslFILE structure pointed to by fp.

Filenames must be represented by their absolute paths.

The position data for all the files in the same directory as the file specified by fp is cached in memory.
Therefore, when DsSearchFile() is performed consecutively for files from a single directory, access is faster
from the second file on.

Return value
0: file not found.
-1: the read operation on the directory failed for some reason.
Other: pointer to the retrieved file structure.

See also

Extended CD-ROM Library Functions 11-43

Run-Time Library Reference

DsSetDebug
Set the debug level.

Library Header File Introduced Documentation Date
libds.lib libds.h 4.0 12/14/98

Syntax
int DsSetDebug(
int level) Debug level

Explanation
Sets the debug level for the CD-ROM subsystem to level:

0: Do not perform any checks
1: Check primitive commands

Return value
Previous debug level.

See also

11-44 Extended CD-ROM Library Functions

Run-Time Library Reference

DsShellOpen
Get the number of times the cover was opened.

Library Header File Introduced Documentation Date
libds.lib libds.h 4.0 12/14/98

Syntax
int DsShellOpen(void)

Explanation
Obtains the number of times the cover was opened since the program began. The count is initialized to 1
when the program starts.

Note: This function returns the correct value only when DsSystemStatus()=DsReady.

Return value
Number of times the cover was opened.

See also
DsSystemStatus()

Extended CD-ROM Library Functions 11-45

Run-Time Library Reference

DsStartReadySystem
Start the simple callback.

Library Header File Introduced Documentation Date
libds.lib libds.h 4.0 12/14/98

Syntax
int DsStartReadySystem(
DslRCB func, Pointer to callback function
int count) Retry count (-1: unlimited retries)

Explanation
Starts the simple callback.

When the simple callback is started, a DslDiskError results in a retry of the last command.

count is the total number of retries from the point when the system is started.

The callback function func normally triggers when a data read successfully completes. The only time an
error makes the function trigger is if the cover is opened or an error is generated after the maximum
number of retries.

When a retry is performed, the position from which to re-read is determined by the library, but the callback
function triggers from the sector following the previous call. Thus, internally, the callback function does not
need to be aware of the retry.

This function is always executed from a callback from a corresponding data read (playback) command.
Executing the function at other times may corrupt the error handling system.

DsReadyCallback() should be used internally for simple callback. Simultaneous use from the application is
not allowed.

Return value
1: the function was successful.
0: the function failed (system has already been started).

See also
DsEndReadySystem(), DsReadyCallback()

11-46 Extended CD-ROM Library Functions

Run-Time Library Reference

DsStatus
Get the status of the CD subsystem.

Library Header File Introduced Documentation Date
libds.lib libds.h 4.0 12/14/98

Syntax
u_char DsStatus(void)

Explanation
Obtains the last reported status of the CD subsystem.

Because updating of the status can sometimes be delayed, in rare cases the value may be different from
the current CD subsystem status. To wait for any delays to pass, use DslNop to get the most recent
status.

Return value
Status of the CD subsystem.

See also
DsCommand()

Extended CD-ROM Library Functions 11-47

Run-Time Library Reference

DsSync
Check for completion of primitive command.

Library Header File Introduced Documentation Date
libds.lib libds.h 4.0 12/14/98

Syntax
int DsSync(
int id, Command ID
u_char *result) Pointer to buffer for storing result (u_char[8])

Explanation
Obtains the execution status of the primitive command specified by id and stores it in the memory area
pointed to by result.

The execution status refers to the command corresponding to the command ID that was active when the
function was called. result is valid only for the return values of DslComplete or DslDiskError.

If id is set to 0, the most current result regardless of the type of command can be obtained.

A certain number of execution results from commands are saved. The maximum number of saved results is
defined by the DslMaxRESULTS macro constant.

Return value
DslComplete Command has terminated normally.
DslDiskError Command failed.
DslNoIntr Command has not yet been executed.
DslNoResult Execution has terminated but the results have already been destroyed.

See also
DsSyncCallback()

11-48 Extended CD-ROM Library Functions

Run-Time Library Reference

DsSyncCallback
Set Sync Callback function

Library Header File Introduced Documentation Date
libds.lib libds.h 4.0 12/14/98

Syntax
DslCB DsSyncCallback(
DslCB func) Pointer to callback function

Explanation
Defines func as the Sync callback to be triggered for all command termination and error interrupts.

If the queue performs retries for commands that generate errors, the Sync callback function is triggered
after each failure (rather than the individual callback function set for the command itself).

Return value
Pointer to previous callback function.

See also
DsSync()

Extended CD-ROM Library Functions 11-49

Run-Time Library Reference

DsSystemStatus
Get status of command queue.

Library Header File Introduced Documentation Date
libds.lib libds.h 4.0 12/14/98

Syntax
int DsSystemStatus(void)

Explanation
Returns the status of the command queue.

Commands issued when the status is not DslReady are all added to the queue; otherwise, the command is
executed immediately.

Return value
DslReady No command is being executed.
DslBusy Command is being executed, or command cannot be executed (e.g., because cover is open).
DslNoCD No CD is installed.

See also
DsCommand()

11-50 Extended CD-ROM Library Functions

Run-Time Library Reference

Run-Time Library Reference

Chapter 12: Controller/Peripherals Library
Table of Contents

Functions
CheckCallback 12-3
DisableTAP 12-4
EnableTAP 12-5
GetVideoMode 12-6
InitGUN 12-7
InitTAP 12-8
PadChkVsync 12-9
PadEnableCom 12-10
PadEnableGun 12-11
PadGetState 12-12
PadInfoAct 12-13
PadInfoComb 12-15
PadInfoMode 12-16
PadInit 12-18
PadInitDirect 12-19
PadInitGun 12-20
PadInitMtap 12-22
PadRead 12-23
PadRemoveGun 12-24
PadSetAct 12-25
PadSetActAlign 12-27
PadSetMainMode 12-28
PadStartCom 12-29
PadStop 12-30
PadStopCom 12-31
RemoveGUN 12-32
ResetCallback 12-33
RestartCallback 12-34
SelectGUN 12-35
SendTAP 12-36
SetVideoMode 12-38
StartGUN 12-39
StartTAP 12-40
StopCallback 12-41
StopGUN 12-42
StopTAP 12-43

12-2

Run-Time Library Reference

Controller/Peripherals Library Functions 12-3

Run-Time Library Reference

Functions

CheckCallback
Determine whether the program is executing a callback.

Library Header File Introduced Documentation Date
libetc.lib libetc.h 2.x 12/14/98

Syntax
int CheckCallback(void)

Explanation
Determines whether the program is currently executing in callback context or normal context.

Return value
0:normal context; 1: callback context.

See also
ResetCallback()

12-4 Controller/Peripherals Library Functions

Run-Time Library Reference

DisableTAP
Disable communication with the controller

Library Header File Introduced Documentation Date
libtap.lib libtap.h 3.6 12/14/98

Syntax
void DisableTAP(void)

Explanation
Temporarily disables communication with the controller.

Although StopTAP() deletes the controller handler activated by Vsync interrupts, this function simply skips
controller communication with a flag operation.

Although a normal controller communicates via Vsync interrupts, this function is used only with timing
longer than 1/60 sec when the controller status is not needed.

See also
EnableTAP(), StopTAP()

Controller/Peripherals Library Functions 12-5

Run-Time Library Reference

EnableTAP
Enables occurrence of an event.

Library Header File Introduced Documentation Date
libtap.lib libtap.h 3.6 12/14/98

Syntax
void EnableTAP(void)

Explanation
Enables communication with a controller which was disabled with DisableTAP().

Although a normal controller communicates via Vsync interrupts, this function is used only with timing
longer than 1/60 sec when the controller status is not needed.

See also
DisableTAP()

12-6 Controller/Peripherals Library Functions

Run-Time Library Reference

GetVideoMode
Get present video signaling system.

Library Header File Introduced Documentation Date
libetc.lib libetc.h 3.1 12/14/98

Syntax
long GetVideoMode(void)

Explanation
Returns the present video signaling system set by SetVideoMode(). (If SetVideoMode() wasn’t called, no
matter what the machine, it returns MODE_NTSC.)

Return value
Video signaling system mode (MODE_NTSC for NTSC; MODE_PAL for PAL).

See also
SetVideoMode()

Controller/Peripherals Library Functions 12-7

Run-Time Library Reference

InitGUN
Initialize gun.

Library Header File Introduced Documentation Date
libgun.lib libgun.h 3.5 12/14/98

Syntax
void InitGUN(
char *bufA, Controller receive data buffer for port 0
long lenA, Length in bytes of bufA
char *bufB, Controller receive data buffer for port 1
long lenB, Length in bytes of bufB
char *buf0, char *buf1, Pointer to horizontal/vertical position receive buffer (necessary buffer size

is len*4+2 bytes)
long len) Number of gun interrupts allowed between vertical blank periods (20

maximum)

Explanation
Defines the buffers used to receive data from the light gun and other controllers. Standard controller
information for buttons and analog controllers is returned in bufA and bufB. InitGUN() cannot be used at the
same time as InitPAD() or InitTAP().

As of library v4.0, DMA operations and interrupts are blocked within the gun interrupt handler in order to
improve the accuracy of the gun.

The more gun interrupts you specify between VBLANK periods (len), the more processing is required. Set
len as low as possible to reduce overhead.

Since the horizontal direction counter value returns the system clock value, multiply the following
coefficients according to the horizontal direction resolution in order to obtain pixel values:

Table 12-1: System Clock/Pixel Clock Variable Table

Mode Horizontal Direction
Resolution

Coefficient

NTSC:
256 0.158532
320 0.198166
384 0.226475
512 0.317065
640 0.396332

PAL:
256 0.157086
320 0.196358
384 0.224409
512 0.314173
640 0.392717

[Pixel value] = [Coefficient] x [System Block value] + [Offset]

See also
InitPAD() (see libapi), SelectGUN(), StartGUN(), StopGUN(), RemoveGUN()

12-8 Controller/Peripherals Library Functions

Run-Time Library Reference

InitTAP
Initialize controller.

Library Header File Introduced Documentation Date
libtap.lib libtap.h 3.4 12/14/98

Syntax
void InitTAP(
char *bufA, Pointer to receive data buffer
long lenA, Receive data buffer length (unit: byte)
char *bufB, Pointer to receive data buffer
long lenB) Receive data buffer length (unit: byte)

Explanation
Registers a receive data buffer for the controller.

For the format of the receive buffer, see “Receive Buffer Data Format” of Chapter 13 (Controller/Peripherals
Library) of the Library Overview.

Please refer to each terminal’s documentation for the physical positioning of the buttons and channels, etc.
and compatibility.

See also
StartTAP(), StopTAP()

Controller/Peripherals Library Functions 12-9

Run-Time Library Reference

PadChkVsync
Check communication with controller.

Library Header File Introduced Documentation Date
libpad.lib libpad.h 4.2 12/14/98

Syntax
int PadChkVsync(void)

Explanation
Determines whether communication with the controller has occurred in a frame. Should be called once per
frame (1/60 sec) during Vsync.

Return value
1: Communication with controller took place (regardless of success/failure)
0: Communication with controller did not take place (or function was called twice or more in a frame)

See also
PadEnableCom()

12-10 Controller/Peripherals Library Functions

Run-Time Library Reference

PadEnableCom
Enable/disable communication with the controller.

Library Header File Introduced Documentation Date
libpad.lib libpad.h 4.2 12/14/98

Syntax
unsigned PadEnableCom(
unsigned mode) Bit 0 is used to enable/disable port 0, and bit 1 is used to

enable/disable port 1. 1 = enabled; 0 = disabled

Explanation
In general, communication with the controller takes place once per frame (1/60th of a second). However,
when a lower update rate is desired (e.g. when polling for a button press or when only one of the ports is
used), communication with the controller can be temporarily disabled with this function to provide the
application with greater processing time.

The vertical retrace interrupt itself is not enabled or disabled, so PadEnableCom() only works between
PadStartCom() and PadStopCom().

Ports 0 and 1 have a default value of "enabled." Calling PadInitDirect(), PadInitMtap(), PadStartCom(), or
PadStopCom() don’t affect the enable/disable state set by PadEnableCom().

If communication is suspended for three seconds or more, the controller is reset. If communication is
subsequently restarted, the return value from PadGetState() temporarily becomes PadStateDiscon and a
retry is generated to refetch controller information. For this reason, the return value from PadGetState()
needs to be monitored so that refetched actuator information can be properly processed.

Return value
The previous enable/disable state of communication before the function was called.

See also
PadStartCom(), PadStopCom()

Controller/Peripherals Library Functions 12-11

Run-Time Library Reference

PadEnableGun
Enable/disable gun interrupts.

Library Header File Introduced Documentation Date
libpad.lib libpad.h 4.2 12/14/98

Syntax
void PadEnableGun(
u_char mask) Enable gun interrupts for specific ports (see Explanation)

Explanation
Enables gun interrupts when the corresponding mask bit is set to 1:

Table 12-2

mask
bits D7 D6 D5 D4 D3 D2 D1 D0

Port
number 0x13 0x12 0x11 0x10 0x03 0x02 0x01 0x00

Specific gun interrupts can be masked off if horizontal and vertical position information is not needed for
those guns.

The default setting is mask disabled for all ports. Retrieval of horizontal and vertical position information
begins when a gun is connected.

See also
PadInitGun(), PadRemoveGun()

12-12 Controller/Peripherals Library Functions

Run-Time Library Reference

PadGetState
Get controller connection state.

Library Header File Introduced Documentation Date
libpad.lib libpad.h 4.2 12/14/98

Syntax
int PadGetState(
int port) The port number to be checked (see Explanation)

Explanation
Checks that the controller is connected, determines when button-press information is valid, and determines
when information from the actuators is valid.

port represents the port number to be checked, as follows:

Table 12-3

Port 1 Port 2
Direct connection 0x00 0x10
Multi Tap A 0x00 0x10
Multi Tap B 0x01 0x11
Multi Tap C 0x02 0x12
Multi Tap D 0x03 0x13

Return value

Table 12-4

Value Macro (libpad.h) Controller connection state
0 PadStateDiscon Controller disconnected
1 PadStateFindPad Find controller connection (checking)
2 PadStateFindCTP1 Check for controller connection with controllers other

than DUAL SHOCK
(Complete the acquisition of controller information)

4 PadStateReqInfo Actuator information being retrieved (data being
retrieved)

5 PadStateExecCmd Library is communicating with controller
(e.g. PadSetActAlign())

6 PadStateStable Retrieval of actuator information completed, or library-
controller communication completed
(PadSetActAlign(), etc. can be called)

See also
PadSetActAlign()

Controller/Peripherals Library Functions 12-13

Run-Time Library Reference

PadInfoAct
Get actuator information.

Library Header File Introduced Documentation Date
libpad.lib libpad.h 4.2 12/14/98

Syntax
int PadInfoAct(
int port, Port number of the controller to be checked (see Explanation)
int actno, Actuator number to be checked (ranging from 0 to total number of

mounted actuators -1). Set actno to -1 to get the total number of
actuators (in this case, the third argument term is ignored)

int term) Information to be checked about actuator

Explanation
Obtains the actuator function number, sub-function number, actuator parameter data size, and actuator
current drain.

port is the port number of the controller to be checked, as follows:
Table 12-5

Port 1 Port 2
Direct connection 0x00 0x10
Multi Tap A 0x00 0x10
Multi Tap B 0x01 0x11
Multi Tap C 0x02 0x12
Multi Tap D 0x03 0x13

Return value
The return value corresponds to the third argument term as follows.

Table 12-6

Third argument Macro Return value
1 InfoActFunc Function number

(1: continuous-rotation
vibration)

2 InfoActSub Sub-function number
(When the function number
is 1, 1: low-speed rotation,
2: high-speed rotation)

3 InfoActSize Parameter data length
(0: 1 bit (ON/OFF only), 1
or greater: number of
bytes)

4 InfoActCurr Maximum current drain

If the parameter data length for an actuator is more than one byte, each of the parameter write offsets for
that actuator can be set by writing the actuator number in each of the corresponding offsets using
PadSetActAlign(). The controller interprets the position of the lowest numbered offset as the high-order byte
of the parameter. If the actuator number is written such that the data length for the parameter is exceeded,
the settings beyond the allowed parameter data length are ignored, beginning with the lowest numbered
offset.

Note: Up to 60 units of current can be supplied by the main PlayStation unit. Therefore, the current drain
of the actuators should be checked to make sure that it does not exceed 60 units. If actuator parameters

12-14 Controller/Peripherals Library Functions

Run-Time Library Reference

are set so that the 60-unit limit is exceeded, the actuators connected to the larger port numbers are
ignored (they are forcibly stopped). This is particularly important for applications that use Multi Taps.

PadInfoAct() always returns a 0 for a controller other than a DUAL SHOCK controller. Even for a DUAL
SHOCK controller, the return value is 0 as long as the state returned from PadGetState() is anything other
than PadStateStable (during PadStateReqInfo). When obtaining actuator information, the application should
wait for the return value from PadGetState() to become PadStateStable.

See also
PadInfoComb(), PadInfoMode()

Controller/Peripherals Library Functions 12-15

Run-Time Library Reference

PadInfoComb
Get information on actuator combinations that can be used simultaneously.

Library Header File Introduced Documentation Date
libpad.lib libpad.h 4.2 12/14/98

Syntax
int PadInfoComb(
int port, Port number of the controller to be checked (see Explanation)
int listno, List number of the combination list to be checked (ranging from 0 to total

combination list -1). Specify -1 for listno to obtain the total number of
combination lists. In this case, the offs argument is ignored

int offs) Offset within the combination list (ranging from 0 to total number of
actuators contained in the list -1). Specify -1 for offs to obtain the total
number of actuators contained in the combination list.

Explanation
Checks combinations of actuators that can be used simultaneously based on restrictions imposed by the
physical arrangement of the actuators, etc.

port is the port number of the controller to be checked, as follows:
Table 12-7

Port 1 Port 2
Direct connection 0x00 0x10
Multi Tap A 0x00 0x10
Multi Tap B 0x01 0x11
Multi Tap C 0x02 0x12
Multi Tap D 0x03 0x13

Return value

Table 12-8

listno offs Return value
-1 --- Total number of combination

lists
0 to (Total number-1) -1 Total number of actuators

contained in list number listno
0 to (Total number-1) 0 to (Total number-1) Actuator number stored at offset

offs within list number listno.

Note: PadInfoComb() always returns 0 for a controller other than a DUAL SHOCK controller. Even for a
DUAL SHOCK controller, the return value is 0 as long as the state returned from PadGetState() is anything
other than PadStateStable (during PadStateReqInfo). When obtaining information about combinations of
actuators that can be used simultaneously, the application should wait for the return value from
PadGetState() to become PadStateStable.

See also
PadInfoAct(), PadInfoMode()

12-16 Controller/Peripherals Library Functions

Run-Time Library Reference

PadInfoMode
Get information about the controller mode.

Library Header File Introduced Documentation Date
libpad.lib libpad.h 4.2 12/14/98

Syntax
int PadInfoMode(
int port, Port number of the controller to be checked (see Explanation)
int term, Item to be checked
int offs) The offset in the controller mode ID table containing the desired

controller mode ID

Explanation
Checks the currently active controller mode ID, distinguishes DUAL SHOCK controllers from other
controllers, and checks the controller mode ID supported by the DUAL SHOCK controller.

port is the port number of the controller to be checked, as follows:

Table 12-9

Port 1 Port 2
Direct connection 0x00 0x10
Multi Tap A 0x00 0x10
Multi Tap B 0x01 0x11
Multi Tap C 0x02 0x12
Multi Tap D 0x03 0x13

When DUAL SHOCK controller SCPH-1200 is connected and PadLoadInfo() is called, initialization
completes and the return value is as shown below.

Table 12-10

Controller information Contents immediately after initialization
Currently active controller mode ID 4
Currently active controller mode ID (DUAL
SHOCK)

4

Controller mode ID table offset for
currently active controller mode ID

0

Contents of controller mode ID table See table below

Table 12-11: Contents of controller mode table ID

Controller mode ID table offset Controller mode ID
0 4
1 7

Return value
The return value corresponds to the second and third arguments(*) in the following manner.

Controller/Peripherals Library Functions 12-17

Run-Time Library Reference

Table 12-12

2nd Argument Macro Return value
1 InfoModeCurID Currently active controller mode ID.

Valid range: 4 bits. (Same as value of
terminal type for offset 1 in receive buffer)

2 InfoModeCurExID Currently active controller mode ID.
Valid range: 16 bits.
(0 for controllers other than DUAL
SHOCK)

3 InfoModeCurExOffs Offset within the controller mode ID table
that stores the currently active controller
mode ID.

4 InfoModeIdTable Controller mode ID stored at the offset
specified by the third argument offs within
the controller mode ID table.

(*): If the second argument has a value other than 4(InfoModeIdTable) the third argument offs is ignored.

When the second argument is 1 (InfoModeCurID) or 2 (InfoModeCurExID), the function may be called at any
time, regardless of the value returned by PadGetState().

When the second argument is 4 (InfoModeIdTable), the return value will be 0 if PadGetState() does not
return PadStateStable (for PadStateReqInfo). This is true even if the controller is a DUAL SHOCK controller.
After calling PadLoadInfo(), the application should wait for the return value from PadGetState() to become
PadStateStable.

See also
PadInfoAct(), PadInfoComb()

12-18 Controller/Peripherals Library Functions

Run-Time Library Reference

PadInit
Initialize a controller (for prototyping only).

Library Header File Introduced Documentation Date
libetc.lib libetc.h 3.0 12/14/98

Syntax
void PadInit(mode) Always pass 0

Explanation
Initializes the controller. Since this function supports only the 16-button controller, it should be used for
prototyping purposes only.

See also
PadInitDirect(), PadStop()

Controller/Peripherals Library Functions 12-19

Run-Time Library Reference

PadInitDirect
Initialize controller environment (for direct connection to the main PlayStation unit).

Library Header File Introduced Documentation Date
libpad.lib libpad.h 4.2 12/14/98

Syntax
void PadInitDirect(
u_char *pad1, Port 1 receive results (34 bytes)
u_char *pad2) Port 2 receive results (34 bytes)

Explanation
Initializes the control environment for a controller.

When using this function, other initialization routines such as PadInitMtap(), InitPAD(), InitGUN(), InitTAP(),
and PadInit() cannot be used.

In libpad, controller connection state is maintained by the library. If the connection state is invalid, the
controller isn’t be recognized. Therefore, when a controller is used by both parent and child processes,
each process must call PadInitDirect().

For the format of the receive buffer, see “Receive Buffer Data Format” of Chapter 13 (Controller/Peripherals
Library) of the Library Overview.

If a Multi Tap is not used, using this function for initialization reduces program size by about 1.6KB.

Meaning of analog values:

Table 12-13

Device Analog value 1 Analog value 2 Analog value 3 Analog value 4

Analog controller Position along
the X axis (right)
(0 ~ 80 ~ FF)

Position along
the Y axis (right)
(0 ~ 80 ~ FF)

Position along
the X axis (left)
(0 ~ 80 ~ FF)

Position along
the Y axis (left)
(0 ~ 80 ~ FF)

Analog joystick Position along
the X axis (right)
(0 ~ 80 ~ FF)

Position along
the Y axis (right)
(0 ~ 80 ~ FF)

Position along
the X axis (left)
(0 ~ 80 ~ FF)

Position along
the Y axis (left)
(0 ~ 80 ~ FF)

Gun controller
(Namco)

Position along
the X axis
Low-order byte

Position along
the X axis
High-order byte

Position along
the Y axis
Low-order byte

Position along
the Y axis
High-order byte

Mouse Displacement
along the X axis
(80 ~ 0 ~ 7F)

Displacement
along the Y axis
(80 ~ 0 ~ 7F)

None None

See also
PadInit(), PadInitMtap(), PadInitGun(), PadStartCom(), PadStopCom()

12-20 Controller/Peripherals Library Functions

Run-Time Library Reference

PadInitGun
Initialize controller environment (for guns that use interrupts).

Library Header File Introduced Documentation Date
libpad.lib libpad.h 4.2 12/14/98

Syntax
void PadInitGun(
u_char *buff, Horizontal/vertical position receive buffer (required buffer size = size*4+2

bytes)
int size) Maximum number of gun interrupts for 1Vsync (maximum 20)

Explanation
Sets up the horizontal/vertical position receive buffer. Retrieval of the horizontal and vertical positions is
triggered by an interrupt from the gun.

In order to improve the accuracy of the gun, interrupts and DMAs are blocked within the interrupt handler.
Setting a large number of interrupts per 1Vsync consumes 1Hsync of time for each interrupt, so this value
should be set low.

Structure of horizontal/vertical position receive buffer:

Table 12-14

Offset Contents
0 Port number for retrieved horizontal/vertical positions
1 Number of valid horizontal and vertical counters
2,3 Vertical counter value 0
4,5 Horizontal counter value 0
6,7 Vertical counter value 1
8,9 Horizontal counter value 1
.
78,79 Vertical counter value 19
80,81 Horizontal counter value 19

(Counter values are half-words (LSB first))

The horizontal counter value returns the system clock value. The pixel value can be obtained by multiplying
by the coefficient corresponding to the horizontal resolution shown in the table below.

System clock - pixel clock conversion table:

Table 12-15

Mode Horizontal resolution Coefficient
NTSC:

256 0.158532
320 0.198166
384 0.226475
512 0.317065
640 0.396332

PAL:
256 0.157086
320 0.196358
384 0.224409

Controller/Peripherals Library Functions 12-21

Run-Time Library Reference

Mode Horizontal resolution Coefficient
512 0.314173
640 0.392717

[Pixel value] = [Coefficient] x [System clock value] + [Offset]

Horizontal/vertical gun positions are fetched from ports to which a terminal type=3 controller is connected
and for guns whose interrupts have been enabled by PadEnableGun().

Gun horizontal/vertical positions can be fetched during each frame, in sequence, beginning with the
smallest port number for those ports with guns which are interrupt-enabled.

Check offset 0 in the horizontal/vertical position receive buffer ("Port number for retrieved horizontal/vertical
positions") to determine the port number associated with the retrieved horizontal/vertical position.

PadInitGun() is provided only to initialize the gun interrupt environment. In order to communicate with a gun
controller, PadInitDirect() or PadInitMtap() must be called first.

In libpad, gun connection state is maintained by the library. If the connection state is invalid, gun position
information cannot be obtained. Therefore, as an example, when both parent and child processes use an
ID=3 gun, each process must call PadInitGun().

See also
PadRemoveGun(), PadEnableGun(), PadInitDirect(), PadInitMtap()

12-22 Controller/Peripherals Library Functions

Run-Time Library Reference

PadInitMtap
Initialize controller environment (for Multi Taps).

Library Header File Introduced Documentation Date
libpad.lib libpad.h 4.2 12/14/98

Syntax
void PadInitMtap(
u_char *pad1, Port 1 receive result (34 bytes)
u_char *pad2) Port 2 receive result (34 bytes)

Explanation
Initializes the control environment for a controller. If a Multi Tap is connected, it is treated as a Multi Tap. If a
controller is connected directly to the main PlayStation unit, the structure of the receive buffer is the same
as when it is initialized with PadInitDirect().

When using this function, other initialization routines such as PadInitDirect(), InitPAD(), InitGUN(), InitTAP(),
and PadInit() cannot be used.

In libpad, controller connection state is maintained by the library. If the connection state is invalid, the
controller cannot be recognized. Therefore, when a controller is used by both parent and child processes,
each process must call PadInitMtap().

For the format of the receive buffer, see “Receive Buffer Data Format” of Chapter 13 (Controller/Peripherals
Library) of the Library Overview.

Note: A Multi Tap may not be recognized if a controller is not connected to port A of the Multi Tap.
Therefore, a controller should always be connected to port A of the Multi Tap. This should also be
mentioned in the instruction manual.

See also
PadInitDirect(), PadInitGun(), PadStartCom(), PadStopCom()

Controller/Peripherals Library Functions 12-23

Run-Time Library Reference

PadRead
Read data from the controller (for prototyping only)

Library Header File Introduced Documentation Date
libetc.lib libetc.h 3.0 12/14/98

Syntax
u_long PadRead(
u_short id) Controller ID (unused)

Explanation
Reads data from the controller. This function is for prototyping purposes only.

Return value
Controller button status. High 2 bytes are pad 2, low 2 bytes are pad 1.

See also
PadInit()

12-24 Controller/Peripherals Library Functions

Run-Time Library Reference

PadRemoveGun
Stop retrieval of horizontal/vertical gun position.

Library Header File Introduced Documentation Date
libpad.lib libpad.h 4.2 12/14/98

Syntax
void PadRemoveGun(void)

Explanation
Stops the retrieval of horizontal/vertical gun position information.

See also
PadInitGun(), PadEnableGun()

Controller/Peripherals Library Functions 12-25

Run-Time Library Reference

PadSetAct
Set transmit buffer.

Library Header File Introduced Documentation Date
libpad.lib libpad.h 4.2 12/14/98

Syntax
void PadSetAct(
int port, Target port number (see Explanation)
u_char *data, Transmit data buffer
int len) Length of transmit data buffer (in bytes)

Explanation
Registers the transmit data buffer in the library, so it is not necessary to call this function again if the
transmit buffer doesn't change. When the operation of the actuator changes and the contents of the buffer
change, the library reads out the buffer every Vsync and automatically transmits the contents to the
controller.

port is the target port number, as follows:

Table 12-16

Port 1 Port 2
Direct connection 0x00 0x10
Multi Tap A 0x00 0x10
Multi Tap B 0x01 0x11
Multi Tap C 0x02 0x12
Multi Tap D 0x03 0x13

When controlling the DUAL SHOCK actuator, not only must the transmit buffer be specified using
PadSetAct(), but PadSetActAlign() must also be used to inform the controller of the offset in the transmit
buffer where the actuator parameters are located. (The calling sequence of PadSetActAlign() and
PadSetAct() is not specified.)

The data length that can be handled by the actuator can be determined with PadInfoAct(). For the SCPH-
1200, the data lengths are 1 bit and 1 byte for actuator numbers 0 and 1, respectively. Thus, the actuator
can be controlled by using PadSetActAlign() to send the parameter for actuator number 0 at transmit buffer
offset 0, and the parameter for actuator number 1 at offset 1. In this case, offset 0 would contain a value of
0 or 1, and offset 1 would contain a value between 0 and 255.

The actuator is stopped when the parameter value is 0, and rotates faster for larger values.

Once the actuator parameters have been sent to the controller during a vertical retrace interrupt, the
actuator continues operating even if communication with the controller is suspended by PadEnableCom()
or PadStopCom(). However, if communication is suspended for three seconds or more, the controller is
reset, at which point the actuator stops operating. Even if the interval during which communication is
suspended is less than three seconds, the actuator temporarily stops operating when PadStartCom()
reinitiates communication (if communication was suspended with PadStopCom(), it can only be restarted
by calling PadStartCom()).

If communication is suspended for three seconds, or if the actuator is halted due to a PadStartCom() read,
the value returned from PadState() temporarily becomes PadStateDiscon and a retry is generated to refetch
controller information. For this reason, the return value from PadGetState() must be monitored so that
refetched actuator information can be properly processed.

If the parameter data length for an actuator is more than one byte, each of the parameter write offsets for
that actuator can be set by writing the actuator number in each of the corresponding offsets using

12-26 Controller/Peripherals Library Functions

Run-Time Library Reference

PadSetActAlign(). The controller interprets the position of the lowest numbered offset as the high-order byte
of the parameter. If the actuator number is written such that the data length for the parameter is exceeded,
the settings beyond the allowed parameter data length are ignored, beginning with the lowest numbered
offset.

For a DUAL SHOCK controller, the offsets in the transmit buffer where actuator parameters are written can
be specified with PadSetActAlign(). However, with analog controller SCPH-1150, there is a pre-determined
method for setting up the transmit buffer. The method for setting up the transmit buffer and relevant points
to be observed are described below.

Table 12-17

Offset Contents
0: target device ID High-order 2 bits: 0x01

Low-order 6 bits: undefined (vibration device)
1: transmit data bit 0:

 1 = vibration ON,
 0 = vibration OFF
remaining bits (bit 7 ~ 1): undefined

2... : transmit data Always 0x00. Other values: undefined

Note: The actuator can be turned on only during the 1 Vsync interval before communication with the next
controller takes place. During the inverval in which the actuator is to be operated, the target device ID
should be entered in the transmit data buffer and vibrations should be set to ON at each vertical sync
interrupt. The target device ID is valid when the two high-order bits are set to 01. The remaining bits are
reserved for the system and should be set to 0. Vibrations are set to ON when the low-order bit of the first
transmit data byte is set to 1. The remaining bits should be set to 0 as with the target device ID.

See also
PadSetActAlign()

Controller/Peripherals Library Functions 12-27

Run-Time Library Reference

PadSetActAlign
Set actuator parameter details to be sent to the controller.

Library Header File Introduced Documentation Date
libpad.lib libpad.h 4.2 12/14/98

Syntax
int PadSetActAlign(
int port, Port number of the controller (see Explanation)
char *data) Actuator parameter transmission details (6 bytes)

Explanation
The position in the transmit buffer where the actuator parameters are located is indicated to the controller
by writing the actuator numbers in the appropriate positions in the 6-byte array.

port is the port number of the controller to which the actuator parameter details are to be sent:

Table 12-18

Port 1 Port 2
Direct connection 0x00 0x10
Multi Tap A 0x00 0x10
Multi Tap B 0x01 0x11
Multi Tap C 0x02 0x12
Multi Tap D 0x03 0x13

In the table shown below, offset 0 of the transmit buffer is used for actuator number 0, and offset 1 is used
for actuator number 1. The remaining offsets are not used. (The actuator number is entered at positions
where transmission is desired, and FF is entered at unused positions.)

Table 12-19

Offset 0 1 2 3 4 5
Contents 00 01 FF FF FF FF

This function doesn’t accept requests if the library is communicating with the controller. The return value
should be checked to see if the request was accepted. The request is accepted if PadGetState() returns
PadStateStable, so the value from PadGetState() can be checked to confirm that the request was
accepted. However, when PadSetActAlign() and PadSetMainMode() are called, the result from
PadGetState() changes immediately from PadStateStable to PadStateExecCmd, and PadSetActAlign() and
PadSetMainMode() calls are not accepted until three vertical sync interrupts (six for Multi Taps) have
elapsed. Thus, these two functions cannot be called one after the other. If PadState() is called instead of
checking the return value, PadGetState() should be called right before calling the functions to confirm that
the return value is PadStateStable.

Return value
A 1 is returned if the actuator parameter details request is accepted. 0 is returned if the request is not
accepted.

See also
PadGetState(), PadSetAct(), PadSetMainMode()

12-28 Controller/Peripherals Library Functions

Run-Time Library Reference

PadSetMainMode
Switches / locks the controller mode selector.

Library Header File Introduced Documentation Date
libpad.lib libpad.h 4.2 12/14/98

Syntax
int PadSetMainMode(
int port, Port number for which the controller mode is to be switched (see

Explanation)
int offs, The controller mode ID table offset which contains the controller mode to

be switched
int lock) If bit 1 is set to 0, the locked/unlocked state of the selector button is kept

in its current state. If bit 1 is set to 1 and bit 0 is set to 0, the selector
button is unlocked. If bit 1 is 1 and bit 0 is 1, the selector button is
locked.

Explanation
Selects the controller mode and switches between locked and unlocked settings for the controller mode
selection button on the main controller unit.

port is th port number for which the controller mode is to be switched, as follows:

Table 12-20

Port 1 Port 2
Direct connection 0x00 0x10
Multi Tap A 0x00 0x10
Multi Tap B 0x01 0x11
Multi Tap C 0x02 0x12
Multi Tap D 0x03 0x13

When this function is called and the controller mode is changed, controller information is retrieved.
Therefore, the value returned from PadGetState() needs to be monitored so that actuator information can
be properly refetched.

This function doesn’t accept requests if the library is communicating with the controller. The return value
should be checked to see if the request was accepted. The request is accepted if PadGetState() returns a
PadStateStable, so the value from PadGetState() can be checked to confirm that the request was
accepted. However, when PadSetMainMode() or PadSetActAlign() is called, the result from PadGetState()
changes immediately from PadStateStable to PadStateExecCmd, and PadSetActAlign() and
PadSetMainMode() don’t accept requests. Therefore, these two functions cannot be called one after the
other. When PadState() is checked instead of the return value, PadGetState() must be checked right before
calling the functions.

Return value
1 when a controller mode setting request was accepted. 0 if the request was not accepted.

See also
PadGetState(), PadSetActAlign()

Controller/Peripherals Library Functions 12-29

Run-Time Library Reference

PadStartCom
Start reading from controller.

Library Header File Introduced Documentation Date
libpad.lib libpad.h 4.2 12/14/98

Syntax
void PadStartCom(void)

Explanation
Initiates a controller read operation triggered by a vertical retrace interval interrupt.

See also
PadInitDirect(), PadInitMtap(), PadStopCom(), PadEnableCom()

12-30 Controller/Peripherals Library Functions

Run-Time Library Reference

PadStop
Halt controller (for prototyping only)

Library Header File Introduced Documentation Date
libetc.lib libetc.h 2.x 12/14/98

Syntax
void PadStop(void)

Explanation
Halts all currently connected controllers.

When processing is complete, it is necessary to call this function without fail and halt the controller driver.

This function is for prototyping purposes only.

See also
PadInit()

Controller/Peripherals Library Functions 12-31

Run-Time Library Reference

PadStopCom
Stop controller read.

Library Header File Introduced Documentation Date
libpad.lib libpad.h 4.2 12/14/98

Syntax
void PadStopCom(void)

Explanation
Stops a controller read operation. (Stops handling all vertical interval interrupts related to controller
services.)

See also
PadInitDirect(), PadInitMtap(), PadStartCom(), PadEnableCom()

12-32 Controller/Peripherals Library Functions

Run-Time Library Reference

RemoveGUN
Remove gun driver.

Library Header File Introduced Documentation Date
libgun.lib libgun.h 3.6 12/14/98

Syntax
void RemoveGUN(void)

Explanation
Removes the gun driver registered in InitGUN().

See also
InitGUN(), StartGUN(), StopGUN(), SelectGUN(), RemoveGUN()

Controller/Peripherals Library Functions 12-33

Run-Time Library Reference

ResetCallback
Initialize all callbacks.

Library Header File Introduced Documentation Date
libetc.lib libetc.h 3.0 12/14/98

Syntax
void ResetCallback(void)

Explanation
Initializes all system callbacks. Sets all callback functions to 0 (unregistered), and after securing the interrupt
context stack, sets up the environment for accepting interrupts.

ResetCallback() must be called after program boot, before any other processing is performed.

The environment initialized by ResetCallback() remains valid until StopCallback() is called.

It is acceptable to continuously call ResetCallback() without StopCallback(). However, the second and
subsequent calls are ignored.

See also
StopCallback()

12-34 Controller/Peripherals Library Functions

Run-Time Library Reference

RestartCallback
Restart a halted callback.

Library Header File Introduced Documentation Date
libetc.lib libetc.h 3.2 12/14/98

Syntax
int RestartCallback(void)

Explanation
Restores the halted call-back to the status immediately prior to when it was halted.

Differs from ResetCallback() in that the call-back functions and call-back stack are not initialized.

ResetCallback() must be executed before executing RestartCallBack().

The environment initialized by RestartCallback() is valid until StopCallback() is called.

There is no problem even if RestartCallback() is successively called without inserting StopCallback(), but
calls from the second one onwards are ignored.

Return value
Used by system only.

See also
StopCallback()

Controller/Peripherals Library Functions 12-35

Run-Time Library Reference

SelectGUN
Select gun.

Library Header File Introduced Documentation Date
libgun.lib libgun.h 3.5 12/14/98

Syntax
void SelectGUN(
int ch, Gun channel (0 or 1)
u_char mask) Interruptmask setting (0: interrupts prohibited, 1: interrupts permitted)

Explanation
Sets the interrupt mask for the gun.

It is not possible to disable interrupts for two masks at the same time.

See also
InitGUN(), StartGUN(), StopGUN(), RemoveGUN()

12-36 Controller/Peripherals Library Functions

Run-Time Library Reference

SendTAP
Send data to controller.

Library Header File Introduced Documentation Date
libtap.lib libtap.h 3.7 12/14/98

Syntax
void SendTAP(
char *bufA, Transmission data buffer
long lenA, Transmission data buffer length (Unit= bytes)
char *bufB, Transmission data buffer
long lenB) Transmission data buffer length (Unit= bytes)

Explanation
This function registers the controller transmission data buffer and sends data.

The target device ID and data set in the buffer are transmitted when communicating with each vertical
synchronization interrupt controller.

Table 12-21

Byte Contents
0 Flag which specifies whether buffer data is

valid or invalid
0x00 is invalid, 0x01 is valid. Operation
with other values is undefined.

1 Target device ID
(Uses upper level 2 bits, other bits are
system reserved)

2~6 Transmission data (data length is the
same as received data length)

7 Controller B Target Device ID
8~12 Transmission data to Controller B
13 Controller C Target Device ID
14~18 Transmission data to Controller C
19 Controller D Target Device ID
20~24 Transmission data to Controller D

The buffer settings and Notes regarding the new version of the analog joystick equipped with a vibration
device are as follows:

Table 12-22

Byte Contents
Target device ID Upper-level 2 bit: 0x01

Lower-level 6 bit: Operation undefined
(vibration device)

Transmission data (first byte) bit0:1 = vibration ON, 0 = vibration OFF
Others (bit 7~1): Operation undefined

Transmission data Always 0x00. Others: Operation undefined

Note: Communication with the controller is carried out when the vibration device is set to On and is
effective only until the 1 vertical synchronization period when communication with the controller is carried
out next. When the device is in operation set the target device ID and vibration on the transmission data
buffer of each vertical synchronization interrupt to “on” and continue to place the buffer in an effective state.

Controller/Peripherals Library Functions 12-37

Run-Time Library Reference

Although the target device ID is effective when the upper two bits are 01, other bits are system reserved so
should all be 0. Transmission data is effective when both the first byte and the upper 1 bit are 1, the other
bits should be 0.

See also
InitTAP()

12-38 Controller/Peripherals Library Functions

Run-Time Library Reference

SetVideoMode
Declare current video signaling system.

Library Header File Introduced Documentation Date
libetc.lib libetc.h 3.1 12/14/98

Syntax
long SetVideoMode(
long mode) Video signaling system mode

Explanation
Declares the video signaling system indicated by mode to the libraries (MODE_NTSC for NTSC and
MODE_PAL for PAL).

Related libraries will conform to the actions of the declared video signaling system environment.

Should be called in advance of all library functions.

Return value
Previously-set video signaling system mode.

See also
GetVideoMode()

Controller/Peripherals Library Functions 12-39

Run-Time Library Reference

StartGUN
Start controller reading.

Library Header File Introduced Documentation Date
libgun.lib libgun.h 3.6 12/14/98

Syntax
long StartGUN(void)

Explanation
Starts controller reading at Vsync interrupt.

Return value
1 if successful; 0 on failure.

See also
InitGUN(), StopGUN(), SelectGUN(), RemoveGUN()

12-40 Controller/Peripherals Library Functions

Run-Time Library Reference

StartTAP
Start controller reading.

Library Header File Introduced Documentation Date
libtap.lib libtap.h 3.4 12/14/98

Syntax
void StartTAP(void)

Explanation
Starts controller reading at Vsync interrupt.

See also
InitTAP()

Controller/Peripherals Library Functions 12-41

Run-Time Library Reference

StopCallback
Stop all callbacks.

Library Header File Introduced Documentation Date
libetc.lib libetc.h 3.0 12/14/98

Syntax
void StopCallback(void)

Explanation
Stops all system callbacks.

Before terminating programs, StopCallback() can be called to disable all interrupts.

See also
RestartCallback()

12-42 Controller/Peripherals Library Functions

Run-Time Library Reference

StopGUN
Halt controller reading.

Library Header File Introduced Documentation Date
libgun.lib libgun.h 3.6 12/14/98

Syntax
void StopGUN(void)

Explanation
Halts the controller reading. Does not prohibit interrupts.

See also
InitTAP(), StartGUN(), SelectGUN(), RemoveGUN()

Controller/Peripherals Library Functions 12-43

Run-Time Library Reference

StopTAP
Halt controller reading.

Library Header File Introduced Documentation Date
libtap.lib libtap.h 3.4 12/14/98

Syntax
void StopTAP(void)

Explanation
Halts the controller reading. Does not prohibit interrupts.

See also
InitTAP()

12-44 Controller/Peripherals Library Functions

Run-Time Library Reference

Run-Time Library Reference

Chapter 13: Link Cable Library
Table of Contents

Functions
_comb_control 13-3
AddCOMB 13-6
ChangeClearSIO 13-7
DelCOMB 13-8

Macros
CombAsyncRequest 13-9
CombBytesRemaining 13-10
CombBytesToRead 13-11
CombBytesToWrite 13-12
CombCancelRead 13-13
CombCancelWrite 13-14
CombControlStatus 13-15
CombCTS 13-16
CombGetBPS 13-17
CombGetMode 13-18
CombGetPacketSize 13-19
CombReset 13-20
CombResetError 13-21
CombResetVBLANK 13-22
CombSetBPS 13-23
CombSetControl 13-24
CombSetMode 13-25
CombSetPacketSize 13-26
CombSetRTS 13-27
CombSioStatus 13-28
CombWaitCallback 13-29

13-2

Run-Time Library Reference

Link Cable Library Functions 13-3

Run-Time Library Reference

Functions

_comb_control
Link cable driver control.

Library Header File Introduced Documentation Date
libcomb.lib libcomb.h 3.0 12/14/98

Syntax
long _comb_control(
u_long cmd Command
u_long arg Subcommand
u_long param) Argument

Explanation
Offers the same functionality as ioctl() to an SIO device.

All the macros in this chapter are versions of this command.

Table 13-1: _comb_control() Command Summary

cmd arg Function
0 0 Returns the serial controller status (seeTable 13-2)
0 1 Returns the control line status (see Table 13-3)
0 2 Returns the communication mode (see Table 13-4)
0 3 Returns the communication rate in bps
0 4 Returns the "unit-number of characters for receiving”
0 5 Returns the amount of remaining data (bytes) from

asynchronous input/output during processing
If the param is 0 it is asynchronous write, if 1 it is
asynchronous read

0 6 Returns an asynchronous input/output request
whether it registered or not
If it has been registered, it will return 1. Others will
return 0.
If the param is 0, it is asynchronous write, if 1 it is
asynchronous read

1 0 System reserved
1 1 Sets the value of param as the control line status (*2)
1 2 (Reserved)
1 3 Sets the value of param as the communication rate by

bps
1 4 Sets the value of param as the "unit-number of

characters for receiving"
2 0 Resets the serial controller

Controller status, communication mode and
communication speed are saved

2 1 Clears the bits related to the driver status error.
Includes a function which indicates the completion of
the interrupt processing to the driver

2 2 Cancels the asynchronous writing
2 3 Cancels the asynchronous reading
3 0 When param is 1 RTS is made 1

When param is 0, RTS is made 0

13-4 Link Cable Library Functions

Run-Time Library Reference

cmd arg Function
3 1 If (CTS==1) 1 is returned, the others return 0
4 0 The param value is considered to be the pointer to the

function and is registered as the pointer to the wait
callback function
The callback function pointer values up to that point
are returned

Table 13-2: Driver Status

bit Contents
31-10 Undefined
9 1: Interrupt is ON
8 1: CTS is ON
7 1: DSR is ON
6 Undefined
5 1: Frame error occurrence
4 1: Overrun error occurrence
3 1: Parity error occurrence
2 1: No sending data
1 1: Possible to read the receiving data
0 1: Possible to write the sending data

Table 13-3: Control Line Status

bit Contents
31-2 Undefined
1 1: RTS is ON
0 1: DTR is ON

Table 13-4: Communication Mode

bit Contents
31-8 Undefined
7,6 Stop bit length

01:1
10:1.5
11:2

5 Parity check(2) 1: odd number 0: even
number

4 Parity check(1) 1: enabled
3,2 Character length

00:5 bits
01:6
10:7
11:8

1 1 at all times
0 0 at all times

Link Cable Library Functions 13-5

Run-Time Library Reference

Return value
Depends on the control command cmd.

See also

13-6 Link Cable Library Functions

Run-Time Library Reference

AddCOMB
Initialize link cable driver.

Library Header File Introduced Documentation Date
libcomb.lib libcomb.h 3.0 12/14/98

Syntax
void AddCOMB(void)

Explanation
Initializes the link cable driver.

See also
DelCOMB()

Link Cable Library Functions 13-7

Run-Time Library Reference

ChangeClearSIO
Clear interrupt from expanded SIO in the driver.

Library Header File Introduced Documentation Date
libcomb.lib libcomb.h 3.0 12/14/98

Syntax
void ChangeClearSIO(
long val) Interrupt cause clear flag

Explanation
If val is non-0, an interrupt from an expansion SIO in the driver is cleared. This is used only when other
expansion SIO drivers are also present.

See also

13-8 Link Cable Library Functions

Run-Time Library Reference

DelCOMB
Remove link cable driver from kernel.

Library Header File Introduced Documentation Date
libcomb.lib libcomb.h 3.0 12/14/98

Syntax
void DelCOMB(void)

Explanation
Removes link cable driver from kernel.

See also
AddCOMB()

Link Cable Library Macros 13-9

Run-Time Library Reference

Macros

CombAsyncRequest
Get asynchronous communication request status.

Library Header File Introduced Documentation Date
libcomb.lib libcomb.h 4.2 12/14/98

Syntax
long CombAsyncRequest(
long param) 0: asynchronous write, 1: asynchronous read

Explanation
Determines whether an asynchronous input/output request has been made.

This macro is quivalent to _comb_control (0, 6, param).

Return value
1 if request has been made; 0 otherwise.

See also

13-10 Link Cable Library Macros

Run-Time Library Reference

CombBytesRemaining
Get remaining transmit or receive data.

Library Header File Introduced Documentation Date
libcomb.lib libcomb.h 4.2 12/14/98

Syntax
long CombBytesRemaining(
long param) 0: asynchronous write, 1: asynchronous read

Explanation
Gets the remaining data count from the asynchronous read or asynchronous write being processed.

This macro is equivalent to _comb_control (0, 5, param).

Return value
The number of bytes remaining.

See also
_comb_control()

Link Cable Library Macros 13-11

Run-Time Library Reference

CombBytesToRead
Get number of bytes left to receive.

Library Header File Introduced Documentation Date
libcomb.lib libcomb.h 4.2 12/14/98

Syntax
long CombBytesToRead(void)

Explanation
Obtains the number of bytes left in the current asynchronous read operation.

This macro is equivalent to _comb_control (0, 5, 1).

Return value
The number of bytes remaining.

See also
_comb_control()

13-12 Link Cable Library Macros

Run-Time Library Reference

CombBytesToWrite
Get number of bytes left to send.

Library Header File Introduced Documentation Date
libcomb.lib libcomb.h 4.2 12/14/98

Syntax
long CombBytesToWrite(void)

Explanation
Obtains the number of bytes remaining in the current asynchronous write operation.

This macro is equivalent to _comb_control (0, 5, 0).

Return value
The number of bytes remaining.

See also
_comb_control()

Link Cable Library Macros 13-13

Run-Time Library Reference

CombCancelRead
Cancel asynchronous read.

Library Header File Introduced Documentation Date
libcomb.lib libcomb.h 4.2 12/14/98

Syntax
long CombCancelRead(void)

Explanation
Cancels current asynchronous read operation.

This macro is equivalent to _comb_control (2, 3, 0).

Return value
0.

See also
_comb_control()

13-14 Link Cable Library Macros

Run-Time Library Reference

CombCancelWrite
Cancel asynchronous write.

Library Header File Introduced Documentation Date
libcomb.lib libcomb.h 4.2 12/14/98

Syntax
long CombCancelWrite(void)

Explanation
Cancels current asynchronous write operation.

This macro is equivalent to _comb_control (2, 2, 0).

Return value
0.

See also
_comb_control()

Link Cable Library Macros 13-15

Run-Time Library Reference

CombControlStatus
Get control line status.

Library Header File Introduced Documentation Date
libcomb.lib libcomb.h 4.2 12/14/98

Syntax
long CombControlStatus(void)

Explanation
Obtains the control line status.

This macro is equivalent to _comb_control (0, 1, 0).

Return value
The control line status. Bit fields are as follows:

Table 13-5: Control Line Status

bit Contents
31-2 undefined
1 1: RTS on
0 1: DTR on

See also
_comb_control()

13-16 Link Cable Library Macros

Run-Time Library Reference

CombCTS
Get status of CTS signal.

Library Header File Introduced Documentation Date
libcomb.lib libcomb.h 4.2 12/14/98

Syntax
long CombCTS(void)

Explanation
Obtains the state of the serial controller CTS bit.

This macro is equivalent to _comb_control (3, 1, 0).

Return value
1 if CTS is 1; 0 otherwise.

See also
_comb_control()

Link Cable Library Macros 13-17

Run-Time Library Reference

CombGetBPS
Get communication speed.

Library Header File Introduced Documentation Date
libcomb.lib libcomb.h 4.2 12/14/98

Syntax
long CombGetBPS(void)

Explanation
Obtains the communication speed (in bps).

This macro is equivalent to _comb_control (0, 3, 0).

Return value
The communication speed (in bps).

See also
_comb_control()

13-18 Link Cable Library Macros

Run-Time Library Reference

CombGetMode
Get communication mode.

Library Header File Introduced Documentation Date
libcomb.lib libcomb.h 4.2 12/14/98

Syntax
long CombGetMode(void)

Explanation
Obtains the communication mode.

This macro is equivalent to _comb_control (0, 2, 0).

Return value
The communication mode.

Table 13-6: Communication Mode

bit Contents
31-8 undefined
7,6 stop bit length

01: 1
10: 1.5
11: 2

5 parity2 1:odd 0:even
4 parity1 1:enabled
3,2 character length

00: 5 bits
01: 6
10: 7
11: 8

1 always 1
0 always 0

See also
_comb_control()

Link Cable Library Macros 13-19

Run-Time Library Reference

CombGetPacketSize
Get receive packet size.

Library Header File Introduced Documentation Date
libcomb.lib libcomb.h 4.2 12/14/98

Syntax
long CombGetPacketSize(void)

Explanation
Obtains the receive packet size.

This macro is equivalent to _comb_control (0, 4, 0).

Return value
The receive packet size.

See also
_comb_control()

13-20 Link Cable Library Macros

Run-Time Library Reference

CombReset
Initialize the serial controller.

Library Header File Introduced Documentation Date
libcomb.lib libcomb.h 4.2 12/14/98

Syntax
long CombReset(void)

Explanation
Initializes the serial controller. Controller status, communication mode and communication speed remain
unchanged.

This macro is equivalent to _comb_control (2, 0, 0).

Return value
0.

See also
_comb_control()

Link Cable Library Macros 13-21

Run-Time Library Reference

CombResetError
Initialize error flags.

Library Header File Introduced Documentation Date
libcomb.lib libcomb.h 4.2 12/14/98

Syntax
long CombResetError(void)

Explanation
Clears error-related bits from driver status.

This macro is equivalent to _comb_control (2, 1, 0).

Return value
0.

See also
_comb_control()

13-22 Link Cable Library Macros

Run-Time Library Reference

CombResetVBLANK
Reset vertical blanking signal.

Library Header File Introduced Documentation Date
libcomb.lib libcomb.h 4.2 12/14/98

Syntax
long CombResetVBLANK(void)

Explanation
Resets the vertical blanking signal.

This macro is equivalent to _comb_control (5, 0, 0).

Return value
0.

See also
_comb_control()

Link Cable Library Macros 13-23

Run-Time Library Reference

CombSetBPS
Set communication speed.

Library Header File Introduced Documentation Date
libcomb.lib libcomb.h 4.2 12/14/98

Syntax
long CombSetBPS(
long bps) Communication speed (in bps)

Explanation
Sets the communication speed. bps must be in the range 9600 - 2073600 and evenly divisible into
2073600. If asynchronous write is used, the maximum communication speed is 57600 bps.

This macro is equivalent to _comb_control (1, 3, bps).

Return value
0.

See also
_comb_control()

13-24 Link Cable Library Macros

Run-Time Library Reference

CombSetControl
Set control line status.

Library Header File Introduced Documentation Date
libcomb.lib libcomb.h 4.2 12/14/98

Syntax
long CombSetControl(
long val) Control line status

Explanation
Sets the control line status.

Table 13-7: Control Line Status

bit Contents
31-2 unused
1 1: RTS on
0 1: DTR on

This macro is equivalent to _comb_control (1, 1, val).

Return value
0.

See also
_comb_control()

Link Cable Library Macros 13-25

Run-Time Library Reference

CombSetMode
Set communication mode.

Library Header File Introduced Documentation Date
libcomb.lib libcomb.h 4.2 12/14/98

Syntax
long CombSetMode(
long mode) Communication mode

Explanation
Sets the communication mode.

This macro is equivalent to _comb_control (1, 2, mode).

Table 13-8: Communication Mode

bit Contents
31-8 Unused
7,6 stop bit length

01: 1
10: 1.5
11: 2

5 Parity2 1: odd 0: even
4 Parity1 1: enabled
3,2 Character length

00: 5 bits
01: 6
10: 7
11: 8

1 Always 1
0 Always 0

Return value
0.

See also
_comb_control()

13-26 Link Cable Library Macros

Run-Time Library Reference

CombSetPacketSize
Set receive packet size.

Library Header File Introduced Documentation Date
libcomb.lib libcomb.h 4.2 12/14/98

Syntax
long CombSetPacketSize(
long size) Packet size (1, 2, 4, or 8)

Explanation
Sets the receive packet size, which sets the byte count used for generating interrupts in asynchronous
communication. For example, if the receive packet size is set to 4, the serial controller generates an
interrupt after every four bytes of data received. A large packet size lowers the frequency of interrupts, thus
improving overall system performance.

Note: When sending data asynchronously, the packet size must be set to 1, since only 1 byte can be sent
at a time.

This macro is equivalent to _comb_control (1, 4, size).

Return value
0.

See also
_comb_control()

Link Cable Library Macros 13-27

Run-Time Library Reference

CombSetRTS
Set RTS signal.

Library Header File Introduced Documentation Date
libcomb.lib libcomb.h 4.2 12/14/98

Syntax
long CombSetRTS(void)

Explanation
Sets the RTS bit in control line status to 1.

This macro is equivalent to _comb_control (3, 0, 1).

Return value
0.

See also
_comb_control()

13-28 Link Cable Library Macros

Run-Time Library Reference

CombSioStatus
Get serial controller status.

Library Header File Introduced Documentation Date
libcomb.lib libcomb.h 4.2 12/14/98

Syntax
long CombSioStatus(void)

Explanation
Obtains serial controller status.

This macro is equivalent to _comb_control (0, 0, 0).

Return value
The serial controller status. Bit fields are:

Table 13-9: Serial Controller Status

Bit Contents
31-10 undefined
9 1: interrupts on
8 1: CTS is on
7 1: DSR is on
6 undefined
5 1:frame error generated
4 1:overrun error generated
3 1:parity error generated
2 1:no data to transmit
1 1:receive data available
0 1:transmit data available

See also
_comb_control()

Link Cable Library Macros 13-29

Run-Time Library Reference

CombWaitCallback
Set wait callback function.

Library Header File Introduced Documentation Date
libcomb.lib libcomb.h 4.2 12/14/98

Syntax
long CombWaitCallback(
long func) Pointer to the wait callback function

Explanation
The value of func is entered as a pointer to the wait callback function.

This macro is equivalent to _comb_control (4, 0, func).

Return value
The value of the previous callback function.

See also
_comb_control()

13-30 Link Cable Library Macros

Run-Time Library Reference

Run-Time Library Reference

Chapter 14: Extended Sound Library
Table of Contents

Structures
ProgAtr 14-5
SndRegisterAttr 14-6
SndVoiceStats 14-7
SndVolume 14-8
SndVolume2 14-9
VabHdr 14-10
VagAtr 14-11
_SsFCALL 14-12

Functions
dmy_Ss... 14-14
SsAllocateVoices 14-15
SsBlockVoiceAllocation 14-16
SsChannelMute 14-17
SsEnd 14-18
SsGetActualProgFromProg 14-19
SsGetChannelMute 14-20
SsGetCurrentPoint 14-21
SsGetMute 14-22
SsGetMVol 14-23
SsGetNck, SsSetNck, SsSetNoiseOff, SsSetNoiseOn 14-24
SsGetRVol 14-25
SsGetSerialAttr 14-26
SsGetSerialVol 14-27
SsGetVoiceMask 14-28
SsInit 14-29
SsInitHot 14-30
SsIsEos 14-31
SsPitchFromNote 14-32
SsPlayBack 14-33
SsQueueKeyOn 14-34
SsQueueRegisters 14-35
SsQueueReverb 14-37
SsQuit 14-38
SsSepClose 14-39
SsSepOpen 14-40
SsSepOpenJ 14-41
SsSepPause 14-42
SsSepPlay 14-43
SsSepReplay 14-44
SsSepSetAccelerando 14-45
SsSepSetCrescendo 14-46
SsSepSetDecrescendo 14-47
SsSepSetRitardando 14-48
SsSepSetVol 14-49
SsSepStop 14-50
SsSeqCalledTbyT 14-51
SsSeqClose 14-52
SsSeqGetVol 14-53
SsSeqOpen 14-54
SsSeqOpenJ 14-55
SsSeqPause 14-56
SsSeqPlay 14-57

14-2

Run-Time Library Reference

SsSeqPlayPtoP 14-58
SsSeqReplay 14-59
SsSeqSetAccelerando 14-60
SsSeqSetCrescendo 14-61
SsSeqSetDecrescendo 14-62
SsSeqSetNext 14-63
SsSeqSetRitardando 14-64
SsSeqSetVol 14-65
SsSeqSkip 14-66
SsSeqStop 14-67
SsSetAutoKeyOffMode 14-68
SsSetCurrentPoint 14-69
SsSetLoop 14-70
SsSetMarkCallback 14-71
SsSetMono 14-72
SsSetMute 14-73
SsSetMVol 14-74
SsSetNext 14-75
SsSetReservedVoice 14-76
SsSetRVol 14-77
SsSetSerialAttr 14-78
SsSetSerialVol 14-79
SsSetStereo 14-80
SsSetTableSize 14-81
SsSetTempo 14-82
SsSetTickCallback 14-83
SsSetTickMode 14-84
SsSetVoiceMask 14-85
SsSetVoiceSettings 14-86
SsStart 14-87
SsStart2 14-88
SsUnBlockVoiceAllocation 14-89
SsUtAllKeyOff 14-90
SsUtAutoPan 14-91
SsUtAutoVol 14-92
SsUtChangeADSR 14-93
SsUtChangePitch 14-94
SsUtFlush 14-95
SsUtGetDetVVol 14-96
SsUtGetProgAtr 14-97
SsUtGetReverbType 14-98
SsUtGetVabHdr 14-99
SsUtGetVagAddr 14-100
SsUtGetVagAddrFromTone 14-101
SsUtGetVagAtr 14-102
SsUtGetVBaddrInSB 14-103
SsUtGetVVol 14-104
SsUtKeyOff 14-105
SsUtKeyOffV 14-106
SsUtKeyOn 14-107
SsUtKeyOnV 14-108
SsUtPitchBend 14-109
SsUtReverbOff 14-110
SsUtReverbOn 14-111
SsUtSetDetVVol 14-112
SsUtSetProgAtr 14-113
SsUtSetReverbDelay 14-114

14-3

Run-Time Library Reference

SsUtSetReverbDepth 14-115
SsUtSetReverbFeedback 14-116
SsUtSetReverbType 14-117
SsUtSetVabHdr 14-118
SsUtSetVagAtr 14-119
SsUtSetVVol 14-120
SsVabClose 14-121
SsVabFakeBody 14-122
SsVabFakeHead 14-123
SsVabOpen 14-124
SsVabOpenHead 14-125
SsVabOpenHeadSticky 14-126
SsVabTransBody 14-127
SsVabTransBodyPartly 14-128
SsVabTransCompleted 14-129
SsVabTransfer 14-130
SsVoiceCheck 14-131
SsVoKeyOff 14-132
SsVoKeyOn 14-133

14-4

Run-Time Library Reference

Extended Sound Library Structures 14-5

Run-Time Library Reference

Structures

ProgAtr
Program header.

Library Header File Introduced Documentation Date
libsnd.lib libsnd.h 2.x 12/14/98

Structure
typedef struct ProgAtr {

u_char tones; Number of VAG attribute sets contained in the program
u_char mvol; Master volume for the program
u_char prior; Program priority (0-15)
u_char mode; Sound source mode
u_char mpan; Program pan
char reserved0; Reserved by the system
short attr; Program attribute
u_long reserved1; Reserved by the system
u_long reserved2; Reserved by the system

};

See also

14-6 Extended Sound Library Structures

Run-Time Library Reference

SndRegisterAttr
SPU register attributes.

Library Header File Introduced Documentation Date
libsnd.lib libsnd.h 4.1 12/14/98

Structure
struct SndRegisterAttr {

SndVolume2 volume; Volume data for left and right channels
short pitch; Pitch rate at which to play back waveform data
short mask; Bitfield designating which attributes to set
short addr; Waveform data start address
short adsr1; Bitfield for setting adsr information (see Explanation)
short adsr2; Bitfield for setting adsr information (see Explanation)

} SndRegisterAttr;

Explanation
This structure is used in the function SsQueueRegisters() to set SPU voice information.

adsr1:

15 14 9 8 5 4 0

ar_m ar dr sl

ar_m: attack rate mode 0 = linear, 1 = exponential
ar: attack rate
dr: decay rate
sl: sustain level

adsr2 :

15 14 6 5 4 0

sr_m sr_s sr rr_m

13 12

rr

sr_m: sustain rate mode 0 = linear, 1 = exponential
sr_s: sustain rate sign 0 = positive, 1 = negative
sr: sustain rate
rr_m: release rate mode 0 = linear, 1 = exponential
rr: release rate

Note: Bit 13 is unused

See also
SndVoiceStats(), SndVolume2(), SsAllocateVoices(), SsBlockVoiceAllocation(), SsGetActualProgFromProg(),
SsPitchFromNote(), SsQueueKeyOn(), SsQueueRegisters(), SsQueueReverb(), SsSetVoiceSettings(),
SsUnBlockVoiceAllocation(), SsVoiceCheck()

Extended Sound Library Structures 14-7

Run-Time Library Reference

SndVoiceStats
Internal libsnd voice variables.

Library Header File Introduced Documentation Date
libsnd.lib libsnd.h 4.1 12/14/98

Structure
struct SndVoiceStats {

short vagId; VAG number pointed to by tone information (1-254)
short vabId; VAB number containing tone information (0-15)
u_short pitch; Playback rate of voice
short vol; Volume of voice (0-127). Not valid for 3D sound input
char pan; Voice pan (0-127; 0 = left, 64 = center, 127 = right) . Not valid for 3D

sound input
short note; Note at which tone information keyed on
short tone; Tone number (0-15)
short prog_num; Program number containing tone information (0-127)
short prog_actual; The “real” program number within which the tone information resides.

} SndVoiceStats;

Explanation
This structure is used to fill the internal libsnd voice structures in the function SsSetVoiceSettings().

prog_actual is only incremented by valid programs (programs containing one or more tones) and so may
differ from prog_num. Example: In a VAB with valid programs 0-10 and 100-127, the prog_num of program
127 = 127, while the prog_actual of program 127 = 38. Used to calculate offset in VAB header of tone
information.

See also
SndRegisterAttr(), SndVolume2(), SsAllocateVoices(), SsBlockVoiceAllocation(),
SsGetActualProgFromProg(), SsPitchFromNote(), SsQueueKeyOn(), SsQueueRegisters(), SsQueueReverb(),
SsSetVoiceSettings(), SsUnBlockVoiceAllocation(), SsVoiceCheck()

14-8 Extended Sound Library Structures

Run-Time Library Reference

SndVolume
Volume.

Library Header File Introduced Documentation Date
libsnd.lib libsnd.h 2.x 12/14/98

Structure
typedef struct
SndVolume {

u_short left; L channel volume value, 0 - 127
u_short right; R channel volume value, 0 - 127

};

See also

Extended Sound Library Structures 14-9

Run-Time Library Reference

SndVolume2
Volume-greater range.

Library Header File Introduced Documentation Date
libsnd.lib libsnd.h 4.1 12/14/98

Structure
struct SndVolume2 {

short left; Left volume value, -0x4000 ~ 0x3fff
short right; Right volume value, -0x4000 ~ 0x3fff

} SndVolume2;

Explanation
This structure allows for a greater range of volume inputs, including negative volumes, when used with the
libsnd keyon emulation series: SsBlockVoiceAllocation() -> SsAllocateVoices() -> SsSetVoiceSettings() ->
SsQueueRegisters() -> SsQueueKeyOn() -> SsQueueReverb() -> SsUnBlockVoiceAllocation().

See also
SndRegisterAttr(), SndVoiceStats(), SsAllocateVoices(), SsBlockVoiceAllocation(),
SsGetActualProgFromProg(), SsPitchFromNote(), SsQueueKeyOn(), SsQueueRegisters(), SsQueueReverb(),
SsSetVoiceSettings(), SsUnBlockVoiceAllocation(), SsVoiceCheck()

14-10 Extended Sound Library Structures

Run-Time Library Reference

VabHdr
Bank header.

Library Header File Introduced Documentation Date
libsnd.lib libsnd.h 2.x 12/14/98

Structure
typedef struct VabHdr {

long form; Format name (always 'VABp')
long ver; Format version number
long id; Bank (VAB) number
u_long fsize; Bank file size
u_short reserved0; Reserved by the system
u_short ps; Total number of programs contained in the bank
u_short ts; Total number of tones contained in the bank
u_short vs; Number of VAGs contained in the bank
u_char mvol; Master volume
u_char pan; Master pan level
u_char attr1; Bank attribute 1 that can be defined by the user
u_char attr2; Bank attribute 2 that can be defined by the user
u_long reserved1; Reserved by the system

};

Explanation
The VAB bank header contains information, such as sound source data set size and sound source
numerals, that is used at the time of execution.

When SsVabOpenHead() is called, it is read by the system and wave form data is generated in the SPU’s
local memory. Also, volume setting and panning setting are referred at the time of voice allocation.

Information about VAB, the program and each VAG header can change at the time of execution by the
user, and the attribute value is reflected in the voice application after the next KEY ON.

See also

Extended Sound Library Structures 14-11

Run-Time Library Reference

VagAtr
Waveform header.

Library Header File Introduced Documentation Date
libsnd.lib libsnd.h 2.x 12/14/98

Structure
typedef struct VagAtr {

u_char prior; Priority (0-15)
u_char mode; Sound source mode (Bit values 0: normal, 4: reverb)
u_char vol; Volume (0-127, 0:min, 127:max)
u_char pan; Pan pot (0-127, 0:left, 63:center, 127:right)
u_char center; Center note (0-127)
u_char shift; Pitch correction (0-127, in cents) (center note fine tune)
u_char min; Minimum note limit
u_char max; Maximum note limit
u_char vibW; Vibrato width (0-127 over one octave) (not implemented)
u_char vibT; Period of vibrato cycle (in ticks) (not implemented)
u_char porW; Portamento width (not implemented)
u_char porT; Period of portamento duration (in ticks) (not implemented)
u_char pbmin; Minimum pitch bend limit
u_char pbmax; Maximum pitch bend limit
u_char reserved1; Reserved by the system
u_char reserved2; Reserved by the system
u_short adsr1; Set ADSR value 1
u_short adsr2; Set ADSR value 2
short prog; Master program containing the VAG attribute
short vag; VAG’s ID number utilized by the VAG attribute
short reserved[4]; Reserved by the system

};

See also

14-12 Extended Sound Library Structures

Run-Time Library Reference

_SsFCALL
Function table type referenced in SsSeqOpenJ() and SsSepOpenJ().

Library Header File Introduced Documentation Date
libsnd.lib libsnd.h 3.6 12/14/98

Structure
typedef struct {

void (*noteon) ();
void (*programchange) ();
void (*pitchbend) ();
void (*metaevent) ();
void (*control[13]) ();
void (*ccentry[20]) ();

} _SsFCALL;

Members
All members hold pointers to low-level MIDI functions.
Table 14-1

Member Pointer to
noteon _SsNoteOn
programchange _SsSetProgramChange
pitchbend _SsSetPitchBend
metaevent _SsGetMetaEvent

control [CC_NUMBER] _SsSetControlChange Specified when using
Control Change

control
[CC_BANKCHANGE]

_SsContBankChange Control Change#1 (Bank
Change)

control [CC_DATAENTRY] _SsContDataEntry Control Change #6 (Data
Entry)

control [CC_MAINVOL] _SsContMainVol Control Change #7 (Main
Volume)

control [CC_PANPOT] _SsContPanpot Control Change #10 (Pan
Pot)

control [CC_EXPRESSION] _SsContExpression Control Change #11
(Expression)

control [CC_DAMPER] _SsContDamper Control Change #64
(Damper pedal)

control [CC_NRPN1] _SsContNrpn1 Control Change #98
(NRPN)

control [CC_NRPN2] _SsContNrpn2 Control Change #99
(NRPN)

control [CC_RPN1] _SsContRpn1 Control Change #100
(RPN)

control [CC_RPN2] _SsContRpn2 Control Change #101
(RPN)

control [CC_EXTERNAL] _SsContExternal Control Change #91
(External Effect Depth)

control [CC_RESETALL] _SsContResetAll Control Change #121
(Reset All)

Extended Sound Library Structures 14-13

Run-Time Library Reference

Member Pointer to
ccentry [DE_PRIORITY] _SsSetNrpnVabAttr0 priority
ccentry [DE_MODE] _SsSetNrpnVabAttr1 mode
ccentry [DE_LIMITL] _SsSetNrpnVabAttr2 limit low
ccentry [DE_LIMITH] _SsSetNrpnVabAttr3 limit high
ccentry [DE_ADSR_AR_L] _SsSetNrpnVabAttr4 ADSR (AR-L)
ccentry [DE_ADSR_AR_E] _SsSetNrpnVabAttr5 ADSR (AR-E)
ccentry [DE_ADSR_DR] _SsSetNrpnVabAttr6 ADSR (DR)
ccentry [DE_ADSR_SL] _SsSetNrpnVabAttr7 ADSR (SL)
ccentry [DE_ADSR_SR_L] _SsSetNrpnVabAttr8 ADSR (SR-L)
ccentry [DE_ADSR_SR_E] _SsSetNrpnVabAttr9 ADSR (SR-E)
ccentry [DE_ADSR_RR_L] _SsSetNrpnVabAttr10 ADSR (RR-L)
ccentry [DE_ADSR_RR_E] _SsSetNrpnVabAttr11 ADSR (RR-E)
ccentry [DE_ADSR_SR] _SsSetNrpnVabAttr12 ADSR (SR)
ccentry [DE_VIB_TIME] _SsSetNrpnVabAttr13 vibrate time (no support)
ccentry
[DE_PORTA_DEPTH]

_SsSetNrpnVabAttr14 portamento depth (no
support)

ccentry [DE_REV_TYPE] _SsSetNrpnVabAttr15 reverb type
ccentry [DE_REV_DEPTH] _SsSetNrpnVabAttr16 reverb depth
ccentry [DE_ECHO_FB] _SsSetNrpnVabAttr17 echo feedback
ccentry
[DE_ECHO_DELAY]

_SsSetNrpnVabAttr18 echo delay

ccentry [DE_DELAY] _SsSetNrpnVabAttr19 delay time

Explanation
The functions SsSeqPlay() and SsSepPlay() analyze the MIDI status data and call low-level functions. When
calling SsSeqOpen() or SsSepOpen(), all the low-level functions are linked in, even though an application
won’t necessarily use them all.

The new functions SsSeqOpenJ() and SsSepOpenJ() have been added to replace SsSeqOpen() and
SsSepOpen() respectively. With these functions, all the low-level functions are in a jump table, so the user
can select only the desired function groups. Unnecessary functions aren’t linked, so code size is reduced.

The _SsFCALL structure defines this function table. Low-level functions that have pointers assigned to
them are linked in. Low-level functions can be eliminated by not setting the member.

To determine which functions will be called by a MIDI sequence, you can use a test program. This is
necessary because, iIf a MIDI sequence calls a low-level function which hasn’t been linked in, a BUS
ERROR results. Set all pointers for low-level functions to the correspondingly named dmy_Ss...() function.
Each low-level function called by the MIDI sequence outputs a message via printf().

SsFCALL is the name of the actual libsnd variable that must be used by the programmers to link the low-
level MIDI functions.

See also
dmy_Ss...(), SsSeqOpenJ(), SsSepOpenJ()

14-14 Extended Sound Library Functions

Run-Time Library Reference

Functions

dmy_Ss...
Test function for low-level MIDI jump table.

Library Header File Introduced Documentation Date
libsnd.lib libsnd.h 3.6 12/14/98

Syntax
void dmy_Ss...(void)

Explanation
Hook these dummy functions into the libsnd variable SsFCALL (structure type _SsFCALL).

Ex: SsFCALL.noteon = (void (*)()) dmy_Ss_NoteOn();

When these functions are called for the first time, the name of the low-level MIDI function is output by
printf(). After all of the low-level MIDI functions that need to be called by your program have been
determined, replace the registered dmy_Ss...() calls with the appropriate _Ss_...() calls. Unused dmy_Ss...()
should be deleted.

This function is provided for debugging.

See also

Extended Sound Library Functions 14-15

Run-Time Library Reference

SsAllocateVoices
Compare priorities of a number of voices and allocate them where possible.

Library Header File Introduced Documentation Date
libsnd.lib libsnd.h 4.1 12/14/98

Syntax
long SsAllocateVoices(
u_char voices, The desired number of voices required to be keyed on simultaneously
u_char priority) Priority of the desired voices

Range: 0-127, with 0 being lowest priority and 127 being highest priority

Explanation
Emulates the libsnd voice allocation system, but allows more than one voice to be allocated simultaneously.
Searches through all 24 SPU voices for SPU voices in the state SPU_OFF, ENV_OFF (that is, SPU voices
which are not currently sounding). If there are fewer SPU voices in a state of SPU_OFF, ENV_OFF than the
total number of desired voices, the levels of voice priority are compared, and the lowest priority SPU voice
number is allocated for the desired voices (if the lowest priority is less than the value set in priority).

Where the priorities are equivalent, the SPU voice number with the lowest envelope is allocated to the
desired voices..

Where the priorities and envelope size are the same, the oldest SPU voices are allocated to the desired
voices.

This function should only be used as part of the series: SsBlockVoiceAllocation() -> SsAllocateVoices()->
SsSetVoiceSettings()-> SsQueueRegisters()-> SsQueueKeyOn()-> SsQueueReverb() ->
SsUnBlockVoiceAllocation()

Return value
A bifield specifying which voices were allocated for key on. To determine if a voice was allocated, AND the
return value with the mask for a particular voice (SPU_00CH …SPU_23CH). If the value is non-zero, the
voice was allocated.

See also
SndRegisterAttr(), SndVoiceStats(), SndVolume2(), SsBlockVoiceAllocation(), SsGetActualProgFromProg(),
SsPitchFromNote(), SsQueueKeyOn(), SsQueueRegisters(), SsQueueReverb(), SsSetVoiceSettings(),
SsUnBlockVoiceAllocation(), SsVoiceCheck()

14-16 Extended Sound Library Functions

Run-Time Library Reference

SsBlockVoiceAllocation
Block voice allocation system used by SsUtKeyOn(), SsUtKeyOnV(), and MIDI key on commands.

Library Header File Introduced Documentation Date
libsnd.lib libsnd.h 4.1 12/14/98

Syntax
char SsBlockVoiceAllocation(void)

Explanation
Blocks the voice allocation system for libsnd functions SsUtKeyOn() and SsUtKeyOnV(). Once this function
is called, those functions will return -1. MIDI key on commands are also blocked until
SsUnBlockVoiceAllocation() is called, in order to ensure proper key on.

The time spent until SsUnBlockVoiceAllocation() should be short, in order to reduce missed key on
commands.

This function should only be used as part of the series: SsBlockVoiceAllocation() -> SsAllocateVoices()->
SsSetVoiceSettings()-> SsQueueRegisters()-> SsQueueKeyOn()-> SsQueueReverb() ->
SsUnBlockVoiceAllocation()

Return value
1 if successful; -1 if voice allocation system already blocked, by either a previous call to this function with
no correspnding call to SsUnBlockVoiceAllocation() or a call to SsUtKeyOn(), SsUtKeyOnV() or a MIDI key
on command.

See also
SndRegisterAttr(), SndVoiceStats(), SndVolume2(), SsAllocateVoices(), SsSetVoiceSettings(),
SsQueueRegisters(), SsQueueKeyOn(), SsQueueReverb(), SsUnBlockVoiceAllocation(), SsFindPitch(),
SsGetActualProgFromProg(), SsVoiceCheck()

Extended Sound Library Functions 14-17

Run-Time Library Reference

SsChannelMute
Select MIDI channels for muting.

Library Header File Introduced Documentation Date
libsnd.lib libsnd.h 3.6 12/14/98

Syntax
void SsChannelMute(
short acn, SEP access number
short trn, SEQ number within SEP

(0 when the music score data is SEQ)
long channels) MIDI channel

Explanation
Selects MIDI channels that are muted. The low 16 bits of channels represent each channel; a bit set to 1
means the voice should be muted. This function can be called when playing is in progress, or before
playing has begun, to initiate muting.

See also
SsSeqPlay(), SsSepPlay()

14-18 Extended Sound Library Functions

Run-Time Library Reference

SsEnd
Stop the sound system.

Library Header File Introduced Documentation Date
libsnd.lib libsnd.h 2.x 12/14/98

Syntax
void SsEnd(void)

Explanation
If SsSetTickMode() is used to set a mode that automatically calls SsSeqCalledTbyT(), this function stops
SsSeqCalledTbyT() from being called at every tick.

See also
SsStart(), SsSetTickMode(), SsSeqCalledTbyT(), SsQuit()

Extended Sound Library Functions 14-19

Run-Time Library Reference

SsGetActualProgFromProg
Convert a program number into a “real” program or offset number.

Library Header File Introduced Documentation Date
libsnd.lib libsnd.h 4.1 12/14/98

Syntax
short SsGetActualProgFromProg(
short vabId, VAB number containing desired tone information
short ProgNum) Program number containing tone information

Explanation
Used to determine the “real” program number of tone information. This number is only incremented by valid
programs (programs containing one or more tones) and so may differ from the program number. Example:
In a VAB with valid programs 0-10 and 100-127, the prog_num of program 127 = 127, while the
prog_actual of program 127 = 38. This number is used to calculate the offset of tone information in the
VAB header.

Return value
The “real” program number upon success; -1 if vabId or ProgNum are out of range.

See also
SndRegisterAttr(), SndVoiceStats(), SndVolume2(), SsAllocateVoices(), SsBlockVoiceAllocation(),
SsPitchFromNote(), SsQueueKeyOn(), SsQueueRegisters(), SsQueueReverb(), SsSetVoiceSettings(),
SsUnBlockVoiceAllocation(), SsVoiceCheck()

14-20 Extended Sound Library Functions

Run-Time Library Reference

SsGetChannelMute
Get muted channel number

Library Header File Introduced Documentation Date
libsnd.lib libsnd.h 4.0 12/14/98

Syntax
long SsGetChannelMute(
short sep_num, SEQ/SEP access number
short seq_num) SEQ number within SEP data

Explanation
Returns muted MIDI channels.

Return value
Bit field showing muted MIDI channels (1= muted; 0 = not muted).

See also
SsChannelMute()

Extended Sound Library Functions 14-21

Run-Time Library Reference

SsGetCurrentPoint
Get current position in SEQ/SEP data.

Library Header File Introduced Documentation Date
libsnd.lib libsnd.h 3.6 12/14/98

Syntax
u_char *SsGetCurrentPoint(
short acn, SEP access number
short trn) SEQ number within SEP

(0 when the music score data is SEQ)

Explanation
Obtains the address of the current position in the SEQ/SEP data that is being played.

Return value
SEP/SEQ data address.

See also
SsSeqPlay(), SsSepPlay()

14-22 Extended Sound Library Functions

Run-Time Library Reference

SsGetMute
Get mute attribute.

Library Header File Introduced Documentation Date
libsnd.lib libsnd.h 2.x 12/14/98

Syntax
char SsGetMute (void)

Explanation
Obtains the mute attribute.

Return value
SS_MUTE_ON = Mute on; SS_MUTE_OFF = Mute off

See also
SsSetMute()

Extended Sound Library Functions 14-23

Run-Time Library Reference

SsGetMVol
Get main volume value.

Library Header File Introduced Documentation Date
libsnd.lib libsnd.h 2.x 12/14/98

Syntax
void SsGetMVol(
SndVolume *m_vol) Pointer to main volume value

Explanation
Returns the main volume value to m_vol.

See also
SsSetMVol()

14-24 Extended Sound Library Functions

Run-Time Library Reference

SsGetNck, SsSetNck, SsSetNoiseOff, SsSetNoiseOn
Libsnd noise functions (Not supported)

Library Header File Introduced Documentation Date
libsnd.lib libsnd.h 3.1 12/14/98

Syntax
short SsGetNck(void) Get noise clock value

void SsSetNck(Set noise clock value
short n_clock) Noise clock value (0 – 0x3f)

void SsSetNoiseOff(void) Sets noise off

void SsSetNoiseOn(Sets noise on
short voll, L channel volume value
short volr) R channel volume value

Explanation
Libsnd noise functions.

Note: These functions are not supported. Instead, use libspu noise functions or create a noise VAG from
recorded AIFF.

Extended Sound Library Functions 14-25

Run-Time Library Reference

SsGetRVol
Get reverb volume value.

Library Header File Introduced Documentation Date
libsnd.lib libsnd.h 2.x 12/14/98

Syntax
void SsGetRVol(
SndVolume *r_vol) Pointer to reverb volume value

Explanation
Returns the reverb volume value to r_vol.

See also
SsSetRVol()

14-26 Extended Sound Library Functions

Run-Time Library Reference

SsGetSerialAttr
Get value of a serial attribute.

Library Header File Introduced Documentation Date
libsnd.lib libsnd.h 2.x 12/14/98

Syntax
char SsGetSerialAttr(
char s_num, Serial Number
char attr) Attribute

Explanation
Returns the specified serial attribute value.

s_num can be SS_SERIAL_A for Serial A (CD input), or SS_SERIAL_B for Serial B (external digital input).

attr can be SS_MIX for mixing, or SS_REV for reverb.

Return value
1 if attribute is on, 0 if attribute is off.

See also
SsSetSerialAttr()

Extended Sound Library Functions 14-27

Run-Time Library Reference

SsGetSerialVol
Get a serial volume value.

Library Header File Introduced Documentation Date
libsnd.lib libsnd.h 3.1 12/14/98

Syntax
void SsGetSerialVol(
char s_num, Serial number
SndVolume *s_vol) Pointer to volume value

Explanation
Returns the specified serial volume value to s_vol.

s_num can be SS_SERIAL_A for Serial A (CD input), or SS_SERIAL_B for Serial B (external digital input).

See also
SsSetSerialVol()

14-28 Extended Sound Library Functions

Run-Time Library Reference

SsGetVoiceMask
Get voices blocked from access by voice allocation system.

Library Header File Introduced Documentation Date
libsnd.lib libsnd.h 4.1 12/14/98

Syntax
u_long SsGetVoiceMask(void)

Explanation
Returns a bit mask containing the voices that are blocked from access by the libsnd voice allocation
system.

Return value
A value whose bits are set for each voice that is blocked. To find out if a specific voice is blocked, use the
bit values SPU_xxCH(xx=0~23).

See also
SsSetVoiceMask(), SsSetReservedVoice()

Extended Sound Library Functions 14-29

Run-Time Library Reference

SsInit
Initialize sound system.

Library Header File Introduced Documentation Date
libsnd.lib libsnd.h 2.x 12/14/98

Syntax
void SsInit(void)

Explanation
Initializes the sound system, clearing the sound local memory.

See also
SsInitHot(), SsEnd(), SpuInit() (see libspu)

14-30 Extended Sound Library Functions

Run-Time Library Reference

SsInitHot
Initialize sound system (hot reset).

Library Header File Introduced Documentation Date
libsnd.lib libsnd.h 3.1 12/14/98

Syntax
void SsInitHot(void)

Explanation
Initializes the sound system, without destroying data that has been transferred to the sound buffer. Using
Exec()-related functions, when a child process wants to initialize the sound system with the sound buffer in
its current state, it should call SsInitHot() instead of calling SsInit().

See also
SsInit(), Exec() (see libapi), SpuInitHot()

Extended Sound Library Functions 14-31

Run-Time Library Reference

SsIsEos
Determine whether a song is being played.

Library Header File Introduced Documentation Date
libsnd.lib libsnd.h 3.0 12/14/98

Syntax
short SsIsEos(
short access_num, SEQ/SEP access number
short seq_num) SEQ number inside SEP data

Explanation
Determines whether or not a specified song is being played.

When using this function for SEQ data, set seq_num to 0; for SEP data, set it to the number of the SEQ to
be played.

Return value
1 if the song is being played; 0 if the song is not being played.

See also

14-32 Extended Sound Library Functions

Run-Time Library Reference

SsPitchFromNote
Convert MIDI note information into a pitch playback rate.

Library Header File Introduced Documentation Date
libsnd.lib libsnd.h 4.1 12/14/98

Syntax
u_short SsPitchFromNote(
short note, MIDI note number (0-127) at which the tone is keyed on.
short fine, The fine-tuning adjustment in cents, of note. Values range from 0-

127, but are scaled to cents.
u_char center, MIDI note number (0-127) at which the tone was created; the center

member of the VagAtr structure.
u_char shift) The fine-tuning adjustment in cents, of center; the shift member of

the VagAtr structure. Values range from 0-127, but are scaled to
cents.

Explanation
Calculates a pitch value to be applied to a voice in the function SsQueueRegisters().

Return value
The calculated pitch value.

See also
SndRegisterAttr(), SndVoiceStats(), SndVolume2(), SsAllocateVoices(), SsBlockVoiceAllocation(),
SsGetActualProgFromProg(), SsQueueKeyOn(), SsQueueRegisters(), SsQueueReverb(),
SsSetVoiceSettings(), SsUnBlockVoiceAllocation(), SsVoiceCheck()

Extended Sound Library Functions 14-33

Run-Time Library Reference

SsPlayBack
Restarts currently playing seq/sep data at beginning

Library Header File Introduced Documentation Date
libsnd.lib libsnd.h 3.0 12/14/98

Syntax
void SsPlayBack(
short access_num, SEQ/SEP access number
short seq_num, SEQ number inside SEP data
short l_count) Song repetition count

Explanation
Stops the song being played, returns to the start of the song, and begins playing it again.

When using this function for SEQ data, set seq_num to 0. When using this function for SEP data, set the
number that contains the SEQ to be played.

Specify a song repetition count in l_count. For infinite play repetition, specify SSPLAY_INFINITY.

See also
SsSeqPlay(), SsSepPlay()

14-34 Extended Sound Library Functions

Run-Time Library Reference

SsQueueKeyOn
Set voices in key on queue to be processed at next tick callback.

Library Header File Introduced Documentation Date
libsnd.lib libsnd.h 4.1 12/14/98

Syntax
void SsQueueKeyOn(
long voices) Bit field containing voices to be set in the key on queue

Explanation
Hooks into the key on system of libsnd.

Set the individual bits of voices using the values SPU_xxCH(0-23) for the desired voices to be set in the key
on queue.

This function should only be used as part of the series SsBlockVoiceAllocation() -> SsAllocateVoices()->
SsSetVoiceSettings()-> SsQueueRegisters()-> SsQueueKeyOn()-> SsQueueReverb() ->
SsUnBlockVoiceAllocation().

See also
SndRegisterAttr(), SndVoiceStats(), SndVolume2(), SsAllocateVoices(), SsBlockVoiceAllocation(),
SsGetActualProgFromProg(), SsPitchFromNote(), SsQueueRegisters(), SsQueueReverb(),
SsSetVoiceSettings(), SsUnBlockVoiceAllocation(), SsVoiceCheck()

Extended Sound Library Functions 14-35

Run-Time Library Reference

SsQueueRegisters
Place values in register queue to be set at next tick callback.

Library Header File Introduced Documentation Date
libsnd.lib libsnd.h 4.1 12/14/98

Syntax
void SsQueueRegisters(
long voice, The voice number for which the SPU registers need to be set (0-23)
SndRegisterAttr *SRA) Values to be sent to the SPU registers

Explanation
Queues the SndRegisterAttr to be processed at the next tick callback.

SRA members are as follows:

volume.left and volume.right: Any value between -0x4000 ~ 0x3fff. This is equivalent to volume mode
SPU_VOICE_DIRECT (See SpuSetVoiceAttr() for details). Normally, libsnd takes only values from 0-127
and converts them to short int via the algorithm listed in the overview of libsnd. The volume calculations
may be emulated or an algorithm to use fewer CPU cycles or do 3-D sound volume calculations may
be substituted.

pitch: When using this function in the libsnd emulation functions series, the value set in pitch must
match the value of the pitch member of the SndVoiceStats structure set in SsSetVoiceSettings(). When
using this function to change pitch when the voice is currently sounding, SsPitchFromNote() may be
used to calculate the pitch, or a user-defined pitch lookup table may be used.

mask: may be set by ORing the desired following list of attributes (if mask is set to 0, all attributes are
set):

Table 14-2

Attribute Description
SND_VOLL left volume
SND_VOLR right volume
SND_PITCH pitch
SND_ADDR waveform data start address
SND_ADSR1 adsr1 information
SND_ADSR2 adsr2 information

addr: Contains the waveform data start address. May be obtained using SsUtGetVagAddrFromTone().

adsr1: Contains adsr information for the voice. Should initially be set to the adsr1 member of VagAtr
for the tone assigned to the voice.

adsr2: Contains adsr information for the voice. Should initially be set to the adsr2 member of VagAtr
for the tone assigned to the voice.

This function must be used in the series: SsBlockVoiceAllocation() -> SsAllocateVoices() ->
SsSetVoiceSettings() -> SsQueueRegisters()-> SsQueueKeyOn() -> SsQueueReverb() ->
SsUnBlockVoiceAllocation() when keying sounds on via the libsnd emulation method.

It may also be called at any time after the sound has been keyed on to change any of the members of
SndRegisterAttr, provided that the function SsVoiceCheck() is called first to ensure voice integrity.

14-36 Extended Sound Library Functions

Run-Time Library Reference

See also
SndRegisterAttr(), SndVoiceStats(), SndVolume2(), SsAllocateVoices(), SsBlockVoiceAllocation(),
SsGetActualProgFromProg(), SsPitchFromNote(), SsQueueKeyOn(), SsQueueReverb(),
SsSetVoiceSettings(), SsUnBlockVoiceAllocation(), SsVoiceCheck()

Extended Sound Library Functions 14-37

Run-Time Library Reference

SsQueueReverb
Set voices in reverb queue to be processed at next tick callback.

Library Header File Introduced Documentation Date
libsnd.lib libsnd.h 4.1 12/14/98

Syntax
void SsQueueReverb(
long voices, Bitfield containing voices for which reverb will be changed
long reverb) Bitfield containing reverb on/off data to be set in the reverb queue

Explanation
Hooks into the reverb queueing systems of libsnd, for applying reverb to sounds about to key on, altering
the reverb of currently playing sounds, or applying reverb for libspu voices when both sound libraries are
used together.

Set the arguments as follows:
voices OR SPU_xxCH(0-23) for the desired

voices to be set in the reverb queue.
reverb Reverb queue bitfield.

Reverb is affected for all high bits of
voices.
If bit = 0 Reverb is turned off for that voice
If bit = 1 Reverb is turned on for that voice

If this function is being used as part of the libsnd key-on emulation series:

SsBlockVoiceAllocation() -> SsAllocateVoices() -> SsSetVoiceSettings() -> SsQueueRegisters() ->
SsQueueKeyOn() -> SsQueueReverb() -> SsUnBlockVoiceAllocation(), the mode member of the VagAtr for
the voice may be checked to determine whether reverb should affect that voice.

This function may also be used as a workaround for the reverb conflict between libspu and libsnd. Voices
being used by libspu may have reverb changed using this function.

Also, this function is an ideal solution to changing reverb mode during playback of sound. In libsnd it is
currently difficult to change reverb mode during playback of sound effects or MIDI music.

See also
SndRegisterAttr(), SndVoiceStats(), SndVolume2(), SsAllocateVoices(), SsBlockVoiceAllocation(),
SsGetActualProgFromProg(), SsPitchFromNote(), SsQueueKeyOn(), SsQueueRegisters(),
SsSetVoiceSettings(), SsUnBlockVoiceAllocation(), SsVoiceCheck()

14-38 Extended Sound Library Functions

Run-Time Library Reference

SsQuit
Terminate the sound system.

Library Header File Introduced Documentation Date
libsnd.lib libsnd.h 3.0 12/14/98

Syntax
void SsQuit(void)

Explanation
Terminates the sound system; transfer to the sound buffer is disabled. To re-enable transfer to the sound
buffer, call SsInit().

SsEnd() must be called before SsQuit().

See also
SsEnd(), SsStart(), SsSetTickMode(), SsSeqCalledTbyT()

Extended Sound Library Functions 14-39

Run-Time Library Reference

SsSepClose
Close SEP data.

Library Header File Introduced Documentation Date
libsnd.lib libsnd.h 3.0 12/14/98

Syntax
void SsSepClose(
short sep_access_num) SEP access number

Explanation
Closes SEP data with sep_access_num that is no longer needed.

All SEQ data stored in the closed SEP becomes inaccessible. Before executing this function, use
SsSepStop() with the applicable SEP.

See also
SsSepOpen()

14-40 Extended Sound Library Functions

Run-Time Library Reference

SsSepOpen
Open SEP data.

Library Header File Introduced Documentation Date
libsnd.lib libsnd.h 3.0 12/14/98

Syntax
short SsSepOpen(
u_long *addr, Pointer to starting address of SEP data within the main memory
short vab_id, VAB id
short seq_num) Number of SEQs contained in SEP

Explanation
Analyzes the SEP data located in the main memory, and returns a SEP access number. Up to 32 pieces of
SEP data can be opened simultaneously when combined with the number of open SEQ data.

For Library Versions 4.0 and earlier:

1) Do not call this from inside a callback;

2) If your s_max from SsSetTableSize() is less than 32, you must keep track of your open SEQs/SEPs so as
not to exceed the limit set by s_max.

Return value
SEP access number: an internal SEP data management table number that has the same characteristics as
the SEQ access number.

See also
SsSepClose()

Extended Sound Library Functions 14-41

Run-Time Library Reference

SsSepOpenJ
Open SEP data (function table version).

Library Header File Introduced Documentation Date
libsnd.lib libsnd.h 3.6 12/14/98

Syntax
short SsSepOpenJ(
u_long *addr, Pointer to starting address of SEP data within the main memory
short vab_id, VAB id
short seq_num) Number of SEQs contained in SEP

Explanation
Equivalent to SsSepOpen() if all the low-level MIDI functions were registered. In addition to the SsSepOpen()
capability, this function enables a programmer to control functions to be registered to the table and thus
improve code efficiency by not calling unnecessary low-level functions.

Failure to properly register all necessary low-level MIDI functions will result in a bus error.

Before calling this function, you must have confirmed with SsVabTransCompleted() that the VAB data from
the vab_id has completed being transferred to the sound buffer.

For Library Versions 4.0 and earlier:

1) Do not call this from inside a callback;

2) If your s_max from SsSetTableSize() is less than 32, you must keep track of your open SEQs/SEPs so as
not to exceed the limit set by s_max.

Return value
SEQ Access Number: Used in the SEQ data access function, being the inner SEQ data control table
number.

See also
SsSepOpen(), _SsFCALL(), dmy_Ss…()

14-42 Extended Sound Library Functions

Run-Time Library Reference

SsSepPause
Pause the reading of SEP data.

Library Header File Introduced Documentation Date
libsnd.lib libsnd.h 3.0 12/14/98

Syntax
void SsSepPause(
short sep_access_num, SEP access number
short seq_num) SEQ number inside SEP data

Explanation
Pauses the reading (playing) of the seq_num SEQ data of SEP data possessing sep_access_num.

See also
SsSepReplay()

Extended Sound Library Functions 14-43

Run-Time Library Reference

SsSepPlay
Read (play) SEP data.

Library Header File Introduced Documentation Date
libsnd.lib libsnd.h 3.0 12/14/98

Syntax
void SsSepPlay(
short sep_access_num, SEP access number
short seq_num, SEP data SEQ number
char play_mode, Play mode
short l_count) Song repetition count

Explanation
Begins to read (play) SEQ data specified by the SEP data seq_num specified by seq_access_num, if
play_mode = SSPLAY_PLAY. If play_mode = SSPLAY_PAUSE, makes a pause state. For infinite play
repetition, specify SSPLAY_INFINITY in l_count.

Example:

sep1 = SsSepOpen (addr, vab_id, 4); /* Open SEP data containing four pieces
of SEQ data */

SsSepPlay (sep1, 2, SSPLAY_PLAY, 2); /* Immediately play 3rd SEQ data of
opened SEP data twice */

See also
SsSepStop()

14-44 Extended Sound Library Functions

Run-Time Library Reference

SsSepReplay
Resume (replay) reading SEP data.

Library Header File Introduced Documentation Date
libsnd.lib libsnd.h 3.0 12/14/98

Syntax
void SsSepReplay(
short sep_access_num, SEP access number
short seq_num) SEQ number inside SEP data

Explanation
Resumes reading the seq_num-th SEQ data of SEP data with sep_access_num, that was paused by
SsSepPause().

See also
SsSepPause()

Extended Sound Library Functions 14-45

Run-Time Library Reference

SsSepSetAccelerando
Accelerate the tempo.

Library Header File Introduced Documentation Date
libsnd.lib libsnd.h 3.0 12/14/98

Syntax
void SsSepSetAccelerando(
short sep_access_num, SEP access number
short seq_num, SEQ number inside SEP data
long tempo, Desired song tempo
long v_time) Time (in ticks)

Explanation
Increases the tempo of the seq_num-th SEQ data of SEP data with sep_access_num up to tempo within
v_time.

If tempo is smaller (slower) than the current tempo, this function acts the same as SsSepSetRitardando().

See also
SsSepSetRitardando()

14-46 Extended Sound Library Functions

Run-Time Library Reference

SsSepSetCrescendo
Crescendo (valid for individual SEQ in SEP).

Library Header File Introduced Documentation Date
libsnd.lib libsnd.h 3.0 12/14/98

Syntax
void SsSepSetCrescendo(
short sep_access_num, SEP access number
short seq_num, SEQ number inside SEP data
short vol, Volume value (0-127)
long v_time) Time (in tick units)

Explanation
Raises the main volume of the seq_num-th SEQ data of SEP data with sep_access_num by vol within
v_time (or to the maximum value). It has no effect if the volume of each voice is at the maximum or if vol is a
negative number. It is recommended that v_time be set to an integer multiple of vol.

See also
SsSepSetDecrescendo()

Extended Sound Library Functions 14-47

Run-Time Library Reference

SsSepSetDecrescendo
Decrescendo (valid for individual SEQ in SEP).

Library Header File Introduced Documentation Date
libsnd.lib libsnd.h 3.0 12/14/98

Syntax
void SsSepSetDecrescendo(
short sep_access_num, SEP access number
short seq_num, Number inside SEP data
short vol, Volume value (0-127)
long v_time) Time (in tick units)

Explanation
Lowers the main volume of the seq_num-th SEQ data of SEP data with sep_access_num by vol within
v_time (or to the minimum value). This function has no effect if the volume of each voice is at the minimum
or if vol is a negative number. It is recommended that v_time be set to an integer multiple of vol.

See also
SsSepSetCrescendo()

14-48 Extended Sound Library Functions

Run-Time Library Reference

SsSepSetRitardando
Slow the tempo.

Library Header File Introduced Documentation Date
libsnd.lib libsnd.h 3.0 12/14/98

Syntax
void SsSepSetRitardando(
short sep_access_num, SEP access number
short seq_num, SEQ number inside SEP data
long tempo, Desired song tempo
long v_time) Time (in tick units)

Explanation
Slows the tempo of the seq_num SEQ data of SEP data possessing sep_access_num down to tempo
within v_time. If tempo is larger (faster) than the current tempo, this function acts the same as
SsSepSetAccelerando().

See also
SsSepSetAccelerando()

Extended Sound Library Functions 14-49

Run-Time Library Reference

SsSepSetVol
Set SEP volume (valid for individual SEQ in SEP).

Library Header File Introduced Documentation Date
libsnd.lib libsnd.h 3.0 12/14/98

Syntax
void SsSepSetVol(
short sep_access_num, SEP access number
short seq_num, SEQ number inside SEP data
short voll, L channel main volume value
short volr) R channel main volume value

Explanation
Sets the L and R channels for the main volume of the seq_num-th SEQ data of SEP data with
sep_access_num to specified values (between 0 and 127).

See also

14-50 Extended Sound Library Functions

Run-Time Library Reference

SsSepStop
Stop reading SEP data.

Library Header File Introduced Documentation Date
libsnd.lib libsnd.h 3.0 12/14/98

Syntax
void SsSepStop(
short sep_access_num, SEP access number
short seq_num) SEQ number inside SEP data

Explanation
Stops reading (playing) the seq_num-th SEQ data of SEP data with sep_access_num.

See also
SsSepPlay()

Extended Sound Library Functions 14-51

Run-Time Library Reference

SsSeqCalledTbyT
Interpret SEQ/SEP data and carry out playback.

Library Header File Introduced Documentation Date
libsnd.lib libsnd.h 3.0 12/14/98

Syntax
void SsSeqCalledTbyT(void)

Explanation
At each Tick this function is called; it interprets SEQ/SEP data and carries out playback. The tick rate is set
by SsSetTickMode(), but this merely regulates the internal sound system, without depending either on the
speed or resolution determined by SEQ/SEP data.

When SsSetTickMode() is called with tick_mode SS_NOTICK, this function must be called by the program
(usually with vertical sync timing). Otherwise, the sound processing code automatically calls this function at
the given resolution.

See also
SsSetTickMode()

14-52 Extended Sound Library Functions

Run-Time Library Reference

SsSeqClose
Close SEQ data.

Library Header File Introduced Documentation Date
libsnd.lib libsnd.h 3.0 12/14/98

Syntax
void SsSeqClose(
short seq_access_num) SEQ access number

Explanation
Closes SEQ data with an un-needed seq_access_num.

Before executing this function, use SsSeqStop() with the applicable SEQ.

See also
SsSeqOpen()

Extended Sound Library Functions 14-53

Run-Time Library Reference

SsSeqGetVol
Get SEQ volume.

Library Header File Introduced Documentation Date
libsnd.lib libsnd.h 3.0 12/14/98

Syntax
void SsSeqGetVol(
short access_num, SEQ/SEP access number
short seq_num, SEQ number of SEP data
short *voll, L volume of SEQ data
short *volr) R volume of SEQ data

Explanation
Returns current left and right SEQ volume to voll and volr. Set seq_num at 0 for SEQ data, and set it at
appropriate SEQ number for SEP data. The volume value set by SsSepSetVol() can be obtained.

See also
SsSeqSetVol(), SsSepSetVol()

14-54 Extended Sound Library Functions

Run-Time Library Reference

SsSeqOpen
Open SEQ data.

Library Header File Introduced Documentation Date
libsnd.lib libsnd.h 3.0 12/14/98

Syntax
short SsSeqOpen(
u_long *addr, Pointer to start address of SEQ data in the main storage
short vab_id) VAB id

Explanation
Designates an SEQ number for the SEQ data to allow playback.

Before calling this function, you must have confirmed with SsVabTransCompleted() that the VAB data from
the vab_id has completed being transferred to the sound buffer.

For Library Versions 4.0 and earlier:

1) Do not call this function from inside a callback;

2) If your s_max from SsSetTableSize() is less than 32, you must keep track of your open SEQs/SEPs so as
not to exceed the limit set by s_max.

Return value
SEQ access number. This value is passed to other SEQ routines such as SsSeqPlay().

If you try to open more than 32 SEP data (combined with SEQ data) at the same time, -1 is returned.

See also
SsSeqClose()

Extended Sound Library Functions 14-55

Run-Time Library Reference

SsSeqOpenJ
Open SEQ data (function table version).

Library Header File Introduced Documentation Date
libsnd.lib libsnd.h 3.6 12/14/98

Syntax
short SsSeqOpenJ(
u_long *addr, Pointer to start address of SEQ data in the main storage
short vab_id) VAB id

Explanation
Equivalent to SsSeqOpen() if all the low-level functions were registered. In addition to the SsSeqOpen()
capability, this function enables a programmer to control functions to be registered to the table and thus
improve code efficiency by not calling unnecessary low-level functions.

Failure to properly register all necessary low-level MIDI functions will result in a bus error.

Before calling this function, you must have confirmed with SsVabTransCompleted() that the VAB data from
the vab_id has completed being transferred to the sound buffer.

For Library Versions 4.0 and earlier:

1) Do not call this from inside a callback;

2) If your s_max from SsSetTableSize() is less than 32, you must keep track of your open SEQs/SEPs so as
not to exceed the limit set by s_max.

Return value
SEQ access number. This value is passed to other SEQ routines such as SsSeqPlay().

See also
SsSeqOpen()

14-56 Extended Sound Library Functions

Run-Time Library Reference

SsSeqPause
Pause SEQ data reading.

Library Header File Introduced Documentation Date
libsnd.lib libsnd.h 3.0 12/14/98

Syntax
void SsSeqPause(
short seq_access_num) SEQ access number

Explanation
Stops reading (playing) SEQ data with seq_access_num.

See also
SsSeqReplay()

Extended Sound Library Functions 14-57

Run-Time Library Reference

SsSeqPlay
Read (play) SEQ data.

Library Header File Introduced Documentation Date
libsnd.lib libsnd.h 3.0 12/14/98

Syntax
void SsSeqPlay(
short seq_access_num, SEQ access number
char play_mode, Performance mode
short l_count) Number of repeats of the music

Explanation
Selects either immediate SEQ data reading (play_mode = SSPLAY_PLAY) or sets a pause state at the start
of SEQ data (play_mode = SSPLAY_PAUSE). Specify the number of times to repeat the music by l_count,
using SSPLAY_INFINITY for unlimited play.

See also
SsSeqPause()

14-58 Extended Sound Library Functions

Run-Time Library Reference

SsSeqPlayPtoP
Read SEQ data (play interval).

Library Header File Introduced Documentation Date
libsnd.lib libsnd.h 4.2 12/14/98

Syntax
void SsSeqPlayPtoP(
short access_num, SEQ/SEP access number
short seq_num, SEQ number within SEP (0 if music data is SEQ)
u_char *start_point, Load (play) start point
u_char *end_point, Load (play) end point
char play_mode, Performance mode
short l_count) Loop count

Explanation
Loads (plays) the data interval specified by start_point and end_point. These values are obtained from
SsGetCurrentPoint().

If play_mode = SSPLAY_PLAY, SEQ data is read (played) immediately. If play_mode = SSPLAY_PAUSE, a
pause is entered at the start of the SEQ data (the start of the song).

l_count specifies the number of times the song is to be looped. Use SSPLAY_INFINITY for an infinite loop.

See also
SsSeqPlay(), SsSepPlay(), SsGetCurrentPoint()

Extended Sound Library Functions 14-59

Run-Time Library Reference

SsSeqReplay
Resume SEQ data reading (Replay) .

Library Header File Introduced Documentation Date
libsnd.lib libsnd.h 3.0 12/14/98

Syntax
void SsSeqReplay(
short seq_access_num) SEQ access number

Explanation
Resumes reading SEQ data with seq_access_num stopped by SsSeqPause().

See also
SsSeqPause()

14-60 Extended Sound Library Functions

Run-Time Library Reference

SsSeqSetAccelerando
Quicken tempo.

Library Header File Introduced Documentation Date
libsnd.lib libsnd.h 3.0 12/14/98

Syntax
void SsSeqSetAccelerando(
short seq_access_num, SEQ access number
long tempo, Desired music tempo
long v_time) Time (in ticks)

Explanation
Quickens the SEQ data with seq_access_num to the tempo resolution in v_time. If the specified resolution
is smaller (slower) than the current resolution, the effect is the same as SsSeqSetRitardando().

See also
SsSeqSetRitardando()

Extended Sound Library Functions 14-61

Run-Time Library Reference

SsSeqSetCrescendo
Crescendo.

Library Header File Introduced Documentation Date
libsnd.lib libsnd.h 3.0 12/14/98

Syntax
void SsSeqSetCrescendo(
short seq_access_num, SEQ access number
short vol, Volume value (0-127)
long v_time) Time (in ticks)

Explanation
Increases the main volume of SEQ data with seq_access_num by the vol value in v_time. If the voice
volume is at the maximum (127), or if vol is a negative number, the function has no effect. It is
recommended that v_time be set to an integer multiple of vol.

See also
SsSeqSetDecrescendo()

14-62 Extended Sound Library Functions

Run-Time Library Reference

SsSeqSetDecrescendo
Decrescendo.

Library Header File Introduced Documentation Date
libsnd.lib libsnd.h 3.0 12/14/98

Syntax
void SsSeqSetDecrescendo(
short seq_access_num, SEQ access number
short vol, Volume value (0-127)
long v_time) Time (in ticks)

Explanation
Lowers main volume of SEQ data with seq_access_num by the vol value in v_time. If each voice volume is
the minimum value (0), or if vol is a negative number, there is no effect. It is recommended that v_time be
set to an integer multiple of vol.

See also
SsSeqSetCrescendo()

Extended Sound Library Functions 14-63

Run-Time Library Reference

SsSeqSetNext
Specify SEQ data to play next after a given SEQ.

Library Header File Introduced Documentation Date
libsnd.lib libsnd.h 3.0 12/14/98

Syntax
void SsSeqSetNext(
short seq_access_num1, SEQ access number
short seq_access_num2) SEQ access number of next SEQ to play

Explanation
Specifies that whenever SEQ data represented by seq_access_num1 plays, the SEQ data represented by
seq_access_num2 should play next.

See also
SsSetNext()

14-64 Extended Sound Library Functions

Run-Time Library Reference

SsSeqSetRitardando
Slow tempo.

Library Header File Introduced Documentation Date
libsnd.lib libsnd.h 3.0 12/14/98

Syntax
void SsSeqSetRitardando(
short seq_access_num, SEQ access number
long tempo, Desired music tempo
long v_time) Time (in ticks)

Explanation
Slows the SEQ data with seq_access_num to the tempo resolution in v_time. If the specified resolution is
larger (faster) than the current resolution, the function is the same as SsSeqSetAccelerando().

See also
SsSeqSetAccelerando()

Extended Sound Library Functions 14-65

Run-Time Library Reference

SsSeqSetVol
Set SEQ volume.

Library Header File Introduced Documentation Date
libsnd.lib libsnd.h 3.0 12/14/98

Syntax
void SsSeqSetVol(
short seq_access_num, SEQ access number
short voll, Left channel’s main volume value
short volr) Right channel’s main volume value

Explanation
Sets the main volume of music with seq_access_num to values specified for voll and volr (from 0 to 127).

See also

14-66 Extended Sound Library Functions

Run-Time Library Reference

SsSeqSkip
Skip SEQ data.

Library Header File Introduced Documentation Date
libsnd.lib libsnd.h 4.2 12/14/98

Syntax
int SsSeqSkip(
short access_num, SEQ/SEP access number
short seq_num, SEQ number within SEP (0 if music data is SEQ)
char unit, Skip unit
short count) Skip amount

Explanation
Moves the playback pointer of the song data represented by access_num and seq_num forward count
times, in units specified by unit.

Table 14-3

Unit Skip unit
SSSKIP_TICK TICK unit
SSSKIP_NOTE4 Quarter note unit
SSSKIP_NOTE8 One-eighth note unit
SSSKIP_BAR Measure unit

Return value
0 if the function was successful; -1 if the operation failed

See also

Extended Sound Library Functions 14-67

Run-Time Library Reference

SsSeqStop
Terminate SEQ data reading.

Library Header File Introduced Documentation Date
libsnd.lib libsnd.h 2.x 12/14/98

Syntax
void SsSeqStop(
short seq_access_num) SEQ access number

Explanation
Terminates playing of the SEQ data with seq_access_num.

See also
SsSeqPlay()

14-68 Extended Sound Library Functions

Run-Time Library Reference

SsSetAutoKeyOffMode
Set automatic KeyOff mode.

Library Header File Introduced Documentation Date
libsnd.lib libsnd.h 3.0 12/14/98

Syntax
void SsSetAutoKeyOffMode(
short mode) 0: Automatically keys off

1: Does not key off until a KeyOff request comes in

Explanation
Sets the automatic KeyOff mode. The default is the automatic KeyOff mode. If the envelopes for a specific
voice for the past 16 interrupts contain all 0's, the automatic KeyOff mode assumes that waveform
playback has been automatically terminated, and uses the voice for other waveform playback.

See also

Extended Sound Library Functions 14-69

Run-Time Library Reference

SsSetCurrentPoint
Set data address in SEQ/SEP.

Library Header File Introduced Documentation Date
libsnd.lib libsnd.h 4.2 12/14/98

Syntax
int SsSetCurrentPoint(
short acn, SEP access number
short trn, SEQ number within SEP (0 if music data is SEQ)
u_char *point) SEQ/SEP data address

Explanation
Sets the data address obtained from SsGetCurrentPoint() in SEQ/SEP.

Return value
0 if the function was successful

-1 if the operation failed

See also
SsGetCurrentPoint()

14-70 Extended Sound Library Functions

Run-Time Library Reference

SsSetLoop
Set song repetition count.

Library Header File Introduced Documentation Date
libsnd.lib libsnd.h 3.0 12/14/98

Syntax
void SsSetLoop(
short access_num, SEQ/SEP access number
short seq_num, SEQ number inside SEP data
short I_count) Song repetition count

Explanation
Sets a song repetition count. This function is useful for changing the song repetition count set in
SsSeqPlay. After this function is called, the current song repetition count is reset, and the song is played for
the number of times set by the new count.

When using this function for SEQ data, set 0 in seq_num; when using this function for SEP data, set the
number that contains the SEQ to be played.

See also

Extended Sound Library Functions 14-71

Run-Time Library Reference

SsSetMarkCallback
Register a function to be called when a mark is detected.

Library Header File Introduced Documentation Date
libsnd.lib libsnd.h 3.0 12/14/98

Syntax
typedef void (*SsSeqMarkCallbackProc) (short, short, short);

void SsSetMarkCallback(
short access_num, SEQ/SEP access number
short seq_num, SEQ number inside SEP data
SsMarkCallbackProc proc) Callback function to be called when Mark is detected

Explanation
proc specifies a callback function to be called when a mark is detected inside a song identified by
access_num. If proc is 0, any previous callback is cleared. Only one callback function can be registered at
a time.The arguments passed to the callback function are, in order:

• SEQ/SEP number
• SEQ number inside SEP data (0 when using SEQ)
• The data2 value following the callback marker in the song data is passed to the third argument.

Sample

/* Callback function-definition*/
SsMarkCallbackProc proc (short ac_no, short tr_no, short
data);
:
/* Opens SEQ */
short seq_a_num = SsSeqOpen (addr, vab_id);
/* Sets Callback function */
SsSetMarkCallback (seq_a_num, 0, (SsMarkCallbackProc) proc);

See also

14-72 Extended Sound Library Functions

Run-Time Library Reference

SsSetMono
Set monaural mode.

Library Header File Introduced Documentation Date
libsnd.lib libsnd.h 2.x 12/14/98

Syntax
void SsSetMono(void)

Explanation
Sets the output to monaural mode. Forces all libsnd keyed-on voices to have equivalent left and right
volumes. Stereo mode is the system default mode.

See also
SsSetStereo()

Extended Sound Library Functions 14-73

Run-Time Library Reference

SsSetMute
Sets Muting.

Library Header File Introduced Documentation Date
libsnd.lib libsnd.h 2.x 12/14/98

Syntax
void SsSetMute(
char mode) Setting mode

Explanation
If mode is SS_MUTE_ON, the sound system is muted. If mode is SS_MUTE_OFF, the sound system is
unmuted.

See also

14-74 Extended Sound Library Functions

Run-Time Library Reference

SsSetMVol
Set main volume value.

Library Header File Introduced Documentation Date
libsnd.lib libsnd.h 2.x 12/14/98

Syntax
void SsSetMVol(
short voll, L channel volume value
short volr) R channel volume value

Explanation
Sets the master volume for the sound system to voll and volr (values range from 0 to 127).

You must call this function before playing sequence (SEQ, SEP) data.

See also
SsGetMVol()

Extended Sound Library Functions 14-75

Run-Time Library Reference

SsSetNext
Set the next SEQ/SEP data.

Library Header File Introduced Documentation Date
libsnd.lib libsnd.h 3.2 12/14/98

Syntax
void SsSetNext(
short ac_no1, SEP/SEQ access number
short tr_no1, SEQ number in SEP (If the score data is SEQ, tr_no1 is 0.)
short ac_no2, SEP/SEQ access number
short tr_no2) SEQ number in SEP (If the score data is SEQ, tr_no2 is 0.)

Explanation
Sets the score data with SEP/SEQ access numbers (ac_no2, tr_no2) to be played after SEP/SEQ data
(ac_no1, tr_no1).

The next score data is played automatically after the previous score finishes playing.

See also
SsSeqSetNext()

14-76 Extended Sound Library Functions

Run-Time Library Reference

SsSetReservedVoice
Declare the number of voices to be allocated by libsnd.

Library Header File Introduced Documentation Date
libsnd.lib libsnd.h 3.0 12/14/98

Syntax
char SsSetReservedVoice(
char voices) Voice count

Explanation
Declares the number of voices that the libsnd voice allocation management system has access to. Other
voices can be keyed on in libspu or via SsUtKeyOnV().

Voice numbers are reserved from the lower end (from 0). For example, if voices = 20, then:

• Voices 0-19 are used for allocation by libsnd.
• Voices 20-23 are available for libspu.

Should only be called once, before start of sound processing (SsStart/SsStart2()).

Return value
Returns the set voice count if successful. Returns -1 if unsuccessful.

See also

Extended Sound Library Functions 14-77

Run-Time Library Reference

SsSetRVol
Set reverb volume values.

Library Header File Introduced Documentation Date
libsnd.lib libsnd.h 2.x 12/14/98

Syntax
void SsSetRVol(
short voll, L channel’s volume value
short volr) R channel’s volume value

Explanation
Sets the reverb volume for left and right channels. The value ranges from 0 to 127.

See also
SsGetRVol()

14-78 Extended Sound Library Functions

Run-Time Library Reference

SsSetSerialAttr
Set a serial attribute.

Library Header File Introduced Documentation Date
libsnd.lib libsnd.h 2.x 12/14/98

Syntax
void SsSetSerialAttr(
char s_num, Serial number
char attr, Attribute value
char mode) Setting mode

Explanation
Sets a serial attribute.

• s_num: SS_SERIAL_A = Serial A (CD input). SS_SERIAL_B = Serial input line B (external digital input)
• attr: SS_MIX = Mixing. SS_REV = Reverb
• mode: SS_SON = attr on. SS_SOFF = attr off

See also
SsGetSerialAttr()

Extended Sound Library Functions 14-79

Run-Time Library Reference

SsSetSerialVol
Set serial volume.

Library Header File Introduced Documentation Date
libsnd.lib libsnd.h 2.x 12/14/98

Syntax
void SsSetSerialVol(
char s_num, Serial number
short voll, L channel volume value
short volr) R channel volume value

Explanation
Sets the serial volume in voll, volr. The volume values may be between 0-127.

s_num: SS_SERIAL_A = Serial A (CD input). SS_SERIAL_B = Serial input line B (external digital input)

See also
SsGetSerialVol()

14-80 Extended Sound Library Functions

Run-Time Library Reference

SsSetStereo
Set stereo mode.

Library Header File Introduced Documentation Date
libsnd.lib libsnd.h 2.x 12/14/98

Syntax
void SsSetStereo(void)

Explanation
Sets the output to stereo mode. The sound system default output is stereo.

See also
SsSetMono()

Extended Sound Library Functions 14-81

Run-Time Library Reference

SsSetTableSize
Specify the area of a SEQ/SEP data attribute table.

Library Header File Introduced Documentation Date
libsnd.lib libsnd.h 3.0 12/14/98

Syntax
void SsSetTableSize(
char *table, Pointer to SEQ/SEP data attribute table area variable
short s_max, Maximum times to open SEQ/SEP data (up to 32)
short t_max) Number of SEQ included in SEP

Explanation
Specifies the area of a SEQ/SEP data attribute table. The library uses this area to analyze SEQ/SEP data,
then saves it and plays it back.

s_max specifies the maximum number of times SEQ/SEP data may be opened. The upper limit is 32. Once
s_max is reached, unused SEQ/SEP data must be closed with SsSeqClose()/SsSepClose() before more
data can be opened. t_max specifies the number of SEQ included in the largest SEP data. Set t_max to 1
to handle only SEQ data and not use SEP data. The upper limit of t_max is 16.

You must preserve the area for the table by using global variables or functions like malloc() (auto variables
cannot be used).

Use the following to find the size:

(SS_SEQ_TABSIZ x s_max x t_max)

where the constant SS_SEQ_TABSIZ is declared in libsnd.h . (note that its value may vary from version to
version).

SsSetTableSize() should be called immediately after SsInit(). Both functions should be called only once;
what happens when multiple calls are made is unclear.

See also
SsInit(), SsInitHot(), SsSeqOpen(), SsSepOpen()

14-82 Extended Sound Library Functions

Run-Time Library Reference

SsSetTempo
Set a tempo.

Library Header File Introduced Documentation Date
libsnd.lib libsnd.h 3.0 12/14/98

Syntax
void SsSetTempo(
short access_num, SEQ/SEP access number
short seq_num, SEQ number inside SEP data
short tempo) Song tempo

Explanation
Sets a tempo. This function is useful for changing the tempo set in SsSeqPlay().

After this function is called, the current tempo is changed to the new tempo specified for playing songs.

When using this function for SEQ data, set 0 in seq_num; when using this function for SEP data, set the
number that contains the SEQ to be played.

See also

Extended Sound Library Functions 14-83

Run-Time Library Reference

SsSetTickCallback
Set the TickCallBack function called with every TICK.

Library Header File Introduced Documentation Date
libsnd.lib libsnd.h 2.x 12/14/98

Syntax
int SsSetTickCallback(
void (*cb)()) Pointer to TickCallBack function called with every Tick

Explanation
Defines cb as the TickCallBack function called every tick. It is called only when SS_NOTICK has not been
set by SsSetTickMode(), after SsStart() or SsStart2() have been called.

When this function isn’t used to set the TickCallBack function, the default is SsSeqCalledTbyT().

Return value
Previously-set TickCallback function.

See also
SsSetTickMode(), SsStart(), SsStart2(), SsSeqCalledTbyT()

14-84 Extended Sound Library Functions

Run-Time Library Reference

SsSetTickMode
Set tick mode.

Library Header File Introduced Documentation Date
libsnd.lib libsnd.h 2.x 12/14/98

Syntax
void SsSetTickMode(
long tick_mode) Tick mode (see table for values)

Explanation
Sets the resolution of a tick. Call this function only once before calling SsSeqOpen(), SsSepOpen() or
SsStart() for the first time. When it is called multiple times, correct operation cannot be guaranteed.

The tick mode does not depend on the speed or resolution specified by SEQ/SEP data, and merely
specifies the resolution inside the sound system.

The effects of SS_TICK50, SS_TICK60, and SS_TICKVSYNC differ according to the specification of
SetVideoMode() (see the individual entries below).

tick_mode may be specified with the following values:

Table 14-4

tick_mode Tick setting: SEQ file played at
SS_TICK50 1/50 second
SS_TICK60 1/60 second
SS_TICKVSYNC VSync Resolution (1/50 PAL, 1/60 NTSC)
SS_TICK120 1/120 second
SS_TICK240 1/240 second
SS_NOTICK 1/60 second*
Any resolution (60-240) 1/tick_mode seconds
Any resolution | SS_NOTICK 1/tick_mode seconds*

* SsSeqCalledTbyT() is called automatically every tick, except when tick_mode is SS_NOTICK or (any
resolution | SS_NOTICK). In those cases, the program must call SsSeqCalledTbyT() at the specified timing.

“Any resolution” means that you specify a value between 60-240, and the resolution is 1/tick_mode.
Example: tick_mode = 65 | SS_NOTICK sets up a resolution of 1/65th second.

The OS Root Counter RCntCNT3 is used to generate VSYNC timing. Therefore, if you use SS_TICK50
with MODE_PAL (specified in SetVideoMode()), or SS_TICK60 with MODE_NTSC, or SS_TICKVSYNC, you
shouldn’t use RCntCNT3 for any other timing resolution.

The OS Root Counter RCntCNT2 is used for all other tick modes. Therefore, you shouldn’t use RCntCNT2
for any other timing resolution.

See also
SsStart(), SsSeqCalledTbyT(), SetVideoMode() (see libetc), SsSetTickCallback()

Extended Sound Library Functions 14-85

Run-Time Library Reference

SsSetVoiceMask
Block voice allocation system from using the specified voices.

Library Header File Introduced Documentation Date
libsnd.lib libsnd.h 4.1 12/14/98

Syntax
void SsSetVoiceMask(
u_long s_voice) voices that libsnd allocation system will not have access to. Specify the

voices with the bits SPU_0CH..SPU_23CH.

Explanation
Blocks the voices specified in the bit mask s_voice from being accessed by the libsnd voice allocation
system. These voices are then available for use via libspu calls or SsUtKeyOnV() calls. This function differs
from SsSetReservedVoice() in that a non-contiguous block of voices may be specified. For example,
SsSetVoiceMask(6) gives the libsnd voice allocation system access to 22 voices - voices 0 and 3-23, while
SsSetReservedVoice(22) gives it access to voices 0-21. The two functions may be used together, so that
individual voices within the limits set by SsSetReservedVoice() may be blocked, but an easier method is to
make one call to SsSetVoiceMask().

SsAllocateVoices() doesn’t include code to block these voices from the libsnd voice allocation system.

See also
SsGetVoiceMask(), SsSetReservedVoice()

14-86 Extended Sound Library Functions

Run-Time Library Reference

SsSetVoiceSettings
Set internal libsnd variables for a voice.

Library Header File Introduced Documentation Date
libsnd.lib libsnd.h 4.1 12/14/98

Syntax
void SsSetVoiceSettings(
long voice, Voice number (0-23)
SndVoiceStats *Snd_v_attr) Voice attributes to be set

Explanation
Hooks into the internal libsnd variables before key on of sound so that libsnd functions such as
SsUtPitchBend() can be used to alter the voice after key on.

The voice attributes Snd_v_attr must be set as follows:

• vagId: VAG number which tone to be keyed on points to. Can be obtained by using SsUtGetVagAtr().
• vabId: VAB in which information for tone to be keyed on resides.
• pitch: Original playback rate of tone. May be obtained by using SsFindPitch() or by creating a user-

defined pitch lookup table.
• vol: Maximum volume at which tone will be played back. Choose the greater value between left and

right channel. Negative values are not valid (vol is invalid when used with 3D sound), and values range
from 0-127.

• pan: Relative pan value at which tone will be keyed on at. Not valid with 3D sound. Use the formula
pan = volr * 64/ voll if volr>voll and pan = max volume (either 0x3ff or 127) - voll * 64/ volr if voll>volr. If
voll = volr, pan = 64.

• note: Note at which tone will be keyed on.
• tone: Tone number to be keyed on. Determined by comparing the desired note with the min and max

members of VagAtr for all tones within the specified program and vabId.
• prog_num: The program number within which the tone information resides.
• prog_actual: The “real” program number within which the tone information resides. The “real” number

is only incremented by valid programs (programs containing one or more tones) and so may differ from
the program number. Example: In a VAB with valid programs 0-10 and 100-127, the prog_num of
program 127 = 127, while the prog_actual of program 127 = 38. This number is used to calculate the
offset of tone information in the VAB header and may be obtained using SsGetActualProgFromProg().

This function should only be used as part of the series: SsBlockVoiceAllocation() -> SsAllocateVoices()->
SsSetVoiceSettings()-> SsQueueRegisters()-> SsQueueKeyOn()-> SsQueueReverb() ->
SsUnBlockVoiceAllocation()

See also
SndRegisterAttr(), SndVoiceStats(), SndVolume2(), SsAllocateVoices(), SsBlockVoiceAllocation(),
SsGetActualProgFromProg(), SsPitchFromNote(), SsQueueKeyOn(), SsQueueRegisters(), SsQueueReverb(),
SsUnBlockVoiceAllocation(), SsVoiceCheck()

Extended Sound Library Functions 14-87

Run-Time Library Reference

SsStart
Start the sound system.

Library Header File Introduced Documentation Date
libsnd.lib libsnd.h 2.x 12/14/98

Syntax
void SsStart(void)

Explanation
Starts the sound system.

When SsSetTickMode() is used to set a mode that calls SsSeqCalledTbyT() automatically, this function
causes SsSeqCalledTbyT() to be called each tick.

See also
SsEnd(), SsSetTickMode(), SsSeqCalledTbyT()

14-88 Extended Sound Library Functions

Run-Time Library Reference

SsStart2
Start the sound system (VSyncCallback version).

Library Header File Introduced Documentation Date
libsnd.lib libsnd.h 3.1 12/14/98

Syntax
void SsStart(void)

Explanation
Starts the sound system.

When SsSetTickMode() is used to set a mode that calls SsSeqCalledTbyT() automatically, this function
causes SsSeqCalledTbyT() to be called each tick.

SsStart2() must be used when the tick mode is equal to the TV’s sync rate (e.g. SS_TICK60 on NTSC or
SS_TICK50 on PAL). It may be used otherwise.

See also
SsStart(), SsEnd(), SsSetTickMode(), SsSeqCalledTbyT()

Extended Sound Library Functions 14-89

Run-Time Library Reference

SsUnBlockVoiceAllocation
Release voice allocation system used by SsUtKeyOn(), SsUtKeyOnV(), and MIDI key on commands.

Library Header File Introduced Documentation Date
libsnd.lib libsnd.h 4.1 12/14/98

Syntax
char SsUnBlockVoiceAllocation(void)

Explanation
Releases the voice allocation system used by SsUtKeyOn(), SsUtKeyOn(), SsAllocateVoices(), and MIDI key
on commands. Must follow every call to SsBlockVoiceAllocation().

This function should only be used as part of the series: SsBlockVoiceAllocation() -> SsAllocateVoices()->
SsSetVoiceSettings()-> SsQueueRegisters()-> SsQueueKeyOn()-> SsQueueReverb() ->
SsUnBlockVoiceAllocation().

Return value
1 if successful; -1 if voice allocation system was not currently blocked.

See also
SndRegisterAttr(), SndVoiceStats(), SndVolume2(), SsAllocateVoices(), SsBlockVoiceAllocation(),
SsGetActualProgFromProg(), SsPitchFromNote(), SsQueueKeyOn(), SsQueueRegisters(), SsQueueReverb(),
SsSetVoiceSettings(), SsVoiceCheck()

14-90 Extended Sound Library Functions

Run-Time Library Reference

SsUtAllKeyOff
Key off all voices.

Library Header File Introduced Documentation Date
libsnd.lib libsnd.h 3.0 12/14/98

Syntax
void SsUtAllKeyOff(
short mode) Always 0

Explanation
Keys off all voices used by the libsnd voice allocation system, as set by SsSetReservedVoice() and
SsSetVoiceMask().

See also

Extended Sound Library Functions 14-91

Run-Time Library Reference

SsUtAutoPan
Automatically change panning.

Library Header File Introduced Documentation Date
libsnd.lib libsnd.h 2.x 12/14/98

Syntax
short SsUtAutoPan(
short vc, Voice number (0-23)
short start_pan, Panning change start value (0-127)
short end_pan, Panning change end value (0-127)
short delta_time) Change time in ticks (0-10800)

Explanation
Linearly changes the panning from start_pan to end_pan at delta_time (in ticks) for voice vc.

Return value
0 if successful; -1 if unsuccessful.

See also
SsUtKeyOn(), SsUtKeyOnV(), SsVoKeyOn()

14-92 Extended Sound Library Functions

Run-Time Library Reference

SsUtAutoVol
Automatically change voice volume.

Library Header File Introduced Documentation Date
libsnd.lib libsnd.h 2.x 12/14/98

Syntax
short SsUtAutoVol(
short vc, Voice number (0-23)
short start_vol, Volume change start value (0-127)
short end_vol, Volume change end value (0-127)
short delta_time) Change time in ticks (0-10800)

Explanation
Linearly changes the volume from start_vol to end_vol at delta_time (in ticks) for voice vc.

Return value
0 if successful; -1 if unsuccessful.

See also
SsUtKeyOn(), SsUtKeyOnV(), SsVoKeyOn()

Extended Sound Library Functions 14-93

Run-Time Library Reference

SsUtChangeADSR
Change ADSR.

Library Header File Introduced Documentation Date
libsnd.lib libsnd.h 2.x 12/14/98

Syntax
short SsUtChangeADSR(
short vc, Voice number (0-23)
short vabId, VAB number (0-31) returned by SsVabOpenHead()
short prog, Program number (0-127)
short old_note, Previous pitch specification in half-tone units (note number)(0-127)
u_short adsr1, ADSR1
u_short adsr2) ADSR2

Explanation
Changes the ADSR of the key on voice using SsUtKeyOn().

Return value
0 if successful; -1 if unsuccessful.

See also
SsUtKeyOn(), SsUtKeyOnV(), SsVoKeyOn(), SsVabOpenHead()

14-94 Extended Sound Library Functions

Run-Time Library Reference

SsUtChangePitch
Change the pitch.

Library Header File Introduced Documentation Date
libsnd.lib libsnd.h 2.x 12/14/98

Syntax
short SsUtChangePitch(
short voice, Voice number (0-23)
short vabId, VAB number (0-31) returned by SsVabOpenHead()
short prog, Program number (0-127)
short old_note, Previous pitch specification in semitones (note number) (0-127)
short old_fine, Previous fine pitch specification (100/127 cents) (0-127)
short new_note, New pitch specification in semitones (note number) (0-127)
short new_fine) New fine pitch specification (100/127 cents) (0-127)

Explanation
Changes the pitch of the voice.

Return value
0 if successful; -1 if unsuccessful.

See also
SsUtPitchBend(), SsUtKeyOn(), SsUtKeyOnV(), SsVoKeyOn()

Extended Sound Library Functions 14-95

Run-Time Library Reference

SsUtFlush
Execute remaining queued KeyOn/KeyOff requests.

Library Header File Introduced Documentation Date
libsnd.lib libsnd.h 3.0 12/14/98

Syntax
void SsUtFlush(void)

Explanation
Executes the remaining KeyOn/KeyOff requests that have been queued.

Normally, flushing is performed by an automatic Sound Library interrupt (when the tick mode isn’t
SS_NOTICK) or by a clear call of SsSeqCalledTbyT (when the tick mode is SS_NOTICK). This function can
also be used for flushing. It’s necessary to wait an interval of at least 1/44100 sec between consecutive
calls to this function and/or SsSeqCalledTbyT().

See also

14-96 Extended Sound Library Functions

Run-Time Library Reference

SsUtGetDetVVol
Get detailed value of voice volume.

Library Header File Introduced Documentation Date
libsnd.lib libsnd.h 2.x 12/14/98

Syntax
short SsUtGetDetVVol(
short vc, Voice number (0-23)
short *detvoll, Pointer to detailed volume, left (0-16383)
short *detvolr) Pointer to detailed volume, right (0-16383)

Explanation
Returns the detailed value of the voice volume.

Return value
0 if successful, -1 if unsuccessful.

See also
SsUtSetDetVVol(), SsUtKeyOn(), SsUtKeyOnV(), SsVoKeyOn()

Extended Sound Library Functions 14-97

Run-Time Library Reference

SsUtGetProgAtr
Get a program attribute table.

Library Header File Introduced Documentation Date
libsnd.lib libsnd.h 2.x 12/14/98

Syntax
short SsUtGetProgAtr(
short vabId, VAB number (0-31) returned by SsVabOpenHead()
short progNum, Program number (0-127)
ProgAtr *progatrptr) Pointer to program attribute table

Explanation
Specifies a VAB number and a program number, and returns the VAB attribute table to progatrptr.

Return value
0 if successful, -1 if unsuccessful.

See also
SsUtSetProgAtr(), ProgAtr()

14-98 Extended Sound Library Functions

Run-Time Library Reference

SsUtGetReverbType
Get a reverb type.

Library Header File Introduced Documentation Date
libsnd.lib libsnd.h 3.0 12/14/98

Syntax
short SsUtGetReverbType(void)

Explanation
Obtains the current reverb type value.

Return value
Current reverb type value.

See also
SsUtSetReverbType().

Extended Sound Library Functions 14-99

Run-Time Library Reference

SsUtGetVabHdr
Get VAB attribute header.

Library Header File Introduced Documentation Date
libsnd.lib libsnd.h 2.x 12/14/98

Syntax
short SsUtGetVabHdr(
short vabId, VAB number (0-31) returned by SsVabOpenHead()
VabHdr *vabhdrptr) Pointer to VAB attribute header

Explanation
Returns the VAB attribute header to vabhdrptr of the VAB specified by vabid.

Return value
0 if successful, -1 if unsuccessful.

See also
VabHdr()

14-100 Extended Sound Library Functions

Run-Time Library Reference

SsUtGetVagAddr
Get an SPU buffer address stored by VAG.

Library Header File Introduced Documentation Date
libsnd.lib libsnd.h 3.1 12/14/98

Syntax
long SsUtGetVagAddr(
short vabId, VAB data id
short vagId) VAG data id

Explanation
Given VAB id (0-15) and VAG id (1-254), this function returns a 32-bit SPU buffer address (as bytes) stored
by VAG.

Return value
An SPU buffer address stored by VAG.

See also
SsVabOpenHead()

Extended Sound Library Functions 14-101

Run-Time Library Reference

SsUtGetVagAddrFromTone
Get SPU buffer address where VAG data is stored.

Library Header File Introduced Documentation Date
libsnd.lib libsnd.h 3.3 12/14/98

Syntax
u_long SsUtGetVagAddrFromTone(
short vabid, VAB id
short progid, Program number
short toneid) Tone number

Explanation
This function returns the address in the sound buffer where the VAG wave form data with the specified VAB
id, program number, and tone number are transferred.

Return value
Address in the sound buffer. If it fails, it returns -1.

See also

14-102 Extended Sound Library Functions

Run-Time Library Reference

SsUtGetVagAtr
Get tone attribute table (VagAtr).

Library Header File Introduced Documentation Date
libsnd.lib libsnd.h 2.x 12/14/98

Syntax
short SsUtGetVagAtr(
short vabId, VAB number (0-31) returned by SsVabOpenHead()
short progNum, Program number (0-127)
short toneNum, Tone number (0-15)
VagAtr *vagatrptr) Pointer to tone attribute table

Explanation
Specifies a VAB number, a program number, and a tone number, and returns a tone attribute table to
vagatrptr.

Return value
0 if successful, -1 if unsuccessful.

See also
SsUtSetVagAtr(), VagAtr()

Extended Sound Library Functions 14-103

Run-Time Library Reference

SsUtGetVBaddrInSB
Get address in sound buffer to which VAB data has been transferred.

Library Header File Introduced Documentation Date
libsnd.lib libsnd.h 3.0 12/14/98

Syntax
u_long SsUtGetVBaddrInSB(
short vabid) VAB id

Explanation
Returns the address inside the sound buffer to which the start of the VAB data specified by vabid has been
transferred.

Return value
Address inside the sound buffer. Returns -1 if unsuccessful.

See also

14-104 Extended Sound Library Functions

Run-Time Library Reference

SsUtGetVVol
Get voice volume.

Library Header File Introduced Documentation Date
libsnd.lib libsnd.h 2.x 12/14/98

Syntax
short SsUtGetVVol(
short vc, Voice number (0-23)
short *voll, Pointer to volume, left (0-127)
short *volr) Pointer to volume, right (0-127)

Explanation
Returns a volume value for a voice.

Return value
0 if successful, -1 if unsuccessful.

See also
SsUtSetVVol(), SsUtKeyOn(), SsUtKeyOnV(), SsVoKeyOn()

Extended Sound Library Functions 14-105

Run-Time Library Reference

SsUtKeyOff
Key off voice.

Library Header File Introduced Documentation Date
libsnd.lib libsnd.h 3.0 12/14/98

Syntax
short SsUtKeyOff(
short voice, Voice number (0-23) access number
short vabId, VAB number (0-31) returned by SsVabOpenHead()
short prog, Program number (0-127)
short tone, Tone number (0-15)
short note) Pitch specification in half-tone units (note number) (0-127)

Explanation
Keys off the voice.

Return value
0 if successful, -1 if unsuccessful.

See also
SsUtKeyOn(), SsUtKeyOnV(), SsVoKeyOn()

14-106 Extended Sound Library Functions

Run-Time Library Reference

SsUtKeyOffV
Key off a voice.

Library Header File Introduced Documentation Date
libsnd.lib libsnd.h 3.0 12/14/98

Syntax
short SsUtKeyOffV(
short voice) Voice number (0-23)

Explanation
Keys off the voice specified by voice (0-23).

Return value
0 if successful, -1 if unsuccessful.

See also
SsUtKeyOnV()

Extended Sound Library Functions 14-107

Run-Time Library Reference

SsUtKeyOn
Key on a voice.

Library Header File Introduced Documentation Date
libsnd.lib libsnd.h 3.0 12/14/98

Syntax
short SsUtKeyOn(
short vabId, VAB number (0-31) returned by SsVabOpenHead()
short prog, Program number (0-127)
short tone, Tone number (0-15)
short note, Pitch specification in semitones (note number) (0-127)
short fine, Detailed pitch specification (100/127 cents) (0-127)
short voll, Volume, left (0-127)
short volr) Volume, right (0-127)

Explanation
Keys on the voice specified by the VAB number, the program number (0-127), and the tone number (0-15)
at the specified pitch and volume, and returns the allocated voice number.

Return value
The voice number (0-23) used for KeyOn. Returns -1 if unsuccessful.

See also
SsUtKeyOff()

14-108 Extended Sound Library Functions

Run-Time Library Reference

SsUtKeyOnV
Key on a voice.

Library Header File Introduced Documentation Date
libsnd.lib libsnd.h 3.0 12/14/98

Syntax
short SsUtKeyOnV(
short voice, Voice number (0-23)
short vabId, VAB number (0-31) returned by SsVabOpenHead()
short prog, Program number (0-127)
short tone, Tone number (0-15)
short note, Pitch specification in semitones (note number) (0-127)
short fine, Detailed pitch specification (100/127 cents) (0-127)
short voll, Volume, left (0-127)
short volr) Volume, right (0-127)

Explanation
Keys on the voice specified by the voice number (0-23), the VAB number, the program number (0-127),
and the tone number (0-15) at the specified pitch and volume, and returns the allocated voice number.

Return value
The voice number (0-23) used for KeyOn. Returns -1 if unsuccessful.

See also
SsUtKeyOffV()

Extended Sound Library Functions 14-109

Run-Time Library Reference

SsUtPitchBend
Apply a pitch bend.

Library Header File Introduced Documentation Date
libsnd.lib libsnd.h 2.x 12/14/98

Syntax
short SsUtPitchBend(
short voice, Voice number (0-23)
short vabId, VAB number (0-31) returned by SsVabOpenHead()
short prog, Program number (0-127)
short note, Pitch specification in half-tone units (note number) (0-127)
short pbend) Pitch-bend value (0-127)

Explanation
Applies a pitch bend (0-127, 64:center) to the voice.

Return value
0 if successful, -1 if unsuccessful.

See also
SsUtChangePitch(), SsUtKeyOn(), SsUtKeyOnV(), SsVoKeyOn()

14-110 Extended Sound Library Functions

Run-Time Library Reference

SsUtReverbOff
Turn off Reverb.

Library Header File Introduced Documentation Date
libsnd.lib libsnd.h 3.0 12/14/98

Syntax
void SsUtReverbOff(void)

Explanation
Turns off global Reverb.

See also
SsUtReverbOn()

Extended Sound Library Functions 14-111

Run-Time Library Reference

SsUtReverbOn
Turn on Reverb.

Library Header File Introduced Documentation Date
libsnd.lib libsnd.h 3.0 12/14/98

Syntax
void SsUtReverbOn(void)

Explanation
Turns on global Reverb at the type and depth set by SsUtSetReverbType() and SsUtSetReverbDepth().

See also
SsUtReverbOff(), SsUtSetReverbType(), SsUtSetReverbDepth()

14-112 Extended Sound Library Functions

Run-Time Library Reference

SsUtSetDetVVol
Set a detailed value of voice volume.

Library Header File Introduced Documentation Date
libsnd.lib libsnd.h 3.0 12/14/98

Syntax
short SsUtSetDetVVol(
short vc, Voice number (0-23)
short detvoll, Detailed volume, left (0-16383)
short detvolr) Detailed volume, right (0-16383)

Explanation
Sets the detailed value of voice volume.

Return value
0 if successful, -1 if unsuccessful.

See also
SsUtGetDetVVol(), SsUtKeyOn(), SsUtKeyOnV(), SsVoKeyOn()

Extended Sound Library Functions 14-113

Run-Time Library Reference

SsUtSetProgAtr
Set a program attribute table.

Library Header File Introduced Documentation Date
libsnd.lib libsnd.h 2.x 12/14/98

Syntax
short SsUtSetProgAtr(
short vabId, VAB number (0-31) from the return value of the function SsVabOpen()
short progNum, Program number (0-127)
ProgAtr *progatrptr) Pointer to program attribute table

Explanation
Specifies a VAB number and a program number, and changes the program attribute table, progatrptr.

• Change allowed: mvol, mpan, prior, mode, attr
• Change not allowed: tones, reserved0, reserved1, reserved2

Return value
0 if successful, -1 if unsuccessful.

See also
SsUtGetProgAtr()

14-114 Extended Sound Library Functions

Run-Time Library Reference

SsUtSetReverbDelay
Set a Delay volume.

Library Header File Introduced Documentation Date
libsnd.lib libsnd.h 3.0 12/14/98

Syntax
void SsUtSetReverbDelay(
short delay) 0-127

Explanation
Sets a delay time to be applied to Echo and Delay type reverb.

See also

Extended Sound Library Functions 14-115

Run-Time Library Reference

SsUtSetReverbDepth
Set a reverb depth.

Library Header File Introduced Documentation Date
libsnd.lib libsnd.h 3.0 12/14/98

Syntax
void SsUtSetReverbDepth(
short ldepth, Left depth (0-127)
short rdepth) RIght depth (0-127)

Explanation
Sets a reverb depth.

See also
SsUtGetReverbType()

14-116 Extended Sound Library Functions

Run-Time Library Reference

SsUtSetReverbFeedback
Set a feedback volume.

Library Header File Introduced Documentation Date
libsnd.lib libsnd.h 3.0 12/14/98

Syntax
void SsUtSetReverbFeedback(
short feedback) Feedback (0-127)

Explanation
Sets a feedback volume to be applied Echo and Delay type reverb.

See also

Extended Sound Library Functions 14-117

Run-Time Library Reference

SsUtSetReverbType
Set reverb type.

Library Header File Introduced Documentation Date
libsnd.lib libsnd.h 3.0 12/14/98

Syntax
short SsUtSetReverbType(
short type) Reverb type

Explanation
Sets reverb type.

Table 14-5: Reverb Type Overview (See Sound Delicatessen DSP)

Type Mode Delay time Feedback
SPU_REV_TYPE_OFF off X X
SPU_REV_TYPE_ROOM room X X
SPU_REV_TYPE_STUDIO_A studio (small) X X
SPU_REV_TYPE_STUDIO_B studio (med) X X
SPU_REV_TYPE_STUDIO_C studio (big) X X
SPU_REV_TYPE_HALL hall X X
SPU_REV_TYPE_SPACE space echo X X
SPU_REV_TYPE_ECHO echo O O
SPU_REV_TYPE_DELAY delay O O
SPU_REV_TYPE_PIPE pipe echo X X

When a reverb type is set, reverb depth is automatically set to 0. Because noise occurs as soon as depth is
set if data remains in the reverb work area, follow the procedure below:

SsUtSetReverbType (SS_REV...);

SsUtReverbOn();

Wait for several seconds.

SsUtSetReverbDepth (64, 64);

Return value
The Type number that was set, if setting was correctly performed; otherwise -1.

See also
SsUtGetReverbType()

14-118 Extended Sound Library Functions

Run-Time Library Reference

SsUtSetVabHdr
Set a VAB attribute header.

Library Header File Introduced Documentation Date
libsnd.lib libsnd.h 2.x 12/14/98

Syntax
short SsUtSetVabHdr(
short vabId, VAB number (0-31) returned by SsVabOpenHead()
VabHdr *vabhdrptr) Pointer to VAB attribute header

Explanation
Specifies the VAB number (the return value of SsVabOpenHead()) and changes the VAB attribute header,
vabhdrptr.

• Setting allowed: mvol, pan, attr1, attr2 only
• Setting not allowed: form, ver, id, fsize, reserved0, ps, ts, vs, reserved 1

Return value
0 if successful, -1 if unsuccessful.

See also
SsUtGetVabHdr()

Extended Sound Library Functions 14-119

Run-Time Library Reference

SsUtSetVagAtr
Set a tone attribute table (VagAtr).

Library Header File Introduced Documentation Date
libsnd.lib libsnd.h 2.x 12/14/98

Syntax
short SsUtSetVagAtr(
short vabId, VAB number (0-31) from the return value of the function SsVabOpen()
short progNum, Program number (0-127)
short toneNum, Tone number (0-15)
VagAtr *vagatrptr) Pointer to tone attribute table

Explanation
Specifies a VAB number, a program number, and a tone number, and changes a tone attribute table,
vagatrptr.

Change allowed: Items in VagAtr that are not listed below.

Change not allowed: prog, vag, reserved1, reserved2, reserved[0-3]

Return value
0 if successful, -1 if unsuccessful.

See also
SsUtGetVagAtr(), VagAtr()

14-120 Extended Sound Library Functions

Run-Time Library Reference

SsUtSetVVol
Set voice volume.

Library Header File Introduced Documentation Date
libsnd.lib libsnd.h 2.x 12/14/98

Syntax
short SsUtSetVVol(
short vc, Voice number (0-23)
short voll, Volume, left (0-127)
short volr) Volume, right (0-127)

Explanation
Sets the left and right volumes of the specified voice, vc. Since libsnd uses an exponential volume
calculation for sounds being keyed on, the input volumes voll and volr are modified as follows:

lvol = voll*voll/127
rvol = volr*volr/127

Return value
0 if successful, -1 if unsuccessful.

See also
SsUtGetVVol(), SsUtKeyOn(), SsUtKeyOnV(), SsVoKeyOn()

Extended Sound Library Functions 14-121

Run-Time Library Reference

SsVabClose
Close VAB data file.

Library Header File Introduced Documentation Date
libsnd.lib libsnd.h 2.x 12/14/98

Syntax
void SsVabClose(
short vab_id) VAB data id

Explanation
Closes a VAB data file containing vab_id.

Execute it after closing the SEQ/SEP which use the specified VAB data ID.

See also
SsVabOpen(), SsVabTransBody(), SsVabTransBodyPartly()

14-122 Extended Sound Library Functions

Run-Time Library Reference

SsVabFakeBody
Assign a VAB ID to VAB data in the sound buffer.

Library Header File Introduced Documentation Date
libsnd.lib libsnd.h 3.0 12/14/98

Syntax
short SsVabFakeBody(
short vabid) VAB id

Explanation
After SsVabFakeHead() has established a VAB header in RAM, this function assigns a VAB ID to VAB body
data that already exists in the sound buffer, without actually performing the transfer. It isn’t necessary to call
SsVabTransCompleted() after calling this function.

SsVabFakeHead() and SsVabFakeBody() must be used together with SsVabOpenHeadSticky(); they cannot
be used together with SsVabOpenHead().

Return value
VAB Identifying number. Returns -1 if unsuccessful.

See also
SsVabFakeHead(), SsVabOpenHeadSticky(), SsVabTransBody(), SsVabTransBodyPartly()

Extended Sound Library Functions 14-123

Run-Time Library Reference

SsVabFakeHead
Open a new VAB header for a given VAB body.

Library Header File Introduced Documentation Date
libsnd.lib libsnd.h 3.0 12/14/98

Syntax
short SsVabFakeHead(
u_char *addr, Pointer to VH leading address
short vabid, Desired VAB ID. If -1, the library makes the allocation.
u_long sbaddr) Address of VB inside the sound buffer.

Explanation
Associates new VAB header data with a given VabBody.

When vabid is -1, the function searches for an empty VAB ID (0 - 15) and allocates it.

sbaddr is the starting address in the sound buffer of the VabBody. It is necessary to call SsVabFakeBody()
next so that an actual data transfer doesn’t have to be performed.

SsVabFakeHead() and SsVabFakeBody() must be used together with SsVabOpenHeadSticky(); they cannot
be used together with SsVabOpenHead().

Return value
VAB Identifying number. Returns -1 if unsuccessful.

See also
SsVabFakeBody(), SsUtGetVBaddrInSB(), SsVabOpenHead(), SsVabOpenHeadSticky()

14-124 Extended Sound Library Functions

Run-Time Library Reference

SsVabOpen
Open VAB data. (Not recommended for use)

Library Header File Introduced Documentation Date
libsnd.lib libsnd.h 3.0 12/14/98

Syntax
short SsVabOpen(
u_char *addr, Pointer to start address of VAB data in main storage
VabHdr *vab_header) Pointer to address to VAB header structure corresponding to VAB id

Explanation
Analyzes the VAB data header in main memory, stores the header value in vab_header, and returns the
VAB id. It also transmits to the SPU local memory the VAG data group (wave form) data contained in VAB.

Note: This function is no longer recommended for use. Instead, use SsVabOpenHead() and
SsVabTransBody() or SsVabTransfer().

Return value
VAB id identifying the given VAB. On failure, -1 is returned.

See also
SsVabClose(), SsVabOpenHead(), SsVabTransBody()

Extended Sound Library Functions 14-125

Run-Time Library Reference

SsVabOpenHead
Open a VAB header.

Library Header File Introduced Documentation Date
libsnd.lib libsnd.h 3.0 12/14/98

Syntax
short SsVabOpenHead(
u_char *addr, Start address of VAB header (.VH) in main memory
short vabid) VAB ID

Explanation
Sets up a VAB header list in main memory so that it can be used by the Sound Library. A VAB ID may be
specified to be used for opening, or if vabid is set to -1, the function allocates an empty VAB ID (0 - 15) if
there is one. Execute SsVabTransBody() to transfer the VAB body to the SPU RAM, and
SsVabTransCompleted() to confirm completion of the transfer.

This function reserves an area in SPU RAM for the VAB body in multiples of 64 bytes. Therefore, this area
can be larger than the actual VAB body by up to 48 bytes (since the body is in sections of 16 bytes).

Return value
VAB identification number.

Returns -1 if unsuccessful. See error codes under SsVabOpenHeadSticky() for details (p. 14-126). Also
returns error if there isn’t enough room in SPU RAM for the VAB.

See also
SsVabTransBody(), SsVabTransBodyPartly(), SsVabOpenHeadSticky(), SsVabTransfer(),
SsVabTransCompleted()

14-126 Extended Sound Library Functions

Run-Time Library Reference

SsVabOpenHeadSticky
Open a VAB header and specify transfer address in sound buffer.

Library Header File Introduced Documentation Date
libsnd.lib libsnd.h 3.0 12/14/98

Syntax
short SsVabOpenHeadSticky(
u_char *addr, Start address of VAB header (.VH) in main memory
short vabid, Desired VAB ID or -1
u_long sbaddr) Start address in sound buffer where VabBody is to be

transferred

Explanation
Sets up a VAB header list in main memory so that it can be used by the sound library. vabid specifies a
VAB ID to be opened; if vabid is set to -1, an empty VAB ID (0 - 15) is allocated, if there is one.

Set sbaddr to the address for transferring VabBody (.VB) to the sound buffer, within the range of 0x1010
to 0x7ffff. Take the VabBody size into consideration so that doesn’t overwrite the reverb work area.

Call SsVabTransBody() or SsVabTransBodyPartly() later to transfer VabBody to sbaddr. Since the .VB
transfer is done in 64-byte usnits, the size written to the sound buffer may be larger than the actual .VB
size.

In general, you should either:

• Use SsVabOpenHeadSticky() and do your own memory management, or
• Use SsVabOpenHead() along with other routines that use libspu memory management, such as

SsVabTransfer(), SpuMalloc(), SpuFree(), SpuMallocWithStartAddr(), and
SpuReserveReverbWorkArea().

If you combine these two approaches, the consistency of the sound buffer can’t be guaranteed.

Return value
VAB identifying number.

Returns -1 if unsuccessful, in the following cases:

• The specified VabID was already open.
• The specified VabID is not within the range 0-15.
• The number of VABs allowed to be open simultaneously (16) was exceeded.
• The VAB header doesn’t contain valid data.
• The size of the VabBody to be transferred will go past the end of SPU RAM.
• Could not confirm the end of the previous VabBody transfer using SsVabTransCompleted().

See also
SsVabOpenHead(), SsVabTransBody(), SsVabTransBodyPartly(), SsVabTransfer()

Extended Sound Library Functions 14-127

Run-Time Library Reference

SsVabTransBody
Transfer sound source data.

Library Header File Introduced Documentation Date
libsnd.lib libsnd.h 3.0 12/14/98

Syntax
short SsVabTransBody(
u_char *addr, VAB data start address
short vabid) VAB ID

Explanation
After SsVabOpenHead() recognizes a header list, this function starts transferring sound source data (VAB
body) in main memory to SPU local memory. Data is transferred in 64-byte units. Use
SsVabTransCompleted() to confirm transfer completion.

The starting address (addr) in the sound buffer into which VabBody(.VB) is transferred must be in the range
0x1010-0x7ffff. It must take into account the size of the .VB, so that data is not transferred into the reverb
work area.

Return value
VAB identifying number. Returns -1 if unsuccessful.

See also
SsVabOpenHead(), SsVabTransBodyPartly(), SsVabOpenHeadSticky(), SsVabTransfer()

14-128 Extended Sound Library Functions

Run-Time Library Reference

SsVabTransBodyPartly
Transfer sound source data in segments.

Library Header File Introduced Documentation Date
libsnd.lib libsnd.h 3.0 12/14/98

Syntax
short SsVabTransBodyPartly(
u_char *addr, Pointer to starting address of the segment transfer buffer
u_long bufsize, Buffer size
short vabid) VAB ID

Explanation
Starts transferring a VAB body in main memory, whose VAB header was opened with SsVabOpenHead(),
to the sound buffer.

By continuously calling SsVabTransBodyPartly() while sequentially copying part of the sound source (VAB
body) into the area indicated by addr with a size of bufsize, transfers may be made to a contiguous area
within the sound buffer using only a limited area in main memory.

Since data is transferred in 64-byte units, bufsize must be a multiple of 64.

You must call SsVabTransCompleted() to verify whether each transfer has been completed before calling
SsVabTransBodyPartly() again.

Return value
vabid, if transfer successful. Error codes are:

-2: The size of the sound source data (VAB body) inherited from SsVabOpenHead() has not been
completely transferred

-1: Transfer failed

See also
SsVabOpenHead(), SsVabTransBody(), SsVabOpenHeadSticky(), SsVabTransfer()

Extended Sound Library Functions 14-129

Run-Time Library Reference

SsVabTransCompleted
Get VAB data transfer state.

Library Header File Introduced Documentation Date
libsnd.lib libsnd.h 3.0 12/14/98

Syntax
short SsVabTransCompleted(
short immediateFlag) Transfer status recognition flag

Explanation
Determines whether data transfer to SPU local memory has terminated.

If immediateFlag is SS_IMMEDIATE, the function returns the transfer state immediately. If immediateFlag is
SS_WAIT_COMPLETED, the function loops until transfer is completed.

Return value
1 if the transfer has been completed, 0 if the transfer is ongoing.

See also
SsVabOpenHead(), SsVabOpenHeadSticky(), SsVabTransfer(). SsVabTransBody(), SsVabTransBodyPartly()

14-130 Extended Sound Library Functions

Run-Time Library Reference

SsVabTransfer
Recognize and transfer sound source data.

Library Header File Introduced Documentation Date
libsnd.lib libsnd.h 3.0 12/14/98

Syntax
SsVabTransfer(
u_char *vh_addr, Pointer to VH data
u_char *vb_addr, Pointer to VB data
short vabid, VAB ID number
short i_flag) = SS_IMMEDIATE...Immediately returns return value (VAB ID number)

= SS_WAIT_COMPLETED...Waits until transfer is completed

Explanation
Recognizes a sound source header list (VH data) specified by vh_addr and transfers sound source data (VB
data) specified by vb_addr, to the sound buffer. The VAB ID number is specified in the argument vabid.
When vabid is -1, the function searches for an empty VAB ID (0-15) and allocates it. i_flag determines
whether the function should wait until transfer is completed or return immediately after the transfer starts,
then check with SsVabTransCompleted().

Return value
VAB ID number, if successful. Error codes are:

-1: VAB ID cannot be allocated or invalid VH
-2: Invalid VB
-3 and lower: Other error

See also
SsVabOpenHead(), SsVabOpenHeadSticky(), SsVabTransBody(), SsVabTransBodyPartly(),
SsVabTransCompleted()

Extended Sound Library Functions 14-131

Run-Time Library Reference

SsVoiceCheck
Verify tone information played by a voice that is to be modified.

Library Header File Introduced Documentation Date
libsnd.lib libsnd.h 4.1 12/14/98

Syntax
short SsVoiceCheck(
long voice, Voice number containing tone information to be verified (0-23)
long vabId, The upper 8 bits of the lower 2 bytes of vabId contain the VAB ID

returned by SsVabOpenHead(), and the lower 8 bits of the lower 2 bytes
of vabId contain the program number containing the tone information to
be verified

short note) The note at which the tone to be verified was originally keyed on

Explanation
Verifies that the tone information played by a voice that is to be modified (key off, reverb change, pitch
change etc.) is the intended tone information; that is, that the voice was not allocated to a different tone
than the tone specified by vabld and note.

Should be called before each call to SsQueueRegisters() after key on of sound has occurred.

Return value
0 if successful; -1 if tone information is different than tone specified by vabId and note or voice is out of
range.

See also
SndRegisterAttr(), SndVoiceStats(), SndVolume2(), SsAllocateVoices(), SsBlockVoiceAllocation(),
SsGetActualProgFromProg(), SsPitchFromNote(), SsQueueKeyOn(), SsQueueRegisters(), SsQueueReverb(),
SsSetVoiceSettings(), SsUnBlockVoiceAllocation()

14-132 Extended Sound Library Functions

Run-Time Library Reference

SsVoKeyOff
Key off.

Library Header File Introduced Documentation Date
libsnd.lib libsnd.h 3.0 12/14/98

Syntax
long SsVoKeyOff(
long vab_pro, VAB data id and program number
long pitch) Pitch

Explanation
Of the lower 16 bits of vab_pro, the upper 8 bits are used for VAB id, and the lower 8 bits specify a
program number. Of the lower 16 bits of pitch, the upper 8 bits specify a key number in MIDI standard. To
specify a finer pitch, specify a key number in the lower 8 bits of pitch in 1/128 semitones.

Return value
The keyed off voice number.

See also
SsVoKeyOn()

Extended Sound Library Functions 14-133

Run-Time Library Reference

SsVoKeyOn
Key on.

Library Header File Introduced Documentation Date
libsnd.lib libsnd.h 3.0 12/14/98

Syntax
long SsVoKeyOn(
long vab_pro, VAB data id and program number
long pitch, Pitch
u_short volL, L channel volume
u_short volR) R channel volume

Explanation
Of the lower 16 bits of vab_pro, the upper 8 bits are used for VAB id, and the lower 8 bits specify a
program number. Of the lower 16 bits of pitch, the upper 8 bits specify a key number in MIDI standard. To
specify a finer pitch, specify a key number in the lower 8 bits of pitch in 1/128 semitone units. The sound
specified by vab_pro and pitch is keyed on at the specified voll and volr.

KeyOn with volume set to 0 is the same as SsVoKeyOff().

Return value
Voices which were keyed on. To determine if a specific voice was keyed on, AND the return value and the
appropriate voice bit SPU_xxCH (xx=0-23). If the value is non-zero, the voice was keyed on.

See also
SsVoKeyOff()

14-134 Extended Sound Library Functions

Run-Time Library Reference

Run-Time Library Reference

Chapter 15: Basic Sound Library
Table of Contents

Structures
SpuCommonAttr 15-5
SpuDecodeData 15-6
SpuEnv 15-7
SpuExtAttr 15-8
SpuLVoiceAttr 15-9
SpuReverbAttr 15-10
SpuStEnv 15-11
SpuStVoiceAttr 15-12
SpuVoiceAttr 15-13
SpuVolume 15-14

Functions
SpuClearReverbWorkArea 15-15
SpuFlush 15-16
SpuFree 15-17
SpuGetAllKeysStatus 15-18
SpuGetCommonAttr 15-19
SpuGetCommonCDMix 15-20
SpuGetCommonCDReverb 15-21
SpuGetCommonCDVolume 15-22
SpuGetCommonMasterVolume 15-23
SpuGetCommonMasterVolumeAttr 15-24
SpuGetCommonMasterVolumeX 15-25
SpuGetIRQ 15-26
SpuGetIRQAddr 15-27
SpuGetKeyStatus 15-28
SpuGetMute 15-29
SpuGetNoiseClock 15-30
SpuGetNoiseVoice 15-31
SpuGetPitchLFOVoice 15-32
SpuGetReverb 15-33
SpuGetReverbModeDelayTime 15-34
SpuGetReverbModeDepth 15-35
SpuGetReverbModeFeedback 15-36
SpuGetReverbModeParam 15-37
SpuGetReverbModeType 15-38
SpuGetReverbVoice 15-39
SpuGetTransferMode 15-40
SpuGetTransferStartAddr 15-41
SpuGetVoiceADSR 15-42
SpuGetVoiceADSRAttr 15-43
SpuGetVoiceAR 15-44
SpuGetVoiceARAttr 15-45
SpuGetVoiceAttr 15-46
SpuGetVoiceDR 15-47
SpuGetVoiceEnvelope 15-48
SpuGetVoiceEnvelopeAttr 15-49
SpuGetVoiceLoopStartAddr 15-50
SpuGetVoiceNote 15-51
SpuGetVoicePitch 15-52
SpuGetVoiceRR 15-53
SpuGetVoiceRRAttr 15-54
SpuGetVoiceSampleNote 15-55

15-2

Run-Time Library Reference

SpuGetVoiceSL 15-56
SpuGetVoiceSR 15-57
SpuGetVoiceSRAttr 15-58
SpuGetVoiceStartAddr 15-59
SpuGetVoiceVolume 15-60
SpuGetVoiceVolumeAttr 15-61
SpuGetVoiceVolumeX 15-62
SpuInit 15-63
SpuInitHot 15-64
SpuInitMalloc 15-65
SpuIsReverbWorkAreaReserved 15-66
SpuIsTransferCompleted 15-67
SpuLSetVoiceAttr 15-68
SpuMalloc 15-69
SpuMallocWithStartAddr 15-70
SpuNGetVoiceAttr 15-71
SpuNSetVoiceAttr 15-72
SpuQuit 15-73
SpuRead 15-74
SpuReadDecodedData 15-75
SpuReserveReverbWorkArea 15-76
SpuRGetAllKeysStatus 15-77
SpuRSetVoiceAttr 15-78
SpuSetCommonAttr 15-79
SpuSetCommonCDMix 15-81
SpuSetCommonCDReverb 15-82
SpuSetCommonCDVolume 15-83
SpuSetCommonMasterVolume 15-84
SpuSetCommonMasterVolumeAttr 15-85
SpuSetEnv 15-86
SpuSetIRQ 15-87
SpuSetIRQAddr 15-88
SpuSetIRQCallback 15-89
SpuSetKey 15-90
SpuSetKeyOnWithAttr 15-91
SpuSetMute 15-92
SpuSetNoiseClock 15-93
SpuSetNoiseVoice 15-94
SpuSetPitchLFOVoice 15-95
SpuSetReverb 15-96
SpuSetReverbDepth 15-97
SpuSetReverbModeDelayTime 15-98
SpuSetReverbModeDepth 15-99
SpuSetReverbModeFeedback 15-100
SpuSetReverbModeParam 15-101
SpuSetReverbModeType 15-103
SpuSetReverbVoice 15-104
SpuSetTransferCallback 15-105
SpuSetTransferMode 15-106
SpuSetTransferStartAddr 15-107
SpuSetVoiceADSR 15-108
SpuSetVoiceADSRAttr 15-109
SpuSetVoiceAR 15-110
SpuSetVoiceARAttr 15-111
SpuSetVoiceAttr 15-112
SpuSetVoiceDR 15-116
SpuSetVoiceLoopStartAddr 15-117

15-3

Run-Time Library Reference

SpuSetVoiceNote 15-118
SpuSetVoicePitch 15-119
SpuSetVoiceRR 15-120
SpuSetVoiceRRAttr 15-121
SpuSetVoiceSampleNote 15-122
SpuSetVoiceSL 15-123
SpuSetVoiceSR 15-124
SpuSetVoiceSRAttr 15-125
SpuSetVoiceStartAddr 15-126
SpuSetVoiceVolume 15-127
SpuSetVoiceVolumeAttr 15-128
SpuStart 15-129
SpuStGetStatus 15-130
SpuStGetVoiceStatus 15-131
SpuStInit 15-132
SpuStQuit 15-133
SpuStSetPreparationFinishedCallback 15-134
SpuStSetStreamFinishedCallback 15-135
SpuStSetTransferFinishedCallback 15-136
SpuStTransfer 15-137
SpuWrite 15-138
SpuWrite0 15-139
SpuWritePartly 15-140

15-4

Run-Time Library Reference

Basic Sound Library Structures 15-5

Run-Time Library Reference

Structures

SpuCommonAttr
Common attributes.

Library Header File Introduced Documentation Date
libspu.lib libspu.h 2.x 12/14/98

Structure
typedef struct {

u_long mask; Set mask
SpuVolume mvol; Master volume
SpuVolume mvolmode; Master volume mode
SpuVolume mvolx; Current master volume
SpuExtAttr cd; Cd input attributes
SpuExtAttr ext; External digital input attributes

} SpuCommonAttr;

Explanation
Used when setting/checking common attributes. The members needed for setting are set as bit values in
mask.

See also
SpuVolume(), SpuExtAttr(), SpuSetCommonAttr(), SpuGetCommonAttr()

15-6 Basic Sound Library Structures

Run-Time Library Reference

SpuDecodeData
Decoded data from SPU.

Library Header File Introduced Documentation Date
libspu.lib libspu.h 2.x 12/14/98

Structure
#define SPU_DECODEDATA_SIZE 0x200

typedef struct {
short cd_left[SPU_DECODEDATA_SIZE]; CD L channel data decoded by SPU
short cd_right[SPU_DECODEDATA_SIZE]; CD R channel data decoded by SPU
short voice1[SPU_DECODEDATA_SIZE]; Voice 1 data decoded by SPU
short voice3[SPU_DECODEDATA_SIZE]; Voice 3 data decoded by SPU

} SpuDecodeData;

Explanation
This structure describes an area used when getting CD-ROM, voice 1 and voice 3 data decoded by the
SPU. Each member specifies a buffer for that type of data. Note that the sizes shown are in short
integers, so total size of SpuDecodeData region is 0x1000 bytes.

When you call SpuReadDecodedData(), the SPU copies data from its buffers to the SpuDecodeData struct
in main memory that you specify. It copies the data one-half buffer (0x200 bytes) at a time, and returns a
code specifying which half of the buffer is currently being written to, so you can use the data from the other
half.

See also
SpuReadDecodedData()

Basic Sound Library Structures 15-7

Run-Time Library Reference

SpuEnv
SPU environment attributes.

Library Header File Introduced Documentation Date
libspu.lib libspu.h 2.x 12/14/98

Structure
typedef struct {

u_long mask; Setting mask
u_long queueing; Event queueing

} SpuEnv;

Explanation
Used to set the basic sound library environment. Currently, only queueing of the following events can be set
- Key on, Key off, Pitch LFO voice setting, Noise Voice setting, and Reverb Voice setting.

The default value state is to perform the setting of these events immediately.

See also
SpuSetEnv(), SpuFlush()

15-8 Basic Sound Library Structures

Run-Time Library Reference

SpuExtAttr
External input attributes.

Library Header File Introduced Documentation Date
libspu.lib libspu.h 2.x 12/14/98

Structure
typedef struct {

SpuVolume volume; Volume
long reverb; Reverb on/off
long mix; Mixing on/off

} SpuExtAttr;

Explanation
Used when setting/checking CD and external digital input attributes.

See also
SpuCommonAttr(), SpuVolume()

Basic Sound Library Structures 15-9

Run-Time Library Reference

SpuLVoiceAttr
Voice attributes.

Library Header File Introduced Documentation Date
libspu.lib libspu.h 4.4 12/14/98

Structure
typedef struct {

short voiceNum; Voice number (0-23)
short pad;
SpuVoiceAttr attr; Voice attributes

} SpuLVoiceAttr;

Explanation
Specifies voice attributes for a specific voice. An array of SpuLVoiceAttr structures is passed to
SpuLSetVoiceAttr() to set attributes for multiple voices.

voiceNum specifies the voice for which the attributes should be set. attr.voice settings are ignored.

See Also
SpuGetVoiceAttr(), SpuSetVoiceAttr(), SpuLSetVoiceAttr()

15-10 Basic Sound Library Structures

Run-Time Library Reference

SpuReverbAttr
Reverb attributes.

Library Header File Introduced Documentation Date
libspu.lib libspu.h 3.0 12/14/98

Structure
typedef struct {

u_long mask; Set mask
long mode; Reverb mode
SpuVolume depth; Reverb depth
long delay; DelayTime (ECHO, DELAY only)
long feedback; Feedback (ECHO, DELAY only)

} SpuReverbAttr;

Explanation
Used when setting/checking reverb attributes. The members required at setting are set in the mask as bit
values.

See also
SpuSetReverbModeParam(), SpuGetReverbModeParam(), SpuSetReverbDepth()

Basic Sound Library Structures 15-11

Run-Time Library Reference

SpuStEnv
SPU streaming environment attributes.

Library Header File Introduced Documentation Date
libspu.lib libspu.h 2.x 12/14/98

Structure
typedef struct {

long size; Stream buffer size
long low_priority; Determines priority of SPU Streaming compared to other CPU

processes. Default is SPU_OFF. Setting to SPU_ON lowers SPU
Streaming priority.

SpuStVoiceAttr voice[24]; Each stream attribute set
} SpuStEnv

Explanation
Used in SPU streaming library, streaming environment and stream attribute setting.

See also
SpuStInit()

15-12 Basic Sound Library Structures

Run-Time Library Reference

SpuStVoiceAttr
SPU streaming voice attributes.

Library Header File Introduced Documentation Date
libspu.lib libspu.h 3.0 12/14/98

Structure
typedef struct {

char status; Stream status
char pad1, pad2, pad3; Padding
long last_size; Size of final data transfer (<= (size / 2))
u_long buf_addr; Start address of stream buffer
u_long data_addr; Start address of stream data in main RAM

} SpuStVoiceAttr;

Explanation
Contains attributes for each stream used by the SPU streaming library. See also SpuStEnv.

See also
SpuStInit()

Basic Sound Library Structures 15-13

Run-Time Library Reference

SpuVoiceAttr
Voice attributes.

Library Header File Introduced Documentation Date
libspu.lib libspu.h 3.0 12/14/98

Structure
typedef struct {

u_long voice; Voice (low 24 bits are a bit string, 1 bit per voice)
u_long mask; Attributes (bit string, 1 bit per attribute)
SpuVolume volume; Volume
SpuVolume volmode; Volume mode
SpuVolume volumex; Current volume
u_short pitch; Interval (set pitch)
u_short note; Interval (set note)
u_short sample_note; Interval (set note)
short envx; Current envelope volume value
u_long addr; Waveform data start address
u_long loop_addr; Starting address of loop
long a_mode; Attack rate mode
long s_mode; Sustain rate mode
long r_mode; Release rate mode
u_short ar; Attack rate
u_short dr; Decay rate
u_short sr; Sustain rate
u_short rr; Release rate
u_short sl; Sustain level
u_short adsr1; Same value as structure VagAtr adsr1
u_short adsr2; Same value as structure VagAtr adsr2

} SpuVoiceAttr;

Explanation
Used when setting/checking the attributes of each voice. The voice number is provided/obtained from the
voice bit value, and the members needed for setting are set as bit values in the mask.

Note: Constant macro names spelled SPU_ON, SPU_OFF have the same values as and are
interchangeable with constant macros used in the program and spelled SpuOn, SpuOff.

See also
SpuSetVoiceAttr(), SpuGetVoiceAttr(), SpuSetKeyOnWithAttr()

15-14 Basic Sound Library Structures

Run-Time Library Reference

SpuVolume
Volume.

Library Header File Introduced Documentation Date
libspu.lib libspu.h 2.x 12/14/98

Structure
typedef struct {

short left; L channel value
short right; R channel value

} SpuVolume;

Explanation
Used in attributes that require L channel/R channel values when setting/getting each voice.

See also
SpuVoiceAttr(), SpuReverbAttr(), SpuExtAttr(), SpuCommonAttr()

Basic Sound Library Functions 15-15

Run-Time Library Reference

Functions

SpuClearReverbWorkArea
Clear reverb work area.

Library Header File Introduced Documentation Date
libspu.lib libspu.h 3.0 12/14/98

Syntax
long SpuClearReverbWorkArea(
long rev_mode) Reverb mode

Explanation
Clears the area occupied by the reverb work area corresponding to the reverb mode rev_mode.

Regardless of whether or not it is reserved at this time, the function checks to see if the area is being used.

This operation uses synchronous DMA transfer, so it blocks until finished. The time taken depends on the
reverb mode; it should take a maximum of 1/5 second.

This function should not be called while another Spu transfer is occurring, as the SpuSetTransferCallback is
temporarily cleared inside this function and thus the end of the pending transfer may be missed.

Return value
0 if successful. SPU_ERROR is returned if the reverb work area corresponding to rev_mode is in use, or if
the specified reverb mode value is wrong.

See also
SpuSetReverbModeParam(), SpuReserveReverbWorkArea(), SpuSetReverb(), SpuMalloc(),
SpuMallocWithStartAddr()

15-16 Basic Sound Library Functions

Run-Time Library Reference

SpuFlush
Flush queued events.

Library Header File Introduced Documentation Date
libspu.lib libspu.h 3.6 12/14/98

Syntax
u_long SpuFlush(
u_long ev) Event to be flushed

Explanation
Flushes a queued event.

Set ev with bitwise inclusive ORed events to be flushed:

SPU_EVENT_KEY Key ON/OFF
SPU_EVENT_PITCHLFO Pitch LFO Voice Set
SPU_EVENT_NOISE Noise Voice Set
SPU_EVENT_REVERB Reverb Voice Set

When ev is set to SPU_EVENT_ALL, all events are flushed.

Return value
Bitwise inclusive ORed value of the flushed event(s).

See also
SpuSetEnv(), SpuSetKey(), SpuSetKeyOnWithAttr(), SpuSetPitchLFOVoice(), SpuSetNoiseVoice(),
SpuSetReverbVoice()

Basic Sound Library Functions 15-17

Run-Time Library Reference

SpuFree
Release area allocated in sound buffer.

Library Header File Introduced Documentation Date
libspu.lib libspu.h 3.0 12/14/98

Syntax
void SpuFree(
u_long addr) Start address of allocated area (in bytes)

Explanation
Releases area allocated in the sound buffer as indicated by the start address addr, and deletes that area's
information from the management table.

See also
SpuInitMalloc(), SpuMalloc(), SpuMallocWithStartAddr()

15-18 Basic Sound Library Functions

Run-Time Library Reference

SpuGetAllKeysStatus
Determine key on/off for all voices.

Library Header File Introduced Documentation Date
libspu.lib libspu.h 3.0 12/14/98

Syntax
void SpuGetAllKeysStatus(
char *status) Pointer to the result of checking a voice (24 bytes)

Explanation
Checks key on/key off and envelope status of all voices. status is a 24-byte array containing the key
on/key off and envelope status of each voice.

See Table 15–1 under SpuGetKeyStatus() for information about the values that can be returned.

See also
SpuSetKey(), SpuGetKeyStatus(), SpuRGetAllKeysStatus()

Basic Sound Library Functions 15-19

Run-Time Library Reference

SpuGetCommonAttr
Check sound system attributes

Library Header File Introduced Documentation Date
libspu.lib libspu.h 3.0 12/14/98

Syntax
void SpuGetCommonAttr(
SpuCommonAttr *attr) Pointer to attributes common to all voices

Explanation
Returns sound system attributes in attr. See SpuSetCommonAttr() for details.

See also
SpuSetCommonAttr(), SpuCommonAttr()

15-20 Basic Sound Library Functions

Run-Time Library Reference

SpuGetCommonCDMix
Get CD input on/off status.

Library Header File Introduced Documentation Date
libspu.lib libspu.h 3.7 12/14/98

Syntax
void SpuGetCommonCDMix(
long *on_off) CD input on/off

Explanation
Gets the CD input on/off status. Equivalent to getting cd.mix member of SpuCommonAttr using
SpuGetCommonAttr().

See also
SpuGetCommonAttr(), SpuSetCommonCDMix()

Basic Sound Library Functions 15-21

Run-Time Library Reference

SpuGetCommonCDReverb
Get CD input reverb on/off status.

Library Header File Introduced Documentation Date
libspu.lib libspu.h 3.7 12/14/98

Syntax
void SpuGetCommonCDReverb(
long *on_off) CD input reverb on/off

Explanation
Gets the CD input reverb on/off status. Equivalent to getting cd.reverb member of SpuCommonAttr using
SpuGetCommonAttr().

See also
SpuGetCommonAttr(),SpuSetCommonCDReverb()

15-22 Basic Sound Library Functions

Run-Time Library Reference

SpuGetCommonCDVolume
Get CD input volume.

Library Header File Introduced Documentation Date
libspu.lib libspu.h 3.7 12/14/98

Syntax
void SpuGetCommonCDVolume(
short *cdvolL, CD Input volume (left)
short *cdvolR) CD Input volume (right)

Explanation
Gets the CD input volume. Equivalent to getting cd.volume member of SpuCommonAttr using
SpuGetCommonAttr().

See also
SpuGetCommonAttr(), SpuSetCommonCDVolume()

Basic Sound Library Functions 15-23

Run-Time Library Reference

SpuGetCommonMasterVolume
Get master volume.

Library Header File Introduced Documentation Date
libspu.lib libspu.h 3.7 12/14/98

Syntax
void SpuGetCommonMasterVolume(
short *mvolL, Master volume (left)
short *mvolR) Master volume (right)

Explanation
Gets master volume. Equivalent to getting mvol member of SpuCommonAttr using SpuGetCommonAttr().

The value is valid only when the volume mode is ‘direct mode’. Other volume modes are undefined.

When the volume mode is not ‘direct mode’, or to get both the volume and the volume mode at the same
time, use SpuGetCommonMasterVolumeAttr().

See also
SpuGetCommonAttr(), SpuGetCommonMasterVolumeAttr(), SpuSetCommonMasterVolume(),
SpuSetCommonMasterVolumeAttr()

15-24 Basic Sound Library Functions

Run-Time Library Reference

SpuGetCommonMasterVolumeAttr
Get master volume/master volume mode.

Library Header File Introduced Documentation Date
libspu.lib libspu.h 3.7 12/14/98

Syntax
void SpuGetCommonMasterVolumeAttr(
short *mvolL, Master volume (left)
short *mvolR, Master volume (right)
short *mvolModeL, Master Volume Mode (left)
short *mvolModeR) Master Volume Mode (right)

Explanation
Gets the master volume/master volume mode. Equivalent to getting mvol and mvolmode members of the
SpuCommonAttr using SpuGetCommonAttr().

See also
SpuGetCommonAttr(), SpuGetCommonMasterVolume(), SpuSetCommonMasterVolume(),
SpuSetCommonMasterVolumeAttr()

Basic Sound Library Functions 15-25

Run-Time Library Reference

SpuGetCommonMasterVolumeX
Get current master volume.

Library Header File Introduced Documentation Date
libspu.lib libspu.h 3.7 12/14/98

Syntax
void SpuGetCommonMasterVolumeX(
short *mvolXL, Current master volume (left)
short *mvolXR) Current master volume (right)

Explanation
Gets the current master volume. Equivalent to getting mvolx member of SpuCommonAttr using
SpuGetCommonAttr().

See also
SpuGetCommonAttr(), SpuGetCommonMasterVolume(), SpuGetCommonMasterVolumeAttr(),
SpuSetCommonMasterVolume(), SpuSetCommonMasterVolumeAttr()

15-26 Basic Sound Library Functions

Run-Time Library Reference

SpuGetIRQ
Check status of interrupt request.

Library Header File Introduced Documentation Date
libspu.lib libspu.h 3.0 12/14/98

Syntax
long SpuGetIRQ(void)

Explanation
Checks status of interrupt request.

Return value
SPU_ON Interrupt request is set
SPU_OFF Interrupt request is not set

See also
SpuSetIRQ()

Basic Sound Library Functions 15-27

Run-Time Library Reference

SpuGetIRQAddr
Check interrupt request address.

Library Header File Introduced Documentation Date
libspu.lib libspu.h 3.0 12/14/98

Syntax
u_long SpuGetIRQAddr(void)

Explanation
Returns interrupt request address value.

Return value
Currently set address.

See also
SpuSetIRQAddr(), SpuSetIRQ()

15-28 Basic Sound Library Functions

Run-Time Library Reference

SpuGetKeyStatus
Check key on/key off status for a voice.

Library Header File Introduced Documentation Date
libspu.lib libspu.h 3.0 12/14/98

Syntax
long SpuGetKeyStatus(
u_long voice_bit) Checked voice

Explanation
Checks key on/key off and envelope status for a voice specified in voice_bit with one of the values
SPU_0CH … SPU_23CH. (If multiple bits are set, the smallest voice number set is selected.)

Return value
If successful, the current key on/key off status and envelope status of the specified voice are returned. (See
the table below.) If the specified voice is incorrect, -1 is returned.

Table 15–1 Key and Envelope Status Values

Value Status Description
SPU_ON Key on status

Not turned off by SpuSetKey()
Envelope not 0

Sound currently playing.

SPU_ON_ENV_OFF Key on status
Not turned off by SpuSetKey()
Envelope 0

Sound either about to start
playing, or non-looping
sound expired.

SPU_OFF_ENV_ON Key off status
Turned off by SpuSetKey()
Envelope not 0

Sound in release state.

SPU_OFF Key off status
Turned off by SpuSetKey()
Envelope 0

Sound off.

See also
SpuSetKey(), SpuGetAllKeysStatus()

Basic Sound Library Functions 15-29

Run-Time Library Reference

SpuGetMute
Check sound muting status.

Library Header File Introduced Documentation Date
libspu.lib libspu.h 3.0 12/14/98

Syntax
long SpuGetMute(void)

Explanation
Checks current sound mute on/off status.

Return value
SPU_ON Mute off
SPU_OFF Mute on

See also
SpuSetMute()

15-30 Basic Sound Library Functions

Run-Time Library Reference

SpuGetNoiseClock
Check noise source clock.

Library Header File Introduced Documentation Date
libspu.lib libspu.h 3.0 12/14/98

Syntax
long SpuGetNoiseClock(void)

Explanation
Returns the value of the noise source clock.

Return value
Current noise source clock value.

See also
SpuSetNoiseClock()

Basic Sound Library Functions 15-31

Run-Time Library Reference

SpuGetNoiseVoice
Check noise source ON/OFF for each voice

Library Header File Introduced Documentation Date
libspu.lib libspu.h 3.0 12/14/98

Syntax
u_long SpuGetNoiseVoice(void)

Explanation
Checks current status of noise source ON/OFF for each voice.

Return value
An unsigned long with 1 bit set for each voice whose noise source is on. To check a voice, AND this value
with the bit mask for the voice (SPU_0CH…SPU_23CH). If the value is non-zero, the noise source is on.

See also
SpuSetNoiseClock(), SpuSetNoiseVoice()

15-32 Basic Sound Library Functions

Run-Time Library Reference

SpuGetPitchLFOVoice
Check pitch LFO ON/OFF for each voice.

Library Header File Introduced Documentation Date
libspu.lib libspu.h 3.0 12/14/98

Syntax
u_long SpuGetPitchLFOVoice(void)

Explanation
Checks current status of pitch LFO ON/OFF for each voice.

Return value
An unsigned long with 1 bit set for each voice whose pitch LFO is on. To check a voice, AND this value
with the bit mask for the voice (SPU_0CH…SPU_23CH). If the value is non-zero, the pitch LFO is on.

See also
SpuSetPitchLFOVoice()

Basic Sound Library Functions 15-33

Run-Time Library Reference

SpuGetReverb
Check reverb status.

Library Header File Introduced Documentation Date
libspu.lib libspu.h 3.0 12/14/98

Syntax
long SpuGetReverb(void)

Explanation
Checks current reverb ON/OFF status.

Return value
SPU_ON Reverb on
SPU_OFF Reverb off

See also
SpuSetReverb()

15-34 Basic Sound Library Functions

Run-Time Library Reference

SpuGetReverbModeDelayTime
Get reverb mode delay time.

Library Header File Introduced Documentation Date
libspu.lib libspu.h 3.7 12/14/98

Syntax
void SpuGetReverbModeDelayTime(
long *delay) Reverb delay time

Explanation
Gets the reverb delay time. Equivalent to getting delay member of SpuReverbAttr using
SpuGetReverbModeParam().

See also
SpuSetReverbModeParam(), SpuGetReverbModeParam(), SpuSetReverbModeDelayTime()

Basic Sound Library Functions 15-35

Run-Time Library Reference

SpuGetReverbModeDepth
Get reverb mode depth.

Library Header File Introduced Documentation Date
libspu.lib libspu.h 3.7 12/14/98

Syntax
void SpuGetReverbModeDepth(
short *depthL, Reverb depth (left)
short *depthR) Reverb depth (right)

Explanation
Gets the reverb depth. Equivalent to getting depth member of SpuReverbAttr using
SpuGetReverbModeParam().

See also
SpuSetReverbModeParam(), SpuGetReverbModeParam(), SpuSetReverbModeDepth()

15-36 Basic Sound Library Functions

Run-Time Library Reference

SpuGetReverbModeFeedback
Get reverb mode feedback.

Library Header File Introduced Documentation Date
libspu.lib libspu.h 3.7 12/14/98

Syntax
void SpuGetReverbModeFeedback(
long *feedback) Reverb feedback

Explanation
Gets the reverb feedback. Equivalent to getting feedback member of SpuReverbAttr using
SpuGetReverbModeParam().

See also
SpuSetReverbModeParam(), SpuGetReverbModeParam(), SpuSetReverbModeFeedback()

Basic Sound Library Functions 15-37

Run-Time Library Reference

SpuGetReverbModeParam
Check reverb mode and parameters.

Library Header File Introduced Documentation Date
libspu.lib libspu.h 3.0 12/14/98

Syntax
void SpuGetReverbModeParam(
SpuReverbAttr *attr) Pointer to reverb attributes

Explanation
Gets currently set reverb mode and parameters. For details see SpuSetReverbModeParam().

See also
SpuSetReverbModeParam(), SpuReverbAttr()

15-38 Basic Sound Library Functions

Run-Time Library Reference

SpuGetReverbModeType
Get reverb mode type.

Library Header File Introduced Documentation Date
libspu.lib libspu.h 3.7 12/14/98

Syntax
void SpuGetReverbModeType(
long *type) Reverb mode type

Explanation
Gets the reverb mode type. Equivalent to getting mode member of SpuReverbAttr using
SpuGetReverbModeParam().

See also
SpuSetReverbModeParam(), SpuGetReverbModeParam(), SpuSetReverbModeType()

Basic Sound Library Functions 15-39

Run-Time Library Reference

SpuGetReverbVoice
Check reverb ON/OFF for each voice.

Library Header File Introduced Documentation Date
libspu.lib libspu.h 3.0 12/14/98

Syntax
u_long SpuGetReverbVoice(void)

Explanation
Checks current reverb ON/OFF status for each voice.

Return value
An unsigned long with 1 bit set for each voice whose reverb status is on. To check a voice, AND this value
with the bit mask for the voice (SPU_0CH…SPU_23CH). If the value is non-zero, reverb is on.

See also
SpuSetReverbVoice()

15-40 Basic Sound Library Functions

Run-Time Library Reference

SpuGetTransferMode
Get sound buffer transfer mode.

Library Header File Introduced Documentation Date
libspu.lib libspu.h 3.0 12/14/98

Syntax
long SpuGetTransferMode(void)

Explanation
Returns current value of the transfer mode when transferring from main memory to the sound buffer.

Return value
Current setting of transfer mode:

SPU_TRANSFER_BY_DMA DMA transfer setting
SPU_TRANSFER_BY_IO I/O transfer setting

See also
SpuSetTransferMode(), SpuWrite(), SpuWrite0(), SpuWritePartly()

Basic Sound Library Functions 15-41

Run-Time Library Reference

SpuGetTransferStartAddr
Get sound buffer transfer start address.

Library Header File Introduced Documentation Date
libspu.lib libspu.h 3.0 12/14/98

Syntax
u_long SpuGetTransferStartAddr(void)

Explanation
Returns current start address for transferring between main memory and the sound buffer.

Return value
Current sound buffer transfer start address.

See also
SpuSetTransferStartAddr(), SpuWrite(), SpuWrite0(), SpuWritePartly(), SpuRead(), SpuReadDecodedData()

15-42 Basic Sound Library Functions

Run-Time Library Reference

SpuGetVoiceADSR
Get ADSR.

Library Header File Introduced Documentation Date
libspu.lib libspu.h 3.6 12/14/98

Syntax
void SpuGetVoiceADSR(
int voiceNum, Voice number (0 - 23)
u_short *AR, ADSR attack rate
u_short *DR, ADSR decay rate
u_short *SR, ADSR sustain rate
u_short *RR, ADSR release rate
u_short *SL) ADSR sustain level

Explanation
Gets each ADSR attribute used in the voice. Equivalent to getting SpuVoiceAttr members ar, dr, sr, rr, and
sl using SpuGetVoiceAttr().

The values are valid only for the following attack, sustain, and release rate modes. For other modes, the
values are undefined.

• Attack Rate Mode: SPU_VOICE_LINEARIncN (Linear Increase)
• Sustain Rate Mode: SPU_VOICE_LINEARDecN (Linear Decrease)
• Release_Rate_Mode: SPU_VOICE_LINEARDecN_(Linear Decrease)

To get multiple rates at the same time, use SpuSetVoiceADSRAttr().

See also
SpuGetVoiceAttr(), SpuNGetVoiceAttr(), SpuGetVoiceAR(), SpuGetVoiceDR(), SpuGetVoiceSR(),
SpuGetVoiceRR(), SpuGetVoiceSL()

Basic Sound Library Functions 15-43

Run-Time Library Reference

SpuGetVoiceADSRAttr
Get ADSR rates and modes.

Library Header File Introduced Documentation Date
libspu.lib libspu.h 3.6 12/14/98

Syntax
void SpuGetVoiceADSRAttr(
int voiceNum, Voice number (0 - 23)
u_short *AR, ADSR attack rate
u_short *DR, ADSR decay rate
u_short *SR, ADSR sustain rate
u_short *RR, ADSR release rate
u_short *SL, ADSR sustain level
long *ARmode, ADSR attack rate mode
long *SRmode, ADSR sustain rate mode
long *RRmode) ADSR release rate mode

Explanaton
Gets each ADSR attribute used in the voice. Equivalent to getting SpuVoiceAttr members ar, dr, sr, rr, sl,
a_mode, s_mode, and r_mode using SpuGetVoiceAttr().

See also
SpuGetVoiceAttr(), SpuNGetVoiceAttr(), SpuGetVoiceADSR(), SpuGetVoiceAR(), SpuGetVoiceDR(),
SpuGetVoiceSR(), SpuGetVoiceRR(), SpuGetVoiceSL(), SpuGetVoiceARAttr(), SpuGetVoiceSRAttr(),
SpuGetVoiceRRAttr()

15-44 Basic Sound Library Functions

Run-Time Library Reference

SpuGetVoiceAR
Get ADSR attack rate.

Library Header File Introduced Documentation Date
libspu.lib libspu.h 3.6 12/14/98

Syntax
void SpuGetVoiceAR(
int voiceNum, Voice number (0 - 23)
u_short *AR) ADSR attack rate

Explanation
Gets ADSR attack rate for a voice. Equivalent to getting SpuVoiceAttr member ar using SpuGetVoiceAttr().

The value is valid only when the attack rate mode is SPU_VOICE_LINEARIncN (Linear Increase). For other
modes, the value is undefined.

To get both attack rate and attack rate mode at the same time, use SpuGetVoiceARAttr().

See also
SpuGetVoiceAttr(), SpuNGetVoiceAttr(), SpuGetVoiceARAttr()

Basic Sound Library Functions 15-45

Run-Time Library Reference

SpuGetVoiceARAttr
Get ADSR attack rate / attack rate mode.

Library Header File Introduced Documentation Date
libspu.lib libspu.h 3.6 12/14/98

Syntax
void SpuGetVoiceARAttr(
int voiceNum, Voice number (0 - 23)
u_short *AR, ADSR attack rate
long *ARmode) ADSR attack rate mode

Explanation
Gets ADSR attack rate and attack rate mode for a voice. Equivalent to getting SpuVoiceAttr members ar
and a_mode using SpuGetVoiceAttr().

See also
SpuGetVoiceAttr(), SpuNGetVoiceAttr(), SpuGetVoiceAR()

15-46 Basic Sound Library Functions

Run-Time Library Reference

SpuGetVoiceAttr
Get voice attributes.

Library Header File Introduced Documentation Date
libspu.lib libspu.h 3.0 12/14/98

Syntax
void SpuGetVoiceAttr(
SpuVoiceAttr *attr) Pointer to voice attributes

Explanation
Gets the attributes for a single voice that you specify in attr.voice (with one of the values SPU_0CH ...
SPU_23CH). All the SpuVoiceAttr structure members are returned in attr except attr.mask. See
SpuSetVoiceAttr() for the details of these attributes.

See also
SpuSetVoiceAttr(), SpuRSetVoiceAttr(), SpuSetKey(), SpuSetKeyOnWithAttr(), SpuVoiceAttr()

Basic Sound Library Functions 15-47

Run-Time Library Reference

SpuGetVoiceDR
Get ADSR decay rate.

Library Header File Introduced Documentation Date
libspu.lib libspu.h 3.6 12/14/98

Syntax
void SpuGetVoiceDR(
int voiceNum, Voice number (0 - 23)
u_short *DR) ADSR decay rate

Explanation
Gets ADSR decay rate for voice. Equivalent to getting SpuVoiceAttr member dr using SpuGetVoiceAttr().

See also
SpuGetVoiceAttr(), SpuNGetVoiceAttr()

15-48 Basic Sound Library Functions

Run-Time Library Reference

SpuGetVoiceEnvelope
Get current envelope value.

Library Header File Introduced Documentation Date
libspu.lib libspu.h 3.6 12/14/98

Syntax
void SpuGetVoiceEnvelope(
int voiceNum, Voice number (0 - 23)
short *envx) Current envelope value

Explanation
Gets the current envelope value for a voice. Equivalent to getting the SpuVoiceAttr member envx, using
SpuGetVoiceAttr().

See also
SpuGetVoiceAttr(), SpuNGetVoiceAttr()

Basic Sound Library Functions 15-49

Run-Time Library Reference

SpuGetVoiceEnvelopeAttr
Get current envelope value and key ON/OFF status.

Library Header File Introduced Documentation Date
libspu.lib libspu.h 3.6 12/14/98

Syntax
void SpuGetVoiceEnvelopeAttr(
int voiceNum, Voice number (0 - 23)
long *keyStat, Status of voice envelope and key ON/OFF
short *envx) Current envelope value

Explanation
Gets the current envelope value, key ON/OFF and envelope status for a voice.

Refer to Table 15–1 in under SpuGetKeyStatus() for the key ON/OFF and envelope status values that can
be specified in keyStat.

See also
SpuGetVoiceAttr(), SpuNGetVoiceAttr(), SpuGetVoiceEnvelope(), SpuSetKey(), SpuGetAllKeysStatus(),
SpuRGetAllKeysStatus()

15-50 Basic Sound Library Functions

Run-Time Library Reference

SpuGetVoiceLoopStartAddr
Get loop start address of waveform data in the sound buffer.

Library Header File Introduced Documentation Date
libspu.lib libspu.h 3.6 12/14/98

Syntax
void SpuGetVoiceLoopStartAddr(
int voiceNum, Voice number (0 - 23)
u_long *loopStartAddr) Loop start address

Explanation
Gets loop start address of waveform data in the sound buffer. Equivalent to getting SpuVoiceAttr member
loop_addr using SpuGetVoiceAttr().

See also
SpuGetVoiceAttr(), SpuNGetVoiceAttr(), SpuGetTransferStartAddr()

Basic Sound Library Functions 15-51

Run-Time Library Reference

SpuGetVoiceNote
Get interval (note specification).

Library Header File Introduced Documentation Date
libspu.lib libspu.h 3.6 12/14/98

Syntax
void SpuGetVoiceNote(
int voiceNum, Voice number (0 - 23)
u_short *note) Interval (note specification)

Explanation
Gets Voice Interval (Note Specification). Equivalent to getting SpuVoiceAttr member note using
SpuGetVoiceAttr().

See also
SpuGetVoiceAttr(), SpuNGetVoiceAttr(), SpuGetVoiceSampleNote(), SpuGetVoiceSampleNote()

15-52 Basic Sound Library Functions

Run-Time Library Reference

SpuGetVoicePitch
Get interval (pitch specification).

Library Header File Introduced Documentation Date
libspu.lib libspu.h 3.6 12/14/98

Syntax
void SpuGetVoicePitch(
int voiceNum, Voice number (0 - 23)
u_short *pitch) Interval (pitch specification)

Explanation
Gets voice interval (pitch specification). Equivalent to getting SpuVoiceAttr member pitch using
SpuGetVoiceAttr().

See also
SpuGetVoiceAttr(), SpuNGetVoiceAttr()

Basic Sound Library Functions 15-53

Run-Time Library Reference

SpuGetVoiceRR
Get ADSR release rate.

Library Header File Introduced Documentation Date
libspu.lib libspu.h 3.6 12/14/98

Syntax
void SpuGetVoiceRR(
int voiceNum, Voice number (0 - 23)
u_short *RR) ADSR release rate

Explanation
Gets ADSR release rate for a voice. Equivalent to getting SpuVoiceAttr member rr using SpuGetVoiceAttr().

The value is valid only when the release rate mode is SPU_VOICE_LINEARDecN (Linear Decrease mode).
For other release rate modes, the value is undefined.

To get release rate and release rate mode at the same time, use SpuGetVoiceRRAttr().

See also
SpuGetVoiceAttr(), SpuNGetVoiceAttr(), SpuGetVoiceRRAttr()

15-54 Basic Sound Library Functions

Run-Time Library Reference

SpuGetVoiceRRAttr
Get ADSR release rate / release rate mode.

Library Header File Introduced Documentation Date
libspu.lib libspu.h 3.6 12/14/98

Syntax
void SpuGetVoiceRRAttr(
int voiceNum, Voice number (0 - 23)
u_short *RR, ADSR release rate
long *RRmode) ADSR release rate mode

Explanation
Gets ADSR release rate / ADSR release rate mode for a voice. Equivalent to getting SpuVoiceAttr
members rr and r_mode using SpuGetVoiceAttr().

See also
SpuGetVoiceAttr(), SpuNGetVoiceAttr(), SpuGetVoiceRR()

Basic Sound Library Functions 15-55

Run-Time Library Reference

SpuGetVoiceSampleNote
Get waveform data sample note.

Library Header File Introduced Documentation Date
libspu.lib libspu.h 3.6 12/14/98

Syntax
void SpuGetVoiceSampleNote(
int voiceNum, Voice number (0 - 23)
u_short *sampleNote) Sets waveform data sample note

Explanation
Gets waveform data sample note. Equivalent to getting SpuVoiceAttr member sample_note using
SpuGetVoiceAttr().

See also
SpuGetVoiceAttr(), SpuNGetVoiceAttr(), SpuGetVoiceNote()

15-56 Basic Sound Library Functions

Run-Time Library Reference

SpuGetVoiceSL
Get ADSR sustain level.

Library Header File Introduced Documentation Date
libspu.lib libspu.h 3.6 12/14/98

Syntax
void SpuGetVoiceSL(
int voiceNum, Voice number (0 - 23)
u_short *SL) ADSR sustain level

Explanation
Gets ADSR sustain level. Equivalent to getting SpuVoiceAttr member sl using SpuGetVoiceAttr().

SpuGetVoiceAttr(), SpuNGetVoiceAttr(), SpuGetVoiceRRAttr()

Basic Sound Library Functions 15-57

Run-Time Library Reference

SpuGetVoiceSR
Get ADSR sustain rate.

Library Header File Introduced Documentation Date
libspu.lib libspu.h 3.6 12/14/98

Syntax
void SpuGetVoiceSR(
int voiceNum, Voice number (0 - 23)
u_short *SR) ADSR sustain rate

Explanation
Gets ADSR sustain rate in a voice. Equivalent to getting SpuVoiceAttr member sr using SpuGetVoiceAttr().

The value is valid only when sustain rate mode is SPU_VOICE_LINEARDecN (Linear Decrease mode). For
other sustain rate modes, the value is undefined.

To get both sustain rate and sustain rate mode at the same time, use SpuGetVoiceSRAttr().

See also
SpuGetVoiceAttr(), SpuNGetVoiceAttr(), SpuGetVoiceSRAttr()

15-58 Basic Sound Library Functions

Run-Time Library Reference

SpuGetVoiceSRAttr
Get ADSR sustain rate and sustain rate mode.

Library Header File Introduced Documentation Date
libspu.lib libspu.h 3.6 12/14/98

Syntax
void SpuGetVoiceSRAttr(
int voiceNum, Voice number (0 - 23)
u_short *SR, ADSR sustain rate
long *SRmode) ADSR sustain rate mode

Explanation
Gets ADSR sustain rate and ADSR sustain rate mode for voice. Equivalent to getting SpuVoiceAttr
members sr and s_mode using SpuGetVoiceAttr().

See also
SpuGetVoiceAttr(), SpuNGetVoiceAttr(), SpuGetVoiceSR()

Basic Sound Library Functions 15-59

Run-Time Library Reference

SpuGetVoiceStartAddr
Get address of waveform data in the sound buffer.

Library Header File Introduced Documentation Date
libspu.lib libspu.h 3.6 12/14/98

Syntax
void SpuGetVoiceStartAddr(
int voiceNum, Voice number (0 - 23)
u_long *startAddr) Waveform data start address

Explanation
Gets start address of waveform data in the sound buffer. Equivalent to getting SpuVoiceAttr member addr
using SpuGetVoiceAttr().

See also
SpuGetVoiceAttr(), SpuNGetVoiceAttr(), SpuGetTransferStartAddr()

15-60 Basic Sound Library Functions

Run-Time Library Reference

SpuGetVoiceVolume
Get voice volume.

Library Header File Introduced Documentation Date
libspu.lib libspu.h 3.6 12/14/98

Syntax
void SpuGetVoiceVolume(
int voiceNum, Voice Number (0 - 23)
short *volumeL, Volume (Left)
short *volumeR) Volume (Right)

Explanation
Gets voice volume. Equivalent to getting SpuVoiceAttr member volume using SpuGetVoiceAttr().

The value is valid only when the volume mode is "direct mode"; otherwise, it is undefined.

When the volume mode is not "direct mode", or to get both volume and volume mode at the same time,
use SpuGetVoiceVolumeAttr().

See also
SpuGetVoiceAttr(), SpuNGetVoiceAttr(), SpuGetVoiceVolumeAttr()

Basic Sound Library Functions 15-61

Run-Time Library Reference

SpuGetVoiceVolumeAttr
Get volume/volume mode.

Library Header File Introduced Documentation Date
libspu.lib libspu.h 3.6 12/14/98

Syntax
void SpuGetVoiceVolumeAttr(
int voiceNum, Voice Number (0 - 23)
short *volumeL, Volume (Left)
short *volumeR, Volume (Right)
short *volModeL, Volume mode (Left)
short *volModeR) Volume mode (Right)

Explanation
Gets voice volume and volume mode for a voice. Equivalent to getting SpuVoiceAttr members volume and
volmode using SpuGetVoiceAttr().

See also
SpuGetVoiceAttr(), SpuNGetVoiceAttr(), SpuGetVoiceVolume()

15-62 Basic Sound Library Functions

Run-Time Library Reference

SpuGetVoiceVolumeX
Get current volume.

Library Header File Introduced Documentation Date
libspu.lib libspu.h 3.6 12/14/98

Syntax
void SpuGetVoiceVolumeX(
int voiceNum, Voice Number (0 - 23)
short *volumeXL, Current volume (Left)
short *volumeXR) Current volume (Right)

Explanation
Gets current volume for a voice. Equivalent to getting SpuVoiceAttr member volumex using
SpuGetVoiceAttr().

See also
SpuGetVoiceAttr(), SpuNGetVoiceAttr(), SpuGetVoiceVolume(), SpuGetVoiceVolumeAttr()

Basic Sound Library Functions 15-63

Run-Time Library Reference

SpuInit
Initialize SPU.

Library Header File Introduced Documentation Date
libspu.lib libspu.h 3.1 12/14/98

Syntax
void SpuInit(void)

Explanation
Initializes SPU. Called only once within the program. After initialization, the state of the SPU is:

• Master volume is 0 for both L/R
• Reverb is off; reverb work area is not reserved
• Reverb depth and volume are 0 for both L/R
• Sound buffer transfer mode is DMA transfer
• For all voices: Key off
• For all voices: Pitch LFO, noise, reverb functions not set
• CD input volume is 0 for both L/R
• External digital input volume is 0 for both L/R
• DMA transfer initialization set

The status of the sound buffer is indeterminate after initialization.

See also
SpuInitHot(), SpuStart(), SpuQuit()

15-64 Basic Sound Library Functions

Run-Time Library Reference

SpuInitHot
Initializate SPU (hot reset); preserves sound buffer status.

Library Header File Introduced Documentation Date
libspu.lib libspu.h 3.1 12/14/98

Syntax
void SpuInitHot(void)

Explanation
Initializes SPU. Call SpuInitHot() when you initialize the sound system and want to preserve the sound buffer
status in a child process.

After initialization, status is the same as SpuInit() except:

• Voice sample notes not cleared
• CD volume not cleared
• Pitch LFO/ noise voice not cleared
• Voice info (volume, pitch, start address, ADSR) not cleared

Voices are keyed off, however.

See also
SpuInit(), SpuStart(), SpuQuit()

Basic Sound Library Functions 15-65

Run-Time Library Reference

SpuInitMalloc
Initialize sound buffer memory management mechanism.

Library Header File Introduced Documentation Date
libspu.lib libspu.h 3.0 12/14/98

Syntax
long SpuInitMalloc(
long num, Maximum number of times memory is allocated
char *top) Pointer to the start address of the memory management table

Explanation
Initializes memory management for the sound buffer. You specify n as the maximum number of memory
blocks that will be allocated, and an area pointed to by top to hold a memory management table, which
stores information about each block.

The size of the area pointed to by top must be:

(SPU_MALLOC_RECSIZ • (num + 1)) bytes

For example, to allow for 10 SpuMalloc() calls:

char rec[SPU_MALLOC_RECSIZ * (10 + 1)];
SpuInitMalloc (10, /*10 SpuMalloc calls can be made*/

rec); /*memory management block*/

Return value
The number of memory management blocks specified.

See also
malloc() (See libmath), SpuMalloc(), SpuMallocWithStartAddr(), SpuFree()

15-66 Basic Sound Library Functions

Run-Time Library Reference

SpuIsReverbWorkAreaReserved
Check if reverb work area is / can be reserved.

Library Header File Introduced Documentation Date
libspu.lib libspu.h 3.0 12/14/98

Syntax
long SpuIsReverbWorkAreaReserved(
long on_off) Contents of the checking process

Explanation
Checks to see if the reverb work area corresponding to the current reverb mode is reserved or can be
reserved, depending on the value of on_off:

• SPU_DIAG: Using sound buffer memory management mechanism information, SPU_DIAG checks to
see whether or not the reverb work area is an area allocated by SpuMalloc()/SpuMallocWithStartAddr().

• SPU_CHECK: Checks current reverb work area reserve status.

Return value
SPU_ON if the reverb work area is reserved (when on_off is SPU_CHECK) or can be reserved (when on_off
is SPU_DIAG).

SPU_OFF if the reverb work area isn’t reserved (when on_off is SPU_CHECK) or can’t be reserved (when
on_off is SPU_DIAG).

See also
SpuReserveReverbWorkArea(), SpuSetReverbModeParam(), SpuSetReverb(), SpuMalloc(),
SpuMallocWithStartAddr()

Basic Sound Library Functions 15-67

Run-Time Library Reference

SpuIsTransferCompleted
Check completion of transfer to the sound buffer.

Library Header File Introduced Documentation Date
libspu.lib libspu.h 3.0 12/14/98

Syntax
long SpuIsTransferCompleted(
long flag) Check flag

Explanation
Checks whether transfer is completed or waits for completion, depending on value of flag:

SPU_TRANSFER_WAIT Wait until transfer ends
SPU_TRANSFER_PEEK Check whether transfer has ended and return result
SPU_TRANSFER_GLANCE Same as SPU_TRANSFER_PEEK

This function doesn’t work (and returns 1) when a callback function is set with SpuSetTransferCallback()
and started at the completion of DMA transfer.

Return value
1 : transfer completed; 0 : transfer not completed.

If flag = SPU_TRANSFER_WAIT, waits until transfer ends and always returns 1. If transfer mode is
SPU_TRANSFER_BY_IO, 1 is returned immediately.

See also
SpuWrite(), SpuWritePartly(), SpuRead(), SpuReadDecodedData(), SpuSetTransferCallback()

15-68 Basic Sound Library Functions

Run-Time Library Reference

SpuLSetVoiceAttr
Sets attributes for multiple voices.

Library Header File Introduced Documentation Date
libspu.lib libspu.h 4.4 12/14/98

Syntax
void SpuLSetVoiceAttr(
int num Number of elements in argList array
SpuLVoiceAttr *argList) Address of voice attribute array

Explanation
Collectively sets the voice attributes for each individual voice specified in argList.

Although this function is equivalent to executing SpuNSetVoiceAttr() for each voice, processing is faster
with SpuLSetVoiceAttr().

The argList[x].attr.voice specification is ignored and argList[x].attr is set for the voices specified in
argList[x].voiceNum.

Set argList[x].attr.mask with bitwise inclusive ORed attributes to specify attributes to be set. When
argList[x].attr.mask is 0, all attributes are set. See Table 15–6 under SpuSetVoiceAttr() for information
about the attributes that can be set.

Basic Sound Library Functions 15-69

Run-Time Library Reference

SpuMalloc
Allocate an area in the sound buffer.

Library Header File Introduced Documentation Date
libspu.lib libspu.h 3.0 12/14/98

Syntax
long SpuMalloc(
long size) Size of area allocated (in bytes)

Explanation
Allocate an area of size bytes in the sound buffer.

Failure occurs if:

• The requested size cannot be continuously allocated.
• The only area that satisfies the requested size is part or all of a reverb work area already allocated by

SpuReserveReverbWorkArea().

Return value
The starting address of the allocated area, if successful; -1 if unsuccessful.

See also
SpuInitMalloc(), SpuMallocWithStartAddr(), SpuFree(), SpuSetTransferStartAddr(), SpuWrite(),
SpuReserveReverbWorkArea(), SpuSetReverb(), SpuSetReverbModeParam()

15-70 Basic Sound Library Functions

Run-Time Library Reference

SpuMallocWithStartAddr
Allocate an area from an address in sound buffer.

Library Header File Introduced Documentation Date
libspu.lib libspu.h 3.0 12/14/98

Syntax
long SpuMallocWithStartAddr(
u_long addr, Allocated area starting address (in bytes)
long size) Size of allocated area (in bytes)

Explanation
Allocates an area in the sound buffer of size bytes starting from the address addr. (The allocatable area is
0x01010 - 0x7ffff.) If addr is in an area already allocated, an area of size bytes is allocated starting from the
nearest empty area after addr.

Failure occurs if:

• The requested size cannot be continuously allocated.
• The only area that satisfies the requested size is part or all of a reverb work area already allocated by

SpuReserveReverbWorkArea().

Return value
The starting address of the allocated area, if successful; -1 if unsuccessful.

See also
SpuInitMalloc(), SpuMalloc(), SpuFree(), SpuSetTransferStartAddr(), SpuWrite(),
SpuReserveReverbWorkArea(), SpuSetReverb(), SpuSetReverbModeParam()

Basic Sound Library Functions 15-71

Run-Time Library Reference

SpuNGetVoiceAttr
Get voice attributes.

Library Header File Introduced Documentation Date
libspu.lib libspu.h 3.6 12/14/98

Syntax
void SpuNGetVoiceAttr(
int voiceNum, Voice number (0 - 23)
SpuVoiceAttr *attr) Voice attribute

Explanation
Gets attributes for voice voiceNum. All attributes of the attr structure are returned except attr.mask.

Refer to Table 15–6 under SpuSetVoiceAttr() for details of each attribute.

See also
SpuGetVoiceAttr(), SpuSetVoiceAttr(), SpuNSetVoiceAttr(), SpuRSetVoiceAttr(), SpuSetKey(),
SpuSetKeyOnWithAttr(), SpuGetVoiceVolume(), SpuGetVoiceVolumeAttr(), SpuGetVoiceVolumeX(),
SpuGetVoicePitch(), SpuGetVoiceNote(), SpuGetVoiceSampleNote(), SpuGetVoiceEnvelope(),
SpuGetVoiceStartAddr(), SpuGetVoiceLoopStartAddr(), SpuGetVoiceAR(), SpuGetVoiceDR(),
SpuGetVoiceSR(), SpuGetVoiceRR(), SpuGetVoiceSL(), SpuGetVoiceARAttr(), SpuGetVoiceSRAttr(),
SpuGetVoiceRRAttr(), SpuGetVoiceADSR(), SpuGetVoiceADSRAttr(), SpuGetVoiceEnvelopeAttr()

15-72 Basic Sound Library Functions

Run-Time Library Reference

SpuNSetVoiceAttr
Set attributes for a voice.

Library Header File Introduced Documentation Date
libspu.lib libspu.h 3.6 12/14/98

Syntax
void SpuNSetVoiceAttr(
int voiceNum, Voice number (0 - 23)
SpuVoiceAttr *attr) Voice attribute

Explanation
Sets the attributes for a specific voice, specified by voiceNum.

Specify which attributes are to be set by setting the appropriate bits in attr.mask. (If attr.mask is 0, all
attributes are set.) See Table 15–6 under SpuSetVoiceAttr() for information about specific attributes.

See also
SpuSetVoiceAttr(), SpuNSetVoiceAttr(),SpuRSetVoiceAttr(), SpuGetVoiceAttr(), SpuNGetVoiceAttr(),
SpuSetKey(), SpuSetKeyOnWithAttr(), SpuSetVoiceVolume(), SpuSetVoiceVolumeAttr(), SpuSetVoicePitch(),
SpuSetVoiceNote(), SpuSetVoiceSampleNote(), SpuSetVoiceStartAddr(), SpuSetVoiceLoopStartAddr(),
SpuSetVoiceAR(), SpuSetVoiceDR(), SpuSetVoiceSR(),SpuSetVoiceRR(), SpuSetVoiceSL(),
SpuSetVoiceARAttr(), SpuSetVoiceSRAttr(), SpuSetVoiceRRAttr(),SpuSetVoiceADSR(),
SpuSetVoiceADSRAttr()

Basic Sound Library Functions 15-73

Run-Time Library Reference

SpuQuit
Terminate SPU processing.

Library Header File Introduced Documentation Date
libspu.lib libspu.h 3.0 12/14/98

Syntax
void SpuQuit(void)

Explanation
Terminates SPU processing, and releases events allocated by SPUInit(), so that the maximum number of
events is not exceeded. This is particularly important when other processes may be calling SpuInit(), such
as child processes, or in a game that may be part of a demo disk

See also
SpuInit(), SpuInitHot()

15-74 Basic Sound Library Functions

Run-Time Library Reference

SpuRead
Transfer data from sound buffer to main memory.

Library Header File Introduced Documentation Date
libspu.lib libspu.h 3.0 12/14/98

Syntax
u_long SpuRead(
u_char *addr, Pointer to transfer data start address in main memory
u_long size) Transferred data size (in bytes)

Explanation
Transfers size bytes of data from the sound buffer to main memory address addr. addr must be a global
variable or a variable in a heap area that was allocated by a function such as malloc(). It can’t be the
address of a variable declared on the stack in a function.

To confirm transfer completion, either call SpuIsTransferCompleted() or set the DMA transfer completion
callback function in advance using SpuSetTransferCallback().

Due to the limitations of the DMA transfer hardware, transfers are always performed in 64 byte units.
Therefore, if the arguments aren’t multiples of 64, it’s possible to damage the data in the SPU memory.

Return value
Size of data transferred. (If size is larger than 512 KB, the actual transferred size is returned.)

See also
SpuWrite(), SpuWrite0(), SpuWritePartly(), SpuSetTransferStartAddr(), SpuGetTransferStartAddr(),
SpuIsTransferCompleted(), SpuSetTransferCallback()

Basic Sound Library Functions 15-75

Run-Time Library Reference

SpuReadDecodedData
Transfer sound data decoded by SPU from sound buffer to main memory.

Library Header File Introduced Documentation Date
libspu.lib libspu.h 3.0 12/14/98

Syntax
long SpuReadDecodedData(
SpuDecodedData *d_data, Start address of SpuDecodeData structure in main memory
long flag) SPU_CDONLY Set transfer of only CD input

SPU_VOICEONLY Set transfer of only Voice 1, 3
SPU_ALL Set transfer of all data

Explanation
Transfers waveform data decoded by the SPU from the sound buffer to main memory.

The SPU automatically writes CD input data and Voice 1 and Voice 3 envelope data to the 0x1000-byte
area at the beginning of the sound buffer, 16 bits at a time at each SPU tick (44.1kHz). Each type of sound
data has a 0x400 byte buffer, divided into two halves of 0x200 bytes each. The SPU writes one half at a
time.

Table 15–2: Arrangement of Data

Map (bytes) Data Contents
0x000 - 0x3ff CD Left channel
0x200 - 0x7ff CD Right channel
0x400 - 0xbff Voice 1
0x600 - 0xfff Voice 3

The main memory address storing the transfer data must be either an address of a global variable or an
address of an allocated variable in the heap allocated by a function such as malloc(). It may not address a
stack area (address of an auto variable) declared in a function.

In order to confirm transfer completion, set the DMA transfer completion callback function in advance using
SpuSetTransferCallback().

Return value
The buffer area currently being written to; the data that can actually be used is in the other area.

SPU_DECODE_FIRSTHALF Writes the first half of data
SPU_DECODE_SECONDHALF Writes the second half of data

See also
SpuRead(), SpuWrite(), SpuWrite0(), SpuWritePartly(), SpuSetTransferStartAddr(),
SpuGetTransferStartAddr(), SpuIsTransferCompleted(), SpuSetTransferCallback()

15-76 Basic Sound Library Functions

Run-Time Library Reference

SpuReserveReverbWorkArea
Reserve/release reverb work area.

Library Header File Introduced Documentation Date
libspu.lib libspu.h 3.0 12/14/98

Syntax
long SpuReserveReverbWorkArea(
long on_off) Reserve/release flag

Explanation
Reserves the current reverb work area corresponding to the current reverb mode, so that it can’t be
allocated by SpuMalloc()/SpuMallocWithStartAddr(), or releases it so that it can be allocated.

on_off specifies which action is performed:

a) SPU_ON
Reserves the reverb work area so that it can’t be allocated by
SpuMalloc()/SpuMallocWithStartAddr() (without regard to reverb ON/OFF).
If the area has already been allocated by SpuMalloc() / SpuMallocWithStartAddr(),
it is not reserved for reverb and SPU_OFF is returned.

b) SPU_OFF
Releases the reverb work area so that it can be allocated by SpuMalloc() /
SpuMallocWithStartAddr(). Releases it regardless of reverb ON/OFF; reverb must
have been turned off beforehand.

Return value
The value of on_off, except: if on_off is SPU_ON and the reverb work area has already been allocated by
SpuMalloc()/SpuMallocWithStartAddr(),SPU_OFF is returned.

See also
SpuIsReverbWorkAreaReserved(), SpuSetReverbModeParam(), SpuSetReverb(), SpuMalloc(),
SpuMallocWithStartAddr()

Basic Sound Library Functions 15-77

Run-Time Library Reference

SpuRGetAllKeysStatus
Check key on/key off for a range of voices.

Library Header File Introduced Documentation Date
libspu.lib libspu.h 3.1 12/14/98

Syntax
long SpuRGetAllKeysStatus(
long min, Lower limit of the voice number to be checked
long max, Upper limit of the voice number to be checked
char *status) Pointer to the result of checking a voice

Explanation
Checks key on/key off and envelope status of all voices in the range min to max.

status points to an array of 24 bytes, each containing the status value for a voice. See Table 15–1 under
SpuGetKeyStatus() for a description of possible status values.

Return value
SPU_INVALID_ARGS Invalid voice range
SPU_SUCCESS Keys status contained in status[24].

See also
SpuSetKey(), SpuGetKeyStatus()

15-78 Basic Sound Library Functions

Run-Time Library Reference

SpuRSetVoiceAttr
Set attributes of a range of voices.

Library Header File Introduced Documentation Date
libspu.lib libspu.h 3.1 12/14/98

Syntax
long SpuRSetVoiceAttr(
long min, Lower limit of the voice number to be checked
long max, Upper limit of the voice number to be checked
SpuVoiceAttr *attr) Pointer to voice attributes

Explanation
Sets attributes for each voice in the range specified by min and max. You can specify voices within the
range by setting the bit values SPU_0CH...SPU_23CH in attr.voice.

Specify which attributes are to be set by setting the appropriate bits in attr.mask. (If attr.mask is 0, all
attributes are set.) See Table 15–6 under SpuSetVoiceAttr() for information about specific attributes.

Return value
SPU_INVALID_ARGS Invalid voice range.
SPU_SUCCESS Voice attributes set for specified range.

See also
SpuGetVoiceAttr(), SpuSetKey(), SpuSetKeyOnWithAttr()

Basic Sound Library Functions 15-79

Run-Time Library Reference

SpuSetCommonAttr
Set sound system attributes

Library Header File Introduced Documentation Date
libspu.lib libspu.h 3.0 12/14/98

Syntax
void SpuSetCommonAttr(
SpuCommonAttr *attr) Pointer to attributes common to all voices

Explanation
Sets sound system attributes. Specify the attributes (members of attr) by ORing together the terms shown
below in attr.mask. If attr.mask is 0, all attributes are set.

Table 15–3

Attribute Description
SPU_COMMON_MVOLL Master volume (left)
SPU_COMMON_MVOLR Master volume (right)
SPU_COMMON_MVOLMODEL Master volume mode (left)
SPU_COMMON_MVOLMODER Master volume mode (right)
SPU_COMMON_CDVOLL CD input volume (left)
SPU_COMMON_CDVOLR CD input volume (right)
SPU_COMMON_CDREV CD input reverb ON/OFF
SPU_COMMON_CDMIX CD input ON/OFF
SPU_COMMON_EXTVOLL External digital input volume (left)
SPU_COMMON_EXTVOLR External digital input volume (right)
SPU_COMMON_EXTREV External digital input reverb ON/OFF
SPU_COMMON_EXTMIX External digital input ON/OFF

The individual parameters that can be set are:

a) Master Volume (attr.mvol) and Master Volume Mode (attr.mvolmode)
Left and right are set independently. The volume range obtainable and the
various modes are the same as the settings for each voice; see Table 15–7
under SpuSetVoiceAttr().

b) CD Input Volume (attr.cd.volume)
Set independently for left and right in the range -0x8000 - 0x7fff. If volume is
negative, the phase is inverted.

c) CD Input Reverb On/Off (attr.cd.volume)
SPU_ON = reverb on; SPU_OFF = reverb off

d) CD Input Mixing On/Off (attr.cd.mix)
SPU_ON = mixing on; SPU_OFF = mixing off. CD input is not output unless
mixing is on.

e) External Digital Input Volume (attr.ext.volume)
Set independently for left and right in the range -0x8000 - 0x7fff. If volume is
negative, the phase is inverted.

f) External Digital Input Reverb On/Off (attr.ext.reverb)
SPU_ON = reverb on; SPU_OFF = reverb off.

g) External Digital Input Mixing On/Off (attr.cd.mix)
SPU_ON = mixing on; SPU_OFF = mixing off. External digital input is not
output unless mixing is on.

15-80 Basic Sound Library Functions

Run-Time Library Reference

See also
SpuGetCommonAttr(), SpuSetVoiceAttr()

Basic Sound Library Functions 15-81

Run-Time Library Reference

SpuSetCommonCDMix
Set CD input ON/OFF.

Library Header File Introduced Documentation Date
libspu.lib libspu.h 3.7 12/14/98

Syntax
void SpuSetCommonCDMix(
long on_off) CD Input on/off

Explanation
Turns CD input mixingon/off. Equivalent to the SPU_COMMON_CDMIX SpuSetCommonAttr() mask
setting. See SpuSetCommandAttr() for values for on_off.

See also
SpuSetCommonAttr(), SpuGetCommonCDMix()

15-82 Basic Sound Library Functions

Run-Time Library Reference

SpuSetCommonCDReverb
Set CD input reverb ON/OFF.

Library Header File Introduced Documentation Date
libspu.lib libspu.h 3.7 12/14/98

Syntax
void SpuSetCommonCDReverb(
long on_off) CD Input reverb on/off

Explanation
Turns CD input reverb on/off. Equivalent to the SPU_COMMON_CDREV mask setting of
SpuSetCommonAttr(). SeeSpuSetCommandAttr() for values for on_off.

See also
SpuSetCommonAttr(), SpuGetCommonCDReverb()

Basic Sound Library Functions 15-83

Run-Time Library Reference

SpuSetCommonCDVolume
Set CD input volume.

Library Header File Introduced Documentation Date
libspu.lib libspu.h 3.7 12/14/98

Syntax
void SpuSetCommonCDVolume(
short cdvolL, CD input volume (left)
short cdvolR) CD input volume (right)

Explanation
Sets the CD input volume. Equivalent to the SPU_COMMON_CDVOLL and SPU_COMMON_CDVOLR
mask settings of SpuSetCommonAttr(). See SpuSetCommandAttr() for values for cdvolL and cdvolR.

See also
SpuSetCommonAttr(), SpuGetCommonCDVolume()

15-84 Basic Sound Library Functions

Run-Time Library Reference

SpuSetCommonMasterVolume
Set master volume.

Library Header File Introduced Documentation Date
libspu.lib libspu.h 3.7 12/14/98

Syntax
void SpuSetCommonMasterVolume(
short mvolL, Master volume (left)
short mvolR) Master volume (left)

Explanation
Sets the master volume. Equivalent to the SPU_COMMON_MVOLL and SPU_COMMON_MVOLR mask
settings of SpuSetCommonAttr().

The volume mode is ‘direct mode’ and the range of the values which can be set to the mvolL and mvolR
volumes is equal to that of the ‘direct mode’ in SpuSetVoiceAttr() (-0x4000 to 0x3fff).

To set both volume and volume mode simultaneously, use SpuSetCommonMasterVolumeAttr().

See SpuSetVoiceAttr() for values for mvolL and mvolR.

See also
SpuSetCommonAttr(), SpuSetVoiceAttr(), SpuSetCommonMasterVolumeAttr(),
SpuGetCommonMasterVolume(), SpuGetCommonMasterVolumeAttr()

Basic Sound Library Functions 15-85

Run-Time Library Reference

SpuSetCommonMasterVolumeAttr
Set master volume/master volume mode.

Library Header File Introduced Documentation Date
libspu.lib libspu.h 3.7 12/14/98

Syntax
void SpuSetCommonMasterVolumeAttr(
short mvolL, Master volume (left)
short mvolR, Master volume (left)
short mvolModeL, Master volume mode (left)
short mvolModeR) Master volume mode (right)

Explanation
Sets the master volume and master volume mode. Equivalent to the SPU_COMMON_MVOLL /
SPU_COMMON_MVOLR / SPU_COMMON_MVOLMODEL / SPU_COMMON_MVOLMODER mask
settings of SpuSetCommonAttr().

See SpuSetVoiceAttr() for values for mvolModeL, mvolModeR, mvolL, and mvolR.

See also
SpuSetCommonAttr(), SpuSetVoiceAttr(), SpuSetCommonMasterVolume(),
SpuGetCommonMasterVolume(), SpuGetCommonMasterVolumeAttr()

15-86 Basic Sound Library Functions

Run-Time Library Reference

SpuSetEnv
Set basic sound library environment.

Library Header File Introduced Documentation Date
libspu.lib libspu.h 3.6 12/14/98

Syntax
void SpuSetEnv(
SpuEnv *env) Basic sound library environment attribute

Explanation
Sets the basic sound library environment. env.mask contains a bit for each attribute (member of env). Set
the bits of env.mask for the attribute, then set its value in env. When env.mask is 0, all attributes are set.

Currently there is only one attribute, env.queueing, specified by the attribute bit
SPU_ENV_EVENT_QUEUEING. It establishes whether the following events are queued or not: Key On/Off,
Pitch LFO Voice Setting, Noise Voice Setting, and Reverb Voice Setting. SPU_ON means the events are
queued. SPU_OFF means the events are performed immediately (the default value).

See also
SpuSetKey(), SpuSetKeyOnWithAttr(), SpuSetPitchLFOVoice(), SpuSetNoiseVoice(), SpuSetReverbVoice(),
SpuFlush(), SpuEnv()

Basic Sound Library Functions 15-87

Run-Time Library Reference

SpuSetIRQ
Turn interrupt request ON/OFF.

Library Header File Introduced Documentation Date
libspu.lib libspu.h 3.0 12/14/98

Syntax
long SpuSetIRQ(
long on_off) Sets interrupt request ON/OFF/RESET

Explanation
Turns interrupt request ON/OFF.

Values of on_off can be:

SPU_ON Set interrupt request
SPU_OFF Cancel interrupt request
SPU_RESET Reset interrupt request (cancel current

interrupt request and reset)

Return value
The value that was set (SPU_ON, SPU_OFF, or SPU_RESET).

See also
SpuGetIRQ()

15-88 Basic Sound Library Functions

Run-Time Library Reference

SpuSetIRQAddr
Set interrupt request address.

Library Header File Introduced Documentation Date
libspu.lib libspu.h 3.0 12/14/98

Syntax
u_long SpuSetIRQAddr(
u_long addr) Interrupt request address

Explanation
Sets interrupt request address value. addr is in bytes, and must be divisible by 8 and less than 512KB.

The interrupt request occurs when a read/write to the address takes place.

Return value
The address that was set.

If addr is not divisible by 8, it is increased to the next value divisible by 8, and that value is set and returned.
If the address exceeds 512 KB, 0 is returned.

See also
SpuGetIRQAddr(), SpuSetIRQ(), SpuGetIRQ()

Basic Sound Library Functions 15-89

Run-Time Library Reference

SpuSetIRQCallback
Set callback for interrupt request.

Library Header File Introduced Documentation Date
libspu.lib libspu.h 3.0 12/14/98

Syntax
SpuSetIRQCallback(
SpuIRQCallbackProc func) The callback function activated at the time of an interrupt request

Explanation
Sets a callback function to be activated when an interrupt request occurs. If func is set to NULL, the
callback is cleared.

Return value
Pointer to the previously set callback function.

See also
SpuSetIRQ(), SpuSetIRQAddr()

15-90 Basic Sound Library Functions

Run-Time Library Reference

SpuSetKey
Set key on/key off for each voice.

Library Header File Introduced Documentation Date
libspu.lib libspu.h 3.0 12/14/98

Syntax
void SpuSetKey(
long on_off, Sets key on/key off
u_long voice_bit) Set voice

Explanation
Sets key on/key off value for each voice specified by voice_bit. (SPU_ON = key on; SPU_OFF = key off)

Set voice_bit by ORing together the bits for each voice (SPU_0CH, SPU_1CH...SPU_23CH). For example,
to set key on for voice 0 and voice 2:

SpuSetKey (SPU_ON, /* set key on */
SPU_0CH | SPU_2CH); /* 0 ch and 2 ch */

See also
SpuSetKeyOnWithAttr(), SpuSetVoiceAttr()

Basic Sound Library Functions 15-91

Run-Time Library Reference

SpuSetKeyOnWithAttr
Set key on with attributes.

Library Header File Introduced Documentation Date
libspu.lib libspu.h 3.0 12/14/98

Syntax
void SpuSetKeyOnWithAttr(
SpuVoiceAttr *attr) Pointer to voice attributes

Explanation
Specifies attributes for each voice and sets key on.

Explicitly specify the voices to be produced by ORing together the appropriate bits (SPU_0CH,
SPU_1CH...SPU_23CH) in attr.voice.

Specify the attributes to be set by ORing together the appropriate bits in attr.mask and setting the
corresponding values of attr. (If attr.mask is 0, all attributes are set.) See SpuSetVoiceAttr() (Table 15–6) for
a list of the attributes and their descriptions.

See also
SpuSetKey(), SpuSetVoiceAttr(), SpuGetVoiceAttr(), SpuVoiceAttr()

15-92 Basic Sound Library Functions

Run-Time Library Reference

SpuSetMute
Turn sound muting ON/OFF.

Library Header File Introduced Documentation Date
libspu.lib libspu.h 3.0 12/14/98

Syntax
long SpuSetMute(
long on_off) Mute ON/OFF

Explanation
Turns sound muting ON/OFF. SPU_ON = Mute on; SPU_OFF = mute off.

Note: CD input and external digital input are not affected.

Return value
The value set.

See also
SpuGetMute()

Basic Sound Library Functions 15-93

Run-Time Library Reference

SpuSetNoiseClock
Set noise source clock.

Library Header File Introduced Documentation Date
libspu.lib libspu.h 3.0 12/14/98

Syntax
long SpuSetNoiseClock(
long n_clock) Noise source clock

Explanation
Sets noise source clock to n_clock. The value must be in the range 0-0x3f. It is applied to all voices for
whom the noise source is set with SpuSetNoiseVoice().

Return value
The noise source clock value set.

See also
SpuGetNoiseClock(), SpuSetNoiseVoice(), SpuGetNoiseVoice()

15-94 Basic Sound Library Functions

Run-Time Library Reference

SpuSetNoiseVoice
Turn noise source ON/OFF for each voice.

Library Header File Introduced Documentation Date
libspu.lib libspu.h 3.0 12/14/98

Syntax
u_long SpuSetNoiseVoice(
long on_off, Sets noise source ON (SPU_ON), OFF (SPU_OFF), or direct bit

pattern (SPU_BIT)
u_long voice_bit) Set voice

Explanation
Turns noise source on or off for specific voices. Any number of voices may be specified in voice_bit by
setting the bit values SPU_0CH…SPU_23CH.

on_off can have the following settings:

SPU_ON Noise source turned on for voices whose bits in voice_bit are 1
SPU_OFF Noise source turned off for voices whose bits in voice_bit are 1
SPU_BIT Noise source turned on for voices whose bits in voice_bit are 1,

and turned off for voices whose bits are 0

SpuSetNoiseVoice(SPU_ON, /*set noise source on*/
SPU_0CH | SPU_2CH); /*0 ch and 2 ch*/

Return value
An unsigned long whose low 24 bits show the current noise source on/off value for each voice (after
setting). To check any voice, AND with the appropriate mask SPU_0CH…SPU_23CH.

See also
SpuSetNoiseClock(), SpuGetNoiseClock(), SpuGetNoiseVoice()

Basic Sound Library Functions 15-95

Run-Time Library Reference

SpuSetPitchLFOVoice
Set pitch LFO ON/OFF for each voice.

Library Header File Introduced Documentation Date
libspu.lib libspu.h 3.0 12/14/98

Syntax
u_long SpuSetPitchLFOVoice(
long on_off, SPU_ON Sets pitch LFO on

SPU_OFF Sets pitch LFO off
SPU_ BIT Sets direct bit pattern

u_long voice_bit) Set voice

Explanation
Turns pitch LFO on or off for specific voices. Any number of voices may be specified in voice_bit by setting
the bit values SPU_0CH…SPU_23CH.

When pitch LFO is on, voice n is set so that LFO sets pitch when the volume of voice (n-1) undergoes a
time change. To allow pitch LFO, voice n and voice (n-1) must be started. Voice (n - 1) can produce sound
at an optional timing after voice n starts; LFO is applied at the moment when voice (n-1) starts playback.

on_off can have the following settings:

SPU_ON Pitch LFO turned on for voices whose bits in voice_bit are 1
SPU_OFF Pitch LFO turned off for voices whose bits in voice_bit are 1
SPU_BIT Pitch LFO turned on for voices whose bits in voice_bit are 1, and

turned off for voices whose bits are 0

Return value
An unsigned long whose low 24 bits show the current pitch LFO on/off value for each voice (after setting).
To check any voice, AND with the appropriate mask SPU_0CH…SPU_23CH.

See also
SpuGetPitchLFOVoice(), SpuSetKey(), SpuSetKeyOnWithAttr()

15-96 Basic Sound Library Functions

Run-Time Library Reference

SpuSetReverb
Turn reverb ON/OFF.

Library Header File Introduced Documentation Date
libspu.lib libspu.h 3.0 12/14/98

Syntax
long SpuSetReverb(
long on_off) SPU_ON Set reverb on

SPU_OFF Set reverb off

Explanation
Turns reverb on or off.

If on_off is SPU_OFF, if a reverb work area was not reserved with SpuReserveReverbWorkArea(), this
function checks whether the area is available (i.e. not allocated by SpuMalloc()). If it is available, reverb is
turned on and SPU_ON is returned. If not, reverb is turned off and SPU_OFF is returned. If it is not being

Return value
The reverb on/off value (SPU_ON or SPU_OFF)

See also
SpuGetReverb(), SpuSetReverbModeParam(), SpuReserveReverbWorkArea()

Basic Sound Library Functions 15-97

Run-Time Library Reference

SpuSetReverbDepth
Set the reverb depth parameter.

Library Header File Introduced Documentation Date
libspu.lib libspu.h 3.0 12/14/98

Syntax
long SpuSetReverbDepth(
SpuReverbAttr *attr) Pointer to reverb attribute

Explanation
Sets the reverb depth parameter attribute. It is set independently for left and right, by setting the
appropriate bits (SPU_REV_DEPTHL for left, SPU_REV_DEPTHR for right) of attr.mask. (If attr.mask is 0,
left and right attributes are set simultaneously.)

The range for reverb depth is -0x8000 to 0x7fff. If the value is negative, the reverb sound (wet) phase is
inverted.

Return value
0.

See also
SpuSetReverbModeParam(), SpuGetReverbModeParam()

15-98 Basic Sound Library Functions

Run-Time Library Reference

SpuSetReverbModeDelayTime
Set reverb delay time.

Library Header File Introduced Documentation Date
libspu.lib libspu.h 3.7 12/14/98

Syntax
void SpuSetReverbModeDelayTime(
long delay) Reverb delay time

Explanation
Sets the reverb delay time, in the range 0-127. Equivalent to the SPU_REV_DELAYTIME mask setting of
SpuSetReverbModeParam().

Delay time is effective only with reverb modes SPU_REV_MODE_ECHO or SPU_REV_MODE_DELAY.
There is no effect if any other mode is set.

See also
SpuSetReverbModeParam(), SpuGetReverbModeParam(), SpuGetReverbModeDelayTime()

Basic Sound Library Functions 15-99

Run-Time Library Reference

SpuSetReverbModeDepth
Set reverb mode depth.

Library Header File Introduced Documentation Date
libspu.lib libspu.h 3.7 12/14/98

Syntax
void SpuSetReverbModeDepth(
short depthL, reverb depth (left)
short depthR) reverb depth (right)

Explanation
Sets the reverb depth. Values are set independently for left and right, in the range -0x8000 to 0x7fff. If the
value is negative, the reverb sound (wet) phase is inverted. Equivalent to the SPU_REV_DEPTHL and
SPU_REV_DEPTHR mask settings of SpuSetReverbModeParam().

See also
SpuSetReverbModeParam(), SpuGetReverbModeParam(), SpuGetReverbModeDepth(),
SpuSetReverbDepth()

15-100 Basic Sound Library Functions

Run-Time Library Reference

SpuSetReverbModeFeedback
Set reverb feedback.

Library Header File Introduced Documentation Date
libspu.lib libspu.h 3.7 12/14/98

Syntax
void SpuSetReverbModeFeedback(
long feedback) Reverb feedback

Explanation
Sets the reverb feedback. Values can be 0-127. Equivalent to the SPU_REV_FEEDBACK mask setting of
SpuSetReverbModeParam().

Feedback is effective only with reverb modes SPU_REV_MODE_ECHO or SPU_REV_MODE_DELAY. There
is no effect with any other mode.

See also
SpuSetReverbModeParam(), SpuGetReverbModeParam(), SpuGetReverbModeFeedback()

Basic Sound Library Functions 15-101

Run-Time Library Reference

SpuSetReverbModeParam
Set reverb mode and attributes.

Library Header File Introduced Documentation Date
libspu.lib libspu.h 3.0 12/14/98

Syntax
long SpuSetReverbModeParam(
SpuReverbAttr *attr) Pointer to reverb attributes

Explanation
Sets reverb mode and attributes.

You can specify the attributes (members of attr) to be set by ORing together the appropriate bits of
attr.mask (see Table 15–4). If attr.mask is 0, all attributes are set.

Table 15–4 Reverb attributes

Attribute Description
SPU_REV_MODE Mode setting
SPU_REV_DEPTHL Reverb depth (left)
SPU_REV_DEPTHR Reverb depth (right)
SPU_REV_DELAYTIME Delay time (ECHO, DELAY only)
SPU_REV_FEEDBACK Feedback (ECHO, DELAY only)

a) Reverb Mode (attr.mode)
When reverb mode is changed (which happens even at initial setting, because the initial
value is SPU_REV_MODE_OFF), the internal reverb depth value is 0 even if depth was
previously set by SpuSetReverbModeParam(). This is because the work area size changes
when this mode changes, so incorrect data in the work area produces noise. So after the
reverb mode changes, depth needs to be reset using SpuSetReverbModeParam() or
SpuSetReverbDepth().
Based on reverb characteristics, the time to complete one scan of the work area is
estimated and the mode/depth are set; or, after the mode is set, the work area data is
erased, then depth is set.
The size the work area depends on the reverb mode as shown below. However, this area is
managed by a memory management mechanism such as SpuMalloc(). See SpuMalloc() for
details.

Table 15–5: Sound Buffer Work Area Size for Reverb Modes

attr.mode mode hexadecimal decimal
SPU_REV_MODE_OFF off 0/80 (*) 0/128 (*)
SPU_REV_MODE_ROOM room 26c0 9920
SPU_REV_MODE_STUDIO_A studio (small) 1f40 8000
SPU_REV_MODE_STUDIO_B studio (med) 4840 18496
SPU_REV_MODE_STUDIO_C studio (big) 6fe0 28640
SPU_REV_MODE_HALL hall ade0 44512
SPU_REV_MODE_SPACE space echo f6c0 63168
SPU_REV_MODE_ECHO echo 18040 98368
SPU_REV_MODE_DELAY delay 18040 98368
SPU_REV_MODE_PIPE half echo 3c00 15360

15-102 Basic Sound Library Functions

Run-Time Library Reference

(*) 128 bytes if SpuReserveReverbWorkArea (SPU_ON) is used for address setting, even if the
mode is off; 0 bytes otherwise.
If SPU_REV_MODE_CLEAR_WA is set in attr.mode, the reverb work area is cleared, as a
measure against noise when changing modes. Since the sound buffer is cleared by
synchronous DMA transfer, other processing (drawing, sound generation) is blocked during
this process.
SpuClearReverbWorkArea() can also be used to clear the work area.

b) Reverb Depth (attr.depth)
Values are set independently for left and right, in the range -0x8000 to 0x7fff. If the value is
negative, the reverb sound (wet) phase is inverted.

c) Delay Time (attr.delay)
Values are in the range 0-127. Valid only when mode is SPU_REV_MODE_ECHO or
SPU_REV_MODE_DELAY.

d) Feedback (attr.feedback)
Values are from 0 to 127. Valid only when mode is SPU_REV_MODE_ECHO or
SPU_REV_MODE_DELAY.

Return value
If the area needed as a work area by the new mode was allocated for another area SpuMalloc()/
SpuMallocWithStartAddr(), none of the set reverb attributes are set and SPU_ERROR is returned. If it is not
being used, the set reverb attributes are set and 0 is returned.

SPU_ERROR is also returned when an invalid SPU_REV_MODE is set.

See also
SpuGetReverbModeParam(), SpuMalloc(), SpuMallocWithStartAddr(), SpuReserveReverbWorkArea(),
SpuClearReverbWorkArea()

Basic Sound Library Functions 15-103

Run-Time Library Reference

SpuSetReverbModeType
Set reverb mode.

Library Header File Introduced Documentation Date
libspu.lib libspu.h 3.7 12/14/98

Syntax
void SpuSetReverbModeType(
long type) Reverb mode type

Explanation
Sets the reverb mode. Equivalent to the SPU_REV_MODE mask setting of SpuSetReverbModeParam().

See Table 15–5 under SpuSetReverbModeParam() for the possible values of type.

See also
SpuSetReverbModeParam(), SpuGetReverbModeParam(), SpuMalloc(), SpuMallocWithStartAddr(),
SpuReserveReverbWorkArea(), SpuClearReverbWorkArea(), SpuGetReverbModeType()

15-104 Basic Sound Library Functions

Run-Time Library Reference

SpuSetReverbVoice
Set reverb ON/OFF for each voice.

Library Header File Introduced Documentation Date
libspu.lib libspu.h 3.0 12/14/98

Syntax
u_long SpuSetReverbVoice(
long on_off, Sets reverb ON (SPU_ON), OFF (SPU_OFF), or direct bit

pattern (SPU_BIT)
u_long voice_bit) Set voice

Explanation
Turns reverb on or off for specific voices. Any number of voices may be specified in voice_bit by setting the
bit values SPU_0CH…SPU_23CH.

on_off can have the following settings:

SPU_ON Reverb turned on for voices whose bits in voice_bit are
1

SPU_OFF Reverb turned off for voices whose bits in voice_bit are
1

SPU_BIT Reverb turned on for voices whose bits in voice_bit are
1, and turned off for voices whose bits are 0

For example, to set voice 0 and voice 2 reverb on:

SpuSetReverbVoice(SPU_ON, /*set reverb on*/
SPU_0CH | SPU_2CH); /*0 ch and 2 ch */

Return value
An unsigned long whose low 24 bits show the current noise source on/off value for each voice (after
setting). To check any voice, AND with the appropriate mask SPU_0CH…SPU_23CH.

See also
SpuGetReverbVoice()

Basic Sound Library Functions 15-105

Run-Time Library Reference

SpuSetTransferCallback
Set callback function for completion of DMA transfer.

Library Header File Introduced Documentation Date
libspu.lib libspu.h 3.1 12/14/98

Structure
SpuTransferCallbackProc SpuSetTransferCallback(
SpuTransferCallbackProc func) Callback function for completion of DMA

transfer.

Explanation
Sets function to be called when DMA transfer is completed. If func is NULL, the callback is cleared.

When a callback set by this function executes at DMA transfer completion, SpuIsTransferCompleted() does
not function.

Return value
The previously set callback function. If no callback function was set, NULL is returned.

See also
SpuWrite(), SpuWrite0(), SpuWritePartly(), SpuRead(), SpuReadDecodedData(), SpuSetTransferMode(),
SpuGetTransferMode(), SpuIsTransferCompleted()

15-106 Basic Sound Library Functions

Run-Time Library Reference

SpuSetTransferMode
Set sound buffer transfer mode.

Library Header File Introduced Documentation Date
libspu.lib libspu.h 3.0 12/14/98

Syntax
long SpuSetTransferMode(
long mode) Mode: see table below

Explanation
Sets the mode for transferring data from main memory to the sound buffer. The mode values can be:

• SPU_TRANSFER_BY_DMA: DMA transfer; can do other processing during transfer (default value).
• SPU_TRANSFER_BY_IO: I/O transfer. Uses CPU; cannot do other processing during transfer.

Note: These specifications are valid only when transferring data from main memory to the sound buffer.
DMA transfer is always used when transferring data from the sound buffer to main memory.

When a transfer is done without first calling this function, the transfer mode is the previously set value.

Return value
The transfer mode set (SPU_TRANSFER_BY_DMA of SPU_TRANSFER_BY_IO)

See also
SpuGetTransferMode(), SpuWrite(), SpuWrite0(), SpuWritePartly().

Basic Sound Library Functions 15-107

Run-Time Library Reference

SpuSetTransferStartAddr
Set sound buffer transfer start address.

Library Header File Introduced Documentation Date
libspu.lib libspu.h 3.0 12/14/98

Syntax
u_long SpuSetTransferStartAddr(
u_long addr) Sound buffer transfer destination/transfer source start

address

Explanation
Sets a starting address in the sound buffer, specified in addr, for transferring data to and from main
memory. addr must be a byte value that is

• Divisible by 8. If it is not divisible by 8, it is increased to the next value divisible by 8.
• Between 0x1010 - 0x7ffff for transfers to the sound buffer.
• Between 0 - 0x0fff for transfers from the sound buffer. See SpuReadDecodedData().

Note: 0x1000 - 0x100f is reserved for the system.

Return value
Start address value. If the address specified is smaller than 0x1010 or greater than 512 KB, 0 is returned.

See also
SpuGetTransferStartAddr(), SpuWrite(), SpuWrite0(), SpuWritePartly(), SpuRead(), SpuReadDecodedData()

15-108 Basic Sound Library Functions

Run-Time Library Reference

SpuSetVoiceADSR
Set ADSR values.

Library Header File Introduced Documentation Date
libspu.lib libspu.h 3.6 12/14/98

Syntax
void SpuSetVoiceADSR(
int voiceNum, Voice number (0 - 23)
u_short AR, ADSR attack rate
u_short DR ADSR decay rate
u_short SR, ADSR sustain rate
u_short RR, ADSR release rate
u_short SL) ADSR sustain level

Explanation
Sets individual ADSR attributes for a voice. Corresponds to SpuSetVoiceAttr() mask specifications
SPU_VOICE_ADSR_AR / SPU_VOICE_ADSR_DR / SPU_VOICE_ADSR_SR / SPU_VOICE_ADSR_RR /
SPU_VOICE_ADSR_SL.

The rate modes used are:

Attack Rate: SPU_VOICE_LINEARIncN (Linear Increase)
Sustain Rate: SPU_VOICE_LINEARDecN (Linear Decrease)
Release Rate: SPU_VOICE_LINEARDecN (Linear Decrease)

See Table 15–10 under SpuSetVoiceAttr() for values that can be specified for each rate. To set multiple rate
modes at the same time, use SpuSetVoiceADSRAttr().

See also
SpuSetVoiceAttr(), SpuNSetVoiceAttr(), SpuSetVoiceAR(), SpuSetVoiceDR(), SpuSetVoiceSR(),
SpuSetVoiceRR(), SpuSetVoiceSL()

Basic Sound Library Functions 15-109

Run-Time Library Reference

SpuSetVoiceADSRAttr
Set ADSR and ADSR modes.

Library Header File Introduced Documentation Date
libspu.lib libspu.h 3.6 12/14/98

Syntax
void SpuSetVoiceARAttr(
int voiceNum, Voice number (0 - 23)
u_short AR, ADSR attack rate
u_short DR ADSR decay rate
u_short SR, ADSR sustain rate
u_short RR, ADSR release rate
u_short SL ADSR sustain level
long ARmode, ADSR attack rate mode
long SRmode, ADSR sustain rate mode
long Rrmode) ADSR release rate mode

Explanation
Sets ADSR attributes and mode. Corresponds to SpuSetVoiceAttr() mask specifications
SPU_VOICE_ADSR_AR / SPU_VOICE_ADSR_DR / SPU_VOICE_ADSR_SR / SPU_VOICE_ADSR_RR /
SPU_VOICE_ADSR_SL /SPU_VOICE_ADSR_AMODE / SPU_VOICE_ADSR_SMODE /
SPU_VOICE_ADSR_RMODE.

Refer to SpuSetVoiceAttr() for values that can be specified in each rate and rate mode.

See also
SpuSetVoiceAttr(), SpuNSetVoiceAttr(), SpuSetVoiceADSR(), SpuSetVoiceAR(), SpuSetVoiceDR(),
SpuSetVoiceSR(), SpuSetVoiceRR(), SpuSetVoiceSL(), SpuSetVoiceARAttr(), SpuSetVoiceSRAttr(),
SpuSetVoiceRRAttr()

15-110 Basic Sound Library Functions

Run-Time Library Reference

SpuSetVoiceAR
Set ADSR attack rate.

Library Header File Introduced Documentation Date
libspu.lib libspu.h 3.6 12/14/98

Syntax
void SpuSetVoiceAR(
int voiceNum, Voice number (0 - 23)
u_short AR) ADSR attack rate

Explanation
Sets ADSR attack rate for a voice. Corresponds to SpuSetVoiceAttr() mask specification
SPU_VOICE_ADSR_AR.

ADSR attack rate mode becomes SPU_VOICE_LINEARIncN (Linear increase mode). To set ADSR attack
rate and ADSR attack rate mode at the same time, use SpuSetVoiceARAttr().

Refer to SpuSetVoiceAttr() for values that can be specified in AR.

See also
SpuSetVoiceAttr(), SpuNSetVoiceAttr(), SpuSetVoiceARAttr()

Basic Sound Library Functions 15-111

Run-Time Library Reference

SpuSetVoiceARAttr
Set ADSR attack rate / attack rate mode.

Library Header File Introduced Documentation Date
libspu.lib libspu.h 3.6 12/14/98

Syntax
void SpuSetVoiceARAttr(
int voiceNum, Voice number (0 - 23)
u_short AR, ADSR attack rate
long Armode) ADSR attack rate mode

Explanation
Sets ADSR attack rate / ADSR attack rate mode for a voice. Corresponds to SpuSetVoiceAttr() mask
specifications SPU_VOICE_ADSR_AR and SPU_VOICE_ADSR_AMODE. Refer to SpuSetVoiceAttr() for
values that can be specified in AR and ARmode.

See also
SpuSetVoiceAttr(), SpuNSetVoiceAttr(), SpuSetVoiceAR()

15-112 Basic Sound Library Functions

Run-Time Library Reference

SpuSetVoiceAttr
Set attributes for each voice.

Library Header File Introduced Documentation Date
libspu.lib libspu.h 3.0 12/14/98

Syntax
void SpuSetVoiceAttr(
SpuVoiceAttr *attr) Pointer to voice attributes

Explanation
Sets attributes for one or more voices.

To specify the voices whose attributes you wish to set, OR together the appropriate bits of attr.voice
(SPU_0CH...SPU_23CH).

To specify which attributes to set, OR together the terms shown below in attr.mask, then set the values of
the corresponding members of attr. (If attr.mask is 0, all attributes are set.)

Table 15–6 Voice Attributes

Attribute value for attr.mask Description Member of attr to set
SPU_VOICE_VOLL Volume (left) volume
SPU_VOICE_VOLR Volume (right) volume
SPU_VOICE_VOLMODEL Volume mode (left) volmode
SPU_VOICE_VOLMODER Volume mode (right) volmode
SPU_VOICE_PITCH Interval (pitch specification) pitch
SPU_VOICE_NOTE Interval (note specification) note
SPU_VOICE_SAMPLE_NOTE Waveform data sample note sample_note
SPU_VOICE_WDSA Waveform data start address addr
SPU_VOICE_ADSR_AMODE ADSR Attack rate mode a_mode
SPU_VOICE_ADSR_SMODE ADSR Sustain rate mode s_mode
SPU_VOICE_ADSR_RMODE ADSR Release rate mode r_mode
SPU_VOICE_ADSR_AR ADSR Attack rate ar
SPU_VOICE_ADSR_DR ADSR Decay rate dr
SPU_VOICE_ADSR_SR ADSR Sustain rate sr
SPU_VOICE_ADSR_RR ADSR Release rate rr
SPU_VOICE_ADSR_SL ADSR Sustain level sl
SPU_VOICE_ADSR_ADSR1 ADSR adsr1 for 'VagAtr' adsr1
SPU_VOICE_ADSR_ADSR2 ADSR adsr2 for 'VagAtr' adsr2
SPU_VOICE_LSAX Loop start address loop_addr

The individual settings are described below.

a) Volume and Volume Mode
The volume modes and their range of possible volume settings are shown below:

Table 15–7: Volume Mode and Volume Setting Ranges

Mode (phase) SPU_VOICE_VOLMODEx SPU_VOICE_VOLx
Direct mode SPU_VOICE_DIRECT -0x4000 - 0x3fff
Linear inc. mode SPU_VOICE_LINEARIncN 0x00 - 0x7f (normal)
Linear inc. mode SPU_VOICE_LINEARIncR 0x00 - 0x7f (inverted)

Basic Sound Library Functions 15-113

Run-Time Library Reference

Mode (phase) SPU_VOICE_VOLMODEx SPU_VOICE_VOLx
Linear dec. mode SPU_VOICE_LINEARDecN 0x00 - 0x7f (normal)
Linear dec. mode SPU_VOICE_LINEARDecR 0x00 - 0x7f (inverted)
Expon. inc. mode SPU_VOICE_EXPIncN 0x00 - 0x7f (normal)
Expon. inc. mode SPU_VOICE_EXPIncR 0x00 - 0x7f (inverted)
Expon. dec. mode SPU_VOICE_EXPDec 0x00 - 0x7f

• Direct Mode
Specifies a fixed volume (the default mode). When the volume is negative, its phase is inverted.

• Linear Increase Mode (Normal Phase)
When the current volume value is positive, volume increases linearly from the current value to the
maximum value.

• Linear Increase Mode (Inverted Phase)
When the current volume value is negative (inverted phase), volume increases linearly from the current
value to the maximum value, with phase inverted.

• Linear Decrease Mode (Normal Phase)
When the current volume value is positive, volume decreases linearly from the current value to the
minimum volume value.

• Linear Decrease Mode (Inverted Phase)
When the current volume value is negative (inverted phase), volume decreases linearly from the current
value to the minimum volume value, with phase inverted.

• Exponential Increase Mode (Normal Phase)
When the current volume value is positive, volume increases exponentially from the current value to the
maximum value.

• Exponential Increase Mode (Inverted Phase)
When the current volume value is negative (inverted phase), volume increases exponentially from the
current value to the maximum value, with phase inverted.

• Exponential Decrease Mode
Whether the current volume value is positive or negative, volume decreases exponentially from the
current value to the minimum volume value.

b) Playback rate (set pitch, set note)
May be set by the two methods listed below.

• Pitch specification: specifies an interval in attr.pitch in the range 0x0000-0x3fff.

Table 15–8: Pitch Specification Values and Interval

Value Set 0x0200 0x0400 0x0800 0x1000 0x2000 0x3fff
Interval - 3 oct. - 2 oct. - 1 oct. tone + 1 oct. + 2 oct.

• Note specification: specifies an interval in attr.note as follows, using a 16-bit value for note and cent
(here, the value of a half tone divided by 128).

Table 15–9: Note/Sample Note Specification Values

Bit Value Set
Upper 8 bits MIDI note number
Lower 8 bits Cent (expressed as a half tone divided by

128)

This setting cannot be used unless the waveform data sample note feature, described below, is set.

c) Waveform Data Sample Note

15-114 Basic Sound Library Functions

Run-Time Library Reference

Sets interval in attr.sample_note at the time of sampling, using a 16-bit value
for note and cent, as shown in Table 15–9. Setting this value makes it possible
to set the playback rate as above.

d) Waveform Data Start Address
attr.add specifies the sound buffer starting address of the waveform data you
want to produce in the voice.

e) Loop Start Address
If waveform data that generates sound in a voice is created with a loop
specified, and if the waveform starting address is set, it’s unnecessary to set
the loop start address explicitly.
However, when you wish to set a loop start address dynamically at the time of
execution, you must set attr.loop_addr to the start address of the loop in the
sound buffer.
If a loop was not set at the time of waveform data creation, even if
SPU_VOICE_LSAX is specified and set in attr.loop_addr, that setting is invalid.

f) ADSR
A conceptual diagram of ADSR is shown below.

Figure 15–1: ADSR Conceptual Diagram

Volume

Sustain
Level

Decay Rate

Attack Rate

Sustain Rate

Release Rate

key on key off time

The attributes that can be set and their ranges are shown in Table 15–10.

Table 15–10: Rate and Level Setting Ranges

Attribute Structure Member Setting Range
Attack rate attr.ar 0x00 - 0x7f
Decay rate attr.dr 0x0 - 0xf
Sustain rate attr.sr 0x00 - 0x7f
Release rate attr.rr 0x00 - 0x1f
Sustain level attr.sl 0x0 - 0xf

Rate curves may be set for Attack, Sustain, Release (see Table 15–11). Because only exponential decrease
may be used for Decay, that attribute cannot be set.

Table 15–11: ADSR Rate Modes

Attribute Settable modes
Attack rate SPU_VOICE_LINEARIncN (linear increase)
(attr.a_mode) SPU_VOICE_EXPIncN (exponential increase)
Sustain rate SPU_VOICE_LINEARIncN (linear increase)
(attr.s_mode) SPU_VOICE_LINEARDecN (linear decrease)

Basic Sound Library Functions 15-115

Run-Time Library Reference

Attribute Settable modes
SPU_VOICE_EXPIncN (exponential increase)
SPU_VOICE_EXPDec (exponential decrease)

Release rate SPU_VOICE_LINEARDecN (linear decrease)
(attr.r_mode) SPU_VOICE_EXPDec (exponential decrease)

Also, data from structure VagAtr members adsr1 and adsr2 may be set directly in attr.adsr1 and attr.adsr2.
In this case only SPU_VOICE_ADSR_ADSR1 and SPU_VOICE_ADSR_ADSR2 can be set for ADSR in
attr.mask.

See also
SpuRSetVoiceAttr(), SpuGetVoiceAttr(), SpuSetKey(), SpuSetKeyOnWithAttr(), SpuVoiceAttr().

15-116 Basic Sound Library Functions

Run-Time Library Reference

SpuSetVoiceDR
Set ADSR decay rate.

Library Header File Introduced Documentation Date
libspu.lib libspu.h 3.6 12/14/98

Syntax
void SpuSetVoiceDR(
int voiceNum, Voice number (0 - 23)
u_short DR) ADSR decay rate

Explanation
Sets ADSR decay rate used in voice voicenum. Corresponds to SpuSetVoiceAttr() mask specification
SPU_VOICE_ADSR_DR. Refer to SpuSetVoiceAttr() for values that can be specified in DR.

See also
SpuSetVoiceAttr(), SpuNSetVoiceAttr()

Basic Sound Library Functions 15-117

Run-Time Library Reference

SpuSetVoiceLoopStartAddr
Set loop start address of waveform data in sound buffer.

Library Header File Introduced Documentation Date
libspu.lib libspu.h 3.6 12/14/98

Syntax
void SpuSetVoiceLoopStartAddr(
int voiceNum, Voice number (0 - 23)
u_long loopStartAddr) Loop start address

Explanation
Sets start address of waveform data in the sound buffer. Corresponds to SpuSetVoiceAttr() mask
specification SPU_VOICE_LSAX. See SpuSetVoiceAttr() for values that can be specified in loopStartAddr.

See also

SpuSetVoiceAttr(), SpuNSetVoiceAttr(), SpuSetTransferStartAddr().

15-118 Basic Sound Library Functions

Run-Time Library Reference

SpuSetVoiceNote
Set interval (note specification).

Library Header File Introduced Documentation Date
libspu.lib libspu.h 3.6 12/14/98

Syntax
void SpuSetVoiceNote(
int voiceNum, Voice number (0 - 23)
u_short note) Interval (note specification)

Explanation
Sets the voice interval by note. Corresponds to SpuSetVoiceAttr() mask specification SPU_VOICE_NOTE.

Refer to SpuSetVoiceAttr() for values that can be specified in the interval by note specification.

See also
SpuSetVoiceAttr(), SpuNSetVoiceAttr(), SpuSetVoiceSampleNote()

Basic Sound Library Functions 15-119

Run-Time Library Reference

SpuSetVoicePitch
Set interval (pitch specification).

Library Header File Introduced Documentation Date
libspu.lib libspu.h 3.6 12/14/98

Syntax
void SpuSetVoicePitch(
int voiceNum, Voice number (0 - 23)
u_short pitch) Interval (pitch specification)

Explanation
Sets the voice interval by pitch. Corresponds to SpuSetVoiceAttr() mask specification SPU_VOICE_PITCH.
Refer to SpuSetVoiceAttr() for values that can be specified in the interval by pitch specification.

See also
SpuSetVoiceAttr(), SpuNSetVoiceAttr()

15-120 Basic Sound Library Functions

Run-Time Library Reference

SpuSetVoiceRR
Set ADSR release rate.

Library Header File Introduced Documentation Date
libspu.lib libspu.h 3.6 12/14/98

Syntax
void SpuSetVoiceRR(
int voiceNum, Voice number (0 - 23)
u_short RR) ADSR release rate

Explanation
Sets ADSR release rate for for voice voiceNum. Corresponds to SpuSetVoiceAttr() mask specification
SPU_VOICE_ADSR_RR.

ADSR release rate mode becomes SPU_VOICE_LINEARDecN (Linear decrease mode). To set release rate
and release rate mode at the same time, use SpuSetVoiceRRAttr.

Refer to SpuSetVoiceAttr() for values that can be specified in RR.

See also
SpuSetVoiceAttr(), SpuNSetVoiceAttr(), SpuSetVoiceRRAttr()

Basic Sound Library Functions 15-121

Run-Time Library Reference

SpuSetVoiceRRAttr
Set ADSR release rate / release rate mode.

Library Header File Introduced Documentation Date
libspu.lib libspu.h 3.6 12/14/98

Syntax
void SpuSetVoiceRRAttr(
int voiceNum, Voice number (0 - 23)
u_short RR, ADSR release rate
long RRmode) ADSR release rate mode

Explanation
Sets ADSR release rate / ADSR release rate mode for voice voiceNum. Corresponds to SpuSetVoiceAttr()
mask specifications SPU_VOICE_ADSR_RR and SPU_VOICE_ADSR_RRMODE.

Refer to SpuSetVoiceAttr() for values that can be specified in RR and RRmode.

See also
SpuSetVoiceAttr(), SpuNSetVoiceAttr(), SpuSetVoiceRR()

15-122 Basic Sound Library Functions

Run-Time Library Reference

SpuSetVoiceSampleNote
Set waveform data sample note.

Library Header File Introduced Documentation Date
libspu.lib libspu.h 3.6 12/14/98

Syntax
void SpuSetVoiceSampleNote(
int voiceNum, Voice number (0 - 23)
u_short sampleNote) Sets waveform data sample note

Explanation
Sets the waveform data sample note for voice voiceNum. Corresponds to SpuSetVoiceAttr() mask
specification SPU_VOICE_SAMPLE_NOTE. Refer to SpuSetVoiceAttr() for values that can be specified in
sampleNote.

See also
SpuSetVoiceAttr(), SpuNSetVoiceAttr(), SpuSetVoiceNote()

Basic Sound Library Functions 15-123

Run-Time Library Reference

SpuSetVoiceSL
Set ADSR sustain level.

Library Header File Introduced Documentation Date
libspu.lib libspu.h 3.6 12/14/98

Syntax
void SpuSetVoiceSL(
int voiceNum, Voice number (0 - 23)
u_short SL) ADSR sustain level

Explanation
Sets ADSR sustain level used for voice voiceNum. Corresponds to SpuSetVoiceAttr() mask specification
SPU_VOICE_ADSR_SL.

ADSR sustain level mode becomes SPU_VOICE_LINEARDecN (Linear decrease mode). To set ADSR
sustain level and ADSR sustain level mode at the same time, use SpuSetVoiceAttr().

Refer to SpuSetVoiceAttr() for values that can be specified in SL.

See also
SpuSetVoiceAttr(), SpuNSetVoiceAttr(), SpuSetVoiceRRAttr()

15-124 Basic Sound Library Functions

Run-Time Library Reference

SpuSetVoiceSR
Set ADSR sustain rate.

Library Header File Introduced Documentation Date
libspu.lib libspu.h 3.6 12/14/98

Syntax
void SpuSetVoiceSR(
int voiceNum, Voice number (0 - 23)
u_short SR) ADSR sustain rate

Explanation
Sets ADSR sustain rate used for voice voiceNum. Corresponds to SpuSetVoiceAttr() mask specification
SPU_VOICE_ADSR_SR.

ADSR sustain rate mode becomes SPU_VOICE_LINEARDecN (Linear decrease mode). To set ADSR
sustain rate and ADSR sustain rate mode at the same time, use SpuSetVoiceSRAttr().

Refer to SpuSetVoiceAttr() for values that can be specified in SR.

See also
SpuSetVoiceAttr(), SpuNSetVoiceAttr(), SpuSetVoiceSRAttr()

Basic Sound Library Functions 15-125

Run-Time Library Reference

SpuSetVoiceSRAttr
Set ADSR sustain rate / sustain rate mode.

Library Header File Introduced Documentation Date
libspu.lib libspu.h 3.6 12/14/98

Syntax
void SpuSetVoiceSRAttr(
int voiceNum, Voice number (0 - 23)
u_short SR, ADSR sustain rate
long SRmode) ADSR sustain rate mode

Explanation
Sets ADSR sustain rate / ADSR sustain rate mode used for voice voiceNum. Corresponds to
SpuSetVoiceAttr() mask specifications SPU_VOICE_ADSR_SR and SPU_VOICE_ADSR_SRMODE. Refer to
SpuSetVoiceAttr() for values that can be specified in SR and SRmode.

See also
SpuSetVoiceAttr(), SpuNSetVoiceAttr(), SpuSetVoiceSR()

15-126 Basic Sound Library Functions

Run-Time Library Reference

SpuSetVoiceStartAddr
Set start address of waveform data in sound buffer.

Library Header File Introduced Documentation Date
libspu.lib libspu.h 3.6 12/14/98

Syntax
void SpuSetVoiceStartAddr(
int voiceNum, Voice number (0 - 23)
u_long startAddr) Waveform data start address

Explanation
Sets start address of waveform data in the sound buffer. Corresponds to SpuSetVoiceAttr() mask
specification SPU_VOICE_WDSA. See SpuSetTransferStartAddr() for allowable values of startAddr.

See also
SpuSetVoiceAttr(), SpuNSetVoiceAttr(), SpuSetTransferStartAddr()

Basic Sound Library Functions 15-127

Run-Time Library Reference

SpuSetVoiceVolume
Set voice volume.

Library Header File Introduced Documentation Date
libspu.lib libspu.h 3.6 12/14/98

Syntax
void SpuSetVoiceVolume(
int voiceNum, Voice Number (0 - 23)
short volumeL, Volume (Left)
short volumeR) Volume (Right)

Explanation
Sets the voice volume. Corresponds to SpuSetVoiceAttr() mask specifications SPU_VOICE_VOLL and
SPU_VOICE_VOLR

Volume mode becomes "Direct Mode", and the range of values that can be specified in volumeL and
volumeR is equivalent to "Direct Mode" of SpuSetVoiceAttr(). To specify both volume and volume mode at
the same time, use SpuSetVoiceVolumeAttr(). See SpuSetVoiceAttr() for values that can be specified in
volumeL and/or volumeR.

See also
SpuSetVoiceAttr(), SpuNSetVoiceAttr(), SpuSetVoiceVolumeAttr()

15-128 Basic Sound Library Functions

Run-Time Library Reference

SpuSetVoiceVolumeAttr
Set voice volume/volume mode.

Library Header File Introduced Documentation Date
libspu.lib libspu.h 3.6 12/14/98

Syntax
void SpuSetVoiceVolumeAttr(
int voiceNum, Voice Number (0 - 23)
short volumeL, Volume (Left)
short volumeR, Volume (Right)
short volModeL, Volume mode (Left)
short volModeR) Volume mode (Right)

Explanation
Sets voice volume and/or volume mode. Corresponds to SpuSetVoiceAttr() mask specifications
SPU_VOICE_VOLL / SPU_VOICE_VOLR / SPU_VOICE_VOLMODEL / SPU_VOICE_VOLMODER.

See SpuSetVoiceAttr() for values that can be specified in volModeL, volModeR, volumeL and/or volumeR.

See also
SpuSetVoiceAttr(), SpuNSetVoiceAttr(), SpuSetVoiceVolumeAttr()

Basic Sound Library Functions 15-129

Run-Time Library Reference

SpuStart
Start SPU processing.

Library Header File Introduced Documentation Date
libspu.lib libspu.h 3.0 12/14/98

Syntax
void SpuStart(void)

Explanation
Starts SPU processing. This function is also called by SpuInit(), so it is not necessary to call it when
initializing, but SpuStart() must be called after calling SpuQuit() if you use SpuQuit() to turn functionality off.

In the current specification, DMA transfer initialization is done after SpuStart() is called.

See also
SpuQuit(), SpuInit().

15-130 Basic Sound Library Functions

Run-Time Library Reference

SpuStGetStatus
Get SPU streaming status.

Library Header File Introduced Documentation Date
libspu.lib libspu.h 3.2 12/14/98

Syntax
long SpuStGetStatus(void)

Explanation
Determines the state of SPU streaming.

Return value

Table 15–12 SPU streaming status

Attribute Description
SPU_ST_NOT_AVAILABLE SPU streaming is not available; SpuStInit() has not

been called.
SPU_ST_IDLE Data transfer to the sound buffer has not been

performed yet or all streams have terminated.
SPU_ST_PREPARE Transferring the first buffer.
SPU_ST_TRANSFER Transferring the data to the sound buffer.

If SpuStTransfer (SPU_ST_PREPARE) is executed for
a voice in this state, status does not change to
SPU_ST_PREPARE.

SPU_ST_FINAL Waiting for the end of playback after transferring the
last buffer. SpuStTransfer() is not accepted in this
state.

See also
SpuStInit(), SpuStTransfer(), SpuStGetVoiceStatus()

Basic Sound Library Functions 15-131

Run-Time Library Reference

SpuStGetVoiceStatus
Determine voices used for SPU streaming.

Library Header File Introduced Documentation Date
libspu.lib libspu.h 3.2 12/14/98

Syntax
u_long SpuStGetVoiceStatus(void)

Explanation
Determines the voices used for SPU streaming.

Return Value
Value of the voices represented by the bit OR of SPU_0CH … SPU_23CH.

See also
SpuStTransfer(), SpuStGetStatus()

15-132 Basic Sound Library Functions

Run-Time Library Reference

SpuStInit
Initialize SPU streaming.

Library Header File Introduced Documentation Date
libspu.lib libspu.h 3.2 12/14/98

Syntax
SpuStEnv *SpuStInit(
long mode) Not used under the current specification. Pass "0".

Explanation
Initializes SPU streaming. Called only once in an executed program.

Return Value
Pointer to the SPU streaming environment structure SpuStEnv.

See also
SpuStQuit(), SpuStEnv()

Basic Sound Library Functions 15-133

Run-Time Library Reference

SpuStQuit
Complete SPU streaming.

Library Header File Introduced Documentation Date
libspu.lib libspu.h 3.2 12/14/98

Syntax
long SpuStQuit(void)

Explanation
Completes SPU streaming. Prior to calling this function, processing must be completed for all the streams.

Return value
SPU_ST_ACCEPT Normal end
SPU_ST_WRONG_STATUS SpuStQuit() not accepted because current

status is not SPU_ST_IDLE.

See also
SpuStInit(), SpuStGetStatus()

15-134 Basic Sound Library Functions

Run-Time Library Reference

SpuStSetPreparationFinishedCallback
Set function to be called at end of preparation phase of SPU streaming.

Library Header File Introduced Documentation Date
libspu.lib libspu.h 3.2 12/14/98

Syntax
SpuStCallbackProc
SpuStSetPreparationFinshedCallback(
SpuStCallbackProc callback_proc) Pointer to callback function

SpuStCallbackProc callback_proc(
u_long voice_bit,
long status)

Explanation
Sets the callback function to be activated at the end of the preparation state of data transfer in SPU
streaming.

When callback_proc is called, it is passed the following arguments:

• voice_bit specifies the voices for whom preparation transfer has completed. You can check the voices
by using the bit values SPU_0CH to SPU_23CH.

• status can be either SPU_ST_PREPARE (streaming is in preparation state) or SPU_ST_PLAY (playing)

Return Value
Pointer to the previously set callback function; NULL if no callback function was previously set.

See also
SpuStTransfer(), SpuStSetTransferFinishedCallback(), SpuStSetStreamFinishedCallback()

Basic Sound Library Functions 15-135

Run-Time Library Reference

SpuStSetStreamFinishedCallback
Set function to be called at completion of each stream in SPU streaming.

Library Header File Introduced Documentation Date
libspu.lib libspu.h 3.2 12/14/98

Syntax
SpuStCallbackProc
SpuStSetStreamFinishedCallback(
SpuStCallbackProc callback_proc) Pointer to callback function

SpuStCallbackProc *callback_proc(
u_long voice_bit,
long status)

Explanation
Sets the callback function called at the completion of each stream in the SPU streaming.

When callback_proc is called, it is passed the following arguments:

• voice_bit specifies the voices for whom preparation transfer has completed. You can check the voices
by using the bit values SPU_0CH to SPU_23CH.

• status can be either SPU_ST_FINAL (streaming is in termination state) or SPU_ST_PLAY (playing)

Return Value
Pointer to the previously set callback function; NULL if no callback function was previously set.

See also
SpuStTransfer(), SpuStSetPreparationFinishedCallback(), SpuStSetTransferFinishedCallback()

15-136 Basic Sound Library Functions

Run-Time Library Reference

SpuStSetTransferFinishedCallback
Set function to be called at completion of one transfer to the stream buffer for all streams

Library Header File Introduced Documentation Date
libspu.lib libspu.h 3.2 12/14/98

Syntax
SpuStCallbackProc
SpuStSetTransferFinishedCallback(
SpuStCallbackProc callback_proc) Pointer to callback function

SpuStCallbackProc *callback_proc(
u_long voice_bit,
long status)

Explanation
Sets the callback function to be called at the completion of one transfer to the stream buffer for all the
streams in the SPU streaming.

When callback_proc is called, it is passed the following arguments:

• voice_bit specifies the voices for whom transfer has completed. You can check the voices by using
the bit values SPU_0CH to SPU_23CH.

• status is always SPU_ST_PLAY (playing).

Return Value
Pointer to the previously set callback function; NULL if no callback function was previously set.

See also
SpuStTransfer(), SpuStSetPreparationFinishedCallback(), SpuStSetStreamFinishedCallback()

Basic Sound Library Functions 15-137

Run-Time Library Reference

SpuStTransfer
Prepare for a stream and provide instructions for starting it.

Library Header File Introduced Documentation Date
libspu.lib libspu.h 3.2 12/14/98

Syntax
long SpuStTransfer(
long flag, Stream state flag
u_long voice_bit) Streaming voices

Explanation
Prepares for a stream in SPU streaming, and provides instructions for starting it.

The voices for the stream are set in voice_bit by ORing the appropriate values SPU_0CH … SPU_23CH.

flag values are:

1. SPU_ST_PREPARE = Preparation
Prepares the stream according to the attributes of the SpuStEnv structure returned by SpuStInit().
After preparation, the callback function set by SpuStSetPreparationFinishedCallback() is called.

2. SPU_ST_PLAY = Start
The stream is started according to the attributes of the SpuStEnv structure returned by SpuStInit().
If streaming status is SPU_ST_PREPARE, the voice is keyed on. If the status is SPU_ST_TRANSFER,
the transfer waits until processing for the current streams is transferred to the latter part of the stream
buffer.
When one transfer to the stream buffer for all streams is completed, the callback function set by
SpuStSetTransferFinishedCallback() is called, and the attributes for the next transfer for each stream
are set.
When a stream is completed, the callback function set by SpuStSetStreamFinishedCallback() is called
(just before the next transfer if other streams are processed.)

Return value
SPU_ST_ACCEPT Processing is accepted.
SPU_ST_NOT_AVAILABLE SPU streaming is not available. SpuStInit()

has not been called.
SPU_ST_INVALID_ARGUMENTS The value of the arguments is not in the

specification.
SPU_ST_WRONG_STATUS SpuStTransfer() not accepted. The causes

are:

• The current status is SPU_ST_FINAL.
• flag is SPU_ST_PREPARE, and the current status is SPU_ST_PREPARE.
• flag is SPU_ST_PLAY, and the current status is SPU_ST_IDLE.

See also
SpuStInit(), SpuStSetPreparationFinishedCallback(), SpuStSetTransferFinishedCallback(),
SpuStSetStreamFinishedCallback()

15-138 Basic Sound Library Functions

Run-Time Library Reference

SpuWrite
Transfer data from main memory to the sound buffer.

Library Header File Introduced Documentation Date
libspu.lib libspu.h 3.0 12/14/98

Syntax
u_long SpuWrite(
u_char *addr, Pointer to transfer data start address in main memory
u_long size) Transfer data size (in bytes)

Explanation
Transfers size bytes of data from main memory addr to the sound buffer

The main memory address addr storing the transfer data must be a global variable or an address in a heap
area that was allocated by a function such as malloc(). It can’t address a variable on the stack declared in
a function.

SpuWrite() does not perform sound buffer memory management, so real waveform data cannot be used if
the user does not transfer to addresses which avoid the following areas.

• SPU decoded data transfer area: 0x0000-0xfff
• System reserved area: 0x1000-0x100f
• Addresses after the reverb work area offset (start) address

After calling, either call SpuIsTransferCompleted() to confirm transfer completion or set the DMA transfer
completion Callback function in advance using SpuSetTransferCallback().

Due to the limitations of the DMA transfer hardware, transfers are always performed in 64 byte units. When
specifying values which are not multiples of 64 as secondary arguments, since the portion of the value
which is a multiple of 64 is transferred, it’s possible to damage the data in the SPU memory.

Return value
Transferred data size. If size is larger than 512 KB, the actual transferred size is returned.

If the transfer mode is SPU_TRANSFER_BY_DMA and size is not a multiple of 64, the return value will be
incorrect.

See also
SpuWrite0(), SpuWritePartly(), SpuRead(), SpuSetTransferMode(), SpuGetTransferMode(),
SpuSetTransferStartAddr(), SpuGetTransferStartAddr(), SpuIsTransferCompleted(),
SpuSetTransferCallback()

Basic Sound Library Functions 15-139

Run-Time Library Reference

SpuWrite0
Clear sound buffer.

Library Header File Introduced Documentation Date
libspu.lib libspu.h 3.0 12/14/98

Syntax
u_long SpuWrite0(
u_long size) Clear area size (in bytes)

Explanation
Writes 0s in the sound buffer area starting at the address specified by SpuSetTransferStartAddr(). The
number of bytes written is size. The writing is done by DMA transfer, but is started synchronously.

Due to the limitations of the DMA transfer hardware, transfers are always performed in 64 byte units. When
specifying values which are not multiples of 64 as secondary arguments, since the portion of the value
which is a multiple of 64 is transferred, it’s possible to damage the data in the SPU memory.

Return value
The size of the area cleared. If size is larger than 512 KB, the actual written size is returned.

See also
SpuWrite(), SpuWritePartly(), SpuRead(), SpuSetTransferMode(), SpuGetTransferMode(),
SpuSetTransferStartAddr(), SpuGetTransferStartAddr()

15-140 Basic Sound Library Functions

Run-Time Library Reference

SpuWritePartly
Transfer data from main memory to sound buffer (assuming the transfer is divided into sections).

Library Header File Introduced Documentation Date
libspu.lib libspu.h 3.0 12/14/98

Syntax
u_long SpuWritePartly(
u_char *addr, Pointer to transfer data start address in main memory
u_long size) Transfer data size (in bytes)

Explanation
Transfers data from main memory to the sound buffer.

The main memory address holding the transfer data must be a global variable or a variable in a heap area
allocated by a function such as malloc(). It can’t be a stack variable declared in a function.

Data is transferred from the address specified in SpuSetTransferStartAddr(), and after completion of the
transfer specified by size, the starting address is incremented by size, and stored internally.

In the case of continuous transfer, the size of each transfer must be divisible by 8, except for the final block.

If SpuSetTransferStartAddr() is called during continuous transfer processing, correct continuous transfer is
not guaranteed.

SpuWritePartly() does not perform sound buffer memory management, so real waveform data cannot be
used if the user does not transfer to addresses which avoid the following areas.

• SPU decoded data transfer area: 0x0000-0xfff
• System reserved area: 0x1000-0x100f
• Addresses after the reverb work area offset (start) address

After calling, either call SpuIsTransferCompleted() to confirm transfer completion or set the DMA transfer
completion Callback function in advance using SpuSetTransferCallback.

Due to the limitations of the DMA transfer hardware, transfers are always performed in 64 byte units. When
specifying values which are not multiples of 64 as secondary arguments, since the portion of the value
which is a multiple of 64 is transferred, it’s possible to damage the data in the SPU memory.

Return value
Transferred data size. If size is larger than 512 KB, the actual transferred size is returned.

If the transfer mode is SPU_TRANSFER_BY_DMA and size is not a multiple of 64, the return value will be
incorrect.

See also
SpuWrite(), SpuWrite0(), SpuRead(), SpuSetTransferMode(), SpuGetTransferMode(),
SpuSetTransferStartAddr(), SpuGetTransferStartAddr(), SpuIsTransferCompleted(),
SpuSetTransferCallback()

Run-Time Library Reference

Chapter 16: Serial Input/Output Library
Table of Contents

Functions
AddSIO 16-3
DelSIO 16-4
Sio1Callback 16-5
_sio_control 16-6

16-2

Run-Time Library Reference

Serial Input/Output Library Functions 16-3

Run-Time Library Reference

Functions

AddSIO
Initialize SIO driver.

Library Header File Introduced Documentation Date
libsio.lib libsio.h 3.6 12/14/98

Syntax
long AddSIO(
int baud) Communication speed (bps)

Explanation
Initializes the SIO driver at the communication speed baud.

Return value
1.

See also
DelSIO()

16-4 Serial Input/Output Library Functions

Run-Time Library Reference

DelSIO
Delete SIO driver from kernel.

Library Header File Introduced Documentation Date
libsio.lib libsio.h 3.6 12/14/98

Syntax
long DelSIO(void)

Explanation
Deletes the SIO driver from the kernel.

Return value
1.

See also
AddSIO()

Serial Input/Output Library Functions 16-5

Run-Time Library Reference

Sio1Callback
Set SIO interrupt callback function.

Library Header File Introduced Documentation Date
libsio.lib libsio.h 4.0 12/14/98

Syntax
int Sio1Callback(
void(*func)()) Callback function

Explanation
Defines func as the callback to be triggered when an interrupt has been generated by the interrupt factors
(CR_DSRIEN, CR_RXIEN, CR_TXIEN) set by _sio_control (1,1, param). If func is 0, a callback is not
generated.

When an interrupt is generated, the interrupt flag must be cleared using _sio_control (2,1,0) or _sio_control
(1,1,CR_ERRRST). The next SIO interrupt isn’t generated unless the interrupt flag is cleared.

Return value
Address of previously installed callback function.

See also

16-6 Serial Input/Output Library Functions

Run-Time Library Reference

_sio_control
Issue SIO command

Library Header File Introduced Documentation Date
libsio.lib libsio.h 3.6 12/14/98

Syntax
long _sio_control(
unsigned long cmd Command
unsigned long arg Subcommand
unsigned long param) Argument

Explanation
SIO driver control and information acquisition.

Used in detailed communication with the PC and also when the user wishes to suppress debugging data
based on the standard output from the library, etc.

Table 16-1: Command Summary

cmd arg Function
0 0 Returns driver status (see Table 16-2

1 Returns control line status (see Table 16-3)
2 Returns communications mode (see Table

16-4)
3 Returns communications speed (bps units)
4 Reads 1 byte

1 0 System reservation
1 Sets param value as control line status (see

Table 16-3)
2 Sets param value as communications mode

(see Table 16-4)
3 Sets param value as communications speed

(bps units)
4 Writes 1 byte

2 0 Resets driver
1 Clears driver status error-related bits

Table 16-2: Driver Status

bit Contents
31-10 Undecided
9 SR_IRQ 1: interrupt on
8 SR_CTS 1: CTS is on
7 SR_DSR 1: DSR is on
6 Undecided
5 SR_FE 1: frame error occurs
4 SR_OE 1: overrun error occurs
3 SR_PERROR 1: parity error occurs
2 SR_TXU 1: no communications data
1 SR_RXRDY 1: able to read communications data
0 SR_TXRDY 1: able to write communications data

Serial Input/Output Library Functions 16-7

Run-Time Library Reference

Table 16-3: Control Line Status

bit Contents
31-2 undecided
1 1: RTS is on
0 1: DTR is on

Table 16-4: Communications Mode

bit Contents
31-8 Undecided
7,6 stop bit length

MR_SB_01 01: 1
MR_SB_10 10: 1.5
MR_SB_11 11: 2

5 MR_P_EVEN parity 2 (1: odd 0: even)
4 MR_PEN parity 1 (1: exists)
3,2 character length

MR_CHLEN_5 00: 5 bit
MR_CHLEN_& 01: 6
MR_CHLEN_7 10: 7
MR_CHLEN_8 11: 8

1 Always 1
0 Always 0

Return value
Described in Table 16-1 above.

See also

16-8 Serial Input/Output Library Functions

Run-Time Library Reference

Table 16-5: Control Register

bit Contents
31-13 Undecided
12 CR_DSRIEN 1: DSR Interrupt Permission
11 CR_RXIEN 1: Receive Interrupt Permission
10 CR_TXIEN 1: Transmission Interrupt Permission

9,8 0 Fixed
7 Undecided
6 CR_INTRST 1: SIO1 Reset
5 CR_RTS 1: RTS is on
4 CR_ERRRST 1:Interrupt and error flag clear
3 Undecided
2 CR_RXEN 1: Receive permission
1 CR_DTR 1: DTR is on
0 CR_TXEN 1: Transmission permission

Run-Time Library Reference

Chapter 17: HMD Library
Table of Contents

Structures
GsARGUNIT 17-3
GsARGUNIT_ANIM 17-4
GsARGUNIT_GND... 17-5
GsARGUNIT_IMAGE 17-6
GsARGUNIT_JntMIMe 17-7
GsARGUNIT_NORMAL 17-8
GsARGUNIT_RstJntMIMe 17-9
GsARGUNIT_RstVNMIMe 17-10
GsARGUNIT_SHARED 17-11
GsARGUNIT_VNMIMe 17-12
GsCOORDUNIT 17-13
GsRVIEWUNIT 17-14
GsSEH 17-15
GsSEQ 17-16
GsTYPEUNIT 17-18
GsUNIT 17-20
GsVIEWUNIT 17-21
GsWORKUNIT 17-22

Functions
GsGetHeadpUnit 17-23
GsGetLsUnit 17-24
GsGetLwsUnit 17-25
GsGetLwUnit 17-26
GsInitRstNrmMIMe 17-27
GsInitRstVtxMIMe 17-28
GsLinkAnim 17-29
GsMapCoordUnit 17-30
GsMapUnit 17-31
GsScanAnim 17-32
GsScanUnit 17-33
GsSetRefViewLUnit 17-34
GsSetRefViewUnit 17-35
GsSetViewUnit 17-36
GsSortUnit 17-37
GsU_... 17-38
GsU_03000000 17-39
GsU_03000001... 17-41
GsU_03010110... 17-43
GsU_040100... 17-45

17-2

Run-Time Library Reference

HMD Library Structures 17-3

Run-Time Library Reference

Structures

GsARGUNIT
Primitive driver argument area.

Library Header File Introduced Documentation Date
libhmd.lib libhmd.h 4.0 12/14/98

Structure
typedef struct {

u_long *primp; Primitive start address
GsOT *tagp; Pointer to current GsOT
int shift; Number of bits to shift when assigning OT
int offset; OT screen coordinate system Z-axis offset
PACKET *out_packetp; Pointer to unused packet area

} GsARGUNIT;

Explanation
The common arguments passed to a primitive driver called from GsSortUnit().

For high speed operation, use the scratch pad.

See also
GsSortUnit(), GsU_...(), GsU_040100...()

17-4 HMD Library Structures

Run-Time Library Reference

GsARGUNIT_ANIM
Animation driver argument area.

Library Header File Introduced Documentation Date
libhmd.lib libhmd.h 4.0 12/14/98

Structure
typedef struct {

u_long *primp; Primitive start address
GsOT *tagp; Pointer to current GsOT
int shift; Number of bits to shift when assigning OT
int offset; OT screen coordinate system Z-axis offset
PACKET *out_packetp; Pointer to unused packet area
long header_size; Size of primitive header used in animation
u_long *htop; Start address of interpolation function table section
u_long *ctop; Start address of sequence control section
u_long *ptop; Start address of parameter section

} GsARGUNIT_ANIM;

Explanation
The arguments passed to an animation primitive driver called from GsSortUnit(). In addition to the common
arguments in GsARGUNIT, it also contains the start address for each section needed for the primitive
header size and animation.

The argument transfer area is larger than this structure. A pointer to the section where rewriting is carried
out follows GsARGUNIT_ANIM. This pointer plus htop, ctop, and ptop are included in header_size.

The transfer area for the interpolation function follows the pointer to the rewriting section.

header_size

GsARGUNIT_ANIM

Ptr to rewrite section

Interpolation driver
Argument transfer area

The size and meaning of the interpolation driver transfer area depends on the type of interpolation function.
the following four parameters apply to linear interpolation:

1. Sequence pointer start address
2. Interpolation source parameter address.
3. Interpolation destination parameter address.
4. Address which remembers parameters after interpolation.

For high speed operation, use the scratch pad.

See also
GsSortUnit(), GsU_03000001...(), GsU_03000000(),GsU_03010110...()

HMD Library Structures 17-5

Run-Time Library Reference

GsARGUNIT_GND...
HMD ground primitive driver argument area.

Library Header File Introduced Documentation Date
libhmd.lib libhmd.h 4.1 12/14/98

Structure
typedef struct {

u_long *primp; Primitive start address
GsOT *tagp; Pointer to current GsOT
int shift; Number of bits to shift when sorting OT
int offset; OT screen coordinate system Z-axis offset
PACKET *out_packetp; Pointer to unused packet area
u_long *polytop; Pointer to start of ground POLYGON section
u_long *boxtop; Pointer to start of ground box section
u_long *pointtop; Pointer to start of ground vertex section
SVECTOR *nortop; Pointer to start of NORMAL section

} GsARGUNIT_GND;

typedef struct {
u_long *primp; Primitive start address
GsOT *tagp; Pointer to current GsOT
int shift; Number of bits to shift when sorting OT
int offset; OT screen coordinate system Z-axis offset
PACKET *out_packetp; Pointer to unused packet area
u_long *polytop; Pointer to start of ground POLYGON section
u_long *boxtop; Pointer to start of ground box section
u_long *pointtop; Pointer to start of ground vertex section
SVECTOR *nortop; Pointer to start of NORMAL section
u_long *uvtop; Pointer to start of UV section

} GsARGUNIT_GNDT;

Explanation
The arguments passed to a ground primitive driver called from GsSortUnit(). GsARGUNIT_GNDT uses
texture, while GsARGUNIT_GND does not.

This structure includes pointers to the start of the ground POLYGON section, the box section, and the
vertex section within HMD data, in addition to the parameters in GsARGUNIT.

Use the scratch pad to improve performance.

See also
GsSortUnit(), GsU_...()

17-6 HMD Library Structures

Run-Time Library Reference

GsARGUNIT_IMAGE
Image primitive driver argument area.

Library Header File Introduced Documentation Date
libhmd.lib libhmd.h 4.0 12/14/98

Structure
typedef struct {

u_long *primp; Primitive start address
GsOT *tagp; Pointer to current GsOT
int shift; Number of bits to shift when assigning OT
int offset; OT screen coordinate system Z-axis offset
PACKET *out_packetp; Pointer to unused packet area
u_long *imagetop; Pointer to pixel data start
u_long *cluttop; Pointer to clut data start

} GsARGUNIT_IMAGE;

Explanation
The arguments passed to an image primitive drive called from GsSortUnit(). In addition to the GsARGUNIT
members, it includes the pointer to the start of the clut data and texture image pixel data.

For high speed operation, use the scratch pad.

See also
GsSortUnit(),GsU_...()

HMD Library Structures 17-7

Run-Time Library Reference

GsARGUNIT_JntMIMe
Joint MIMe primitive driver argument area.

Library Header File Introduced Documentation Date
libhmd.lib libhmd.h 4.0 12/14/98

Structure
typedef struct {

u_long *primp; Primitive start address
GsOT *tagp; Pointer to current GsOT
int shift; Number of bits to shift when assigning OT
int offset; OT screen coordinate system Z-axis offset
PACKET *out_packetp; Pointer to unused packet area
u_long *coord_sect; Pointer to COORDINATE section top
long *mimepr; Pointer to mime coefficient area
u_long mimenum; Number of mime keys
u_short mimeid; MIMeID
u_short reserved;
u_long *mime_diff_sect; Pointer to MIMe DIFF section

} GsARGUNIT_JntMIMe;

Explanation
The arguments passed to a joint MIMe primitive driver called from GsSortUnit(). In addition to the
GsARGUNIT parameters, it contains a pointer to the coordinate section start within the HMD data, the
pointer to the mime coefficient area, the number of mime keys, the MIMeID, and the MIMe DIFF section
pointer.

For high-speed operation, use the scratch pad.

See also
GsSortUnit(), GsU_...(), GsU_040100…()

17-8 HMD Library Structures

Run-Time Library Reference

GsARGUNIT_NORMAL
Independent primitive driver argument area.

Library Header File Introduced Documentation Date
libhmd.lib libhmd.h 4.0 12/14/98

Structure
typedef struct {

u_long *primp; Primitive start address
GsOT *tagp; Pointer to current GsOT
int shift; Number of bits to shift when assigning OT
int offset; OT screen coordinate system Z-axis offset
PACKET *out_packetp; Pointer to unused packet area
u_long *primtop; Pointer to POLYGON section top
SVECTOR *vertop; Pointer to VERTEX section top
SVECTOR *nortop; Pointer to NORMAL section top

} GsARGUNIT_NORMAL;

Explanation
The arguments passed to an independent primitive driver called from GsSortUnit(). In addition to the
GsARGUNIT parameters, it contains the POLYGON section and VERTEX sections within the HMD data,
and the pointer to the NORMAL section start.

For high-speed operation, use the scratch pad.

See also
GsSortUnit()

HMD Library Structures 17-9

Run-Time Library Reference

GsARGUNIT_RstJntMIMe
Joint mime reset primitive driver argument area.

Library Header File Introduced Documentation Date
libhmd.lib libhmd.h 4.0 12/14/98

Structure
typedef struct {

u_long *primp; Primitive start address
GsOT *tagp; Pointer to current GsOT
int shift; Number of bits to shift when assigning OT
int offset; OT screen coordinate system Z-axis offset
PACKET *out_packetp; Pointer to unused packet area
u_long *coord_sect; Pointer to COORDINATE section top
u_short mimeid; MIMeID
u_short reserved;
u_long *mime_diff_sect; Pointer to MIMe DIFF section

}
GsARGUNIT_RstJntMIMe;

Explanation
The arguments passed to a joint MIMe reset primitive driver called from GsSortUnit(). In addition to the
GsARGUNIT parameters, it contains the pointer to the start of the COORDINATE section within the HMD
data, the MIMeID and the MIMe DIFF section pointer.

For high-speed operation, use the scratch pad.

See also
GsSortUnit(), GsU_040100…()

17-10 HMD Library Structures

Run-Time Library Reference

GsARGUNIT_RstVNMIMe
Argument area of vertex normal MIMe reset primitive driver.

Library Header File Introduced Documentation Date
libhmd.lib libhmd.h 4.0 12/14/98

Structure
typedef struct {

u_long *primp; Primitive start address
GsOT *tagp; Pointer to current GsOT
int shift; Number of bits to shift when assigning OT
int offset; OT screen coordinate system Z-axis offset
PACKET *out_packetp; Pointer to unused packet area
u_short mimeid; MIMeID
u_short reserved;
u_long *mime_diff_sect; MIMe DIFF section pointer
SVECTOR *orgs_vn_sect; OrgsVN section pointer
SVECTOR *vert_sect; Vertex section pointer
SVECTOR *norm_sect; Normal section pointer

} GsARGUNIT_RstVNMIMe;

Explanation
The arguments passed to a vertex normal primitive driver called from GsSortUnit. In addition to the
GsARGUNIT parameters, it contains the MIMeID within the HMD data, the MIMe DIFF section pointer, the
OrgsVN section pointer, the vertex section pointer, and the normal section pointer.

For high-speed operation, use the scratch pad.

See also
GsSortUnit(),GsU_...(), GsU_040100…()

HMD Library Structures 17-11

Run-Time Library Reference

GsARGUNIT_SHARED
Shared primitive driver argument area.

Library Header File Introduced Documentation Date
libhmd.lib libhmd.h 4.0 12/14/98

Structure
typedef struct {

u_long *primp; Primitive start address
GsOT *tagp; Pointer to current GsOT
int shift; Number of bits to shift when assigning OT
int offset; OT screen coordinate system Z-axis offset
u_long *primtop; Pointer to unused packet area
SVECTOR *vertop; Pointer to POLYGON section top
GsWORKUNIT *vertop2; Pointer to shared VERTEX section top
SVECTOR *nortop; Pointer to area storing the calculation results of shared vertex

section
SVECTOR *nortop2; Pointer to shared NORMAL section top

} GsARGUNIT_SHARED; Pointer to area storing the calculation results of the shared
NORMAL section

Explanation
The arguments passed to a shared primitive driver called from GsSortUnit(). In addition to the GsARGUNIT
parameters, it contains the POLYGON section and VERTEX section within the HMD data, the pointer to the
NORMAL section start, and the pointer to the area storing those calculation results.

For high-speed operation, use the scratch pad.

See also
GsSortUnit(), GsU_...()

17-12 HMD Library Structures

Run-Time Library Reference

GsARGUNIT_VNMIMe
Vertex normal mime primitive driver argument area.

Library Header File Introduced Documentation Date
libhmd.lib libhmd.h 4.0 12/14/98

Structure
typedef struct {

u_long *primp; Primtive start address
GsOT *tagp; Pointer to current GsOT
int shift; Number of bits to shift when assigning OT
int offset; OT screen coordinate system Z-axis offset
PACKET *out_packetp; Pointer to unused packet area
long *mimepr; Pointer to mime coefficient area
u_long mimenum; Number of mime keys
u_short mimeid; MIMeID
u_short reserved;
u_long *mime_diff_sect; MIMe DIFF section pointer
SVECTOR *orgs_vn_sect; OrgsVN section pointer
SVECTOR *vert_sect; Vertex section pointer
SVECTOR *norm_sect; Normal section pointer

} GsARGUNIT_VNMIMe;

Explanation
The arguments passed to the vertex normal mime primitive driver called from GsSortUnit(). In addition to
the GsARGUNIT parameters, it contains the MIMeID within the HMD data, the MIMe DIFF section pointer,
the OrgsVN section pointer, the vertex section pointer, and the normal section pointer.

For high-speed operation, use the scratch pad.

See also
GsSortUnit(),GsU_040100…()

HMD Library Structures 17-13

Run-Time Library Reference

GsCOORDUNIT
Matrix type coordinate system.

Library Header File Introduced Documentation Date
libhmd.lib libhmd.h 4.0 12/14/98

Structure
struct _GsCOORDUNIT {

u_long flg; Flag indicating whether matrix was rewritten
MATRIX matrix; Matrix
MATRIX workm; Result of multiplication from this coordinate system to the

WORLD coordinate system
SVECTOR rot; Rotation vector for creating matrix
struct _GsCOORDUNIT *super; Pointer to parent coordinates

} GsCOORDUNIT;

Explanation
GsCOORDUNIT has parent coordinates and is defined by matrix. workm retains the result of multiplication
of matrices performed by GsGetLwUnit() and GsGetLsUnit() in each node of GsCOORDINATE2 using the
WORLD coordinates. However, this result is not stored in the workm of the coordinate system directly
connected to the WORLD coordinate system.

GsGetLwUnit() and GsGetLsUnit() use flg to omit calculations for a node when they have already been
performed. 1 means the calculations have been performed, 0 means they haven’t. If you change the
contents of matrix, you must clear this flag. If it is not cleared, GsGetLwUnit() and GsGetLsUnit() will fail to
execute normally.

See also
GsGetLwUnit(), GsGetLsUnit(), GsGetLwsUnit(), GsMapCoordUnit()

17-14 HMD Library Structures

Run-Time Library Reference

GsRVIEWUNIT
HMD viewpoint position (Reference type).

Library Header File Introduced Documentation Date
libhmd.lib libhmd.h 4.0 12/14/98

Structure
typedef struct {

long vpx, vpy, vpz; Viewpoint coordinates
long vrx, vry, vrz; Reference point coordinates
long rz; Viewpoint twist
GsCOORDUNIT *super; Pointer to coordinate system which sets viewpoint

(GsCOORDUNIT type)
} GsRVIEWUNIT;

Explanation
GsRVIEWUNIT contains viewpoint information and is set by GsSetRefViewUnit(). The viewpoint coordinates
in the coordinate system displayed by super are set in vpx, vpy and vpz. The reference point coordinates in
the coordinate system displayed by super are set in vrx, vry and vrz.

When the z axis is a vector from the viewpoint to the reference point, rz specifies the screen inclination
against the z axis in fixed decimal format, with 4096 set to one degree. Viewpoint and reference point
coordinate systems are set in super. For an example of the use of this function, an airplane cockpit view
can be realized simply by setting super to the airplane coordinate system.

See also
GsSetRefViewUnit(), GsSetRefViewLUnit()

HMD Library Structures 17-15

Run-Time Library Reference

GsSEH
HMD animation sequence header.

Library Header File Introduced Documentation Date
libhmd.lib libhmd.h 4.0 12/14/98

Structure
typedef struct {

short idx; Indexes the sequence control descriptor of the sequence header and
represents it in the index within the sequence control section

u_char sid; Sequence ID
u_char pad; System reservation

} GsSEH;

Explanation
Contains sequence information. Multiple sequences are stored as an array of GsSEH after the sequence
pointer.

idx provides the index to the sequence control descriptor of the sequence playback start. This index is set
to GsSEQ.ti. By setting GsSEH.sid to GsSEQ.sid, playback of the sequence can be started.

When multiple sequences are present, select one from the GsSEH array and update the value to GsSEQ.

pad may be freely used if TOD animation is not used.

See also
GsLinkAnim(), GsU_03000000(), GsU_03000001...()

17-16 HMD Library Structures

Run-Time Library Reference

GsSEQ
HMD animation sequence pointer.

Library Header File Introduced Documentation Date
libhmd.lib libhmd.h 4.0 12/14/98

Structure
typedef struct {

u_long rewrite_idx; The upper 8 bits are a word offset into the animation primitive header,
which contains a pointer the section to be updated. The lower 24 bits are
the relative offset (in word units) within that section.

u_short size; Size up to area where next sequence pointer is stored.
u_short num; Number of sequences stored in this sequence pointer.
u_short ii; Index of area which stores parameters after interpolation (Relative offset

within parameter section)
u_short aframe; Frame count of sequence. Automatically decreased by the frame update

driver. The sequence stops at 0. For endless playback, set it to 0xffff,
and the decrease is prohibited.

u_char sid; Current status sequence ID of the currently playing sequencer.
Matching can be achieved when performing sequence jump and END
operations with the sequence ID value set from 0 to 127. The sequence
flow can be controlled using SID. When performing a jump description
with the sequence control descriptor, it defines the match SID and the
SID of the location to be jumped to. By setting the match SID to 0, it is
possible to match all SIDs.

char speed; Controls sequence playback speed. The two’s complement of the sign
bit indicates the direction of playback. Standard playback speed is 0x10.
0x7f increases speed eight times, and 0x01makes speed 1/16. The sign
bit is the bit used for reverse playback. The packaging is carried out by
subtracting speed from rframe frame by frame to make a new RFRAME
value.

u_short srcii; Retains data which should be specified in ii. The area for parameter
saving already included in the data is retained by the index.

short rframe; In the interpolation coefficient 0 between the key frames SRC FRAME,
rframe==tframe becomes DST FRAME. It is a 12 bit fixed-point number.

u_short tframe; The distance between key frames, as a 12-bit fixed-point number. The
tframe in the sequence control descriptor is 8 bits and shifts four bits to
the left when updated to GsSEQ.tframe. When tframe is 0, the
unobtained frame update driver passes the next key frame in DST
KEYFRAME (the interpolated target key frame).

u_short ci; Index to the parameter which retains source key frames (Word offset
within parameter section)

u_short ti; Parameter index which retains destination keyframes (Word offset within
parameter section)

u_short start; The sequence start index. start is copied to ti and rframe set to zero
when sequence begins. The work area indicated for Bspline and related
interpolation is set in this member.

u_char start_sid; Stream ID of sequence to be started. start_sid is copied to sid when
sequence begins.

u_char pad; Clears to 0 when the key frame is switched. By setting it to a non-zero
value, the program can detect when interpolation has completed.

} GsSEQ;

HMD Library Structures 17-17

Run-Time Library Reference

Explanation
GsSEQ contains the frame update driver internal status. By rewriting this structure during execution,
animation can be dynamically controlled.

GsSEQ structures in the HMD data can be indicated using GsLinkAnim(). The following members are only
referred to by the frame update driver: rewrite_idx, size, num, ii, speed, srcii, start and start_sid. All others
are rewritten by the frame update driver.

See also
GsU_03000000(), GsU_03000001...(), GsLinkAnim()

17-18 HMD Library Structures

Run-Time Library Reference

GsTYPEUNIT
Type storage area.

Library Header File Introduced Documentation Date
libhmd.lib libhmd.h 4.0 12/14/98

Structure
typedef struct {

u_long type; Primitive type
u_long *ptr; Address in HMD data where type is stored

} GsTYPEUNIT;

Explanation
This structure is passed to GsScanUnit(). By assigning the subordinate functions corresponding to the type
to ptr, the type is overwritten on the subordinate functions pointer. GsSortUnit() calls that subordinate
function.

The structure of type is as follows:

DEV
ID

CATE
GORY

I
N
I

C
L
P

S
T
P

B
O
T

A
D
V

L
G
T

F
O
G

D
I
V

T
I
L

P
S
T

M
I
P

L
M
D

I
I
P

C
O
L

T
M
E

CODE

DRIVER PRIMITIVE TYPE

32 28 24 20 16 12 8 4

Table 17-1

DEV ID:
0000: SCE Reserved

CATEGORY:
0000: Polygon
0001: Shared Polygon
0010: Image data
0011: Animation
0100: MIMe
0101: Ground
0111: Equiopment

DRIVER:
INI(init) 0: None

1: COORDINATE
initialization is needed

CLP(clip) 0: No clipping
1: No clipping on left and
top of screen

STP(Semi-trans) 0: Semi-transparent
1: Semi-transparent

BOT(both-side) 0: One-sided polygon
1: Two-sided polygon

ADV(active-div) 0: No automatic division
1: With automatic division

LGT(light) 0: With light source
calculation
1: Without light source
calculation

FOG(fog) 0: FOG off
1: FOG on

DIV(divide) 0: Without division

HMD Library Structures 17-19

Run-Time Library Reference

1: With division
PRIMITIVE TYPE:

TILE 0: No information for
continous texture
1: With information for
continous texture

PST(preset) 0: No presets
1: With presets

MIP(mip-map) 0: No mip-map
1: With mip-map

LMD(light-mode) 0: With normals
1: No normals

CODE 000: Reserved
001: Triangle
010: Quadrangle
011: strip mesh
100-111: Reserved

IIP 0: Flat
1: Gouraud

COL(colored) 0: 1 quality color within
identical polygon
1: Color for every vertex

TME 0: Texture mapping OFF
1: Texture mapping ON

See also
GsMapCoordUnit(), GsScanUnit(), GsSortUnit()

17-20 HMD Library Structures

Run-Time Library Reference

GsUNIT
Three-dimensional object handler for GsSortUnit().

Library Header File Introduced Documentation Date
libhmd.lib libhmd.h 4.0 12/14/98

Structure
typedef struct {

GsCOORDUNIT *coord; Pointer to local coordinate system
u_long *primtop; Pointer to primitive block header

} GsUNIT;

Explanation
GsUNIT exists in every HMD data primitive block and allows movement of three-dimensional models.
GsSortUnit() is used to register GsUNIT to the ordering table. coord is the pointer to the primitive block
individual coordinate system. By setting the matrix in the coordinate system pointed to by coord, the
object's location, inclination and size are reflected.

The primitive block start address is passed in primtop.

See also
GsSortUnit(), GsU_00...()

HMD Library Structures 17-21

Run-Time Library Reference

GsVIEWUNIT
HMD viewpoint position (matrix type).

Library Header File Introduced Documentation Date
libhmd.lib libhmd.h 4.0 12/14/98

Structure
struct GsVIEWUNIT {

MATRIX view; Matrix used to change from parent coordinates to viewpoint
coordinates

GsCOORDUNIT *super; Pointer to coordinate system which sets viewpoint
};

Explanation
This structure sets the viewpoint coordinates used by HMD. It directly specifies the matrix used to change
from parent coordinates to viewpoint coordinates. The function used to set GsVIEWUNIT is
GsSetViewUnit().

See also
GsSetViewUnit()

17-22 HMD Library Structures

Run-Time Library Reference

GsWORKUNIT
Calculation result storage area for shared primitive.

Library Header File Introduced Documentation Date
libhmd.lib libhmd.h 4.0 12/14/98

Structure
typedef struct {

DVECTOR vec; Area which stores the thre-dimensional coordinate values and the two-
dimensional coordinate values after perspective conversion.

short otz; Area which stores the OTZ value obtained when vec is requested
short p; Area which stores the interpolation value obtained when vec is requested

} GsWORKUNIT;

Explanation
When using a shared primitive, first a perspective conversion of each three-dimensional coordinate value is
carried out by its matrix to convert it into a two-dimensional coordinate. After perspective conversion is
completed by the matrices, the shared primitive refers to the converted two-dimensional coordinate and
creates a packet. This structure is the area which stores the results of that calculation.

See also

HMD Library Functions 17-23

Run-Time Library Reference

Functions

GsGetHeadpUnit
Obtain current HMD header address.

Library Header File Introduced Documentation Date
libhmd.lib libhmd.h 4.0 12/14/98

Syntax
u_long *GsGetHeadpUnit(void)

Explanation
Returns the current type header address when using GsScanUnit() to scan HMD data.

Return value
The current type header address.

See also
GsScanUnit()

17-24 HMD Library Functions

Run-Time Library Reference

GsGetLsUnit
Calculate a local screen matrix.

Library Header File Introduced Documentation Date
libhmd.lib libhmd.h 4.0 12/14/98

Syntax
void GsGetLsUnit(
GsCOORDUNIT *coord, Local coordinates
MATRIX *m) Matrix

Explanation
Calculates a local screen perspective transformation matrix from the GsCOORDUNIT structure pointed to
by coord and stores the result in the MATRIX structure pointed to by m.

For high speed operation, the function retains the result of calculation at each node of the hierarchical
coordinate system. When GsGetLsUnit() is called next, calculations up to the node to which no changes
have been made are omitted. This is controlled by the GsCOORDUNIT flag; libhmd sets it to 1 when the
calculation has been made. If the contents of a parent node are changed, the effect on a subordinate node
is handled by libgs, so it is not necessary to clear the flags of all subordinate nodes of the changed parent
node.

See also

HMD Library Functions 17-25

Run-Time Library Reference

GsGetLwsUnit
Calculate local world and local screen matrices.

Library Header File Introduced Documentation Date
libhmd.lib libhmd.h 4.0 12/14/98

Syntax
void GsGetLwsUnit(
GsCOORDUNIT *coord, Pointer to local coordinates
MATRIX *lw, Matrix which stores local world coordinates as the result
MATRIX *ls) Matrix which stores local screen coordinates as the result

Explanation
Calculates both local world coordinates and local screen coordinates. It is faster than calling GsGetLwUnit()
and then calling GsGetLsUnit(). This is a quick way of obtaining a local world matrix (lw) to pass to
GsSetLightMatrix() to carry out light source calculations.

See also
GsGetLwUnit(), GsGetLsUnit()

17-26 HMD Library Functions

Run-Time Library Reference

GsGetLwUnit
Calculate local world matrix.

Library Header File Introduced Documentation Date
libhmd.lib libhmd.h 4.0 12/14/98

Syntax
void GsGetLwUnit(
GsCOORDUNIT *coord, Local coordinates
MATRIX *m) Matrix

Explanation
Calculates a local screen perspective transformation matrix from the GsCOORDUNIT structure pointed to
by coord and stores the result in the MATRIX structure pointed to by m.

For high speed operation, the function retains the result of calculation at each node of the hierarchical
coordinate system. When GsGetLwUnit() is called next, calculations up to the node to which no changes
have been made are omitted. This is controlled by the GsCOORDUNIT member flg. libhmd sets flg to 1
when the calculation has been made. If the contents of a parent node are changed, the effect on a
subordinate node is handled by libhmd, so it is not necessary to clear the flags of all subordinate nodes of
the changed parent node.

See also
GsGetLsUnit(), GsGetLwsUnit()

HMD Library Functions 17-27

Run-Time Library Reference

GsInitRstNrmMIMe
Initialize HMD normal MIMe driver.

Library Header File Introduced Documentation Date
libhmd.lib libhmd.h 4.1 12/14/98

Syntax
void GsInitRstNrmMIMe(
u_long *primtop, Primitive start address
u_long *hp) Primitive header start address

Explanation
Initializes the HMD library normal MIMe driver.

When using the normal MIMe reset driver (GsU_04010029), it is necessary to initialize data using this
function. When the address of the primitive driver is placed in the ptr of the GsTYPE structure which is
returned by GsScanUnit(), GsInitRstNrmMIMe() is called.

Refer to: psx\sample\graphics\hmd\mime\.

See also
GsInitRstVtxMIMe(), GsU_04010010....()

17-28 HMD Library Functions

Run-Time Library Reference

GsInitRstVtxMIMe
Initialize HMD vertex MIMe driver.

Library Header File Introduced Documentation Date
libhmd.lib libhmd.h 4.1 12/14/98

Syntax
void GsInitRstVtxMIMe(
u_long *primtop, Primitive start address
u_long *hp) Primitive header start address

Explanation
Initializes the HMD library vertex MIMe driver.

When using the vertex MIMe reset driver (GsU_04010028), it is necessary to initialize data using this
function. When the address of the primitive driver is placed in the ptr of the GsTYPEUNIT structure which is
returned by GsScanUnit(), GsInitRstVtxMIMe() is called..

Refer to: psx\sample\graphics\hmd\mime\.

See also
GsInitRstNrmMIMe(),GsU_04010010....()

HMD Library Functions 17-29

Run-Time Library Reference

GsLinkAnim
Link GsSEQ array and HMD data.

Library Header File Introduced Documentation Date
libhmd.lib libhmd.h 4.0 12/14/98

Syntax
int GsLinkAnim(
GsSEQ *seq, GsSEQ structure array address
u_long *p) Address of first type animation section

Explanation
Links a GsSEQ structure, which contains information to control one sequence, to corresponding data in an
HMD file. As with GsScanAnim(), GsLinkAnim() must be activated during global SCAN.

By using seq, the programmer can control animation playback in real time. With GsLinkAnim(), specific
members of specific sequences such as seq[3]->aframe = 100 can be operated after switching to
GsLinkAnim().

Information on each individual sequence can be accessed in the sequence header GsSEH. For example,
assuming that ten sequences are defined in the fifth sequence, in order to play back the fourth, the fourth
start index can be transmitted in the sequence pointer as follows:

seq[5]->ti = ((GsSEH *)(&seq[5].start)+3)->idx;

Return value
Returns the linked number.

See also
GsScanAnim()

17-30 HMD Library Functions

Run-Time Library Reference

GsMapCoordUnit
Map COORDINATE within the HMD data to actual address.

Library Header File Introduced Documentation Date
libhmd.lib libhmd.h 4.0 12/14/98

Syntax
GsCOORDUNIT *GsMapCoordUnit(
u_long *base, HMD data start address
u_long *p) Type of address where INI (init) bits are set up

Explanation
In cases where COORDINATE exists within the HMD data, one type in which INI bits are set up exists in
GsTYPEUNIT type when GsScanUnit() is carried out. In such cases, by transferring that type address to
GsMapCoordUnit(), the COORDINATE TOP within the data and super within COORDINATE are converted
to the actual address.

Return value
COORDINATE section start address.

See also
GsMapUnit(), GsScanUnit()

HMD Library Functions 17-31

Run-Time Library Reference

GsMapUnit
Map HMD data offset to actual address.

Library Header File Introduced Documentation Date
libhmd.lib libhmd.h 4.0 12/14/98

Syntax
void GsMapUnit(
u_long *p) HMD data start address

Explanation
In HMD data, sections are referred to by pointers. When creating HMD data, the pointers are specified as
word offsets from the start of HMD data, because the exact memory locations are not known. GsMapUnit()
converts these into actual addresses, so the HMD data can be used.

A flag in the HMD header records whether addresses have been mapped, so there are no adverse effects
even if GsMapUnit() is called again.

See also
GsScanUnit(), GsSortUnit()

17-32 HMD Library Functions

Run-Time Library Reference

GsScanAnim
Perform SCAN for HMD animation.

Library Header File Introduced Documentation Date
libhmd.lib libhmd.h 4.0 12/14/98

Syntax
u_long *GsScanAnim(
u_long *p, Address where animation section first type exists.

When p is 0, the type following that previously called by GsScanAnim() is
examined

GsTYPEUNIT *ut) Pointer to area in which the type and its address are stored

Explanation
HMD data scanning is divided into two parts:

• GsScanUnit() carries out a common scan of all sections (a global scan).
• A dedicated scan function carries out a local scan of each section. GsScanAnim() is a dedicated scan

function for HMD animation.

Scanning should be carried out after the animation type has been globally scanned. Since a bit is attached
to the INI field of the animation type which was first globally scanned at the authoring level, timing for
performing a local scan can be gauged by closely watching that bit.

GsScanAnim() is called to scan the types of all animation sections using the following procedure:

1. If the Type selected in the global SCAN is category 3 (animation) and the INI bit is 1, a local SCAN
should be performed (Type=0x03800000).

2. GsScanAnim() issues the above-mentioned type address as p.
3. If the return value is 0, data is wrong. If it is 1, issue GsScanAnim() once more.
4. An interpolation primitive driver function pointer corresponding to the selected ut.type is replaced by

ut.ptr.
5. Return to #3 and repeat until 0 is returned.

With the primitive driver pointer which was written over by the HMD data, there are no adverse effects even
if GsScanAnim() is called again.

Return value
0 type to be scanned does not exist
1 Scan successful, type exists

See also
GsScanUnit(), GsLinkAnim()

HMD Library Functions 17-33

Run-Time Library Reference

GsScanUnit
Examine types within HMD data.

Library Header File Introduced Documentation Date
libhmd.lib libhmd.h 4.0 12/14/98

Syntax
int GsScanUnit(
u_long *p, Block start address. When it is 0, the type following that previously

called by GsScanUnit() is examined
GsTYPEUNIT *ut, Pointer to area where the type and its address are stored
GsOT *ot, Pointer to the OT
u_long *scratch) Specifies scratch pad address

Explanation
HMD data is divided by type and primitive drivers are called according to type. By overwriting the type by
address of the primitive driver, the primitive driver can be called during GsSortUnit(). On examination of the
contents of GsTYPEUNIT returned by GsScanUnit() the pointer to the primitive driver is replaced by one
which can be freely used by the user.

GsScanUnit() internally copies the type corresponding to the header to scratch. By passing scratch as a
primitive driver argument, the primitive driver can be activated. Generally, image primitives which are only
activated once (such as GsUIMGO and GsUIMG1) are activated at this initialization.

Initially, set p to the block start address when calling GsScanUnit(); subsequent calls should set p to 0, and
it will scan to the end of the block. This operation is carried out for every block.

Since a flag is attached to the primitive driver pointer which was written over by the HMD data, there are no
adverse effects even if GsScanUnit() is called again.

Return value
0 Reached the end of the block, type does not exist
1 Type exists

See also

17-34 HMD Library Functions

Run-Time Library Reference

GsSetRefViewLUnit
Set HMD viewpoint position (High precision).

Library Header File Introduced Documentation Date
libhmd.lib libhmd.h 4.0 12/14/98

Syntax
int GsSetRefViewLUnit(
GsRVIEWUNIT *pv) Viewpoint position information (viewpoint observation point type)

Explanation
Calculates GsWSMATRIX from viewpoint information. Its parameter is the GsRVIEWUNIT structure. If the
viewpoint is not moved, GsWSMATRIX doesn’t change, so in such cases there is no need to call each
frame.

However, if the viewpoint is moved, the changes aren’t reflected unless each frame is called. Although the
number of calculation mistakes using this function is smaller than with GsSetRefViewUnit(), the execution
time is double. When the GsRVIEWUNIT super member is set to anything besides WORLD, even if the
other parameters remain unchanged, the viewpoint moves if the parent coordinate system parameters are
changed.In such cases, GsSetRefViewLUnit() must be called for each frame.

Return value
If viewpoint setting is successful:0; if unsuccessful:1.

See also

HMD Library Functions 17-35

Run-Time Library Reference

GsSetRefViewUnit
Set HMD viewpoint position.

Library Header File Introduced Documentation Date
libhmd.lib libhmd.h 4.0 12/14/98

Syntax
int GsSetRefViewUnit(
GsRVIEWUNIT *pv) Viewpoint position information (viewpoint observation point type)

Explanation
Calculates GsWSMATRIX from viewpoint information. If the viewpoint isn’t moved, GsWSMATRIX doesn’t
change, so in such cases there is no need to call each frame.

However, if the viewpoint is moved, the changes aren’t reflected unless each frame is called. When the
GsRVIEWUNIT super member is set to anything besides WORLD, even if the other parameters remain
unchanged, the viewpoint moves if the parent coordinate system parameters are changed. In such cases,
GsSetRefViewUnit() must be called for each frame..

Return value
If viewpoint setting is successful:0; if unsuccessful:1.

See also

17-36 HMD Library Functions

Run-Time Library Reference

GsSetViewUnit
Set HMD viewpoint.

Library Header File Introduced Documentation Date
libhmd.lib libhmd.h 4.0 12/14/98

Syntax
int GsSetViewUnit(
GsVIEWUNIT *pv) Viewpoint position information (matrix type)

Explanation
Directly sets GsWSMATRIX. If you use GsSetRefViewUnit() to determine GsWSMATRIX from the viewpoint
and the focal point, insufficient precision may cause errors when you move the viewpoint; it is more
effective to use GsSetViewUnit(). When the GsVIEWUNIT super member is set to anything besides
WORLD, even if the other parameters remain unchanged, the viewpoint moves if the parent coordinate
system parameters are changed. In such cases, you must call GsSetViewUnit() for each frame.If
GsIDMATRIX2 is used as the base matrix, then the aspect ratio of the screen is adjusted automatically.

Return value
0, if setting is successful; 1, if unsuccessful.

See also

HMD Library Functions 17-37

Run-Time Library Reference

GsSortUnit
Allocate an object to the ordering table.

Library Header File Introduced Documentation Date
libhmd.lib libhmd.h 4.0 12/14/98

Syntax
void GsSortUnit(
GsUNIT *objp, Pointer to an object
GsOT *otp, Pointer to the OT
u_short *scratch) Specifies scratch pad address

Explanation
Performs perspective transformation and light source calculation on a three dimensional object handled by
GsUNIT. The rendering command is generated in the packet area specified by GsSetWorkBase(). The
rendering command generated is then Z-sorted and allocated to the OT displayed by otp. When scratch
calls the subordinate functions, it is used in the transfer of variables. Usage volume is as follows:

Table 17-2

Type Scratch area usage (Unit: Byte)
Independent polygons 32
Shared polygons 40
Fixed division independent triangles 568
Fixed division independent quadrangles 852

See also

17-38 HMD Library Functions

Run-Time Library Reference

GsU_...
GsSortUnit() primitive driver group (Polygon, Shared Polygon, Image, Ground).

Library Header File Introduced Documentation Date
libhmd.lib libhmd.h 4.0 12/14/98

Syntax
u_long *GsU_00......(Polygon primitive driver group
GsARGUNIT *ap) Start address for arguments transfer area

u_long *GsU_01......(Shared polygon primitive driver group
GsARGUNIT *ap) Start address for arguments transfer area

u_long *GsU_02......(Image primitive driver group
GsARGUNIT *ap) Start address for arguments transfer area

u_long *GsU_05......(Ground primitive driver group
GsARGUNIT *ap) Start address for arguments transfer area

Explanation
This is the GsSortUnit() primitive driver group.

When initializing HMD data for use, the GsTYPEUNIT structure type returned by GsScanUnit() must be
checked, and the primitive driver address must be placed in the pointer. The primitive drivers currently
supported are listed in the HMD section in the File Formats manual.

When using a primitive driver which performs division, the number of divisions must be set to the significant
8 bits of the area in which the primitive index is stored as follows:

Size
of divisions

Type

Primitive index
of polygons

In order to specify the number of divisions, a macro such as the one following is provided in libhmd.h.

Table 17-3

Macro #of divisions
GsUNIT_DIV1 2x2 divisions
GsUNIT_DIV2 4x4 divisions
GsUNIT_DIV3 8x8 divisions
GsUNIT_DIV4 16x16 divisions
GsUNIT_DIV5 32x32 divisions

Furthermore, when using automatic division, it is necessary to use GsSetAzwh() and to set the division
condition for the z value, polygon size, etc.

Refer to the sample program: (psx\sample\graphics\hmd\pdriver\00000008.c).

Return value
Start address of the next primitive driver.

See also
GsSortUnit(), GsScanUnit()

HMD Library Functions 17-39

Run-Time Library Reference

GsU_03000000
HMD animation frame update driver.

Library Header File Introduced Documentation Date
libhmd.lib libhmd.h 4.0 12/14/98

Syntax
u_long *GsU_03000000(
GsARGUNIT_ANIM *sp) Argument transfer area

Arguments

Explanation
The frame update driver interprets the sequence descriptor and calls the appropriate interpolation function.
It carries out sequence jumps, reverses, etc. Since the driver’s internal status is stored in each sequence
pointer area, real-time control of the sequence is possible if the programmer rewrites this area when
executing the program.

For high speed operation, specify scratch pad
The argument information built on sp is as follows:

primtop

tag(OT)

shift(OT)
OUTP(packet area)

CONTROL TOP pointer

PARAMETER TOP pointer

COORDINATE TOP pointer

VERTEX TOP pointer

Animation header size

Interpolation function
header

Sections except the last two are always set. Since the primitive headers of the other sections are copied as
is, if the header shape changes, it will be altered. The animation header size contains the amount of
animation information which is copied to the arguments area. In the case of the above example, 6.

Refer to the explanation in GsSEQ for details on the sequence pointer.

The frame update driver is linked to the HMD primitive block PRE-PROCESS.

GsSortUnit() is called when processing the first primitive block (PRE-PROCESS).The frame update driver
specifies the sequence descriptor which should be referred to by the sequence pointer. By interpreting that
sequence pointer the sequence progression is controlled. Finally, the sequence descriptor which refers to
the key frame performs interpretation, a suitable interpolation driver (SRC FRAME or DST FRAME) is
attached and called.

Refer to the sample program, (PS-X/sample/graphics/hmd/pdriver/GsU_00000008.c).

Return value
The area in which the start address of the next primitive driver is stored.

17-40 HMD Library Functions

Run-Time Library Reference

See also
GsSortUnit(), GsScanUnit()

HMD Library Functions 17-41

Run-Time Library Reference

GsU_03000001...
HMD animation interpolation function (alignment, COORDINATE).

Library Header File Introduced Documentation Date
libhmd.lib libhmd.h 4.0 12/14/98

Syntax
int GsU_03000001...(
GsARGUNIT_ANIM *sp) Argument transfer area

Arguments

Explanation
This function is the interpolation driver for parameter interpolation.

For high-speed operation, use the scratch pad.

Information on arguments contained in sp is as follows:

shift(OT)

tag(OT)

offset(OT)

primtop

OUTP(packet area)

CONTROL TOP pointer

PARAMETER TOP pointer

COORDINATE TOP pointer

VERTEX TOP pointer

Animation header size

Interpolation function
table pointer

Sequence pointer address

Pointer to src parameters

Pointer to dst parameters

Write pointer after interpolation

The parameters in the interpolation function which are always fixed are the last four:

• Sequence pointer address: Designates the section which rewrites data from the rewrite index after
interpolation, and the rewrite address.

• Pointer to src parameter: Pointer which indicates the src keyframe within the parameter section.
• Pointer to dst parameter: Pointer which indicates the dst keyframe within the parameter section.
• Pointer which writes after interpolation: There are cases when you wish to retain the parameter value

after interpolation for the Realtime Motion Switch. The area retained for that purpose is passed as a
pointer which indicates the keyframe within the parameter section. If 0, writing is not performed.

The interpolation coefficient is calculated from the TFRAME and RFRAME stored in the sequence pointer
and interpolation is performed.

If src is 0 and dst is 1, 1-RFRAME/TFRAME becomes the interpolation coefficient.

17-42 HMD Library Functions

Run-Time Library Reference

Since the name of the function in the interpolation type indicates the HMD type in interpolation types, refer
to the HMD format

The interpolation algorithm can be one of the following:

• LINEAR: Interpolate the interval between SRC KEYFRAME and DST KEYFRAME as a straight line.
• BEZIER: The KEY FRAME has 3 control points. One control point in the DST KEYFRAME and 3

control points in the SRC KEYFRAME comprise the 4 control points used for BEZIER interpolation.
• BSPLINE: The KEY FRAME has one control point. SRC-2, SRC-1, SRC, and DST together comprise

4 control points that are used for BSPLINE interpolation.A WORK area is maintained for the sequence
history of SRC-2 and SRC-1. The WORK area is set from the START IDX member of the sequence
pointer. 4 x 32 bits are used in the WORK area. At the start of the sequence, there is no history of
SRC-2 and SRC-2 so it is necessary to arrange the first 3 key frames so that TFRAME = 0.

The primitive drivers currently supported by libhmd are listed in the HMD section in the File Formats
manual.

Refer to: psx\sample\graphics\hmd\pdriver\03000001.c, 03000002.c, 03000003.c, 03000010.c,
03000020.c, 03000030.c

Return value
0 after normal interpolation.

If the next key frame is read unconditionally, 1 is returned and in the same frame, the destination key frame
is once again called back as an argument. This case allows the sequence to instantly advance with
TFRAME=0.

See also
GsU_03000000()

HMD Library Functions 17-43

Run-Time Library Reference

GsU_03010110...
HMD animation interpolation function (general).

Library Header File Introduced Documentation Date
libhmd.lib libhmd.h 4.1 12/14/98

Syntax
int GsU_03010110...(
GsARGUNIT_ANIM *sp) Argument transfer area

Arguments

Explanation
This function is the generic interpolation driver for parameter interpolation. The numerical values that are
interpolated can be packaged as 3-element vectors of 8-bits, 16-bits, or 32-bits, or as a scalar. The
argument area pointer is passed as the argument. The interpolation coefficient is calculated from the
TFRAME and RFRAME stored in the sequence pointer and interpolation is performed.

For high-speed operation, use the scratch pad.

Information on arguments contained in sp is as follows:

shift(OT)

tag(OT)

offset(OT)

primtop

OUTP(packet area)

CONTROL TOP pointer

PARAMETER TOP pointer

COORDINATE TOP pointer

VERTEX TOP pointer

Animation header size

Interpolation function
table ponter

Sequence pointer address

Pointer to src parameters

Pointer to dst parameters

Write pointer after interpolation

The parameters in the interpolation function which are always fixed are the last four.

• Sequence pointer address: Designates the section which rewrites data from the rewrite index after
interpolation, and the rewrite address.

• Pointer to src parameter: Pointer which indicates the src keyframe within the parameter section.
• Pointer to dst parameter: Pointer which indicates the dst keyframe within the parameter section.
• Pointer which writes after interpolation: There are cases when you wish to retain the parameter value

after interpolation for the Realtime Motion Switch. The area retained for that purpose is passed as a
pointer which indicates the keyframe within the parameter section. If 0, writing is not performed.

If src is 0 and dst is 1, 1-RFRAME/TFRAME becomes the interpolation coefficient.

17-44 HMD Library Functions

Run-Time Library Reference

Since the name of the function in the interpolation type indicates the HMD type in interpolation types, refer
to the HMD format

The interpolation algorithm can be either LINEAR, BEZIER, or BSPLINE.

• LINEAR: Interpolate the interval between SRC KEYFRAME and DST KEYFRAME as a straight line.
• BEZIER: The KEY FRAME has 3 control points. One control point in the DST KEYFRAME and 3

control points in the SRC KEYFRAME comprise the 4 control points used for BEZIER interpolation.
• BSPLINE: The KEY FRAME has one control point. SRC-2, SRC-1, SRC, and DST together comprise 4

control points that are used for BSPLINE interpolation.

A WORK area is maintained for the sequence history of SRC-2 and SRC-1. The WORK area is set from
the START IDX member of the sequence pointer. 4 x 32 bits are used in the WORK area. At the start
of the sequence, there is no history of SRC-2 and SRC-2 so it is necessary to arrange the first 3 key
frames so that TFRAME = 0.

The primitive drivers currently supported by libhmd are listed in the HMD section in the File Formats
manual.

Refer to: psx\sample\graphics\hmd\pdriver\03000001.c, 03000002.c, 03000003.c, 03000010.c,
03000020.c, 03000030.c

Return value
0 after normal interpolation.

If the next key frame is read unconditionally, 1 is returned and in the same frame, the destination key frame
is once again called back as an argument. This case allows the sequence to instantly advance with
TFRAME=0.

See also
GsU_03000000()

HMD Library Functions 17-45

Run-Time Library Reference

GsU_040100...
HMD MIMe driver.

Library Header File Introduced Documentation Date
libhmd.lib libhmd.h 4.0 12/14/98

Syntax
u_long *GsU_040100...(
GsARGUNIT *ap) Start address of argument transfer area. For high-speed operation,

use the scratch pad.

Explanation
This function is the driver group for MIMe animation from the HMD library. Although the ap argument is
GsARGUNIT type, it is handled internally as a different type. MIMe category drivers currently supported by
libghmd are as follows:

Table 17-4

Driver name Type name macro ap processing type Explanation

GsU_04010010 GsJntAxesMIMe GsARGUNIT_JntMIMe Axis
interpolation
joint mime

GsU_04010018 GsRstJntAxesMIMe GsARGUNIT_RstJntMIMe Axis
interpolation
joint mime
reset

GsU_04010011 GsJntRPYMIMe GsARGUNIT_JntMIMe RPY value
interpolation
joint mime

GsU_04010019 GsRstJntRPYMIMe GsARGUNIT_RstJntMIMe RPY value
interpolation
joint mime
reset

GsU_04010020 GsVtxMIMe GsARGUNIT_VNMIMe Vertex mime

GsU_04010021 GsNrmMIMe GsARGUNIT_VNMIMe Normal mime

GsU_04010028 GsRstVtxMIMe (*) GsARGUNIT_RstVNMIMe Vertex mime
reset

GsU_04010029 GsRstNrmMIMe (*) GsARGUNIT_RstVNMIMe Normal mime
reset

(*) Initialization is needed for GsInitRstVtxMIMe, GsInitRstNrmMIMe

Return value
Start address of next primitive driver.
Refer to sample program (psx\sample\grapihcs\hmd\pdriver\00000008.c).

See also
GsARGUNIT_JntMIMe(), GsARGUNIT_RstJntMIMe(), GsARGUNIT_VNMIMe(), GsARGUNIT_RstVNMIMe(),
GsInitRstNrmMIMe(), GsInitRstVtxMIMe()

17-46 HMD Library Functions

Run-Time Library Reference

Run-Time Library Reference

Chapter 18: PDA Library (libmcx)
Table of Contents

Functions
McxAllInfo 18-3
McxCardType 18-5
McxCurrCtrl 18-6
McxExecApl 18-7
McxExecFlag 18-8
McxFlashAcs 18-9
McxGetApl 18-10
McxGetMem 18-11
McxGetSerial 18-12
McxGetTime 18-13
McxGetUIFS 18-14
McxHideTrans 18-15
McxReadDev 18-16
McxSetLED 18-17
McxSetMem 18-18
McxSetTime 18-19
McxSetUIFS 18-20
McxShowTrans 18-21
McxStartCom 18-22
McxStopCom 18-23
McxSync 18-24
McxWriteDev 18-26

18-2

Run-Time Library Reference

 PDA Library Functions 18-3

Run-Time Library Reference

Functions

McxAllInfo
Get all PDA information (process registration)

Library Header File Introduced Documentation Date
libmcx.lib libmcx.h 4.4 12/14/98

Syntax
int McxAllInfo (
int port, Port number (see Table 18-1)
unsigned char *state) Pointer to buffer for storing the results of reading all PDA information. The

buffer size must be 18 bytes.

Explanation
Port numbers are as follows:

Table 18-1: Port numbers

Port 1 Port 2
Direct connect 0x00 0x10
Multitap A 0x00 0x10
Multitap B 0x01 0x11
Multitap C 0x02 0x12
Multitap D 0x03 0x13

With 1 Vsync this function can simultaneously obtain the block number of the header which contains an
executing PDA application, the PDA application's flash memory priority write settings, the state of the PDA's
current capacity controls, the serial number, and time and date information.

The contents stored in state are as follows:

Table 18-2

Offset Contents
0 Executing PDA application number (LSB)
1 Executing PDA application number (MSB)
2 Speaker disabled
3 IR communication disabled
4 PDA serial number (LSB)
5 PDA serial number (1)
6 PDA serial number (2)
7 PDA serial number (MSB)
8 Real-time clock (100 years)
9 Real-time clock (year)
10 Real-time clock (month)
11 Real-time clock (day)
12 Real-time clock (day of the week)
13 Real-time clock (hours)
14 Real-time clock (minutes)
15 Real-time clock (seconds)
16 PDA application's flash write priority

disabled
17 LED disabled

18-4 PDA Library Functions

Run-Time Library Reference

This function performs process registration only. The contents of the result buffer can be used after
confirming that the process has been completed. Use McxSync() to check for process completion.

Return value
1: Process registration was accepted.

0: Process registration failed. (An attempt was made to register a new process before the previously
registered process completed.)

Note: It is impossible to check for duplicate registrations between an McxXXX() function and functions like
_card_xxx() and MemCardxxx(). When a request is made to register an McxXXX() function after these other
processes have already been registered, the return value will still be "Registration accepted", even though
registration will not be guaranteed. Consequently, it is best to avoid simultaneous registration between an
McxXXX() function and _card_xxx() or MemCardxxx() functions. Likewise, if registration of an McxXXX()
function is requested while executing read(), write(), delete(), etc., after a Memory Card file has been
opened, the return value will still be "Registration accepted", even though registration will not be
guaranteed. Again, it is best to avoid these cases.

See also
McxGetApl(), McxCurrCtrl(), McxFlashAcs(), McxGetSerial(), McxGetTime(), McxSync()

 PDA Library Functions 18-5

Run-Time Library Reference

McxCardType
Probe PDA connection status (process registration)

Library Header File Introduced Documentation Date
libmcx.lib libmcx.h 4.4 12/14/98

Syntax
int McxCardType (
int port) Port number (see Table 18-1 on page 18-3)

Explanation
This function is used to check for the presence of a PDA. The value of the result returned from McxSync() is
used to make the determination. Once card connection is confirmed using a function such as
MemCardAccept() or _card_info(), McxCardType() can be called. An McxErrSuccess result would mean
that a PDA was detected, and an McxErrInvalid would mean that a Memory Card was detected. However, if
the Memory Card connection is determined with McxErrInvalid, the operation should be retried to be
certain.

Table 18-3: Result value and connection status of McxSync()

Value Macro Result
0 McxErrSuccess Normal termination
1 McxErrNoCard Neither PDA nor Memory

Card inserted
2 McxErrInvalid Communication failure
3 McxErrNewCard Normal termination (card

has been swapped)

This function only registers a process. Check the contents of the buffer in which the results are stored after
confirming that the process has completed. Use McxSync() to check for process completion.

Return value
1: Process registration was accepted.

0: Process registration failed. (An attempt was made to register a new process before the previously
registered process completed.)

See note on page 18-4 for more information.

See also
McxSync()

18-6 PDA Library Functions

Run-Time Library Reference

McxCurrCtrl
Control current capacity (process registration)

Library Header File Introduced Documentation Date
libmcx.lib libmcx.h 4.4 12/14/98

Syntax
int McxCurrCtrl (
int port, Port number (see Table 18-1 on page 18-3)
int sound, 1: Disable speaker, 0: Enable speaker
int infred, 1: Disable transmit, 0: Enable transmit
int led) 1: Disable LED, 0: Enable LED

(The meaning of all other values is the same as 1: disabled)

Explanation
Limits the speaker, IR transmission and LED among PDA functions. This is necessary because there is an
upper limit to the current that the PlayStation can supply to the front terminals. Immediately after the PDA is
inserted into the PlayStation, all become disabled by default.

The current consumed by each module is indicated in the following table. Since the maximum current that
can be supplied by the PlayStation from the two ports totals 160mA, do not exceed this value.

Table 18-4

Module name Current consumed
CPU chip 10mA
IR module transmission-side 70mA
Speaker 20mA
LED 10mA

Before attempting to use the aforementioned three functions in a PDA application, use Get PDA Status (swi
6) to check the permission status of each function. (For a description of the required processing, please
refer to the PDA Kernel Specification document.)

Call McxAllInfo() to check the restrictions on available functions.

This function performs process registration only. Before calling another process registration function or a
Memory Card access function, check for process completion using McxSync().

Return value
1: Process registration was accepted.

0: Process registration failed. (An attempt was made to register a new process before the previously
registered process completed.)

See note on page 18-4 for more information.

See also
McxAllInfo(), McxSync()

 PDA Library Functions 18-7

Run-Time Library Reference

McxExecApl
Execute a PDA application (process registration)

Library Header File Introduced Documentation Date
libmcx.lib libmcx.h 4.4 12/14/98

Syntax
int McxExecApl (
int port, Port number (see Table 18-1 on page 18-3)
int aplno, Block number of header which contains the desired PDA application to

execute.
(Process registration fails if a non-negative value other than 0-15 is
specified.)

long arg) Argument passed to the application to be started.

Explanation
The PDA application with the specified header block number is executed. If the specified block number is
not a header block of a PDA application, proper PDA operation cannot be guaranteed. In order to confirm
that the target application has started, check the number of the currently executing PDA application by
calling McxGetApl() or McxAllInfo().

When a header block number is specified for aplno, a termination request will be sent to the currently
executing PDA application. Even with a termination request pending, the executing application will
sometimes refuse to terminate.

When this function is called, an application termination request is sent from the PS as the flag (bit 11: PDA
application termination) of the result (Get PDA Status (swi 6)) on the PDA application side. (The flag must be
monitored periodically.) A PDA application for which a termination request was detected must rapidly switch
to termination processing (swi 9, 17). (For a description of the required processing, please refer to the PDA
Kernel Specification document.)

This function performs process registration only. Before calling another process registration function or a
Memory Card access function, check for process completion using McxSync().

Return value
1: Process registration was accepted.

0: Process registration failed. (An attempt was made to register a new process before the previously
registered process completed, or a value other than 0-15 is specified as the block number.)

See note on page 18-4 for more information.

See also
McxGetApl(), McxAllInfo(), McxSync()

18-8 PDA Library Functions

Run-Time Library Reference

McxExecFlag
Set the PDA application / data ID flag (process registration)

Library Header File Introduced Documentation Date
libmcx.lib libmcx.h 4.4 12/14/98

Syntax
int McxExecFlag (
int port, Port number (see Table 18-1 on page 18-3)
int block, Block number of the header which contains the desired file for which you

wish to set the PDA application flag (The result of dividing the DIRENTRY
member head by 64. If the specified value is other than 1-15, process
registration fails.)

int exec) 1: PDA application flag set, 0: Flag cancelled (All other values, same as 1)

Explanation
Called and set when downloading a PDA application to the PDA. (May be called any time after the file is
created.) The PDA application flag is set to 0 when a Memory Card file copy is performed from the
PlayStation Memory Card set-up screen, etc.

By referring to the PDA kernel software interrupt (swi 24), the value of the PDA application flag can be used
to determine whether or not the PDA application that is executing is an original download or one copied
from another PDA and Memory Card. This function may be called as necessary, but is not required.

This function performs process registration only. Before calling another process registration function or a
Memory Card access function, check for process completion using McxSync().

In libmcx, issuing only McxExecFlag() will not provide an McxSync() result of McxErrInvalid for a Memory
Card. If successful, the PDA application flag will also be set for the corresponding section of the Memory
Card which issued this instruction.

If the result from McxSync() is McxErrNewCard, processing will be interrupted for McxExecFlag(). Unverified
flags should first be cleared using MemCardAccept() and _card_clear(), then process registration should be
performed again.

Return value
1: Process registration was accepted.

0: Process registration failed. (An attempt was made to register a new process before the previously
registered process completed, or a value other than 1-15 was specified for the block number.)

See note on page 18-4 for more information.

See also
McxSync()

 PDA Library Functions 18-9

Run-Time Library Reference

McxFlashAcs
Set a PDA application's flash memory write priority (process registration)

Library Header File Introduced Documentation Date
libmcx.lib libmcx.h 4.4 12/14/98

Syntax
int McxFlashAcs (
int port, Port number (see Table 18-1 on page 18-3)
int mode) 0: Allows communication with the PlayStation to be temporarily

suspended so that the PDA application can write to the flash memory.
1: Disables writing to the flash memory.
(The meaning of all other values is the same as 1: disabled)

Explanation
While a PDA application is writing to the flash memory, performing communication with the PlayStation can
lead to processing load and access contention problems. So, when a PDA application is able to write to
the flash memory, the PlayStation-side program will first determine whether or not communication with the
PDA might fail, then this function can be used to allow the flash memory to be written.

The default is to not allow the PDA application to write to the flash memory. In other words, communication
with the PlayStation has priority over writing of the flash memory.

Communication with the PDA is sometimes interrupted while flash memory writing is enabled. Therefore, it
sometimes is necessary to perform a retry in order to communicate reliably. Communication with the PDA
can be interrupted in the following cases:

When _card_XXX() is used and the HwCARD | EvSpTIMOUT event is generated.

When MemCardXXX() is used and McxErrCardNotExist is returned in *result of MemCardSync().

When McxXXX() is used and McxErrNoCard is returned in *result of McxSync().

Call McxAllInfo() to check the restrictions on available functions.

Before attempting to write to the flash memory from a PDA application, use Get PDA Status (swi 6) to
check the flash memory write enable status. (For a description of the required processing, please refer to
the PDA Kernel Specification document.)

This function performs process registration only. Before calling another process registration function or a
Memory Card access function, check for process completion using McxSync().

Return value
1: Process registration was accepted.

0: Process registration failed. (An attempt was made to register a new process before the previously
registered process completed.)

See note on page 18-4 for more information.

See also
McxAllInfo(), McxSync()

18-10 PDA Library Functions

Run-Time Library Reference

McxGetApl
Obtain the block number where the executing PDA application is stored (process registration)

Library Header File Introduced Documentation Date
libmcx.lib libmcx.h 4.4 12/14/98

Syntax
int McxGetApl (
int port, Port number (see Table 18-1 on page 18-3)
int *aplno) Pointer to a memory location which returns the block number where the

executing PDA application is stored.

Explanation
The block number of the header where the currently executing PDA application is stored is placed in the
memory location pointed to by aplno.

If the currently executing application is the "Start-up Application", *aplno returns 0.

If the currently executing application is other than the "Start-up Application", *aplno returns the block
number of the header where the application is stored.

When McxAllInfo() is used, the executing application number together with other information can be
obtained during a single frame.

This function performs process registration only. The contents of the result buffer can be used after
confirming that the process has completed. Use McxSync() to check for process completion.

Return value
1: Process registration was accepted.

0: Process registration failed. (An attempt was made to register a new process before the previously
registered process completed.)

See note on page 18-4 for more information.

See also
McxExecApl(), McxAllInfo(), McxSync()

 PDA Library Functions 18-11

Run-Time Library Reference

McxGetMem
Read the contents of PDA memory (process registration)

Library Header File Introduced Documentation Date
libmcx.lib libmcx.h 4.4 12/14/98

Syntax
int McxGetMem (
int port, Port number (see Table 18-1 on page 18-3)
unsigned char *data, Buffer for storing PDA memory read data
unsigned start, Read start address
unsigned len) Read size (bytes), (128 bytes max.)

Explanation
The specified number of bytes of PDA memory are read from the specified start address and placed in the
buffer pointed to by data.

Process registration fails if the read size exceeds 128 bytes. Registration also fails when the read range
extends outside the areas shown below. Note: if an attempt is made to access address 0x2****** without
specifying virtual flash memory, a bus error will be generated by the PDA.

Readable areas:0x0******, 0x2******, 0x4******, 0x6******, 0x8******

0xA******, 0xB******, 0xC******, 0xD******

(* = an arbitrary hex value)

This function performs process registration only. The contents of the result buffer can be used after
confirming that the process has completed. Use McxSync() to check for process completion.

Return value
1: Process registration was accepted.

0: Process registration failed. (An attempt was made to register a new process before the previously
registered process completed, or the read size exceeded 128 bytes. Also fails when an attempt is made to
access an unavailable area of memory.)

See note on page 18-4 for more information.

See also
McxSetMem(), McxSync()

18-12 PDA Library Functions

Run-Time Library Reference

McxGetSerial
Get the PDA’s serial number (process registration)

Library Header File Introduced Documentation Date
libmcx.lib libmcx.h 4.4 12/14/98

Syntax
int McxGetSerial (
int port, Port number (see Table 18-1 on page 18-3)
unsigned *serial) Pointer to a memory location that will contain the obtained serial number

Explanation
Gets the serial number of the PDA.

The serial number, together with other information, can also be obtained using McxAllInfo().

This function performs process registration only. The contents of the result buffer can be used after
confirming that the process has completed. Use McxSync() to check for process completion.

Return value
1: Process registration was accepted.

0: Process registration failed. (An attempt was made to register a new process before the previously
registered process completed.)

See note on page 18-4 for more information.

See also
McxAllInfo(), McxGetMem(), McxSync()

 PDA Library Functions 18-13

Run-Time Library Reference

McxGetTime
Get the date and time (process registration)

Library Header File Introduced Documentation Date
libmcx.lib libmcx.h 4.4 12/14/98

Syntax
int McxGetTime (
int port, Port number (see Table 18-1 on page 18-3)
unsigned char *time) Buffer for storing the date and time (8 bytes)

Explanation
Obtains the date and time from the PDA's real-time clock. The contents of the buffer are shown below.
Information other than day of the week are returned as BCD values.

Table 18-5

Offset 0 1 2 3 4 5 6 7
Contents 100

years
Year Month Date Day of

week
Hr. Min. Sec.

The day of the week values returned in offset 4 are:

Table 18-6

time[4] 0 1 2 3 4 5 6
Day of week Sun Mon Tue Wed Thu Fri Sat

This function performs process registration only. The contents of the result buffer can be used after
confirming that the process has completed. Use McxSync() to check for process completion.

Date and time information can be obtained, together with other information, using McxAllInfo().

Return value
1: Process registration was accepted.

0: Process registration failed. (An attempt was made to register a new process before the previously
registered process completed.)

See note on page 18-4 for more information.

See also
McxAllInfo(), McxSync()

18-14 PDA Library Functions

Run-Time Library Reference

McxGetUIFS
Get user interface status (process registration)

Library Header File Introduced Documentation Date
libmcx.lib libmcx.h 4.4 12/14/98

Syntax
int McxGetUIFS (
int port, Port number (see Table 18-1 on page 18-3)
unsigned char *data) Buffer for storing user interface status (8 bytes)

Explanation
Obtains user interface status from the PDA. The contents of the buffer are shown below.

Table 18-7

Offset Contents
0 Alarm time (minutes)
1 Alarm time (hours)

(bit)7 RTC set
(bit)6-4 Area code
(bit)3-2 Speaker volume
(bit)1 Key lock

2

(bit)0 Alarm
3 Unused
4 Font data start address (LSB)
5 Font data start address (MSB)
6 Unused
7 Unused

• Alarm time of day: 2 BCD digits each.
• RTC set: 0: RTC is unset (data invalid) after reset, 1: RTC set (data valid)
• Area code: 0: Japan, 1: North America, 2: Europe
• Speaker volume: 0: loud, 1: soft, 2: off
• Key lock: 0: unlocked, 1: locked
• Alarm: 0: off, 1: on
• Font data start address: Address relative to 0x4000000

This function performs process registration only. The contents of the result buffer can be used after
confirming that the process has completed. Use McxSync() to check for process completion.

Return value
1: Process registration was accepted.

0: Process registration failed. (An attempt was made to register a new process before the previously
registered process completed.)

See note on page 18-4 for more information.

See also
McxSetUIFS(), McxSync()

 PDA Library Functions 18-15

Run-Time Library Reference

McxHideTrans
Hide the "data transfer" display (process registration)

Library Header File Introduced Documentation Date
libmcx.lib libmcx.h 4.4 12/14/98

Syntax
int McxHideTrans (
int port) Port number (see Table 18-1 on page 18-3)

Explanation
Hides the "data transfer" display on the LCD screen made visible by McxShowTrans().

In order to avoid alternate sector processing when saving a PDA application file or a data file that contains a
PDA file list icon (i.e., so that the PDA program can be saved to consecutive memory), call McxShowTrans()
before opening the file. Then call McxHideTrans() after saving and closing the file.

When this function is called, a file transfer control callback is generated from the PDA kernel to the currently
executing PDA application. This callback, previously registered for "start/stop the data transfer display"
using the PDA's "set user callback (swi 1)" terminates the data transfer display on the LCD screen of the
PDA. (For a description of the required processing, please refer to the PDA Kernel Specification document.)

This function performs process registration only. Before calling another process registration function or a
Memory Card access function, check for process completion using McxSync().

Return value
1: Process registration was accepted.

0: Process registration failed. (An attempt was made to register a new process before the previously
registered process completed.)

See note on page 18-4 for more information.

See also
McxShowTrans(), McxSync()

18-16 PDA Library Functions

Run-Time Library Reference

McxReadDev
Read from the PDA device (process registration)

Library Header File Introduced Documentation Date
libmcx.lib libmcx.h 4.4 12/14/98

Syntax
int McxReadDev (
int port, Port number (see Table 18-1 on page 18-3)
int dev, Called device number (Reserved devices: 0: RTC read/write, 1: PDA

memory read/write, 2: user interface status read/write)
unsigned char *param, Parameter passed to device
unsigned char *data) Data read from device

Explanation
Performs a read from a user-defined device or from a reserved device provided on the PDA. In order read
from a user-defined device, it is necessary to create a subroutine as specified in
\pdadoc\doc\jp\word\pda\kernel.doc (Kernel Service Overview: Communication with the PlayStation :
Device Entry Callbacks), then enter it in the device entry table in the Memory Card file header.

This function performs process registration only. The contents of the result buffer can be used after
confirming that the process has completed. Use McxSync() to check for process completion.

Return value
1: Process registration was accepted.

0: Process registration failed. (An attempt was made to register a new process before the previously
registered process completed.)

See note on page 18-4 for more information.

See also
McxWriteDev(), McxSync()

 PDA Library Functions 18-17

Run-Time Library Reference

McxSetLED
Switch the LED on/off (process registration)

Library Header File Introduced Documentation Date
libmcx.lib libmcx.h 4.4 12/14/98

Syntax
int McxSetLED (
int port, Port number (see Table 18-1 on page 18-3)
int mode) 0: Turn LED off, other values: Turn LED on

Explanation
Turns the LED on and off.

McxGetMem() and McxSetMem() can be used to check/set the on/off state of an LED, by directly accessing
PIO0 and PIO1.

This function performs process registration only. Before calling another process registration function or a
Memory Card access function, check for process completion using McxSync().

Return value
1: Process registration was accepted.

0: Process registration failed. (An attempt was made to register a new process before the previously
registered process completed.)

See note on page 18-4 for more information.

See also
McxGetMem(), McxSetMem(), McxSync()

18-18 PDA Library Functions

Run-Time Library Reference

McxSetMem
Update the contents of PDA memory (process registration)

Library Header File Introduced Documentation Date
libmcx.lib libmcx.h 4.4 12/14/98

Syntax
int McxSetMem (
int port, Port number (see Table 18-1 on page 18-3)
unsigned char *data, Buffer containing the data to be written to PDA memory
unsigned start, Write start address
unsigned len) Write size (bytes), (128 bytes max.)

Explanation
Overwrites the specified number of bytes of PDA memory starting at the specified address. Process
registration fails if the write size exceeds 128 bytes. Registration also fails when the write range extends
outside the areas shown below.

Readable areas:0x0******, 0x6******, 0xA******

0xB******, 0xC******, 0xD******

(* = arbitrary hex value)

This function performs process registration only. Before calling another process registration function or a
Memory Card access function, check for process completion using McxSync().

Return value
1: Process registration was accepted.

0: Process registration failed. (An attempt was made to register a new process before the previously
registered process completed, or the write size exceeded 128 bytes. Also fails when an attempt is made to
access an unavailable area of memory.)

See note on page 18-4 for more information.

See also
McxGetMem(), McxSync()

 PDA Library Functions 18-19

Run-Time Library Reference

McxSetTime
Set the date and time (process registration)

Library Header File Introduced Documentation Date
libmcx.lib libmcx.h 4.4 12/14/98

Syntax
int McxSetTime (
int port, Port number (see Table 18-1 on page 18-3)
unsigned char *time) Buffer which contains the date and time to be set (8 bytes)

Explanation
Sets the date and time in the PDA's real-time clock.

In order to set the real-time clock, 150 ms (worst case) are required after communication with the PDA is
completed. During this interval, it is not possible to communicate with the PDA. Note that, if an attempt is
made to communicate with the PDA during this time, McxSync() will return the McxErrNoCard (Memory
Card not inserted) result, even though the PDA is inserted in the Memory Card slot.

The buffer contents are shown below. Information other than day of the week are returned as BCD values.

Table 18-8

Offset 0 1 2 3 4 5 6 7
Contents 100

years
Year Month Date Day of

week
Hr. Min. Sec.

The relationship between the day of the week and the value returned in offset 4 is as follows:

Table 18-9

time[4] 0 1 2 3 4 5 6
Day of
week

Sun Mon Tue Wed Thu Fri Sat

This function performs process registration only. Before calling another process registration function or a
Memory Card access function, check for process completion using McxSync().

Return value
1: Process registration was accepted.

0: Process registration failed. (An attempt was made to register a new process before the previously
registered process completed.)

See note on page 18-4 for more information.

See also
McxGetTime(), McxSync()

18-20 PDA Library Functions

Run-Time Library Reference

McxSetUIFS
Set user interface status (process registration)

Library Header File Introduced Documentation Date
libmcx.lib libmcx.h 4.4 12/14/98

Syntax
int McxSetUIFS (
int port, Port number (see Table 18-1 on page 18-3)
unsigned char *data) Buffer which contains the specified user interface status (8 bytes)

Explanation
Sets the PDA’s user interface status. The contents of the buffer are shown below.

Table 18-10

Offset Contents
0 Alarm time (minutes)
1 Alarm time (hours)

(bit)7 RTC set
(bit)6-4 Area code
(bit)3-2 Speaker volume
(bit)1 Key lock

2

(bit)0 Alarm
3 Unused
4 Font data start address (LSB)
5 Font data start address (MSB)
6 Unused
7 Unused

• Alarm time of day: 2 BCD digits each.
• RTC set: 0: RTC is unset (data invalid) after reset, 1: RTC set (data valid)
• Area code: 0: Japan, 1: North America, 2: Europe
• Speaker volume: 0: loud, 1: soft, 2: off
• Key lock: 0: unlocked, 1: locked
• Alarm: 0: off, 1: on
• Font data start address: Address relative to 0x4000000

This function performs process registration only. Before calling another process registration function or a
Memory Card access function, check for process completion using McxSync().

Return value
1: Process registration was accepted.

0: Process registration failed. (An attempt was made to register a new process before the previously
registered process completed.)

See note on page 18-4 for more information.

See also
McxGetUIFS(), McxSync()

 PDA Library Functions 18-21

Run-Time Library Reference

McxShowTrans
Show the "data transfer" display (process registration)

Library Header File Introduced Documentation Date
libmcx.lib libmcx.h 4.4 12/14/98

Syntax
int McxShowTrans (
int port, Port number (see Table 18-1 on page 18-3)
int dir, Transfer direction. 0: PDA --> PS, other values: PS --> PDA
int timeout) Time until the display is cleared if a request to hide the "data transfer"

display is not received. (1 second units in the activated application)

Explanation
In order to avoid alternate sector processing when saving a PDA application file or a data file that contains a
PDA file list icon (i.e., so that the PDA program can be saved to consecutive memory), call McxShowTrans()
before opening the file. Then call McxHideTrans() after saving and closing the file.

Since MemCardFormat() and _card_format() also initialize alternate sectors, do not call McxShowTrans()
when formatting the Memory Card (formatting will fail without initializing the alternate sectors).

When this function is called, a file transfer control callback is generated from the PDA kernel to the currently
executing PDA application. This callback, previously registered for "start/stop the data transfer display"
using the PDA's "set user callback (swi 1)" terminates the data transfer display on the LCD screen of the
PDA.

The timeout setting allows the PDA application itself to hide the "data transfer" display, if the PlayStation is
reset unexpectedly, etc. Normally, McxHideTrans() is called to hide the display after the file transfer has
completed.

(For a description of the required processing, please refer to the PDA Kernel Specification document.)

This function performs process registration only. Before calling another process registration function or a
Memory Card access function, check for process completion using McxSync().

Return value
1: Process registration was accepted.

0: Process registration failed. (An attempt was made to register a new process before the previously
registered process completed.)

See note on page 18-4 for more information.

See also
McxHideTrans(), McxSync()

18-22 PDA Library Functions

Run-Time Library Reference

McxStartCom
Start the PDA system

Library Header File Introduced Documentation Date
libmcx.lib libmcx.h 4.4 12/14/98

Syntax
void McxStartCom(void)

Explanation
Starts the PDA system. Enables PDA processing-related interrupts, and allows each of the PDA's process
registration functions to be used. The PDA library does not contain any initialization functions (like InitCARD()
or MemCardInit()). Instead, the PDA system is activated simply by calling McxStartCom().

McxStartCom() has a restriction in that it must be called in a specific sequence relative to other functions.

For functions connected with arrows, the function at the starting point of the arrows must be called first.

 InitPAD()
 InitCARD()

 PadInit()

 StartPAD()

StartCARD()

 McxStartCom()
 PadInitDirect(),PadInitMtap()

 PadStartCom()

A standard sequence would be as follows.

PadInit();

InitPAD();

StartPAD();

InitCARD();

StartCARD();

McxStartCom();

PadInitDirect();

PadStartCom();

However, the following three sets of function pairs cannot be called simultaneously:

[PadInit()],[InitPAD(),StartPAD()],[PadInitDirect(),PadStartCom()].

An appropriate set from the three sets should be selected when writing programs.

MemCardInit() and MemCardStart() can be replaced with InitCARD() and StartCARD(). InitPAD() and
StartPAD() can be replaced with InitTAP() and StartTAP() or InitGun() and StartGUN().

See also
McxStopCom()

 PDA Library Functions 18-23

Run-Time Library Reference

McxStopCom
Stop the PDA system

Library Header File Introduced Documentation Date
libmcx.lib libmcx.h 4.4 12/14/98

Syntax
void McxStopCom(void)

Explanation
Halts PDA system-related interrupts and shuts down the PDA system.

The McxStartCom() and McxStopCom() pair of start/stop functions must be correctly nested with the calling
sequence of the start/stop function pairs determined in McxStartCom().

See also
McxStartCom()

18-24 PDA Library Functions

Run-Time Library Reference

McxSync
Confirm the completion of a registered process

Library Header File Introduced Documentation Date
libmcx.lib libmcx.h 4.4 12/14/98

Syntax
int McxSync (
int mode, 0: Wait until the registered process completes. 1: Check the current

state and return it immediately.
long *cmd, Completed command number
long *result) Registered process result

Explanation
Use McxAllInfo(), McxCurrCtrl(), etc., to check the progress of a registered process. The command number
of the executing or completed process is returned in cmd. The contents of cmd are shown in the following
table.

Table 18-11

Value Macro Function
1 McxFuncGetApl McxGetApl()
2 McxFuncExecApl McxExecApl()
3 McxFuncGetTime McxGetTime()
4 McxFuncGetMem McxGetMem()
5 McxFuncSetMem McxSetMem()
6 McxFuncShowTrans McxShowTrans()
7 McxFuncHideTrans McxHideTrans()
8 McxFuncCurrCtrl McxCurrCtrl()
9 McxFuncSetLED McxSetLED()
10 McxFuncGetSerial McxGetSerial()
11 McxFuncExecFlag McxExecFlag()
12 McxFuncAllInfo McxAllInfo()
13 McxFuncFlashAcs McxFlashAcs()
14 McxFuncReadDev McxReadDev()
15 McxFuncWriteDev McxWriteDev()
16 McxFuncGetUIFS McxGetUIFS()
17 McxFuncSetUIFS McxSetUIFS()
18 McxFuncSetTime McxSetTime()

The processing result is returned in "result."

Table 18-12

Value Macro Result
0 McxErrSuccess Normal termination
1 McxErrNoCard Neither PDA nor Memory

Card inserted
2 McxErrInvalid Communication failure
3 McxErrNewCard Normal termination (card

has been swapped)

 PDA Library Functions 18-25

Run-Time Library Reference

Return value

Table 18-13

Value Macro Process state
0 McxSyncRun Processing
1 McxSyncFin Process complete
-1 McxSyncNone Process unregistered

See also
McxGetApl(), McxExecApl(),McxGetTime(), McxGetMem(), McxSetMem(), McxShowTrans(), McxHideTrans(),
McxCurrCtrl(),McxFlashAcs(), McxSetLED(), McxGetSerial(), McxExecFlag(), McxAllInfo()

18-26 PDA Library Functions

Run-Time Library Reference

McxWriteDev
Write to a PDA device (process registration)

Library Header File Introduced Documentation Date
libmcx.lib libmcx.h 4.4 12/14/98

Syntax
int McxReadDev (
int port, Port number (see Table 18-1 on page 18-3)
int dev, Called device number (Reserved devices: 0: RTC read/write,1: PDA

memory read/write, 2: user interface status read/write)
unsigned char *param, Parameter passed to device
unsigned char *data) Data written to device

Explanation
Performs a write to a user-defined device or to a reserved device provided on the PDA. In order to write to a
user-defined device, it is necessary to create a subroutine as specified in the PDA Kernel Specification
document (Kernel Services Overview - Device Entry Callback section of “Communication with the
PlayStation”), then enter it in the device entry table in the Memory Card file header.

This function only registers a process. Check the contents of the buffer in which the results are stored after
confirming that the process has completed. Use McxSync() to check for process completion.

Return value
1: Process registration was accepted.

0: Process registration failed. (An attempt was made to register a new process before the previously
registered process completed.)

See note on page 18-4 for more information.

See also
McxReadDev(), McxSync()

Run-Time Library Reference

Chapter 19: Memory Card GUI Module (mcgui)
Table of Contents

Structures
McGuiEnv 19-3
sMcGuiBg 19-4
sMcGuiCards 19-5
sMcGuiController 19-6
sMcGuiCursor 19-7
sMcGuiSnd 19-8
sMcGuiTexture 19-9

Functions
McGuiLoad 19-10
McGuiSave 19-11

19-2

Run-Time Library Reference

 Memory Card GUI Module Structures 19-3

Run-Time Library Reference

Structures

McGuiEnv
Memory Card GUI module structure

Module Header File Introduced Documentation Date
mcgui.obj mcgui.h 4.4 12/14/98

Structure
struct McGuiEnv {

sMcGuiCards cards; Memory Card data structure
sMcGuiBg bg; BG data structure
sMcGuiController controller; Controller-related data structure
sMcGuiSnd sound; BGM and sound effect data structure
sMcGuiTexture texture; Texture data structure
sMcGuiCursor cursor; Cursor data structure

};

Explanation
This is the main structure used by the memory card GUI module.

Each member is a separate structure.

See also

19-4 Memory Card GUI Module Structures

Run-Time Library Reference

sMcGuiBg
BG data structure

Module Header File Introduced Documentation Date
mcgui.obj mcgui.h 4.4 12/14/98

Structure
struct sMcGuiBg {

short mode; BG mode
0:Scroll mode Use the internal 64 X 64 tiled-texture scroll mode
1: Use the texture specified by the still-image mode (timadr)

signed char scrollDirect; Scroll direction (valid when BG mode = 0)
0: up, 1: top left, 2: left, 3: bottom left 4: down, 5: bottom right, 6:
right, 7: top right

signed char scrollSpeed; Scroll speed (valid when BG mode = 0)
0: Stopped 1: 1/60 sec., 2: 1/30 sec., 3: 1/20 sec.

u_long* timadr; Header address of TIM data for BG (valid when BG mode = 1)
};

Explanation
Part of the McGuiEnv structure.

See also

 Memory Card GUI Module Structures 19-5

Run-Time Library Reference

sMcGuiCards
Memory Card data structure

Module Header File Introduced Documentation Date
mcgui.obj mcgui.h 4.4 12/14/98

Structure
struct sMcGuiCards {

char file[21]; File name Use only ASCII except for 0x00, 0x2a(*), and 0x3f(?).
The string is terminated by 0x00.

char title[65]; Document name Only full-size 32 characters of (SJIS) non-kanji
and level-1 kanji. However, 0x84bf to 0x889e cannot be used.
The string is terminated by 0x00.

char frame; Reserved area (unusable)
char block; Number of icon images (automatically animated) 1-3
u_long* iconAddr; TIM data header address for icon image
u_long* dataAddr; Header Address of game data
long dataBytes; Number of game data bytes (128-byte units)

}; Number of game data blocks (1-15)

Explanation
This structure holds information used for loading and saving game data.

Part of the McGuiEnv structure.

See also

19-6 Memory Card GUI Module Structures

Run-Time Library Reference

sMcGuiController
Controller data structure

Module Header File Introduced Documentation Date
mcgui.obj mcgui.h 4.4 12/14/98

Structure
struct sMcGuiController {

volatile u_char* buf[2]; Controller's receive data buffer
struct {

int flag;
u_long BUTTON_OK;
u_long BUTTON_CANCEL;

} type1; Default controller
struct {

int flag;
u_long BUTTON_OK;
u_long BUTTON_CANCEL;

} type2; Mouse
struct {

int flag;
u_long BUTTON_OK;
u_long BUTTON_CANCEL;

} type3; Analog joystick, DUAL SHOCK
struct {

int flag;
u_long BUTTON_OK;
u_long BUTTON_CANCEL;

} type4; NeGcon
};

Explanation
This structure holds controller information. It is part of the McGuiEnv structure.

Set the flag members of the supported controller types to 1, and set the respective button codes in the
BUTTON_OK/BUTTON_CANCEL fields. Set the flag members of unsupported controller types to 0.

See also

 Memory Card GUI Module Structures 19-7

Run-Time Library Reference

sMcGuiCursor
Cursor data structure

Module Header File Introduced Documentation Date
mcgui.obj mcgui.h 4.4 12/14/98

Structure
struct sMcGuiCursor {

char type; Cursor shape (not supported)
u_char r; Color code (0-255)
u_char g; Color code (0-255)
u_char b; Color code (0-255)

};

Explanation
This structure sets the color and shape of the menu cursor. It is part of the McGuiEnv structure.

Note: type is currently not supported.

See also

19-8 Memory Card GUI Module Structures

Run-Time Library Reference

sMcGuiSnd
BGM and sound effects data structure

Module Header File Introduced Documentation Date
mcgui.obj mcgui.h 4.4 12/14/98

Structure
struct sMcGuiSnd {

int MVOL; Main volume (0-127)
int isReverb; 0: reverb OFF, 1: reverb ON
int reverbType; Reverb type
int reverbDepth; Reverb depth (0-127)
struct {

int isbgm; 0: no BGM, 1:BGM
u_long* seq; Header address of SEQ data
u_long* vh; Header address of VH data for SEQ
u_long* vb; Header address of VB data for SEQ
int SVOL; SEQ volume (0-127)

} bgm;
struct {

int isse; 0: no sound effects, 1: sound effects
u_long* vh; Header address of VH data for SE
u_long* vb; Header address of VB data for SE
int vol; Sound effects volume
int prog; Sound effects program number
int TONE_OK; Tone number of confirmation/execution tone
int TONE_CANCEL; Tone number of CANCEL tone
int TONE_CURSOR; Tone number during cursor operation
int TONE_ERROR; Tone number of error tone

} se;
};

Explanation
This structure contains information about the BGM that plays on the Memory Card screen and the sound
effect that is produced when the cursor is moved, etc.

See also

 Memory Card GUI Module Structures 19-9

Run-Time Library Reference

sMcGuiTexture
Texture data structure

Module Header File Introduced Documentation Date
mcgui.obj mcgui.h 4.4 12/14/98

Structure
struct sMcGuiTexture {

u_long* addr; Header address of TIM data
};

Explanation
This structure specifies the texture data used internally by the module. It is part of the McGuiEnv structure.

Note: For format information, refer to the Run-time Library Overview.

See also

19-10 Memory Card GUI Module Functions

Run-Time Library Reference

Functions

McGuiLoad
Load game data

Module Header File Introduced Documentation Date
mcgui.obj mcgui.h 4.4 12/14/98

Syntax
int McGuiLoad(
McGuiEnv * env Memory Card GUI module structure
)

Explanation
Invokes the load operation of the Memory Card screen.

Terminates when the load has completed or when the cancel button is clicked on the Slot Selection screen.

Return value
1 after the load operation completes

0 if the cancel button was used to terminate the load

-1 if an invalid value is specified in the McGuiEnv structure

See also

 Memory Card GUI Module Functions 19-11

Run-Time Library Reference

McGuiSave
Save game data

Module Header File Introduced Documentation Date
mcgui.obj mcgui.h 4.4 12/14/98

Syntax
int McGuiSave(
McGuiEnv *env Memory Card GUI module structure
)

Explanation
Invokes the save operation of the Memory Card screen.

Terminates when the save is completed or when the cancel button is clicked on the Slot Selection screen.

Return value
1 after the save operation completes.

0 if the cancel button was used to terminate the save.

-1 if an invalid value is specified in the McGuiEnv structure.

See also

19-12 Memory Card GUI Module Functions

Run-Time Library Reference

Index

Structures

_GsFCALL (libgs), 9-27
_GsPOSITION (libgs), 9-30
_SsFCALL (libsnd), 14-12

C
CdlAtv (libcd), 10-3
CdlFILE (libcd), 10-4
CdlFILTER (libcd), 10-5
CdlLOC (libcd), 10-6
CRVECTOR3 (libgte), 8-5
CRVECTOR4 (libgte), 8-6
CVECTOR (libgte), 8-7

D
DECDCTENV (libpress), 6-3
DIRENTRY (libapi), 1-3
DISPENV (libgpu), 7-4
DIVPOLYGON3 (libgte), 8-8
DIVPOLYGON4 (libgte), 8-9
DR_AREA (libgpu), 7-7
DR_ENV (libgpu), 7-8
DR_LOAD (libgpu), 7-9
DR_MODE (libgpu), 7-10, 7-11
DR_OFFSET (libgpu), 7-12
DR_STP (libgpu), 7-13
DR_TPAGE (libgpu), 7-14
DR_TWIN (libgpu), 7-15
DRAWENV (libgpu), 7-5
DslATV (libds), 11-3
DslFILE (libds), 11-4
DslFILTER (libds), 11-5
DslLOC (libds), 11-6
DVECTOR (libgte), 8-10

E
ENCSPUENV (libpress), 6-4
EvCB (libapi), 1-4
EVECTOR (libgte), 8-11
EXEC (libapi), 1-5

G
GsARGUNIT (libhmd), 17-3
GsARGUNIT_ANIM (libhmd), 17-4
GsARGUNIT_GND... (libhmd), 17-5
GsARGUNIT_IMAGE (libhmd), 17-6
GsARGUNIT_JntMIMe (libhmd), 17-7
GsARGUNIT_NORMAL (libhmd), 17-8
GsARGUNIT_RstJntMIMe (libhmd), 17-9
GsARGUNIT_RstVNMIMe (libhmd), 17-10
GsARGUNIT_SHARED (libhmd), 17-11
GsARGUNIT_VNMIMe (libhmd), 17-12
GsBG (libgs), 9-3
GsBOXF (libgs), 9-4
GsCELL (libgs), 9-5
GsCOORD2PARAM (libgs), 9-6
GsCOORDINATE2 (libgs), 9-7
GsCOORDUNIT (libhmd), 17-13
GsDOBJ2 (libgs), 9-8
GsDOBJ3 (libgs), 9-10
GsDOBJ5 (libgs), 9-11
GsF_LIGHT (libgs), 9-14

GsFOGPARAM (libgs), 9-13
GsGLINE (libgs), 9-15
GsIMAGE (libgs), 9-16
GsLINE (libgs), 9-17
GsMAP (libgs), 9-18
GsOBJTABLE2 (libgs), 9-19
GsOT (libgs), 9-20
GsOT_TAG (libgs), 9-21
GsRVIEW2 (libgs), 9-22
GsRVIEWUNIT (libhmd), 17-14
GsSEH (libhmd), 17-15
GsSEQ (libhmd), 17-16
GsSPRITE (libgs), 9-23
GsTYPEUNIT (libhmd), 17-18
GsUNIT (libhmd), 17-20
GsVIEW2 (libgs), 9-25
GsVIEWUNIT (libhmd), 17-21
GsWORKUNIT (libhmd), 17-22

L
LINE_F2, LINE_F3, LINE_F4 (libgpu), 7-16
LINE_G2, LINE_G3, LINE_G4 (libgpu), 7-17

M
MATRIX (libgte), 8-12
McGuiEnv (mcgui), 19-3

P
POL3 (libgte), 8-13
POL4 (libgte), 8-14
POLY_F3, POLY_F4 (libgpu), 7-19
POLY_FT3, POLY_FT4 (libgpu), 7-20
POLY_G3, POLY_G4 (libgpu), 7-22
POLY_GT3, POLY_GT4 (libgpu), 7-23
ProgAtr (libsnd), 14-5

Q
QMESH (libgte), 8-15

R
RECT (libgpu), 7-25, 7-26
RVECTOR (libgte), 8-16

S
sMcGuiBg (mcgui), 19-4
sMcGuiCards (mcgui), 19-5
sMcGuiController (mcgui), 19-6
sMcGuiCursor (mcgui), 19-7
sMcGuiSnd (mcgui), 19-8
sMcGuiTexture (mcgui), 19-9
SndRegisterAttr (libsnd), 14-6
SndVoiceStats (libsnd), 14-7
SndVolume (libsnd), 14-8
SndVolume2 (libsnd), 14-9
SPOL (libgte), 8-17
SPRT (libgpu), 7-27
SPRT_8, SPRT_16 (libgpu), 7-28
SpuCommonAttr (libspu), 15-5
SpuDecodeData (libspu), 15-6
SpuEnv (libspu), 15-7

I-2 Index

Run-Time Library Reference

SpuExtAttr (libspu), 15-8
SpuReverbAttr (libspu), 15-10
SpuStEnv (libspu), 15-11
SpuStVoiceAttr, 15-12
SpuVoiceAttr (libspu), 15-13
SpuVolume (libspu), 15-14
StHEADER (libcd), 10-7
SVECTOR (libgte), 8-18

T
TCB (libapi), 1-6
TCBH (libapi), 1-7

TILE (libgpu), 7-29
TILE_1, TILE_8, TILE_16 (libgpu), 7-30
TIM_IMAGE (libgpu), 7-31
TMD_PRIM (libgpu), 7-32
TMD_STRUCT (libgs), 9-26
TMESH (libgte), 8-19
ToT (libapi), 1-8

V
VabHdr (libsnd), 14-10
VagAtr (libsnd), 14-11
VECTOR (libgte), 8-20

Functions

_96_init (libapi), 1-78
_96_remove (libapi), 1-79
_boot (libapi), 1-80
_bu_init (libcard), 4-6
_card_auto (libcard), 4-7
_card_chan (libcard), 4-8
_card_clear (libcard), 4-9
_card_format (libcard), 4-10
_card_info (libcard), 4-11
_card_load (libcard), 4-12
_card_read (libcard), 4-13
_card_status (libcard), 4-14
_card_wait (libcard), 4-15
_card_write (libcard), 4-16
_comb_control (libcomb), 13-3
_get_errno (libapi), 1-81
_get_error (libapi), 1-82
_new_card (libcard), 4-17
_sio_control (libsio), 16-6

A
abs (libc/libc2), 2-2
acos (libmath), 3-3
AddCOMB (libcomb), 13-6
AddPrim (libgpu), 7-33
AddPrims (libgpu), 7-34
AddSIO (libsio), 16-3
ApplyMatrix (libgte), 8-21
ApplyMatrixLV (libgte), 8-22
ApplyMatrixSV (libgte), 8-23
ApplyRotMatrix (libgte), 8-24
ApplyRotMatrixLV (libgte), 8-25
ApplyTransposeMatrixLV (libgte), 8-26
asin (libmath), 3-4
atan (libmath), 3-5
atan2 (libmath), 3-6
atof (libc/libc2), 3-7
atoi (libc/libc2), 2-3
atol (libc/libc2), 2-4
AverageZ3 (libgte), 8-27
AverageZ4 (libgte), 8-28

B
bcmp (libc/libc2), 2-5
bcopy (libc/libc2), 2-6
BreakDraw (libgpu), 7-35
bsearch (libc/libc2), 2-7
bzero (libc/libc2), 2-8

C
calloc (libc/libc2), 2-9
calloc2 (libapi), 1-9
calloc3 (libapi), 1-10

catan (libgte), 8-29
CatPrim (libgpu), 7-36
ccos (libgte), 8-30
cd (libapi), 1-11
CdComstr (libcd), 10-8
CdControl (libcd), 10-9
CdControlB (libcd), 10-11
CdControlF (libcd), 10-12
CdDataCallback (libcd), 10-13
CdDataSync (libcd), 10-14
CdDiskReady (libcd), 10-15
CdFlush (libcd), 10-16
CdGetDiskType (libcd), 10-17
CdGetSector (libcd), 10-18
CdGetSector2 (libcd), 10-19
CdGetToc (libcd), 10-20
CdInit (libcd), 10-21
CdIntstr (libcd), 10-22
CdIntToPos (libcd), 10-23
CdLastCom (libcd), 10-24
CdLastPos (libcd), 10-25
CdMix (libcd), 10-26
CdMode (libcd), 10-27
CdPlay (libcd), 10-28
CdPosToInt (libcd), 10-29
CdRead (libcd), 10-30
CdRead2 (libcd), 10-31
CdReadBreak (libcd), 10-32
CdReadCallback (libcd), 10-33
CdReadExec (libcd), 10-34
CdReadFile (libcd), 10-35
CdReadSync (libcd), 10-36
CdReady (libcd), 10-37
CdReadyCallback (libcd), 10-38
CdReset (libcd), 10-39
CdSearchFile (libcd), 10-40
CdSetDebug (libcd), 10-41
CdStatus (libcd), 10-42
CdSync (libcd), 10-43
CdSyncCallback (libcd), 10-44
ceil (libmath), 3-8
ChangeClearPAD (libapi), 1-12
ChangeTh (libapi), 1-13
CheckCallback (libetc), 12-3
CheckPrim (libgpu), 7-37
ClearImage (libgpu), 7-38
ClearImage2 (libgpu), 7-39
ClearOTag (libgpu), 7-40
ClearOTagR (libgpu), 7-41
Clip3F (libgte), 8-31, 8-33
Clip3FP (libgte), 8-31, 8-33
Clip3FT (libgte), 8-31, 8-33
Clip3FTP (libgte), 8-31, 8-33
Clip3G (libgte), 8-31, 8-33
Clip3GP (libgte), 8-31, 8-33

Index I-3

Run-Time Library Reference

Clip3GT (libgte), 8-31, 8-33
Clip3GTP (libgte), 8-31, 8-33
cln (libgte), 8-35
close (libapi), 1-14
CloseEvent (libapi), 1-15
CloseTh (libapi), 1-16
ColorCol (libgte), 8-36
ColorDpq (libgte), 8-37
ColorMatCol (libgte), 8-38
ColorMatDpq (libgte), 8-39
CompMatrix (libgte), 8-40
CompMatrixLV (libgte), 8-41
ContinueDraw (libgpu), 7-42
cos (libmath), 3-9
cosh (libmath), 3-10
csin (libgte), 8-42
csqrt (libgte), 8-43

D
DecDCTBufSize (libpress), 6-5
DecDCTGetEnv (libpress), 6-6
DecDCTin (libpress), 6-7
DecDCTinCallback (libpress), 6-8
DecDCTinSync (libpress), 6-9
DecDCTout (libpress), 6-10
DecDCToutCallBack (libpress), 6-11
DecDCToutSync (libpress), 6-12
DecDCTPutEnv (libpress), 6-13
DecDCTReset (libpress), 6-14
DecDCTvlc (libpress), 6-15
DecDCTvlc2 (libpress), 6-16
DecDCTvlcBuild (libpress), 6-17
DecDCTvlcSize (libpress), 6-18
DecDCTvlcSize2 (libpress), 6-19
delete (libapi), 1-23
DeliverEvent (libapi), 1-17
DelSIO (libsio), 16-4
DisableEvent (libapi), 1-18
DisablePAD (libapi), 1-19
DisableTAP (libtap), 12-4
DivideF3 (libgte), 8-44
DivideF4 (libgte), 8-44
DivideFT3 (libgte), 8-44
DivideFT4 (libgte), 8-44
DivideG3 (libgte), 8-44
DivideG4 (libgte), 8-44
DivideGT3 (libgte), 8-44
DivideGT4 (libgte), 8-44
dmy_Ss... (libsnd), 14-14
dmyGsPrst... (libgs), 9-31
dmyGsTMD... (libgs), 9-32
DpqColor (libgte), 8-46
DpqColor3 (libgte), 8-47
DpqColorLight (libgte), 8-48
DrawOTag (libgpu), 7-43, 7-47
DrawOTag2 (libgpu), 7-44
DrawOTagEnv (libgpu), 7-45
DrawOTagIO (libgpu), 7-46
DrawSync (libgpu), 7-48
DrawSyncCallback (libgpu), 7-49
DsClose (libds), 11-7, 11-9, 11-22
DsCommand (libds), 11-8
DsControl (libds), 11-10
DsControlB (libds), 11-11
DsControlF (libds), 11-12
DsDataCallback (libds), 11-13
DsDataSync (libds), 11-14
DsEndReadySystem (libds), 11-15
DsFlush (libds), 11-16
DsGetDiskType (libds), 11-17
DsGetSector (libds), 11-18

DsGetSector2 (libds), 11-19
DsGetToc (libds), 11-20
DsInit (libds), 11-21
DsIntToPos (libds), 11-23
DsLastPos (libds), 11-24, 11-25
DsMix (libds), 11-26
DsPacket (libds), 11-27
DsPlay (libds), 11-28
DsPosToInt (libds), 11-29
DsQueueLen (libds), 11-30
DsRead (libds), 11-31
DsRead2 (libds), 11-32
DsReadBreak (libds), 11-33
DsReadCallback (libds), 11-34
DsReadExec (libds), 11-35
DsReadFile (libds), 11-36
DsReadSync (libds), 11-37
DsReady (libds), 11-38
DsReadyCallback (libds), 11-39
DsReadySystemMode (libds), 11-40
DsReset (libds), 11-41
DsSearchFile (libds), 11-42
DsSetDebug (libds), 11-43
DsShellOpen (libds), 11-44
DsStartReadySystem (libds), 11-45
DsStatus (libds), 11-46
DsSync (libds), 11-47
DsSyncCallback (libds), 11-48
DsSystemStatus (libds), 11-49
DumpClut (libgpu), 7-50
DumpDispEnv (libgpu), 7-51
DumpDrawEnv (libgpu), 7-52
DumpOTag (libgpu), 7-53
DumpTPage (libgpu), 7-54

E
EigenMatrix (libgte), 8-49
EnableEvent (libapi), 1-20
EnablePAD (libapi), 1-21
EnableTAP (libtap), 12-5
EncSPU (libpress), 6-20
EnterCriticalSection (libapi), 1-22
erase (libapi), 1-23
Exception (libapi), 1-24
Exec (libapi), 1-25
exit (libc/libc2), 2-10
ExitCriticalSection (libapi), 1-26
exp (libmath), 3-11

F
firstfile (libapi), 1-27
floor (libmath), 3-13
FlushCache (libapi), 1-28
fmod (libmath), 3-14
FntFlush (libgpu), 7-55
FntLoad (libgpu), 7-56
FntOpen (libgpu), 7-57
FntPrint (libgpu), 7-58
format (libapi), 1-29
free (libc/libc2), 2-11
free2 (libapi), 1-30
free3 (libapi), 1-31
frexp (libmath), 3-15

G
getc (libc/libc2), 2-12
getchar (libc/libc2), 2-13
GetClut (libgpu), 7-59
GetConf (libapi), 1-32

I-4 Index

Run-Time Library Reference

GetCr (libapi), 1-33
GetDispEnv (libgpu), 7-60
GetDrawArea (libgpu), 7-61
GetDrawEnv (libgpu), 7-62
GetDrawMode (libgpu), 7-63
GetDrawOffset (libgpu), 7-64
GetGp (libapi), 1-34
GetGraphDebug (libgpu), 7-65
GetODE (libgpu), 7-66
GetRCnt (libapi), 1-35
gets (libc/libc2), 2-14
GetSp (libapi), 1-36
GetSr (libapi), 1-37
GetSysSp (libapi), 1-38
GetTexWindow (libgpu), 7-67
GetTimSize (libgpu), 7-68
GetTPage (libgpu), 7-69
GetVideoMode (libetc), 12-6
GsA4div... (libgs), 9-33
GsClearOt (libgs), 9-36
GsClearVcount (libgs), 9-37
GsCutOt (libgs), 9-38
GsDefDispBuff (libgs), 9-39
GsDefDispBuff2 (libgs), 9-40
GsDrawOt (libgs), 9-41
GsDrawOtIO (libgs), 9-42
GsGetActiveBuffer (libgs), 9-43
GsGetHeadpUnit (libhmd), 17-23
GsGetLs (libgs), 9-44
GsGetLsUnit (libhmd), 17-24
GsGetLw (libgs), 9-45
GsGetLws (libgs), 9-46
GsGetLwsUnit (libhmd), 17-25
GsGetLwUnit (libhmd), 17-26
GsGetTimInfo (libgs), 9-47
GsGetVcount (libgs), 9-48
GsGetWorkBase (libgs), 9-49
GsInit3D (libgs), 9-50
GsInitCoordinate2 (libgs), 9-51
GsInitFixBg16 (libgs), 9-52
GsInitFixBg32 (libgs), 9-52
GsInitGraph (libgs), 9-53
GsInitGraph2 (libgs), 9-54
GsInitRstNrmMIMe (libhmd), 17-27
GsInitRstVtxMIMe (libhmd), 17-28
GsInitVcount (libgs), 9-55
GsLinkAnim (libhmd), 17-29
GsLinkObject3 (libgs), 9-56
GsLinkObject4 (libgs), 9-57
GsLinkObject5 (libgs), 9-58
GsMapCoordUnit (libhmd), 17-30
GsMapModelingData (libgs), 9-59
GsMapUnit (libhmd), 17-31
GsMulCoord0 (libgs), 9-60
GsMulCoord2 (libgs), 9-61
GsMulCoord3 (libgs), 9-62
GsPresetObject (libgs), 9-63
GsPrst... (libgs), 9-64
GsScaleScreen (libgs), 9-67
GsScanAnim (libhmd), 17-32
GsScanUnit (libhmd), 17-33
GsSetAmbient (libgs), 9-68
GsSetClip (libgs), 9-69
GsSetClip2 (libgs), 9-70
GsSetClip2D (libgs), 9-71
GsSetDrawBuffClip (libgs), 9-72
GsSetDrawBuffOffset (libgs), 9-73
GsSetFlatLight (libgs), 9-74
GsSetFogParam (libgs), 9-75
GsSetLightMatrix (libgs), 9-76
GsSetLightMatrix2 (libgs), 9-77

GsSetLightMode (libgs), 9-78
GsSetLsMatrix (libgs), 9-79
GsSetOffset (libgs), 9-80
GsSetOrign (libgs), 9-81
GsSetProjection (libgs), 9-82
GsSetRefView2 (libgs), 9-83
GsSetRefView2L (libgs), 9-84
GsSetRefViewLUnit (libhmd), 17-34
GsSetRefViewUnit (libhmd), 17-35
GsSetView2 (libgs), 9-85
GsSetViewUnit (libhmd), 17-36
GsSetWorkBase (libgs), 9-86
GsSortBg, GsSortFastBg (libgs), 9-87
GsSortBoxFill (libgs), 9-88
GsSortClear (libgs), 9-89
GsSortFixBg16 (libgs), 9-90
GsSortFixBg32 (libgs), 9-90
GsSortGLine (libgs), 9-91
GsSortLine (libgs), 9-91
GsSortObject3 (libgs), 9-92
GsSortObject4 (libgs), 9-93
GsSortObject4J (libgs), 9-94
GsSortObject5 (libgs), 9-95
GsSortObject5J (libgs), 9-96
GsSortOt (libgs), 9-97
GsSortPoly (libgs), 9-98
GsSortSprite, GsSortFastSprite, GsSortFlipSprite (libgs), 9-

99
GsSortUnit (libhmd), 17-37
GsSwapDispBuffer (libgs), 9-100
GsTMDdiv... (libgs), 9-101
GsTMDfast... (libgs), 9-105
GsTMDfastN... (libgs), 9-105
GsU_... (libhmd), 17-38
GsU_03000000 (libhmd), 17-39
GsU_03000001... (libhmd), 17-41
GsU_03010110... (libhmd), 17-43
GsU_04010010... (libhmd), 17-45
gteMIMefunc (libgte), 8-50

H
hypot (libmath), 3-16

I
InitCARD (libcard), 4-3
InitClip (libgte), 8-51
InitGeom (libgte), 8-52
InitGUN (libgun), 12-7
InitHeap (libapi), 1-39
InitHeap2 (libapi), 1-40
InitHeap3 (libapi), 1-41
InitPAD (libapi), 1-42
InitTAP (libtap), 12-8
Intpl (libgte), 8-53
InvSquareRoot (libgte), 8-54
ioctl (libapi), 1-43
Iseek (libapi), 1-49
IsEndPrim (libgpu), 7-70
IsIdleGPU (libgpu), 7-71
IsIdMatrix (libgte), 8-55

K
KanjiFntClose (libgpu), 7-72
KanjiFntFlush (libgpu), 7-73
KanjiFntOpen (libgpu), 7-74
KanjiFntPrint (libgpu), 7-75
Krom2RawAdd (libapi), 1-44
Krom2RawAdd2 (libapi), 1-45
Krom2Tim (libgpu), 7-76

Index I-5

Run-Time Library Reference

L
labs (libc/libc2), 2-16
ldexp (libmath), 3-17
LightColor (libgte), 8-56
Load (libapi), 1-46
LoadAverage0 (libgte), 8-57
LoadAverage12 (libgte), 8-58
LoadAverageByte (libgte), 8-59
LoadAverageCol (libgte), 8-60
LoadAverageShort0 (libgte), 8-61
LoadAverageShort12 (libgte), 8-62
LoadClut (libgpu), 7-77
LoadClut2 (libgpu), 7-78
LoadExec (libapi), 1-47
LoadImage (libgpu), 7-79
LoadImage2 (libgpu), 7-80
LoadTest (libapi), 1-48
LoadTPage (libgpu), 7-81
LocalLight (libgte), 8-63
log (libmath), 3-18
log10 (libmath), 3-19
longjmp (libc/libc2), 2-17
Lzc (libgte), 8-64

M
malloc (libc/libc2), 2-18
malloc2 (libapi), 1-50
malloc3 (libapi), 1-51
MargePrim (libgpu), 7-82
MatrixNormal (libgte), 8-65
MatrixNormal_0 (libgte), 8-66
MatrixNormal_1 (libgte), 8-67
MatrixNormal_2 (libgte), 8-68
McGuiLoad (mcgui), 19-10, 19-11
McxAllInfo (libmcx), 18-3
McxCardType (libmcx), 18-5
McxCurrCtrl (libmcx), 18-6
McxExecApl (libmcx), 18-7
McxExecFlag (libmcx), 18-8
McxFlashAcs (libmcx), 18-9
McxGetApl (libmcx), 18-10
McxGetMem (libmcx), 18-11
McxGetSerial (libmcx), 18-12
McxGetTime (libmcx), 18-13
McxGetUIFS (libmcx), 18-14
McxHideTrans (libmcx), 18-15
McxReadDev (libmcx), 18-16
McxSetLED (libmcx), 18-17
McxSetMem (libmcx), 18-18
McxSetTime (libmcx), 18-19
McxSetUIFS (libmcx), 18-20
McxShowTrans (libmcx), 18-21
McxStartCom (libmcx), 18-22
McxStopCom (libmcx), 18-23
McxSync (libmcx), 18-24
McxWriteDev (libmcx), 18-26
MemCardAccept (libmcrd), 5-3
MemCardCallback (libmcrd), 5-4
MemCardClose (libmcrd), 5-5
MemCardCreateFile (libmcrd), 5-6
MemCardDeleteFile (libmcrd), 5-7
MemCardEnd (libmcrd), 5-8
MemCardExist (libmcrd), 5-9
MemCardFormat (libmcrd), 5-10
MemCardGetDirentry (libmcrd), 5-11
MemCardInit (libmcrd), 5-12
MemCardOpen (libmcrd), 5-13
MemCardReadData (libmcrd), 5-14
MemCardReadFile (libmcrd), 5-15
MemCardStart (libmcrd), 5-16

MemCardStop (libmcrd), 5-17
MemCardSync (libmcrd), 5-18, 5-19
MemCardWriteData (libmcrd), 5-20
MemCardWriteFile (libmcrd), 5-21
memchr (libc/libc2), 2-19
memcmp (libc/libc2), 2-20
memcpy (libc/libc2), 2-21
memmove (libc/libc2), 2-22
memset (libc/libc2), 2-23
modf (libmath), 3-20
MoveImage (libgpu), 7-83
MoveImage2 (libgpu), 7-84
MulMatrix (libgte), 8-69
MulMatrix0 (libgte), 8-70
MulMatrix2 (libgte), 8-71
MulRotMatrix (libgte), 8-72
MulRotMatrix0 (libgte), 8-73

N
nextfile (libapi), 1-52
NextPrim (libgpu), 7-85
NormalClip (libgte), 8-74
NormalColor (libgte), 8-75
NormalColor_nom (libgte), 8-75
NormalColor3 (libgte), 8-76
NormalColor3_nom (libgte), 8-76
NormalColorCol (libgte), 8-77
NormalColorCol_nom (libgte), 8-77
NormalColorCol3 (libgte), 8-78
NormalColorCol3_nom (libgte), 8-78
NormalColorDpq (libgte), 8-79
NormalColorDpq_nom (libgte), 8-79
NormalColorDpq3 (libgte), 8-80
NormalColorDpq3_nom (libgte), 8-80

O
open (libapi), 1-53
OpenEvent (libapi), 1-54
OpenTh (libapi), 1-55
OpenTIM (libgpu), 7-86
OpenTMD (libgpu), 7-87
otz2p (libgte), 8-81
OuterProduct0 (libgte), 8-82
OuterProduct12 (libgte), 8-83

P
p2otz (libgte), 8-84
PadChkVsync (libpad), 12-9
PadEnableCom (libpad), 12-10
PadEnableGun (libpad), 12-11
PadGetState (libpad), 12-12
PadInfoAct (libpad), 12-13
PadInfoComb (libpad), 12-15
PadInfoMode (libpad), 12-16
PadInit (libetc), 12-18
PadInitDirect (libpad), 12-19
PadInitGun (libpad), 12-20
PadInitMtap (libpad), 12-22
PadRead (libetc), 12-23
PadRemoveGun (libpad), 12-24
PadSetAct (libpad), 12-25
PadSetActAlign (libpad), 12-27
PadSetMainMode (libpad), 12-28
PadStartCom (libpad), 12-29
PadStop (libetc), 12-30
PadStopCom (libpad), 12-31
pers_map (libgte), 8-85
PhongLine (libgte), 8-86
PopMatrix (libgte), 8-87

I-6 Index

Run-Time Library Reference

pow (libmath), 3-21
printf (libc/libc2), 2-24
printf2 (libmath), 3-22
PushMatrix (libgte), 8-88
putc (libc/libc2), 2-25
putchar (libc/libc2), 2-26
PutDispEnv (libgpu), 7-88
PutDrawEnv (libgpu), 7-89
puts (libc/libc2), 2-27

Q
qsort (libc/libc2), 2-28

R
rand (libc/libc2), 2-29
ratan2 (libgte), 8-89
rcos (libgte), 8-90
RCpolyF3 (libgte), 8-91
RcpolyF4 (libgte), 8-92
RCpolyFT3 (libgte), 8-91
RcpolyFT4 (libgte), 8-92
RCpolyG3 (libgte), 8-91
RcpolyG4 (libgte), 8-92
RCpolyGT3 (libgte), 8-91
RcpolyGT4 (libgte), 8-92
read (libapi), 1-56
ReadColorMatrix (libgte), 8-93
ReadGeomOffset (libgte), 8-94
ReadGeomScreen (libgte), 8-95
ReadLightMatrix (libgte), 8-96
ReadRGBfifo (libgte), 8-97
ReadRotMatrix (libgte), 8-98
ReadSXSYfifo (libgte), 8-99
ReadSZfifo3 (libgte), 8-100
ReadSZfifo4 (libgte), 8-101
ReadTIM (libgpu), 7-90
ReadTMD (libgpu), 7-91
realloc (libc/libc2), 2-30
realloc2 (libapi), 1-57
realloc3 (libapi), 1-58
RemoveGUN (libgun), 12-32
rename (libapi), 1-59
ResetCallback (libetc), 12-33
ResetGraph (libgpu), 7-92
ResetRCnt (libapi), 1-60
RestartCallback (libetc), 12-34
ReturnFromException (libapi), 1-61
RotAverage3 (libgte), 8-102
RotAverage3_nom (libgte), 8-102
RotAverage4 (libgte), 8-103
RotAverageNclip3 (libgte), 8-104
RotAverageNclip3_nom (libgte), 8-105
RotAverageNclip4 (libgte), 8-106
RotAverageNclipColorCol3 (libgte), 8-107
RotAverageNclipColorCol3_nom (libgte), 8-108
RotAverageNclipColorDpq3 (libgte), 8-109
RotAverageNclipColorDpq3_nom (libgte), 8-110
RotColorDpq (libgte), 8-111
RotColorDpq_nom (libgte), 8-112
RotColorDpq3 (libgte), 8-113
RotColorDpq3_nom (libgte), 8-114
RotColorMatDpq (libgte), 8-115
RotMatrix (libgte), 8-116
RotMatrix _gte libgte), 8-118
RotMatrixC (libgte), 8-119
RotMatrixX (libgte), 8-120
RotMatrixY (libgte), 8-121
RotMatrixYXZ_gte (libgte), 8-122
RotMatrixZ (libgte), 8-123
RotMatrixZYX_gte (libgte), 8-124

RotMeshH (libgte), 8-125
RotMeshPrimQ_T (libgte), 8-126
RotMeshPrimR_... (libgte), 8-127
RotMeshPrimS_... (libgte), 8-128
RotNclip3 (libgte), 8-129
RotNclip3_nom (libgte), 8-130
RotNclip4 (libgte), 8-131
RotPMD_... (libgte), 8-132
RotPMD_SV_... (libgte), 8-133
RotRMD_... (libgte), 8-134
RotRMD_SV... (libgte), 8-135
RotSMD_... (libgte), 8-136
RotSMD_SV_... (libgte), 8-137
RotTrans (libgte), 8-138
RotTrans_nom (libgte), 8-139
RotTransPers (libgte), 8-140
RotTransPers_nom (libgte), 8-141
RotTransPers3 (libgte), 8-142
RotTransPers3_nom (libgte), 8-143
RotTransPers3N (libgte), 8-144
RotTransPers4 (libgte), 8-145
RotTransPers4_nom (libgte), 8-146
RotTransPersN (libgte), 8-147
RotTransSV (libgte), 8-148
rsin (libgte), 8-149

S
ScaleMatrix (libgte), 8-150
ScaleMatrixL (libgte), 8-151
SelectGUN (libgun), 12-35
SendTAP (libtap), 12-36
SetBackColor (libgte), 8-152
SetColorMatrix (libgte), 8-153
SetConf (libapi), 1-62
SetDefDispEnv (libgpu), 7-93
SetDefDrawEnv (libgpu), 7-94
SetDispMask (libgpu), 7-95
SetDrawArea (libgpu), 7-96
SetDrawEnv (libgpu), 7-97
SetDrawLoad (libgpu), 7-98
SetDrawMode (libgpu), 7-99
SetDrawMove (libgpu), 7-100
SetDrawOffset (libgpu), 7-101
SetDrawStp (libgpu), 7-102
SetDrawTPage (libgpu), 7-103
SetDumpFnt (libgpu), 7-104
SetFarColor (libgte), 8-154
SetFogFar (libgte), 8-155
SetFogNear (libgte), 8-156
SetFogNearFar (libgte), 8-157
SetGeomOffset (libgte), 8-158
SetGeomScreen (libgte), 8-159
SetGraphDebug (libgpu), 7-105
setjmp (libc/libc2), 2-31
SetLightMatrix (libgte), 8-160
SetLineF2, SetLineF3, SetLineF4 (libgpu), 7-106
SetLineG2, SetLineG3, SetLineG4 (libgpu), 7-106
SetMem (libapi), 1-63
SetMulMatrix (libgte), 8-161
SetMulRotMatrix (libgte), 8-162
SetPolyF3, SetPolyF4 (libgpu), 7-107
SetPolyG3, SetPolyG4 (libgpu), 7-107
SetPolyGT3, SetPolyGT4 (libgpu), 7-107
SetRCnt (libapi), 1-64
SetRGBcd (libgte), 8-163
SetRotMatrix (libgte), 8-164
SetSemiTrans (libgpu), 7-108
SetShadeTex (libgpu), 7-109
SetSp (libapi), 1-65
SetSprt, SetSprt8, SetSprt16 (libgpu), 7-110
SetTexWindow (libgpu), 7-111

Index I-7

Run-Time Library Reference

SetTile, SetTile1, SetTile8, SetTile16 (libgpu), 7-112
SetTransMatrix (libgte), 8-165
SetVideoMode (libetc), 12-38
sin (libmath), 3-23
sinh (libmath), 3-24
Sio1Callback (libsio), 16-5
sprintf (libc/libc2), 2-32
sprintf2 (libmath), 3-25
SpuClearReverbWorkArea (libspu), 15-15
SpuFlush (libspu), 15-16
SpuFree (libspu), 15-17
SpuGetAllKeysStatus (libspu), 15-18
SpuGetCommonAttr (libspu), 15-19
SpuGetCommonCDMix (libspu), 15-20
SpuGetCommonCDReverb (libspu), 15-21
SpuGetCommonCDVolume (libspu), 15-22
SpuGetCommonMasterVolume (libspu), 15-23
SpuGetCommonMasterVolumeAttr (libspu), 15-24
SpuGetCommonMasterVolumeX (libspu), 15-25
SpuGetIRQ (libspu), 15-26
SpuGetIRQAddr (libspu), 15-27
SpuGetKeyStatus (libspu), 15-28
SpuGetMute (libspu), 15-29
SpuGetNoiseClock (libspu), 15-30
SpuGetNoiseVoice (libspu), 15-31
SpuGetPitchLFOVoice (libspu), 15-32
SpuGetReverb (libspu), 15-33
SpuGetReverbModeDelayTime (libspu), 15-34
SpuGetReverbModeDepth (libspu), 15-35
SpuGetReverbModeFeedback (libspu), 15-36
SpuGetReverbModeParam (libspu), 15-37
SpuGetReverbModeType (libspu), 15-38
SpuGetReverbVoice (libspu), 15-39
SpuGetTransferMode (libspu), 15-40
SpuGetTransferStartAddr (libspu), 15-41
SpuGetVoiceADSR (libspu), 15-42
SpuGetVoiceADSRAttr (libspu), 15-43
SpuGetVoiceAR (libspu), 15-44
SpuGetVoiceARAttr (libspu), 15-45
SpuGetVoiceAttr (libspu), 15-46
SpuGetVoiceDR (libspu), 15-47
SpuGetVoiceEnvelope (libspu), 15-48
SpuGetVoiceEnvelopeAttr (libspu), 15-49
SpuGetVoiceLoopStartAddr (libspu), 15-50
SpuGetVoiceNote (libspu), 15-51
SpuGetVoicePitch (libspu), 15-52
SpuGetVoiceRR (libspu), 15-53
SpuGetVoiceRRAttr (libspu), 15-54
SpuGetVoiceSampleNote (libspu), 15-55
SpuGetVoiceSL (libspu), 15-56
SpuGetVoiceSR (libspu), 15-57
SpuGetVoiceSRAttr (libspu), 15-58
SpuGetVoiceStartAddr (libspu), 15-59
SpuGetVoiceVolume (libspu), 15-60
SpuGetVoiceVolumeAttr (libspu), 15-61
SpuGetVoiceVolumeX (libspu), 15-62
SpuInit (libspu), 15-63
SpuInitHot (libspu), 15-64
SpuInitMalloc (libspu), 15-65
SpuIsReverbWorkAreaReserved (libspu), 15-66
SpuIsTransferCompleted (libspu), 15-67, 15-68
SpuMalloc (libspu), 15-69
SpuMallocWithStartAddr (libspu), 15-70
SpuNGetVoiceAttr (libspu), 15-71
SpuNSetVoiceAttr (libspu), 15-72
SpuQuit (libspu), 15-73
SpuRead (libspu), 15-74
SpuReadDecodedData (libspu), 15-75
SpuReserveReverbWorkArea (libspu), 15-76
SpuRGetAllKeysStatus (libspu), 15-77
SpuRSetVoiceAttr (libspu), 15-78

SpuSetCommonAttr (libspu), 15-79
SpuSetCommonCDMix (libspu), 15-81
SpuSetCommonCDReverb (libspu), 15-82
SpuSetCommonCDVolume (libspu), 15-83
SpuSetCommonMasterVolume (libspu), 15-84
SpuSetCommonMasterVolumeAttr (libspu), 15-85
SpuSetEnv (libspu), 15-86
SpuSetIRQ (libspu), 15-87
SpuSetIRQAddr (libspu), 15-88
SpuSetIRQCallback (libspu), 15-89
SpuSetKey (libspu), 15-90
SpuSetKeyOnWithAttr (libspu), 15-91
SpuSetMute (libspu), 15-92
SpuSetNoiseClock (libspu), 15-93
SpuSetNoiseVoice (libspu), 15-94
SpuSetPitchLFOVoice (libspu), 15-95
SpuSetReverb (libspu), 15-96
SpuSetReverbDepth (libspu), 15-97
SpuSetReverbModeDelayTime (libspu), 15-98
SpuSetReverbModeDepth (libspu), 15-99
SpuSetReverbModeFeedback (libspu), 15-100
SpuSetReverbModeParam (libspu), 15-101
SpuSetReverbModeType (libspu), 15-103
SpuSetReverbVoice (libspu), 15-104
SpuSetTransferCallback (libspu), 15-105
SpuSetTransferMode (libspu), 15-106
SpuSetTransferStartAddr (libspu), 15-107
SpuSetVoiceADSR (libspu), 15-108
SpuSetVoiceADSRAttr (libspu), 15-109
SpuSetVoiceAR (libspu), 15-110
SpuSetVoiceARAttr (libspu), 15-111
SpuSetVoiceAttr (libspu), 15-112
SpuSetVoiceDR (libspu), 15-116
SpuSetVoiceLoopStartAddr (libspu), 15-117
SpuSetVoiceNote (libspu), 15-118
SpuSetVoicePitch (libspu), 15-119
SpuSetVoiceRR (libspu), 15-120
SpuSetVoiceRRAttr (libspu), 15-121
SpuSetVoiceSampleNote (libspu), 15-122
SpuSetVoiceSL (libspu), 15-123
SpuSetVoiceSR (libspu), 15-124
SpuSetVoiceSRAttr (libspu), 15-125
SpuSetVoiceStartAddr (libspu), 15-126
SpuSetVoiceVolume (libspu), 15-127
SpuSetVoiceVolumeAttr (libspu), 15-128
SpuStart (libspu), 15-129
SpuStGetStatus (libspu), 15-130
SpuStGetVoiceStatus (libspu), 15-131
SpuStInit (libspu), 15-132
SpuStQuit (libspu), 15-133
SpuStSetPreparationFinishedCallback (libspu), 15-134
SpuStSetStreamFinishedCallback (libspu), 15-135
SpuStSetTransferFinishedCallback (libspu), 15-136
SpuStTransfer (libspu), 15-137
SpuWrite (libspu), 15-138
SpuWrite0 (libspu), 15-139
SpuWritePartly (libspu), 15-140
sqrt (libmath), 3-26
Square SL0 (libgte), 8-170
Square SL12 (libgte), 8-171
Square SS0 (libgte), 8-172
Square SS12 (libgte), 8-173
Square0 (libgte), 8-166
Square12 (libgte), 8-167
SquareRoot0 (libgte), 8-168
SquareRoot12 (libgte), 8-169
srand (libc/libc2), 2-33
SsAllocateVoices (libsnd), 14-15
SsBlockVoiceAllocation (libsnd), 14-16
SsChannelMute (libsnd), 14-17
SsEnd (libsnd), 14-18

I-8 Index

Run-Time Library Reference

SsGetActualProgFromProg (libsnd), 14-19
SsGetChannelMute (libsnd), 14-20
SsGetCurrentPoint (libsnd), 14-21
SsGetMute (libsnd), 14-22
SsGetMVol (libsnd), 14-23
SsGetNck (libsnd), 14-24
SsGetRVol (libsnd), 14-25
SsGetSerialAttr (libsnd), 14-26
SsGetSerialVol (libsnd), 14-27
SsGetVoiceMask (libsnd), 14-28
SsInit (libsnd), 14-29
SsInitHot (libsnd), 14-30
SsIsEos (libsnd), 14-31
SsPitchFromNote (libsnd), 14-32
SsPlayBack (libsnd), 14-33
SsQueueKeyOn (libsnd), 14-34
SsQueueRegisters (libsnd), 14-35
SsQueueReverb (libsnd), 14-37
SsQuit (libsnd), 14-38
SsSepClose (libsnd), 14-39
SsSepOpen (libsnd), 14-40
SsSepOpenJ (libsnd), 14-41
SsSepPause (libsnd), 14-42
SsSepPlay (libsnd), 14-43
SsSepReplay (libsnd), 14-44
SsSepSetAccelerando (libsnd), 14-45
SsSepSetCrescendo (libsnd), 14-46
SsSepSetDecrescendo (libsnd), 14-47
SsSepSetRitardando (libsnd), 14-48
SsSepSetVol (libsnd), 14-49
SsSepStop (libsnd), 14-50
SsSeqCalledTbyT (libsnd), 14-51
SsSeqClose (libsnd), 14-52
SsSeqGetVol (libsnd), 14-53
SsSeqOpen (libsnd), 14-54
SsSeqOpenJ (libsnd), 14-55
SsSeqPause (libsnd), 14-56
SsSeqPlay (libsnd), 14-57
SsSeqPlayPtoP, 14-58
SsSeqReplay (libsnd), 14-59
SsSeqSetAccelerando (libsnd), 14-60
SsSeqSetCrescendo (libsnd), 14-61
SsSeqSetDecrescendo (libsnd), 14-62
SsSeqSetNext (libsnd), 14-63
SsSeqSetRitardando (libsnd), 14-64
SsSeqSetVol (libsnd), 14-65
SsSeqSkip, 14-66
SsSeqStop (libsnd), 14-67
SsSetAutoKeyOffMode (libsnd), 14-68
SsSetCurrentPoint, 14-69
SsSetLoop (libsnd), 14-70
SsSetMarkCallback (libsnd), 14-71
SsSetMono (libsnd), 14-72
SsSetMute (libsnd), 14-73
SsSetMVol (libsnd), 14-74
SsSetNck (libsnd), 14-24
SsSetNext (libsnd), 14-75
SsSetNoiseOff (libsnd), 14-24
SsSetNoiseOn (libsnd), 14-24
SsSetReservedVoice (libsnd), 14-76
SsSetRVol (libsnd), 14-77
SsSetSerialAttr (libsnd), 14-78
SsSetSerialVol (libsnd), 14-79
SsSetStereo (libsnd), 14-80
SsSetTableSize (libsnd), 14-81
SsSetTempo (libsnd), 14-82
SsSetTickCallBack (libsnd), 14-83
SsSetTickMode (libsnd), 14-84
SsSetVoiceMask (libsnd), 14-85
SsSetVoiceSettings (libsnd), 14-86
SsStart (libsnd), 14-87

SsStart2 (libsnd), 14-88
SsUnBlockVoiceAllocation (libsnd), 14-89
SsUtAllKeyOff (libsnd), 14-90
SsUtAutoPan (libsnd), 14-91
SsUtAutoVol (libsnd), 14-92
SsUtChangeADSR (libsnd), 14-93
SsUtChangePitch (libsnd), 14-94
SsUtFlush (libsnd), 14-95
SsUtGetDetVVol (libsnd), 14-96
SsUtGetProgAtr (libsnd), 14-97
SsUtGetReverbType (libsnd), 14-98
SsUtGetVabHdr (libsnd), 14-99
SsUtGetVagAddr (libsnd), 14-100
SsUtGetVagAddrFromTone (libsnd), 14-101
SsUtGetVagAtr (libsnd), 14-102
SsUtGetVBaddrInSB (libsnd), 14-103
SsUtGetVVol (libsnd), 14-104
SsUtKeyOff (libsnd), 14-105
SsUtKeyOffV (libsnd), 14-106
SsUtKeyOn (libsnd), 14-107
SsUtKeyOnV (libsnd), 14-108
SsUtPitchBend (libsnd), 14-109
SsUtReverbOff (libsnd), 14-110
SsUtReverbOn (libsnd), 14-111
SsUtSetDetVVol (libsnd), 14-112
SsUtSetProgAtr (libsnd), 14-113
SsUtSetReverbDelay (libsnd), 14-114
SsUtSetReverbDepth (libsnd), 14-115
SsUtSetReverbFeedback (libsnd), 14-116
SsUtSetReverbType (libsnd), 14-117
SsUtSetVabHdr (libsnd), 14-118
SsUtSetVagAtr (libsnd), 14-119
SsUtSetVVol (libsnd), 14-120
SsVabClose (libsnd), 14-121
SsVabFakeBody (libsnd), 14-122
SsVabFakeHead (libsnd), 14-123
SsVabOpen (libsnd), 14-124
SsVabOpenHead (libsnd), 14-125
SsVabOpenHeadSticky (libsnd), 14-126
SsVabTransBody (libsnd), 14-127
SsVabTransBodyPartly (libsnd), 14-128
SsVabTransCompleted (libsnd), 14-129
SsVabTransfer (libsnd), 14-130
SsVoiceCheck (libsnd), 14-131
SsVoKeyOff (libsnd), 14-132
SsVoKeyOn (libsnd), 14-133
StartCARD (libcard), 4-4
StartGUN (libgun), 12-39
StartPAD (libapi), 1-66
StartRCnt (libapi), 1-67
StartTAP (libtap), 12-40
StCdInterrupt (libcd), 10-45
StClearRing (libcd), 10-46
StFreeRing (libcd), 10-47
StGetBackloc (libcd), 10-48
StGetNext (libcd), 10-49
StGetNextS (libcd), 10-50
StNextStatus (libcd), 10-51
StopCallback (libetc), 12-41
StopCARD (libcard), 4-5
StopGUN (libgun), 12-42
StopPAD (libapi), 1-68
StopRCnt (libapi), 1-69
StopTAP (libtap), 12-43
StoreImage (libgpu), 7-113
StoreImage2 (libgpu), 7-114
strcat (libc/libc2), 2-34
strchr (libc/libc2), 2-35
strcmp (libc/libc2), 2-36
strcpy (libc/libc2), 2-37
strcspn (libc/libc2), 2-38

Index I-9

Run-Time Library Reference

StRingStatus (libcd), 10-52
strlen (libc/libc2), 2-39
strncat (libc/libc2), 2-40
strncmp (libc/libc2), 2-41
strncpy (libc/libc2), 2-42
strpbrk (libc/libc2), 2-43
strrchr (libc/libc2), 2-44
strspn (libc/libc2), 2-45
strstr (libc/libc2), 2-46
strtod (libc/libc2), 3-27
strtok (libc/libc2), 2-47
strtol (libc/libc2), 2-48
strtoul (libc/libc2), 2-49
StSetChannel (libcd), 10-53
StSetEmulate (libcd), 10-54
StSetMask (libcd), 10-55
StSetRing (libcd), 10-56
StSetStream (libcd), 10-57
StUnSetRing (libcd), 10-58
SubPol3 (libgte), 8-174
SubPol4 (libgte), 8-175
SwEnterCriticalSection (libapi), 1-70
SwExitCriticalSection (libapi), 1-71
SystemError (libapi), 1-72

T
tan (libmath), 3-28
tanh (libmath), 3-29

TermPrim (libgpu), 7-115
TestEvent (libapi), 1-73
TransMatrix (libgte), 8-176
TransposeMatrix (libgte), 8-177
TransRot_32 (libgte), 8-180
TransRotPers (libgte), 8-178
TransRotPers3 (libgte), 8-179

U
undelete (libapi), 1-74
UnDeliverEvent (libapi), 1-75

V
VectorNormal (libgte), 8-181
VectorNormalS (libgte), 8-182
VectorNormalSS (libgte), 8-183
VSync (libetc), 7-116
VSyncCallback (libetc), 7-117

W
WaitEvent (libapi), 1-76
write (libapi), 1-77

Macros

A
addPrim (libgpu), 7-33
addPrims (libgpu), 7-34
addVector (libgpu), 7-118
applyVector (libgpu), 7-119

C
catPrim (libgpu), 7-36
ChangeClearSIO (libcomb), 13-7
CombAsyncRequest (libcomb), 13-9
CombBytesRemaining (libcomb), 13-10
CombBytesToRead (libcomb), 13-11
CombBytesToWrite (libcomb), 13-12
CombCancelRead (libcomb), 13-13
CombCancelWrite (libcomb), 13-14
CombControlStatus (libcomb), 13-15
CombCTS (libcomb), 13-16
CombGetBPS (libcomb), 13-17
CombGetMode (libcomb), 13-18
CombGetPacketSize (libcomb), 13-19
CombReset (libcomb), 13-20
CombResetError (libcomb), 13-21
CombResetVBLANK (libcomb), 13-22
CombSetBPS (libcomb), 13-23
CombSetControl (libcomb), 13-24
CombSetMode (libcomb), 13-25
CombSetPacketSize (libcomb), 13-26
CombSetRTS (libcomb), 13-27
CombSioStatus (libcomb), 13-28
CombWaitCallback (libcomb), 13-29
copyVector (libgpu), 7-120

D
DelCOMB (libcomb), 13-8
dump… (libgpu), 7-124
dumpClut (libgpu), 7-50
dumpMatrix (libgpu), 7-121

dumpRECT (libgpu), 7-122
dumpTPage (libgpu), 7-54
dumpVector (libgpu), 7-123

F
fabs (libmath), 3-12

G
getClut (libgpu), 7-59
getTPage (libgpu), 7-69
GsClearDispArea (libgs), 9-110
GsIncFrame (libgs), 9-111
GsSetAzwh (libgs), 9-112

I
isendprim (libgpu), 7-70
isXXXX... (libc/libc2), 2-15

N
nextPrim (libgpu), 7-85

S
setClut (libgpu), 7-125
setDrawTPage (libgpu), 7-103
setLineF2, setLineF3, setLineF4 (libgpu), 7-106
setLineG2, setLineG3, setLineG4 (libgpu), 7-106
setPolyF3, setPolyF4 (libgpu), 7-107
setPolyG3, setPolyG4 (libgpu), 7-107
setPolyGT3, setPolyGT4 (libgpu), 7-107
setRECT (libgpu), 7-126
setRGB0, setRGB1, setRGB2, setRGB3 (libgpu), 7-127
setSemiTrans (libgpu), 7-108
setShadeTex (libgpu), 7-109
setSprt, setSprt8, setSprt16 (libgpu), 7-110
setTexWindow (libgpu), 7-111

I-10 Index

Run-Time Library Reference

setTile, setTile1, setTile8, setTile16 (libgpu), 7-112
setTPage (libgpu), 7-128
setUV0, setUV3, setUV4 (libgpu), 7-129
SetUVWH (libgpu), 7-130
setVector (libgpu), 7-131
setWH (libgpu), 7-132
setXY0, set XY2, setXY3, setXY4 (libgpu), 7-133
setXYWH (libgpu), 7-134

T
termPrim (libgpu), 7-115
toascii (libc/libc2), 2-50
tolower (libc/libc2), 2-51
toupper (libc/libc2), 2-52

	RUN-TIME LIBRARY REFERENCE
	Ver 4.4, Jan 1999
	Changes Since Last Release
	Table of Contents
	About This Manual
	Changes Since Last Release
	Related Documentation
	Manual Structure
	Developer Reference Series
	Typographic Conventions
	Developer Support

	Ch 1: Kernel Library
	Structures
	DIRENTRY
	EvCB
	EXEC
	TCB
	TCBH
	ToT

	Functions
	calloc2
	calloc3
	cd
	ChangeClearPAD
	ChangeTh
	close
	CloseEvent
	CloseTh
	DeliverEvent
	DisableEvent
	DisablePAD
	EnableEvent
	EnablePAD
	EnterCriticalSection
	erase
	Exception
	Exec
	ExitCriticalSection
	firstfile
	FlushCache
	format
	free2
	free3
	GetConf
	GetCr
	GetGp
	GetRCnt
	GetSp
	GetSr
	GetSysSp
	InitHeap
	InitHeap2
	InitHeap3
	InitPAD
	ioctl
	Krom2RawAdd
	Krom2RawAdd2
	Load
	LoadExec
	LoadTest
	lseek
	malloc2
	malloc3
	nextfile
	open
	OpenEvent
	OpenTh
	read
	realloc2
	realloc3
	rename
	ResetRCnt
	ReturnFromException
	SetConf
	SetMem
	SetRCnt
	SetSp
	StartPAD
	StartRCnt
	StopPAD
	StopRCnt
	SwEnterCriticalSection
	SwExitCriticalSection
	SystemError
	TestEvent
	undelete
	UnDeliverEvent
	WaitEvent
	write
	_96_init
	_96_remove
	_boot
	_get_errno
	_get_error

	Ch 2: Standard C Library
	Functions
	abs
	atoi
	atol
	bcmp
	bcopy
	bsearch
	bzero
	calloc
	exit
	free
	getc
	getchar
	gets
	isXXXX...
	labs
	longjmp
	malloc
	memchr
	memcmp
	memcpy
	memmove
	memset
	printf
	putc
	putchar
	puts
	qsort
	rand
	realloc
	setjmp
	sprintf
	srand
	strcat
	strchr
	strcmp
	strcpy
	strcspn
	strlen
	strncat
	strncmp
	strncpy
	strpbrk
	strrchr
	strspn
	strstr
	strtok
	strtol
	strtoul
	toascii
	tolower
	toupper

	Ch 3: Math Library
	Functions
	acos
	asin
	atan
	atan2
	atof
	ceil
	cos
	cosh
	exp
	fabs
	floor
	fmod
	frexp
	hypot
	ldexp
	log
	log10
	modf
	pow
	printf2
	sin
	sinh
	sprintf2
	sqrt
	strtod
	tan
	tanh

	Ch 4: Memory Card Library
	Functions
	InitCARD
	StartCARD
	StopCARD
	_bu_init
	_card_auto
	_card_chan
	_card_clear
	_card_format
	_card_info
	_card_load
	_card_read
	_card_status
	_card_wait
	_card_write
	_new_card

	Ch 5: Extended Memory Card Library
	Functions
	MemCardAccept
	MemCardCallback
	MemCardClose
	MemCardCreateFile
	MemCardDeleteFile
	MemCardEnd
	MemCardExist
	MemCardFormat
	MemCardGetDirentry
	MemCardInit
	MemCardOpen
	MemCardReadData
	MemCardReadFile
	MemCardStart
	MemCardStop
	MemCardSync
	MemCardUnformat
	MemCardWriteData
	MemCardWriteFile

	Ch 6: Data Compression Library
	Structures
	DECDCTENV
	ENCSPUENV

	Functions
	DecDCTBufSize
	DecDCTGetEnv
	DecDCTin
	DecDCTinCallback
	DecDCTinSync
	DecDCTout
	DecDCToutCallback
	DecDCToutSync
	DecDCTPutEnv
	DecDCTReset
	DecDCTvlc
	DecDCTvlc2
	DecDCTvlcBuild
	DecDCTvlcSize
	DecDCTvlcSize2
	EncSPU

	Ch 7: Basic Graphics Library
	Structures
	DISPENV
	DRAWENV
	DR_AREA
	DR_ENV
	DR_LOAD
	DR_MODE
	DR_MOVE
	DR_OFFSET
	DR_STP
	DR_TPAGE
	DR_TWIN
	LINE_F2, LINE_F3, LINE_F4
	LINE_G2, LINE_G3, LINE_G4
	POLY_F3, POLY_F4
	POLY_FT3, POLY_FT4
	POLY_G3, POLY_G4
	POLY_GT3, POLY_GT4
	RECT
	RECT32
	SPRT
	SPRT_8, SPRT_16
	TILE
	TILE_1, TILE_8, TILE_16
	TIM_IMAGE
	TMD_PRIM

	Functions
	AddPrim, addPrim
	AddPrims, addPrims
	BreakDraw
	CatPrim, catPrim
	CheckPrim
	ClearImage
	ClearImage2
	ClearOTag
	ClearOTagR
	ContinueDraw
	DrawOTag
	DrawOTag2
	DrawOTagEnv
	DrawOTagIO
	DrawPrim
	DrawSync
	DrawSyncCallback
	DumpClut, dumpClut
	DumpDispEnv
	DumpDrawEnv
	DumpOTag
	DumpTPage, dumpTPage
	FntFlush
	FntLoad
	FntOpen
	FntPrint
	GetClut, getClut
	GetDispEnv
	GetDrawArea
	GetDrawEnv
	GetDrawMode
	GetDrawOffset
	GetGraphDebug
	GetODE
	GetTexWindow
	GetTimSize
	GetTPage, getTPage
	IsEndPrim, isendprim
	IsIdleGPU
	KanjiFntClose
	KanjiFntFlush
	KanjiFntOpen
	KanjiFntPrint
	Krom2Tim
	LoadClut
	LoadClut2
	LoadImage
	LoadImage2
	LoadTPage
	MargePrim
	MoveImage
	MoveImage2
	NextPrim, nextPrim
	OpenTIM
	OpenTMD
	PutDispEnv
	PutDrawEnv
	ReadTIM
	ReadTMD
	ResetGraph
	SetDefDispEnv
	SetDefDrawEnv
	SetDispMask
	SetDrawArea
	SetDrawEnv
	SetDrawLoad
	SetDrawMode
	SetDrawMove
	SetDrawOffset
	SetDrawStp
	SetDrawTPage, setDrawTPage
	SetDumpFnt
	SetGraphDebug
	SetLineF2, SetLineF3, SetLineF4; setLineF2, setLineF3, setLineF4; SetLineG2, SetLineG3, SetLineG4; setLineG2, setLineG3, setLineG4
	SetPolyF3, SetPolyF4; setPolyF3, setPolyF4; SetPolyG3, SetPolyG4; setPolyG3, setPolyG4; SetPolyGT3, SetPolyGT4; setPolyGT3, setPolyGT4
	SetSemiTrans, setSemiTrans
	SetShadeTex, setShadeTex
	SetSprt, SetSprt8, SetSprt16; setSprt, setSprt8, setSprt16
	SetTexWindow
	SetTile, SetTile1, SetTile8, SetTile16; setTile, setTile1, setTile8, setTile16
	StoreImage
	StoreImage2
	TermPrim, termPrim
	VSync
	VSyncCallback

	Macros
	addVector
	applyVector
	copyVector
	dumpMatrix
	dumpRECT
	dumpVector
	dump...
	setClut
	setRECT
	setRGB0, setRGB1, setRGB2, setRGB3
	setTPage
	setUV0, setUV3, setUV4
	setUVWH
	setVector
	setWH
	setXY0, setXY2, setXY3, setXY4
	setXYWH

	Ch 8: Basic Geometry Library
	Structures
	CRVECTOR3
	CRVECTOR4
	CVECTOR
	DIVPOLYGON3
	DIVPOLYGON4
	DVECTOR
	EVECTOR
	MATRIX
	POL3
	POL4
	QMESH
	RVECTOR
	SPOL
	SVECTOR
	TMESH
	VECTOR

	Functions
	ApplyMatrix
	ApplyMatrixLV
	ApplyMatrixSV
	ApplyRotMatrix
	ApplyRotMatrixLV
	ApplyTransposeMatrixLV
	AverageZ3
	AverageZ4
	catan
	ccos
	Clip3F, Clip3FP, Clip3FT, Clip3FTP, Clip3G, Clip3GT, Clip3GTP
	Clip4F, Clip4FP, Clip4FT, Clip4FTP, Clip4G, Clip4GT, Clip4GTP
	cln
	ColorCol
	ColorDpq
	ColorMatCol
	ColorMatDpq
	CompMatrix
	CompMatrixLV
	csin
	csqrt
	DivideF3, DivideF4, DivideFT3, DivideFT4, DivideG3, DivideG4, DivideGT3, DivideGT4
	DpqColor
	DpqColor3
	DpqColorLight
	EigenMatrix
	gteMIMefunc
	InitClip
	InitGeom
	Intpl
	InvSquareRoot
	IsIdMatrix
	LightColor
	LoadAverage0
	LoadAverage12
	LoadAverageByte
	LoadAverageCol
	LoadAverageShort0
	LoadAverageShort12
	LocalLight
	Lzc
	MatrixNormal
	MatrixNormal_0
	MatrixNormal_1
	MatrixNormal_2
	MulMatrix
	MulMatrix0
	MulMatrix2
	MulRotMatrix
	MulRotMatrix0
	NormalClip
	NormalColor, NormalColor_nom
	NormalColor3, NormalColor3_nom
	NormalColorCol, NormalColorCol_nom
	NormalColorCol3, NormalColorCol3_nom
	NormalColorDpq, NormalColorDpq_nom
	NormalColorDpq3, NormalColorDpq3_nom
	otz2p
	OuterProduct0
	OuterProduct12
	p2otz
	pers_map
	PhongLine
	PopMatrix
	PushMatrix
	ratan2
	rcos
	RCpolyF3, RCpolyFT3, RCpolyG3, RCpolyGT3
	RCpolyF4, RCpolyFT4, RCpolyG4, RCpolyGT4
	ReadColorMatrix
	ReadGeomOffset
	ReadGeomScreen
	ReadLightMatrix
	ReadRGBfifo
	ReadRotMatrix
	ReadSXSYfifo
	ReadSZfifo3
	ReadSZfifo4
	RotAverage3, RotAverage3_nom
	RotAverage4
	RotAverageNclip3
	RotAverageNclip3_nom
	RotAverageNclip4
	RotAverageNclipColorCol3
	RotAverageNclipColorCol3_nom
	RotAverageNclipColorDpq3
	RotAverageNclipColorDpq3_nom
	RotColorDpq
	RotColorDpq_nom
	RotColorDpq3
	RotColorDpq3_nom
	RotColorMatDpq
	RotMatrix...
	RotMatrix_gte
	RotMatrixC
	RotMatrixX
	RotMatrixY
	RotMatrixYXZ_gte
	RotMatrixZ
	RotMatrixZYX_gte
	RotMeshH
	RotMeshPrimQ_T
	RotMeshPrimR_...
	RotMeshPrimS_...
	RotNclip3
	RotNclip3_nom
	RotNclip4
	RotPMD_...
	RotPMD_SV_...
	RotRMD_...
	RotRMD_SV_...
	RotSMD_...
	RotSMD_SV_...
	RotTrans
	RotTrans_nom
	RotTransPers
	RotTransPers_nom
	RotTransPers3
	RotTransPers3_nom
	RotTransPers3N
	RotTransPers4
	RotTransPers4_nom
	RotTransPersN
	RotTransSV
	rsin
	ScaleMatrix
	ScaleMatrixL
	SetBackColor
	SetColorMatrix
	SetFarColor
	SetFogFar
	SetFogNear
	SetFogNearFar
	SetGeomOffset
	SetGeomScreen
	SetLightMatrix
	SetMulMatrix
	SetMulRotMatrix
	SetRGBcd
	SetRotMatrix
	SetTransMatrix
	Square0
	Square12
	SquareRoot0
	SquareRoot12
	SquareSL0
	SquareSL12
	SquareSS0
	SquareSS12
	SubPol3
	SubPol4
	TransMatrix
	TransposeMatrix
	TransRotPers
	TransRotPers3
	TransRot_32
	VectorNormal
	VectorNormalS
	VectorNormalSS

	Ch 9: Extended Graphics Library
	Structures
	GsBG
	GsBOXF
	GsCELL
	GsCOORD2PARAM
	GsCOORDINATE2
	GsDOBJ2
	GsDOBJ3
	GsDOBJ5
	GsFOGPARAM
	GsF_LIGHT
	GsGLINE
	GsIMAGE
	GsLINE
	GsMAP
	GsOBJTABLE2
	GsOT
	GsOT_TAG
	GsRVIEW2
	GsSPRITE
	GsVIEW2
	TMD_STRUCT
	_GsFCALL
	_GsPOSITION

	Functions
	dmyGsPrst...
	dmyGsTMD...
	GsA4div...
	GsClearOt
	GsClearVcount
	GsCutOt
	GsDefDispBuff
	GsDefDispBuff2
	GsDrawOt
	GsDrawOtIO
	GsGetActiveBuffer
	GsGetLs
	GsGetLw
	GsGetLws
	GsGetTimInfo
	GsGetVcount
	GsGetWorkBase
	GsInit3D
	GsInitCoordinate2
	GsInitFixBg16, GsInitFixBg32
	GsInitGraph
	GsInitGraph2
	GsInitVcount
	GsLinkObject3
	GsLinkObject4
	GsLinkObject5
	GsMapModelingData
	GsMulCoord0
	GsMulCoord2
	GsMulCoord3
	GsPresetObject
	GsPrst...
	GsScaleScreen
	GsSetAmbient
	GsSetClip
	GsSetClip2
	GsSetClip2D
	GsSetDrawBuffClip
	GsSetDrawBuffOffset
	GsSetFlatLight
	GsSetFogParam
	GsSetLightMatrix
	GsSetLightMatrix2
	GsSetLightMode
	GsSetLsMatrix
	GsSetOffset
	GsSetOrign
	GsSetProjection
	GsSetRefView2
	GsSetRefView2L
	GsSetView2
	GsSetWorkBase
	GsSortBg, GsSortFastBg
	GsSortBoxFill
	GsSortClear
	GsSortFixBg16, GsSortFixBg32
	GsSortGLine, GsSortLine
	GsSortObject3
	GsSortObject4
	GsSortObject4J
	GsSortObject5
	GsSortObject5J
	GsSortOt
	GsSortPoly
	GsSortSprite, GsSortFastSprite, GsSortFlipSprite
	GsSwapDispBuffer
	GsTMDdiv…
	GsTMDfast..., GsTMDfastN…

	Macros
	GsClearDispArea
	GsIncFrame
	GsSetAzwh

	External Variables

	Ch 10: CD/Streaming Library
	Structures
	CdlATV
	CdlFILE
	CdlFILTER
	CdlLOC
	StHEADER

	Functions
	CdComstr
	CdControl
	CdControlB
	CdControlF
	CdDataCallback
	CdDataSync
	CdDiskReady
	CdFlush
	CdGetDiskType
	CdGetSector
	CdGetSector2
	CdGetToc
	CdInit
	CdIntstr
	CdIntToPos
	CdLastCom
	CdLastPos
	CdMix
	CdMode
	CdPlay
	CdPosToInt
	CdRead
	CdRead2
	CdReadBreak
	CdReadCallback
	CdReadExec
	CdReadFile
	CdReadSync
	CdReady
	CdReadyCallback
	CdReset
	CdSearchFile
	CdSetDebug
	CdStatus
	CdSync
	CdSyncCallback
	StCdInterrupt
	StClearRing
	StFreeRing
	StGetBackloc
	StGetNext
	StGetNextS
	StNextStatus
	StRingStatus
	StSetChannel
	StSetEmulate
	StSetMask
	StSetRing
	StSetStream
	StUnSetRing

	Ch 11: Extended CD-ROM Library
	Structures
	DslATV
	DslFILE
	DslFILTER
	DslLOC

	Functions
	DsClose
	DsCommand
	DsComstr
	DsControl
	DsControlB
	DsControlF
	DsDataCallback
	DsDataSync
	DsEndReadySystem
	DsFlush
	DsGetDiskType
	DsGetSector
	DsGetSector2
	DsGetToc
	DsInit
	DsInstr
	DsIntToPos
	DsLastCom
	DsLastPos
	DsMix
	DsPacket
	DsPlay
	DsPosToInt
	DsQueueLen
	DsRead
	DsRead2
	DsReadBreak
	DsReadCallback
	DsReadExec
	DsReadFile
	DsReadSync
	DsReady
	DsReadyCallback
	DsReadySystemMode
	DsReset
	DsSearchFile
	DsSetDebug
	DsShellOpen
	DsStartReadySystem
	DsStatus
	DsSync
	DsSyncCallback
	DsSystemStatus

	Ch 12: Controller/Peripherals Library
	Functions
	CheckCallback
	DisableTAP
	EnableTAP
	GetVideoMode
	InitGUN
	InitTAP
	PadChkVsync
	PadEnableCom
	PadEnableGun
	PadGetState
	PadInfoAct
	PadInfoComb
	PadInfoMode
	PadInit
	PadInitDirect
	PadInitGun
	PadInitMtap
	PadRead
	PadRemoveGun
	PadSetAct
	PadSetActAlign
	PadSetMainMode
	PadStartCom
	PadStop
	PadStopCom
	RemoveGUN
	ResetCallback
	RestartCallback
	SelectGUN
	SendTAP
	SetVideoMode
	StartGUN
	StartTAP
	StopCallback
	StopGUN
	StopTAP

	Ch 13: Link Cable Library
	Functions
	_comb_control
	AddCOMB
	ChangeClearSIO
	DelCOMB

	Macros
	CombAsyncRequest
	CombBytesRemaining
	CombBytesToRead
	CombBytesToWrite
	CombCancelRead
	CombCancelWrite
	CombControlStatus
	CombCTS
	CombGetBPS
	CombGetMode
	CombGetPacketSize
	CombReset
	CombResetError
	CombResetVBLANK
	CombSetBPS
	CombSetControl
	CombSetMode
	CombSetPacketSize
	CombSetRTS
	CombSioStatus
	CombWaitCallback

	Ch 14: Extended Sound Library
	Structures
	ProgAtr
	SndRegisterAttr
	SndVoiceStats
	SndVolume
	SndVolume2
	VabHdr
	VagAtr

	Functions
	dmy_Ss...
	SsAllocateVoices
	SsBlockVoiceAllocation
	SsChannelMute
	SsEnd
	SsGetActualProgFromProg
	SsGetChannelMute
	SsGetCurrentPoint
	SsGetMute
	SsGetMVol
	SsGetNck, SsSetNck, SsSetNoiseOff, SsSetNoiseOn
	SsGetRVol
	SsGetSerialAttr
	SsGetSerialVol
	SsGetVoiceMask
	SsInit
	SsInitHot
	SsIsEos
	SsPitchFromNote
	SsPlayBack
	SsQueueKeyOn
	SsQueueRegisters
	SsQueueReverb
	SsQuit
	SsSepClose
	SsSepOpen
	SsSepOpenJ
	SsSepPause
	SsSepPlay
	SsSepReplay
	SsSepSetAccelerando
	SsSepSetCrescendo
	SsSepSetDecrescendo
	SsSepSetRitardando
	SsSepSetVol
	SsSepStop
	SsSeqCalledTbyT
	SsSeqClose
	SsSeqGetVol
	SsSeqOpen
	SsSeqOpenJ
	SsSeqPause
	SsSeqPlay
	SsSeqPlayPtoP
	SsSeqReplay
	SsSeqSetAccelerando
	SsSeqSetCrescendo
	SsSeqSetDecrescendo
	SsSeqSetNext
	SsSeqSetRitardando
	SsSeqSetVol
	SsSeqSkip
	SsSeqStop
	SsSetAutoKeyOffMode
	SsSetCurrentPoint
	SsSetLoop
	SsSetMarkCallback
	SsSetMono
	SsSetMute
	SsSetMVol
	SsSetNext
	SsSetReservedVoice
	SsSetRVol
	SsSetSerialAttr
	SsSetSerialVol
	SsSetStereo
	SsSetTableSize
	SsSetTempo
	SsSetTickCallback
	SsSetTickMode
	SsSetVoiceMask
	SsSetVoiceSettings
	SsStart
	SsStart2
	SsUnBlockVoiceAllocation
	SsUtAllKeyOff
	SsUtAutoPan
	SsUtAutoVol
	SsUtChangeADSR
	SsUtChangePitch
	SsUtFlush
	SsUtGetDetVVol
	SsUtGetProgAtr
	SsUtGetReverbType
	SsUtGetVabHdr
	SsUtGetVagAddr
	SsUtGetVagAddrFromTone
	SsUtGetVagAtr
	SsUtGetVBaddrInSB
	SsUtGetVVol
	SsUtKeyOff
	SsUtKeyOffV
	SsUtKeyOn
	SsUtKeyOnV
	SsUtPitchBend
	SsUtReverbOff
	SsUtReverbOn
	SsUtSetDetVVol
	SsUtSetProgAtr
	SsUtSetReverbDelay
	SsUtSetReverbDepth
	SsUtSetReverbFeedback
	SsUtSetReverbType
	SsUtSetVabHdr
	SsUtSetVagAtr
	SsUtSetVVol
	SsVabClose
	SsVabFakeBody
	SsVabFakeHead
	SsVabOpen
	SsVabOpenHead
	SsVabOpenHeadSticky
	SsVabTransBody
	SsVabTransBodyPartly
	SsVabTransCompleted
	SsVabTransfer
	SsVoiceCheck
	SsVoKeyOff
	SsVoKeyOn

	Ch 15: Basic Sound Library
	Structures
	SpuCommonAttr
	SpuDecodeData
	SpuEnv
	SpuExtAttr
	SpuLVoiceAttr
	SpuReverbAttr
	SpuStEnv
	SpuStVoiceAttr
	SpuVoiceAttr
	SpuVolume

	Functions
	SpuClearReverbWorkArea
	SpuFlush
	SpuFree
	SpuGetAllKeysStatus
	SpuGetCommonAttr
	SpuGetCommonCDMix
	SpuGetCommonCDReverb
	SpuGetCommonCDVolume
	SpuGetCommonMasterVolume
	SpuGetCommonMasterVolumeAttr
	SpuGetCommonMasterVolumeX
	SpuGetIRQ
	SpuGetIRQAddr
	SpuGetKeyStatus
	SpuGetMute
	SpuGetNoiseClock
	SpuGetNoiseVoice
	SpuGetPitchLFOVoice
	SpuGetReverb
	SpuGetReverbModeDelayTime
	SpuGetReverbModeDepth
	SpuGetReverbModeFeedback
	SpuGetReverbModeParam
	SpuGetReverbModeType
	SpuGetReverbVoice
	SpuGetTransferMode
	SpuGetTransferStartAddr
	SpuGetVoiceADSR
	SpuGetVoiceADSRAttr
	SpuGetVoiceAR
	SpuGetVoiceARAttr
	SpuGetVoiceAttr
	SpuGetVoiceDR
	SpuGetVoiceEnvelope
	SpuGetVoiceEnvelopeAttr
	SpuGetVoiceLoopStartAddr
	SpuGetVoiceNote
	SpuGetVoicePitch
	SpuGetVoiceRR
	SpuGetVoiceRRAttr
	SpuGetVoiceSampleNote
	SpuGetVoiceSL
	SpuGetVoiceSR
	SpuGetVoiceSRAttr
	SpuGetVoiceStartAddr
	SpuGetVoiceVolume
	SpuGetVoiceVolumeAttr
	SpuGetVoiceVolumeX
	SpuInit
	SpuInitHot
	SpuInitMalloc
	SpuIsReverbWorkAreaReserved
	SpuIsTransferCompleted
	SpuLSetVoiceAttr
	SpuMalloc
	SpuMallocWithStartAddr
	SpuNGetVoiceAttr
	SpuNSetVoiceAttr
	SpuQuit
	SpuRead
	SpuReadDecodedData
	SpuReserveReverbWorkArea
	SpuRGetAllKeysStatus
	SpuRSetVoiceAttr
	SpuSetCommonAttr
	SpuSetCommonCDMix
	SpuSetCommonCDReverb
	SpuSetCommonCDVolume
	SpuSetCommonMasterVolume
	SpuSetCommonMasterVolumeAttr
	SpuSetEnv
	SpuSetIRQ
	SpuSetIRQAddr
	SpuSetIRQCallback
	SpuSetKey
	SpuSetKeyOnWithAttr
	SpuSetMute
	SpuSetNoiseClock
	SpuSetNoiseVoice
	SpuSetPitchLFOVoice
	SpuSetReverb
	SpuSetReverbDepth
	SpuSetReverbModeDelayTime
	SpuSetReverbModeDepth
	SpuSetReverbModeFeedback
	SpuSetReverbModeParam
	SpuSetReverbModeType
	SpuSetReverbVoice
	SpuSetTransferCallback
	SpuSetTransferMode
	SpuSetTransferStartAddr
	SpuSetVoiceADSR
	SpuSetVoiceADSRAttr
	SpuSetVoiceAR
	SpuSetVoiceARAttr
	SpuSetVoiceAttr
	SpuSetVoiceDR
	SpuSetVoiceLoopStartAddr
	SpuSetVoiceNote
	SpuSetVoicePitch
	SpuSetVoiceRR
	SpuSetVoiceRRAttr
	SpuSetVoiceSampleNote
	SpuSetVoiceSL
	SpuSetVoiceSR
	SpuSetVoiceSRAttr
	SpuSetVoiceStartAddr
	SpuSetVoiceVolume
	SpuSetVoiceVolumeAttr
	SpuStart
	SpuStGetStatus
	SpuStGetVoiceStatus
	SpuStInit
	SpuStQuit
	SpuStSetPreparationFinishedCallback
	SpuStSetStreamFinishedCallback
	SpuStSetTransferFinishedCallback
	SpuStTransfer
	SpuWrite
	SpuWrite0
	SpuWritePartly

	Ch 16: Serial Input/Output Library
	Functions
	AddSIO
	DelSIO
	Sio1Callback
	_sio_control

	Ch 17: HMD Library
	Structures
	GsARGUNIT
	GsARGUNIT_ANIM
	GsARGUNIT_GND...
	GsARGUNIT_IMAGE
	GsARGUNIT_JntMIMe
	GsARGUNIT_NORMAL
	GsARGUNIT_RstJntMIMe
	GsARGUNIT_RstVNMIMe
	GsARGUNIT_SHARED
	GsARGUNIT_VNMIMe
	GsCOORDUNIT
	GsRVIEWUNIT
	GsSEH
	GsSEQ
	GsTYPEUNIT
	GsUNIT
	GsVIEWUNIT
	GsWORKUNIT

	Functions
	GsGetHeadpUnit
	GsGetLsUnit
	GsGetLwsUnit
	GsGetLwUnit
	GsInitRstNrmMIMe
	GsInitRstVtxMIMe
	GsLinkAnim
	GsMapCoordUnit
	GsMapUnit
	GsScanAnim
	GsScanUnit
	GsSetRefViewLUnit
	GsSetRefViewUnit
	GsSetViewUnit
	GsSortUnit
	GsU_...
	GsU_03000000
	GsU_03000001...
	GsU_03010110...
	GsU_040100...

	Ch 18: PDA Library
	Functions
	McxAllInfo
	McxCardType
	McxCurrCtrl
	McxExecApl
	McxExecFlag
	McxFlashAcs
	McxGetApl
	McxGetMem
	McxGetSerial
	McxGetTime
	McxGetUIFS
	McxHideTrans
	McxReadDev
	McxSetLED
	McxSetMem
	McxSetTime
	McxSetUIFS
	McxShowTrans
	McxStartCom
	McxStopCom
	McxSync
	McxWriteDev

	Structures

	Ch 19: Memory Card GUI Module
	Structures
	McGuiEnv
	sMcGuiBg
	sMcGuiCards
	sMcGuiController
	sMcGuiCursor
	sMcGuiSnd
	sMcGuiTexture

	Functions
	McGuiLoad
	McGuiSave

	INDEX

