
B
et

a
D

ra
ft
ENGLAND
Advanced RISC Machines Limited
Fulbourn Road
Cherry Hinton
Cambridge CB1 4JN
UK
Telephone: +44 1223 400400
Facsimile: +44 1223 400410
Email: info@armltd.co.uk

GERMANY
Advanced RISC Machines Limited
Otto-Hahn Str. 13b
85521 Ottobrunn-Riemerling
Munich
Germany
Telephone: +49 89 608 75545
Facsimile: +49 89 608 75599
Email: info@armltd.co.uk

JAPAN
Advanced RISC Machines K.K.
KSP West Bldg, 3F 300D, 3-2-1 Sakado
Takatsu-ku, Kawasaki-shi
Kanagawa
213 Japan
Telephone: +81 44 850 1301
Facsimile: +81 44 850 1308
Email: info@armltd.co.uk

USA
ARM USA Incorporated
Suite 5
985 University Avenue
Los Gatos
CA 95030 USA
Telephone: +1 408 399 5199
Facsimile: +1 408 399 8854
Email: info@arm.com

Wo r l d W i d e We b a d d r e s s : h t t p : / / w w w. a r m . c o m

ARM
Architecture

Reference
Manual

Document Number: ARM DDI 0100B
Copyright Advanced RISC Machines Ltd (ARM) 1996

B
et

a
D

ra
ft
Proprietary Notice
ARM and the ARM Powered logo are trademarks of Advanced RISC Machines Ltd.

Neither the whole nor any part of the information contained in, or the product described in, this
document may be adapted or reproduced in any material form except with the prior written permission
of the copyright holder.
The product described in this document is subject to continuous development and improvement.
All particulars of the product and its use contained in this document are given by ARM in good faith.
However, all warranties implied or expressed, including but not limited to implied warranties
or merchantability, or fitness for purpose, are excluded.

This document is intended only to assist the reader in the use of the product. ARM Ltd shall not be liable
for any loss or damage arising from the use of any information in this document, or any error or omission
in such information, or any incorrect use of the product.

Credits
Thanks are due to:

Allen Baum, Richard Earnshaw, Jim Eno, Pete Harrod, Barbara Henighan, Greg Hoepner,
Lance Howarth, Guy Larri, Neil Robinson, David Seal, Lee Smith, Ray Stephany, John Webster,
Sophie Wilson, Rich Witek

Change Log
Issue Date By Change

Draft 28 Jul 95 DJ/BJH Created
A 7 Feb 1996 BJH Review comments added.
B 26 July 1996 BJH Updated release. Index added.
ii ARM Architecture Reference Manual
ARM DDI 0100B

Foreword

The ARM architecture is the basis of the world's most widely available 32-bit microprocessor.

ARM Powered microprocessors are being routinely designed into a wider range of products than any other
32-bit processor. This diversity of applicability is made possible by the ARM architecture, resulting in
optimal system solutions at the crossroads of high performance, low power consumption, and low cost.

In November 1990, ARM was formed to develop and promote the ARM architecture. With initial investment
from:

• Apple Computer, the world's third largest manufacturer of personal computers

• Acorn, the United Kindom's leading supplier of Information Technology for education

• VLSI Technology, the world leading ASIC supplier

ARM Ltd. began work to establish the ARM architecture as the 32-bit standard microprocessor
architecture.

Initially, ARM devices were made by VLSI Technology, but ARM's business model is to license
microprocessor designs to a broad range of semiconductor manufacturers, allowing focus on a variety of
end-user applications. To date, this licensing strategy has resulted in twelve companies manufacturing
ARM-based designs:

Through these twelve semiconductor partners, the ARM processor is currently being used in a wider range
of applications than any other 32-bit microprocessor. ARM chooses new partners carefully; each new
partner is judged on their ability to extend the applicability of ARM processors into new market areas,
broadening the total ARM product range by adding their unique expertise.

Customers using ARM processors benefit not only from the ARM architecture, but the ability to select the
most appropriate silicon manufacturer. Furthermore, the worldwide awareness of the ARM processor has
attracted third-party developers to the ARM architecture, yielding a huge variety of ARM support products:

ISI, Microtec, Accelerated Technology, Cygnus, Eonic Systems and Perihelion all offer
Operating Systems for the ARM.

Yokogawa Digital and Lauterbach provide In-Circuit Emulators (ICE).

Hewlett Packard Logic analysers support ARM processors.

In ARM Ltd's five-year history, it has delivered over 30 unique microprocessor and support-chip designs.
ARM microprocessors are routinely being designed into hundreds of products including:

VLSI Technology GEC Plessey Semiconductors (GPS) Sharp Corporation

Texas Instruments (TI) Cirrus Logic Asahi Kasai Microsystems (AKM)

Samsung Corporation Digital Equipment Corporation European Silicon Structures (ES2)

NEC Corporation Symbios Logic Lucky Goldstar Coporation

cellular telephones interactive game consoles

organisers disk drives

modems high performance workstations

graphics accelerators car navigation systems

video phones digital broadcast set-top decoders

cameras smart cards

telephone switchboards laser printers
iiiARM Architecture Reference Manual
ARM DDI 0100B

Foreword

This product range includes microprocessors designed as macrocell cores, with around 4mm2 of silicon,
drawing less than fifty milliWatts of power when executing over 30 MIPS of sustained performance. For
very high performance applications, ARM implementations deliver over 200 MIPS sustained performance
(more than most high-performance computer workstations), while still only consuming one half of one
Watt.

No other processor architecture can offer implementations in these extremes; no other processor has
ARM's broad applicability across an entire product range.

The ARM Architecture Reference Manual is the definitive description of the programmers’ model of all
ARM microprocessors, and is ARM's commitment to users of the ARM processor for compatibility and
interworking across products designed and manufactured by many different companies.

Through this commitment, the benefits of an ARM processor can be harnessed to establish and maintain
an industry lead that only ARM Powered products can achieve.

Dave Jaggar. July 1996
iv ARM Architecture Reference Manual
ARM DDI 0100B

Preface ix

Introduction x
Using this Manual xi
Conventions xi
Terminology xi

1 Architecture Overview 1-1

1.1 Overview 1-2
1.2 Exceptions 1-3
1.3 ARM Instruction Set 1-4
1.4 Branch Instructions 1-4
1.5 Data-processing Instructions 1-4
1.6 Load and Store Instructions 1-5
1.7 Coprocessor Instructions 1-6

2 Programmer’s Model 2-1

2.1 Data Types 2-2
2.2 Processor Modes 2-2
2.3 Registers 2-3
2.4 Program Status Registers 2-3
2.5 Exceptions 2-6

Contents
ARM Architecture Reference Manual
ARM DDI 0100B

v

Contents

3 The ARM Instruction Set 3-1

3.1 Using this Chapter 3-2
3.2 Instruction Set Overview 3-3
3.3 The Condition Field 3-4
3.4 Branch Instructions 3-6
3.5 Data Processing 3-7
3.6 Multiply Instructions 3-10
3.7 Status Register Access 3-12
3.8 Load and Store Instructions 3-13
3.9 Load and Store Word or Unsigned Byte Instructions 3-15
3.10 Load and Store Halfword and Load Signed Byte Instructions 3-16
3.11 Load and Store Multiple Instructions 3-17
3.12 Semaphore Instructions 3-19
3.13 Coprocessor Instructions 3-20
3.14 Extending the Instruction Set 3-22
3.15 Alphabetical List of ARM Instructions 3-30
3.16 Data-processing Operands 3-84
3.17 Load and Store Word or Unsigned Byte Addressing Modes 3-98
3.18 Load and Store Halfword or Load Signed Byte Addressing Modes 3-109
3.19 Load and Store Multiple Addressing Modes 3-116
3.20 Load and Store Multiple Addressing Modes (Alternative names) 3-121
3.21 Load and Store Coprocessor Addressing Modes 3-123

4 ARM Code Sequences 4-1

4.1 Arithmetic Instructions 4-2
4.2 Branch Instructions 4-4
4.3 Load and Store Instructions 4-6
4.4 Load and Store Multiple Instructions 4-8
4.5 Semaphore Instructions 4-9
4.6 Other Code Examples 4-10

5 The 26-bit Architectures 5-1

5.1 Introduction 5-2
5.2 Format of Register 15 5-3
5.3 Writing just the PSR in 26-bit architectures 5-4
5.4 26-bit PSR Update Instructions 5-5
5.5 Address Exceptions 5-6
5.6 Backwards Compatibility from 32-bit Architectures 5-7
ARM Architecture Reference Manual
ARM DDI 0100B

vi

Contents

6 The Thumb Instruction Set 6-1

6.1 Using this Chapter 6-2
6.2 Introduction to Thumb 6-3
6.3 Instruction Set Overview 6-4
6.4 Branch Instructions 6-5
6.5 Data-processing Instructions 6-7
6.6 Load and Store Register Instructions 6-12
6.7 Load and Store Multiple Instructions 6-14
6.8 Alphabetical List of Thumb Instructions 6-19

7 System Architecture and System Control Coprocessor 7-1

7.1 Introduction 7-2
7.2 CP15 Access 7-2
7.3 CP15 Architectures 7-2
7.4 ARMv4 System Control Coprocessor 7-3
7.5 ARMv3 System Control Coprocessor 7-10
7.6 Memory Management Unit (MMU) Architecture 7-14
7.7 Cache and Write Buffer Control 7-22
7.8 Access Permissions 7-22
7.9 Domains 7-23
7.10 Aborts 7-24
7.11 MMU Faults 7-24
7.12 External Aborts 7-28
7.13 System-level Issues 7-29
7.14 Semaphores 7-31

INDEX
ARM Architecture Reference Manual
ARM DDI 0100B

vii

Preface

This preface describes the ARM Architecture Version 4, also known as ARMv4,
and lists the conventions and terminology used in this manual.

Introduction x

Using this Manual xi

Conventions xi

Terminology xi
ARM Architecture Reference Manual
ARM DDI 0100B

ix

Preface

Introduction

The ARM Architecture exists in 4 major versions:

Version 1 was implemented only by ARM1, and was never used in a
commercial product.

Version 2 extended Version 1 by adding a multiply instruction, multiply
accumulate instruction, coprocessor support, two more banked
registers for FIQ mode and later (Version 2a) an Atomic Load and
Store instruction (called SWP) and the use of Coprocessor 15 as
a system control coprocessor. Version 1, 2 and 2a all support a 26-bit
address bus and combine in register 15 a 24-bit Program Counter
(PC) and 8 bits of processor status.
Version 2 has just three privileged processing modes, Supervisor,
IRQ and FIQ.

Version 3 extended the addressing range to 32 bits, defining just a 30-bit
Program Counter value in register 15, and added a separate 11-bit
status register (the Current Program Status Register or CPSR)
to contain the status information that was previously in register 15.
Version 3 added two new privileged processing modes to allow
coprocessor emulation and virtual memory support in supervisor
mode:

• Undefined
• Abort

Five more status registers (the Saved Program Status Registers,
SPSRs) were defined, one for each privileged processor mode,
to preserve the CPSR contents when the exception occurs
corresponding to each privileged processor mode.
Version 3 supports both hardware and software emulation of Version
2a. The processor can be forced to be Version 2a only in hardware,
allowing full backwards compatibility, but no version 3 advantages.
Version 3 can also be switched in software into a Version 2 execution
model to support Version 2a on a process by process basis to allow
a smooth upgrade path from Version 2 to Version 3. See Chapter 5,
The 26-bit Architectures for information on the differences between
the 26-bit architectures (version1, 2 and 2a) and the 32-bit
architectures (Version 3, 3M, 4 and 4T).
Version 3G is the same as version 3, without the backwards

compatibility support for version 2 architectures.
Version 3M adds signed and unsigned multiply and multiply

accumulate instructions that produce a 64-bit result to
Version 3. The new ARMv3M instructions are marked
as such in the text.

Version 4 adds halfword load and store instructions, sign-extending byte and
halfword load instructions, adds a new privileged processor mode
(that uses the user mode registers) and defines several new
undefined instructions.
Version 4T incorporates an instruction decoder for a 16-bit subset

of the ARM instruction set (called THUMB).
ARM Architecture Reference Manual
ARM DDI 0100B

x

Preface

Using this Manual

The information in this manual is organised as follows:

Chapter 1 gives an overview of the ARM architecture

Chapter 2 describes the programmer’s model

Chapter 3 lists and describes the ARM instruction set

Chapter 4 gives examples of coding algorithms

Chapter 5 describes the differences between 32-bit and 26-bit
architectures

Chapter 6 lists and describes the Thumb instruction set

Chapter 7 describes ARM system architecture, and the system control
processor

Conventions
This manual employs typographic conventions intended to improve its ease of use.

code a monospaced typewriter font shows code which you need to enter,
or code which is provided as an example

Terminology
This manual uses the following terminology:

Abort
is caused by an illegal memory access. Aborts can be caused by the external
memory system or the MMU

AND
performs a bitwise AND

Arithmetic_Shift_Right
performs a right shift, repeatedly inserting the original left-most bit (the sign bit) in
the vacated bit positions on the left

ARM instruction
is a word that is word-aligned

assert statements
are used to ensure a certain condition has been met

Assignment
is signified by =

Binary numbers
are preceded by 0b

Boolean AND
is signified by the “and” operator
ARM Architecture Reference Manual
ARM DDI 0100B

xi

Preface

Boolean OR

is signified by the “or” operator

BorrowFrom
returns 1 if the following subtract causes a borrow (the true unsigned

result is less than 0)
returns 0 in all other cases

Byte
is an 8-bit data item

CarryFrom
returns 1 if the following addition causes a carry

(the result is bigger than 2
31

-1)
returns 0 in all other cases

case ... endcase statements
are used to indicate a one of many execution option. Indentation indicates the range
of statements in each option

Comments
are enclosed in /* */

ConditionPassed(cond)
returns true if the state of the N, Z, C and Z flags fulfils the condition encoded

in the cond argument
returns false in all other cases

CPSR
is the Current Program Status Register

CurrentModeHasSPSR()
returns true if the current processor mode is not User mode or System mode
returns false if the current mode is User mode or System mode

Do-not-modify fields (DNM)
means the value must not be altered by software. DNM fields read as
UNPREDICTABLE values, and may only be written with the same value read from the
same field as the same processor.

Elements
are separated by | in a list of possible values for a variable

EOR
performs an Exclusive OR

Exception
is a mechanism to handle an event; for example, an external interrupt or an
undefined instruction

External abort
is an abort that is generated by the external memory system
ARM Architecture Reference Manual
ARM DDI 0100B

xii

Preface

Fault

is an abort that is generated by the MMU

General-purpose register
is one of the 32-bit general-purpose integer registers, R0 to R14

Halfword
is a 16-bit data item

Hexadecimal numbers
are preceded by 0x

if ... else if ... else statements
are used to signify conditional execution. Indentation indicates the range of
statements in each condition

IGNORE fields (IGN)
must ignore writes

Immediate and offset fields
are unsigned unless otherwise stated

IMPLEMENTATION-DEPENDENT fields (IMP)
are not architecturally specified, but must be defined and documented by individual
implementations

InAPrivilegedMode()
returns true if the current processor mode is not User mode;
returns false if the current mode is User mode

Logical_Shift_Left
performs a left shift, inserting zeroes in the vacated bit positions on the right.
<< is used as a short form for Logical_Shift_Left

Logical_Shift_Right
performs a right shift, inserting zeroes in the vacated bit positions on the left

LR (Link Register)
is integer register R14

Memory[<address>,<size>]
refers to a data item in memory of length <size>, at address <address>, aligned on
a <size> byte boundary.
The data item is zero-extended to 32 bits.
Currently defined sizes are:

1 for bytes
2 for halfwords
4 for words

To align on a <size> boundary, halfword accesses ignore address[0] and word
accesses ignore address[1:0]
ARM Architecture Reference Manual
ARM DDI 0100B

xiii

Preface

NOT

performs a Complement

NotFinished(CP_number)
returns true if the coprocessor signified by the CP_number argument has

signalled that the current operation is complete
returns false in all other cases

NumberOfSetBitsIn(bitfield)
performs a population count on (counts the set bits in) the bitfield argument

Object[from:to]
indicates the bit field extracted from Object starting at bit “from”, ending with bit “to”
(inclusive)

Optional parts of instructions
are surrounded by { and }

OR
performs an Inclusive OR

OverflowFrom
returns 1 if the following addition (or subtraction) causes a carry (or borrow) to
(from) bit[31]. Addition generates a carry if both operands have the same sign
(bit[31]), and the sign of the result is different to the sign of both operands.
Subtraction causes an overflow if the operands have different signs, and the first
operand and the result have different signs

PC (Program Counter)
is integer register R15 (or bits[25:2] of register 15 on 26-bit architectures)

PSR
is the CPSR or one of the SPSRs (or bits[31:26] and bits[1:0] of register 15 on 26-bit
architectures)

Read-as-zero fields (RAZ)
appear as zero when read

Read-Modify-Write fields (RMW)
should be read to a general-purpose register, the relevant fields updated in
the register, and the register value written back.

Rotate_Right
performs a right rotate, where each bit that is shifted off the right is inserted on
the left

Security hole
is an illegal mechanism that bypasses system protection

Should-be-one fields (SBO)
should be written as one (or all 1s for bit fields) by software.
Values other than one values produce unpredictable results
ARM Architecture Reference Manual
ARM DDI 0100B

xiv

Preface

Should-be-one-or-preserved fields (SBOP)

should be written as one (or all 1s for bit fields) or preserved by writing the same
value that has been previously read from the same fields on the same processor.

Should-be-zero fields (SBZ)
should be written as zero (or all 0s for bit fields) by software.
Non-zero values produce unpredictable results

Should-be-zero-or-preserved fields (SBZP)
should be written as zero (or all 0s for bit fields) or preserved by writing the same
value that has been previously read from the same fields on the same processor.

Signed immediate and offset fields
are encoded in two’s complement notation unless otherwise stated

SignExtend(arg)
sign-extends (propagates the sign bit) its argument to 32 bits

SPSR
is the Saved Program Status Register

Test for equality
is signified by ==

THUMB instruction
is a halfword that is halfword-aligned

Unaffected items
are not changed by a particular operation

UNDEFINED
indicates an instruction that generates an undefined instruction trap. See 2.5
Exceptions on page 2-6 for information on undefined instruction traps

UNPREDICTABLE
means the result of an instruction cannot be relied upon.
unpredictable instructions or results must not represent security holes.
UNPREDICTABLE instructions must not halt or hang the processor, or any parts of
the system

UNPREDICTABLE fields (UNP)
do not contain valid data, and a value may vary from moment to moment,
instruction to instruction, and implementation to implementation

Variable name
(a symbolic name for values) is surrounded by < and >

while statements
are used to indicate a loop. Indentation indicates the range of statements in
the loop

Word
is a 32-bit data item
ARM Architecture Reference Manual
ARM DDI 0100B

xv

1

Architecture Overview

Architecture Overview

The ARM architecture has been designed to allow very small, yet high-performance
implementations. It is the architectural simplicity of ARM which leads to very small
implementations, and small implementations allow devices with very low power
consumption.

1.1 Overview 1-2

1.2 Exceptions 1-3

1.3 ARM Instruction Set 1-4

1.4 Branch Instructions 1-4

1.5 Data-processing Instructions 1-4

1.6 Load and Store Instructions 1-5

1.7 Coprocessor Instructions 1-6

1

ARM Architecture Reference Manual
ARM DDI 0100B

1-1

Architecture Overview

1.1 Overview

The ARM is a RISC (Reduced Instruction Set Computer), as it incorporates all
the features of a typical RISC architecture:

• a large uniform register file

• a load-store architecture (data-processing operations only operate on register
contents)

• simple addressing modes (data loaded and stored from an address specified
in registers and instruction fields)

• uniform and fixed length instruction fields (which simplify instruction decode)

In addition, the ARM architecture provides these features:

• control over both the ALU and shifter in every data-processing instruction
to maximise the use of a shifter and an ALU

• auto-increment and auto-decrement addressing modes to optimise program
loops

• load and store multiple instructions to maximise data throughput

• conditional execution of all instructions to maximise execution throughput

Together, these architectural enhancements to a basic RISC architecture allow
implementations that can balance high performance, low power consumption and
minimal die size in every implementation.

1.1.1 ARM registers

ARM has thirty-one, 32-bit registers. At any one time, sixteen are visible; the other
registers are used to speed up exception processing. All the register specifiers in ARM
instructions can address any of the 16 registers.

The main bank of sisteen registers is used by all non-privileged code; these are the User
mode registers. User mode is different from all other modes, as it is non-privileged,
which means that user mode is the only mode which cannot switch to another processor
mode (without generating an exception).

Program counter

Register 15 is the Program Counter (or PC), and can be used in most instructions as
a pointer to the instruction which is two instructions after the instruction being executed.
All ARM instructions are 4 bytes long (one 32-bit word), and are always aligned on
a word boundary, so the PC contains just 30 bits; the bottom two bits are always zero.

Link register

Register 14 is called the Link Register (or LR). Its special purpose is to hold the address
of the next instruction after a Branch with Link (BL) instruction, which is the instruction
used to make a subroutine call. At all other times, R14 can be used as a
general-purpose register.

Other registers

The remaining 14 registers have no special hardware purpose - their uses are defined
purely by software. Software will normally use R13 as a stack pointer (or SP).
ARM Architecture Reference Manual
ARM DDI 0100B

1-2

Architecture Overview

1.2 Exceptions

ARM supports 5 types of exception, and a privileged processing mode for each type.
The 5 types of exceptions are:

• two levels of interrupt (fast and normal)

• memory aborts (used to implement memory protection or virtual memory)

• attempted execution of an undefined instruction

• software interrupts (SWIs) (used to make a call to an Operating System)

When an exception occurs, some of the standard registers are replaced with registers
specific to the exception mode. All exceptions have replacement (or banked) registers
for R14 and R13, and one interrupt mode has more registers for fast interrupt
processing.

After an exception, R14 holds the return address for exception processing, which is
used both to return after the exception is processed and to address the instruction that
caused the exception.

R13 is banked across exception modes to provide each exception handler with private
stack pointer (SP). The fast interrupt mode also banks registers 8 to 12, so that interrupt
processing can begin without the need to save or restore these registers. There is
a seventh processing mode, System mode, that does not have any banked registers
(it uses the User mode registers), which is used to run normal (non-exception) tasks that
require a privileged processor mode.

CPSR and SPSR

All other processor state is held in status registers. The current operating processor
status is in the Current Program Status Register or CPSR. The CPSR holds:

• 4 condition code flags (Negative, Zero, Carry and Overflow)

• 2 interrupt disable bits (one for each type of interrupt)

• 5 bits which encode the current processor mode

All 5 exception modes also have a Saved Program Status Register (SPSR) which holds
the CPSR of the task immediately before the exception occurred. Both the CPSR and
SPSR are accessed with special instructions.

The exception process

When an exception occurs, ARM halts execution after the current instruction and begins
execution at a fixed address in low memory, known as the exception vectors. There is
a separate vector location for each exception (and two for memory aborts to distinguish
between data and instruction accesses).

An operating system will install an handler on every exception at initialisation. Privileged
operating system tasks are normally run in System mode to allow exceptions to occur
within the operating system without state loss (exceptions overwrite their R14 when an
exception occurs, and System mode is the only privileged mode that cannot be entered
by an exception).
ARM Architecture Reference Manual
ARM DDI 0100B

1-3

Architecture Overview

1.3 ARM Instruction Set

The ARM instruction set can be divided into four broad classes of instruction:

• branch

• data-processing

• load and store

• coprocessor

Conditional execution

All ARM instructions may be conditionally executed. Data-processing instructions
(and one type of coprocessor instruction) can update the four condition code flags in
the CPSR (Negative, Zero, Carry and Overflow) according to their result. Subsequent
instructions can be conditionally executed according to the status of the condition code
flags. Fifteen conditions are implemented, depending on particular values of
the condition code flags; one condition actually ignores the condition code flag so that
normal (unconditional) instructions always execute.

1.4 Branch Instructions
As well as allowing any data-processing or load instruction to change control flow
(by writing the Program Counter) a standard branch instruction is provided with 24-bit
signed offset, allowing forward and backward branches of up to 32Mbytes.

There is a Branch with Link option that also preserves the address of the instruction after
the branch in R14 (the Link Register or LR), allowing a move instruction to put the LR in
to PC and return to the instruction after the branch, providing a subroutine call.

There also a special type of branch instruction called software interrupt (SWI).
This makes a call to the Operating System (to request an OS-defined service). SWI also
changes the processor mode, allowing an unprivileged task to gain OS privilege (access
to which is controlled by the OS).

On processors that implement the THUMB instruction set there is a branch instruction
that jumps to an address specified in a register, and optionally switches instruction set,
allowing ARM code to call THUMB code and THUMB code to call ARM code.
An overview of the THUMB instruction is provided in Chapter 6, The Thumb Instruction
Set.

1.5 Data-processing Instructions
The data-processing instructions perform some operation on the general-purpose
registers. There are three types of data-processing instructions:

• data-processing instructions proper

• multiply instructions

• status register transfer instructions

Arithmetic/logic instructions

There are 16 arithmetic/logic instructions which share a common instruction format.
This format takes up to two source operands, performs an arithmetic/logic operation on
those operands, and then most store the result into a register, and optionally update
the condition code flags according to that result.
ARM Architecture Reference Manual
ARM DDI 0100B

1-4

Architecture Overview

There are four data-processing instructions which don't store their result in a register.
They compare the values of the source operands and then update the condition code
flags.

Of the two source operands:

• one is always a register

• the other has two basic forms:

- an immediate value

- a register value, optionally shifted

If the operand is a shifted register, the shift amount may an immediate value or the value
of another register, and four types of shift can be specified. So, every data-processing
instruction can perform a data-processing and a shift operation. As a result, ARM does
not have dedicated shift instructions.

Because the Program Counter (PC) is a general-purpose register, this class of
data-processing instruction may write their results directly to the PC, allowing a variety
of jump instructions to be easily implemented.

Multiply instructions

Multiply instructions come in two classes. Both types multiply the two 32-bit register
values and store their result:

(normal) 32-bit result store the 32-bit result in a register

(long) 64-bit result store the 64 bit result in two separate registers

Both types of multiply instruction can optionally perform an accumulate operation.

Status register transfer instructions

The status register transfer instructions transfer the contents of the CPSR or a SPSR to
or from a general-purpose register. Writing to the CPSR is one way to set the value of
the condition code flags and interrupt enable flags and to set the processor mode.

1.6 Load and Store Instructions
Load and store instruction come in three types:

1 load or store the value of a single register
2 load and store multiple register values
3 swap a register value with the value of a memory location

Load and store single register

Load register instructions can load a 32-bit word, a 16-bit halfword or an 8-bit byte from
memory into a register. Byte and halfword loads may be automatically zero- or
sign-extended as they are loaded.

Store register instructions can store a 32-bit word, a 16-bit halfword or an 8-bit byte from
a register to memory.
ARM Architecture Reference Manual
ARM DDI 0100B

1-5

Architecture Overview

Load and store instructions have three primary addressing modes that are formed by
adding or subtracting an immediate or register-based offset to or from a base register
(register-based offsets may also be scaled with shift operations):

1 offset
2 pre-indexed
3 post-indexed

Pre- and post-indexed addressing modes update the base register with the base plus
offset calculation. As the Program Counter (PC) is a general-purpose register, a 32-bit
value can be loaded directly into the PC to perform a jump to any address in the 4Gbyte
memory space.

Load and store multiple registers

Load and Store multiple instructions perform a block transfer of any number of
the general-purpose registers to or from memory. Four addressing modes are provided:

1 pre-increment
2 post-increment
3 pre-decrement
4 post-decrement

The base address is specified by a register value (which may be optionally updated after
the transfer). As the subroutine return address and Program Counter (PC) values are in
general-purpose registers, very efficient subroutine call and return can be constructed
with Load and Store Multiple; register contents and the return address can be stacked
and the stack pointer updated with single store multiple instruction at procedure entry
and then register contents restored, the PC loaded with the return address and the stack
pointer updated on procedure return with a single load multiple).

Of course, load and store multiple also allow very efficient data movement (for example,
block copy).

Swap a register value with the value of a memory location

Swap can load a value from a register-specified memory location, store the contents of
a register to the same memory location, then write the loaded value to a register.

By specifying the same register as the load and store value, the contents of a memory
location and a register are interchanged.

The swap operation performs a special indivisible bus operation that allows atomic
update of semaphores. Both 32-bit word and 8-bit byte semaphores are supported.

1.7 Coprocessor Instructions
There are three types of coprocessor instructions:

data-processing instructions start a coprocessor-specific internal operation

register transfers allow a coprocessor value to be transferred to or
from an ARM register

data-transfer instructions transfer coprocessor data to or from memory,
where the address of the transfer is calculated by
the ARM
ARM Architecture Reference Manual
ARM DDI 0100B

1-6

2

Programmer’s Model

Programmer’s Model

This chapter introduces the ARM Programmer’s Model.

2.1 Data Types 2-2

2.2 Processor Modes 2-2

2.3 Registers 2-3

2.4 Program Status Registers 2-3

2.5 Exceptions 2-6

2

ARM Architecture Reference Manual
ARM DDI 0100B

2-1

Programmer’s Model

2.1 Data Types

ARM Architecture Version 4 processors support the following data types:

Byte 8 bits

Halfword 16 bits; halfwords must be aligned to two-byte boundaries

Word 32 bits; words must be aligned to four-byte boundaries

ARM instructions are exactly one word (and therefore aligned on a four-byte boundary).

THUMB instructions are exactly one halfword (and therefore aligned on a two-byte
boundary).

All data operations (e.g. ADD) are performed on word quantities.

Load and store operations can transfer bytes, halfwords and words to and from memory,
automatically zero-extending or sign-extending bytes or halfwords as they are loaded.

Signed operands are in two’s complement format.

2.2 Processor Modes
ARM Version 4 supports seven processor modes:

Mode changes may be made under software control or may be caused by external
interrupts or exception processing. Most application programs will execute in User
mode. The other modes, known as privileged modes, will be entered to service
interrupts or exceptions or to access protected resources.

Processor mode Description

1 User (usr) normal program execution mode

2 FIQ (fiq) supports a high-speed data transfer or channel process

3 IRQ (irq) used for general purpose interrupt handling

4 Supervisor (svc) a protected mode for the operating system

5 Abort (abt) implements virtual memory and/or memory protection

6 Undefined (und) supports software emulation of hardware coprocessors

7 System (sys) runs privileged operating system tasks
(Architecture Version 4 only)

 Table 2-1: ARM Version 4 processor modes
ARM Architecture Reference Manual
ARM DDI 0100B

2-2

Programmer’s Model

2.3 Registers

The processor has a total of 37 registers:

• 30 general-purpose registers

• 6 status registers

• a program counter

The registers are arranged in partially overlapping banks: a different register bank for
each processor mode. At any one time, 15 general-purpose registers (R0 to R14),
one or two status registers and the program counter are visible. The general-purpose
registers and status registers currently visible depend on the current processor mode.
The register bank organisation is shown in Figure 2-1: Register organisation on
page 2-4. The banked registers are shaded in the diagram.

The general-purpose registers are 32 bits wide.

Register 13 (the Stack Pointer or SP) is banked across all modes to provide a private
Stack Pointer for each mode (except system mode which shares the user mode R13).

Register 14 (the Link Register or LR) is used as the subroutine return address link
register. R14 is also banked across all modes (except system mode which shares the
user mode R14). When a Subroutine call (Branch and Link instruction) is executed, R14
is set to the subroutine return address; R14_svc, R14_irq, R14_fiq, R14_abort and
R14_undef are used similarly to hold the return address when exceptions occur
(or a subroutine return address if subroutine calls are executed within interrupt or
exception routines). R14 may be treated as a general-purpose register at all other times.

FIQ mode also has banked registers R8 to R12 (as well as R13 and R14). R8_fiq,
R9_fiq, R10_fiq, R11__fiq and R12_fiq are provided to allow very fast interrupt
processing (without the need to preserve register contents by storing them to memory),
and to preserve values across interrupt calls (so that register contents do not need to
be restored from memory).

Register R15 holds the Program Counter (PC). When R15 is read, bits [1:0] are zero
and bits [31:2] contain the PC. When R15 is writte, n bits[1:0] are ignored and bits[31:2]
are written to the PC. Depending on how it is used, the value of the PC is either the
address of the instruction plus 8 or is UNPREDICTABLE.

The Current Program Status Register (CPSR) is also accessible in all processor modes.
It contains condition code flags, interrupt enable flags and the current mode. Each
privileged mode (except system mode) has a Saved Program Status Register (SPSR)
which is used to preserve the value of the CPSR when an exception occurs.

2.4 Program Status Registers
The format of the Current Program Status Register (CPSR) and the Saved Program
Status registers (SPSR) are shown in Figure 2-2: Format of the program status
registers on page 2-4. The N, Z, C and V (Negative, Zero, Carry and oVerflow) bits are
collectively known as the condition code flags. The condition code flags in the CPSR
can be changed as a result of arithmetic and logical operations in the processor and can
be tested by all instructions to determine if the instruction is to be executed.
ARM Architecture Reference Manual
ARM DDI 0100B

2-3

Programmer’s Model
 Figure 2-1: Register organisation

 Figure 2-2: Format of the program status registers

Mode

R0

R1

R2

R3

R4

R5

R6

R7

R8

R9

R10

R11

R12

R13

R14

PC

R0

R1

R2

R3

R4

R5

R6

R7

R8_FIQ

R9_FIQ

R10_FIQ

R11_FIQ

R12_FIQ

R13_FIQ

R14_FIQ

PC

R0

R1

R2

R3

R4

R5

R6

R7

R8

R9

R10

R11

R12

R13_SVC

R14_SVC

PC

R0

R1

R2

R3

R4

R5

R6

R7

R8

R9

R10

R11

R12

R13_ABORT

R14_ABORT

PC

R0

R1

R2

R3

R4

R5

R6

R7

R8

R9

R10

R11

R12

R13_IRQ

R14_IRQ

PC

R0

R1

R2

R3

R4

R5

R6

R7

R8

R9

R10

R11

R12

R13_UNDEF

R14_UNDEF

PC

User/System Fast interruptSupervisor Abort InterruptUndefined

CPSR CPSR

SPSR_FIQ

CPSR

SPSR_SVC

CPSR

SPSR_ABORT

CPSR

SPSR_IRQ

CPSR

SPSR_UNDEF

= banked register

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

N Z C V DNM/RAZ I F T
M
4

M
3

M
2

M
1

M
0

ARM Architecture Reference Manual
ARM DDI 0100B

2-4

Programmer’s Model

2.4.1 The control bits

The bottom 8 bits of a PSR (incorporating I, F, T and M[4:0]) are known collectively as
the control bits. The control bits change when an exception arises and can be altered
by software only when the processor is in a privileged mode. The I and F bits are the
interrupt disable bits:

I bit disables IRQ interrupts when it is set

F bit disables FIQ interrupts when it is set

The T flag is only implemented on Architecture Version 4T (THUMB):

0 indicates ARM execution

1 indicates THUMB execution

On all other version of the architecture the T flag should be zero (SBZ).

2.4.2 The mode bits

The M0, M1, M2, M3 and M4 bits (M[4:0]) are the mode bits, and these determine the
mode in which the processor operates. The interpretation of the mode bits is shown in
Table 2-2: The mode bits. Not all combinations of the mode bits define a valid processor
mode. Only those explicitly described can be used; if any other value is programmed
into the mode bits M[4:0], the result is unpredictable.

User mode and system mode do not have an SPSR, as these modes are not entered
on any exception, so a register to preserve the CPSR is not required. In User mode or
System mode any reads to the SPSR will read an unpredictable value, and any writes
to the SPSR will be ignored.

M[4:0] Mode Accessible Registers

0b10000 User PC, R14 to R0, CPSR

0b10001 FIQ PC, R14_fiq to R8_fiq, R7 to R0, CPSR, SPSR_fiq

0b10010 IRQ PC, R14_irq, R13_irq,R12 to R0, CPSR, SPSR_irq

0b10011 SVC PC, R14_svc, R13_svc,R12 to R0, CPSR, SPSR_svc

0b10111 Abort PC, R14_abt, R13_abt,R12 to R0, CPSR, SPSR_abt

0b11011 Undef PC, R14_und, R13_und,R12 to R0, CPSR, SPSR_und

0b11111 System PC, R14 to R0, CPSR (Architecture Version 4 only)

 Table 2-2: The mode bits
ARM Architecture Reference Manual
ARM DDI 0100B

2-5

Programmer’s Model

2.5 Exceptions

Exceptions are generated by internal and external sources to cause the processor
to handle an event; for example, an externally generated interrupt, or an attempt to
execute an undefined instruction. The processor state just before handling the exception
must be preserved so that the original program can be resumed when the exception
routine has completed. More than one exception may arise at the same time.

ARM supports 7 types of exception and has a privileged processor mode for each type
of exception. Table 2-3: Exception processing modes lists the types of exception and
the processor mode that is used to process that exception. When an exception occurs
execution is forced from a fixed memory address corresponding to the type of exception.
These fixed addresses are called the Hard Vectors.

The reserved entry at address 0x14 is for an Address Exception vector used when the
processor is configured for a 26-bit address space. See Chapter 5, The 26-bit
Architectures for more information.

When taking an exception, the banked registers are used to save state. When an
exception occurs, these actions are performed:

R14_<exception_mode> = PC
SPSR_<exception_mode> = CPSR
CPSR[5:0] = Exception mode number
CPSR[6] = if <exception_mode> == Reset or FIQ then = 1 else unchanged
CPSR[7] = 1; Interrupt disabled
PC = Exception vector address

To return after handling the exception, the SPSR is moved into the CPSR and R14 is
moved to the PC. This can be done atomically in two ways:

1 Using a data-processing instruction with the S bit set, and the PC as the
destination.

2 Using the Load Multiple and Restore PSR instruction.

The following sections show the recommended way of returning from each exception.

Exception type Mode Vector address

Reset SVC 0x00000000

Undefined instructions UNDEF 0x00000004

Software Interrupt (SWI) SVC 0x00000008

Prefetch Abort (Instruction fetch memory abort) ABORT 0x0000000c

Data Abort (Data Access memory abort) ABORT 0x00000010

IRQ (Interrupt) IRQ 0x00000018

FIQ (Fast Interrupt) FIQ 0x0000001c

 Table 2-3: Exception processing modes
ARM Architecture Reference Manual
ARM DDI 0100B

2-6

Programmer’s Model

2.5.1 Reset

When the processor’s Reset input is asserted, ARM immediately stops execution of the
current instruction. When the Reset is de-asserted, the following actions are performed:

R14_svc = unpredictable value
SPSR_svc = CPSR
CPSR[5:0] = 0b010011 ; Supervisor mode
CPSR[6] = 1 ; Fast Interrupts disabled
CPSR[7] = 1 ; Interrupts disabled
PC = 0x0

Therefore, after reset, ARM begins execution at address 0x0 in supervisor mode with
interrupts disabled. See 7.6 Memory Management Unit (MMU) Architecture on
page 7-14 for more information on the effects of Reset.

2.5.2 Undefined instruction exception

If ARM executes a coprocessor instruction, it waits for any external coprocessor
to acknowledge that it can execute the instruction. If no coprocessor responds,
an undefined instruction exception occurs. If an attempt is made to execute
an instruction that is undefined, an undefined instruction exception occurs (see 3.14.5
Undefined instruction Space on page 3-27).

The undefined instruction exception may be used for software emulation of
a coprocessor in a system that does not have the physical coprocessor (hardware),
or for general-purpose instruction set extension by software emulation.

When an undefined instruction exception occurs, the following actions are performed:

R14_und = address of undefined instruction + 4
SPSR_und = CPSR
CPSR[5:0] = 0b011011 ; Undefined mode
CPSR[6] = unchanged ; Fast Interrupt status is unchanged
CPSR[7] = 1 ; (Normal) Interrupts disabled
PC = 0x4

To return after emulating the undefined instruction, use:

MOVS PC,R14

This restores the PC (from R14_und) and CPSR (from SPSR_und) and returns to
the instruction following the undefined instruction.

2.5.3 Software interrupt exception

The software interrupt instruction (SWI) enters Supervisor mode to request a particular
supervisor (Operating System) function. When a SWI is executed, the following are
performed:
ARM Architecture Reference Manual
ARM DDI 0100B

2-7

Programmer’s Model

R14_svc = address of SWI instruction + 4
SPSR_svc = CPSR
CPSR[5:0] = 0b010011 ; Supervisor mode
CPSR[6] = unchanged ; Fast Interrupt status is unchanged
CPSR[7] = 1 ; (Normal) Interrupts disabled
PC = 0x8

To return after performing the SWI operation, use:

MOVS PC,R14

This restores the PC (from R14_svc) and CPSR (from SPSR_svc) and returns to
the instruction following the SWI.

2.5.4 Prefetch Abort (Instruction Fetch Memory Abort)

A memory abort is signalled by the memory system. Activating an abort in response to
an instruction fetch marks the fetched instruction as invalid. An abort will take place if
the processor attempts to execute the invalid instruction. If the instruction is not
executed (for example as a result of a branch being taken while it is in the pipeline),
no prefetch abort will occur.

When an attempt is made to execute an aborted instruction, the following actions are
performed:

R14_abt = address of the aborted instruction + 4
SPSR_abt = CPSR
CPSR[5:0] = 0b010111 ; Abort mode
CPSR[6] = unchanged ; Fast Interrupt status is unchanged
CPSR[7] = 1 ; (Normal) Interrupts disabled
PC = 0xc

To return after fixing the reason for the abort, use:

SUBS PC,R14,#4

This restores both the PC (from R14_abt) and CPSR (from SPSR_abt) and returns to
the aborted instruction.

2.5.5 Data Abort (Data Access Memory Abort)

A memory abort is signalled by the memory system. Activating an abort in response to
a data access (Load or Store) marks the data as invalid. A data abort exception will
occur before any following instructions or exceptions have altered the state of the CPU,
and the following actions are performed:

R14_abt = address of the aborted instruction + 8
SPSR_abt = CPSR
CPSR[5:0] = 0b010111 ; Abort mode
CPSR[6] = unchanged ; Fast Interrupt status is unchanged
CPSR[7] = 1 ; (Normal) Interrupts disabled
PC = 0x10
ARM Architecture Reference Manual
ARM DDI 0100B

2-8

Programmer’s Model

To return after fixing the reason for the abort, use:

SUBS PC,R14,#8

This restores both the PC (from R14_abt) and CPSR (from SPSR_abt) and returns to
re-execute the aborted instruction.

If the aborted instruction does not need to be re-executed use:

SUBS PC,R14,#4

The final value left in the base register used in memory access instructions which
specify writeback and generate a data abort (LDR, LDRH, LDRSH, LDRB, LDRSB,
STR, STRH, STRB, LDM, STM, LDC, STC) is IMPLEMENTATION DEFINED.

An implementation can choose to leave either the original value or the updated value in
the base register, but the same behaviour must be implemented for all memory access
instructions.

2.5.6 IRQ (Interrupt Request) exception

The IRQ (Interrupt ReQuest) exception is externally generated by asserting the
processor’s IRQ input. It has a lower priority than FIQ (see below), and is masked out
when a FIQ sequence is entered. Interrupts are disabled when the I bit in the CPSR is
set (but note that the I bit can only be altered from a privileged mode). If the I flag is clear,
ARM checks for a IRQ at instruction boundaries.

When an IRQ is detected, the following actions are performed:

R14_irq = address of next instruction to be executed + 4
SPSR_irq = CPSR
CPSR[5:0] = 0b010010 ; Interrupt mode
CPSR[6] = unchanged ; Fast Interrupt status is unchanged
CPSR[7] = 1 ; (Normal) Interrupts disabled
PC = 0x18

To return after servicing the interrupt, use:

SUBS PC,R14,#4

This restores both the PC (from R14_irq) and CPSR (from SPSR_irq) and resumes
execution of the interrupted code.

2.5.7 FIQ (Fast Interrupt Request) exception

The FIQ (Fast Interrupt reQuest) exception is externally generated by asserting the
processor’s FIQ input. FIQ is designed to support a data transfer or channel process,
and has sufficient private registers to remove the need for register saving in such
applications (thus minimising the overhead of context switching).

Fast interrupts are disabled when the F bit in the CPSR is set (but note that the F bit can
only be altered from a privileged mode). If the F flag is clear, ARM checks for a FIQ at
instruction boundaries.
ARM Architecture Reference Manual
ARM DDI 0100B

2-9

Programmer’s Model

When a FIQ is detected, the following actions are performed:

R14_fiq = address of next instruction to be executed + 4
SPSR_fiq = CPSR
CPSR[5:0] = 0b010001 ; FIQ mode
CPSR[6] = unchanged ; Fast Interrupt disabled
CPSR[7] = 1 ; Interrupts disabled
PC = 0x1c

To return after servicing the interrupt, use:

SUBS PC, R14,#4

This restores both the PC (from R14_fiq) and CPSR (from SPSR_fiq) and resumes
execution of the interrupted code.

The FIQ vector is deliberately the last vector to allow the FIQ exception-handler software
to be placed directly at address 0x1c, and not require a branch instruction from
the vector.

2.5.8 Exception priorities

The Reset exception has the highest priority. FIQ has higher priority than IRQ. IRQ has
higher priority than prefetch abort.

Undefined instruction and software interrupt cannot occur at the same time, as they
each correspond to particular (non-overlapping) decodings of the current instruction,
and both must be lower priority than prefetch abort, as a prefetch abort indicates that no
valid instruction was fetched.

The priority of data abort is higher than FIQ and lower priority than Reset, which ensures
that the data-abort handler is entered before the FIQ handler is entered (so that the data
abort will be resolved after the FIQ handler has completed).

Exception Priority

Reset 1 (Highest)

Data Abort 2

FIQ 3

IRQ 4

Prefetch Abort 5

Undefined Instruction, SWI 6 (Lowest)

 Table 2-4: Exception priorities
ARM Architecture Reference Manual
ARM DDI 0100B

2-10

3

The ARM Instruction Set

The ARM Instruction Set

This chapter describes the ARM instruction set.
3.1 Using this Chapter 3-2
3.2 Instruction Set Overview 3-3
3.3 The Condition Field 3-4
3.4 Branch Instructions 3-6
3.5 Data Processing 3-7
3.6 Multiply Instructions 3-10
3.7 Status Register Access 3-12
3.8 Load and Store Instructions 3-13
3.9 Load and Store Word or Unsigned Byte Instructions 3-15
3.10 Load and Store Halfword and Load Signed Byte Instructions 3-16
3.11 Load and Store Multiple Instructions 3-17
3.12 Semaphore Instructions 3-19
3.13 Coprocessor Instructions 3-20
3.14 Extending the Instruction Set 3-22
3.15 Alphabetical List of ARM Instructions 3-30
3.16 Data-processing Operands 3-84
3.17 Load and Store Word or Unsigned Byte Addressing Modes 3-98
3.18 Load and Store Halfword or Load Signed Byte Addressing Modes 3-109
3.19 Load and Store Multiple Addressing Modes 3-116
3.20 Load and Store Multiple Addressing Modes (Alternative names) 3-121
3.21 Load and Store Coprocessor Addressing Modes 3-123

3

3-1ARM Architecture Reference Manual
ARM DUI 0100B

The ARM Instruction Set

3.1 Using this Chapter

This chapter is divided into three parts:
1 Overview of the ARM instruction types
2 Alphabetical list of instructions
3 Addressing modes

3.1.1 Overview of the ARM instruction types (page 3-3 through 3-27)

This part describes the functional groups within the instruction set, and shows relevant
examples and encodings. Each functional group lists all its instructions, which you can
then find in the alphabetical section. The functional groups are:
1 Branch
2 Data processing
3 Multiply
4 Status register access
5 Load and store:

- load and store word or unsigned byte

- load and store halfword and load signed byte

- load and store multiple

6 Semaphore
7 Coprocessor

3.1.2 Alphabetical list of instructions (page 3-30 through 3-81)

This part lists every ARM instruction, and gives:
• instruction syntax and functional group

• encoding and operation

• relevant exceptions and qualifiers

• notes on usage

• restrictions on availability in versions of the ARM architecture

• a cross-reference to the relevant addressing modes

3.1.3 Addressing modes (page 3-84 through 3-126)

This part lists the addressing modes for the functional groups of instructions:
Mode 1 Shifter operands for data processing instuctions
Mode 2 Load and store word or unsigned byte addressing modes
Mode 3 Load and store halfword or load signed byte addressing modes
Mode 4 Load and store multiple addressing modes
Mode 5 Load and store coprocessor addressing modes
3-2 ARM Architecture Reference Manual
ARM DUI 0100B

The ARM Instruction Set

3.2 Instruction Set Overview

Table 3-1: ARM instruction set overview (expanded) shows the instruction set
encoding. All other bit patterns are UNPREDICTABLE.

 Table 3-1: ARM instruction set overview (expanded)

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Data processing Immediate cond 0 0 1 op S Rn Rd rotate immediate

Data processing Immediate shift cond 0 0 0 opcode S Rn Rd shift immed shift 0 Rm

Data processing register shift cond 0 0 0 opcode S Rn Rd Rs 0 shift 1 Rm

Multiply cond 0 0 0 0 0 0 A S Rd Rn Rs 1 0 0 1 Rm

Multiply long cond 0 0 0 0 1 U A S RdHi RdLo Rs 1 0 0 1 Rm

Move from Status register cond 0 0 0 1 0 R 0 0 SBO Rd SBZ

Move immediate to Status register cond 0 0 1 1 0 R 1 0 Mask SBO rotate immediate

Move register to Status register cond 0 0 0 1 0 R 1 0 Mask SBO SBZ 0 Rm

Branch/Exchange instruction set cond 0 0 0 1 0 0 1 0 SBO SBO SBO 0 0 0 1 Rm

Load/Store immediate offset cond 0 1 0 P U B W L Rn Rd immediate

Load/Store register offset cond 0 1 1 P U B W L Rn Rd shift immed shift 0 Rm

Load/Store halfword/signed byte cond 0 0 0 P U 1 W L Rn Rd Hi Offset 1 S H 1 Lo Offset

Load/Store halfword/signed byte cond 0 0 0 P U 0 W L Rn Rd SBZ 1 S H 1 Rm

Swap/Swap byte cond 0 0 0 1 0 B 0 0 Rn Rd SBZ 1 0 0 1 Rm

Load/Store multiple cond 1 0 0 P U S W L Rn Register List

Coprocessor data processing cond 1 1 1 0 op1 CRn CRd cp_num op2 0 CRm

Coprocessor register transfers cond 1 1 1 0 op1 L CRn Rd cp_num op2 1 CRm

Coprocessor load and store cond 1 1 0 P U N W L Rn CRd cp_num 8_bit_offset

Branch and Branch with link cond 1 0 1 L 24_bit_offset

Software interrupt cond 1 1 1 1 swi_number

Undefined instruction cond 0 1 1 x 1 x x x x
3-3ARM Architecture Reference Manual
ARM DUI 0100B

The ARM Instruction Set

3.3 The Condition Field

All ARM instructions can be conditionally executed, which means that their execution
may or may not take place depending on the values of values of the N, Z, C and V flags
in the CPSR. Every instruction contains a 4-bit condition code field in bits 31 to 28,
as shown in Figure 3-1: Condition code fields.

 Figure 3-1: Condition code fields

3.3.1 Condition codes

This field specifies one of 16 conditions as described in Table 3-2: Condition codes on
page 3-5. Every instruction mnemonic may be extended with the letters defined in
the mnemonic extension field.

If the always (AL) condition is specified, the instruction will be executed irrespective of
the value of the condition code flags. Any instruction that uses the never (NV) condition
is UNPREDICTABLE. The absence of a condition code on an instruction mnemonic implies
the always (AL) condition code.

31 28 27 0

cond
3-4 ARM Architecture Reference Manual
ARM DUI 0100B

The ARM Instruction Set

Opcode [31:28] Mnemonic Extension Meaning Status flag state

0000 EQ Equal Z set

0001 NE Not Equal Z clear

0010 CS/HS Carry Set /Unsigned Higher or Same C set

0011 CC/LO Carry Clear /Unsigned Lower C clear

0100 MI Minus / Negative N set

0101 PL Plus /Positive or Zero N clear

0110 VS Overflow V set

0111 VC No Overflow V clear

1000 HI Unsigned Higher C set and Z clear

1001 LS Unsigned Lower or Same C clear or Z set

1010 GE Signed Greater Than or Equal N set and V set, or
N clear and V clear (N = V)

1011 LT Signed Less Than N set and V clear, or
N clear and V set (N != V)

1100 GT Signed Greater Than Z clear, and either N set and V set, or
N clear and V clear (Z = 0,N = V)

1101 LE Signed Less Than or Equal Z set, or N set and V clear, or
N clear and V set (Z = 1, N != V)

1110 AL Always (unconditional) -

1111 NV Never -

 Table 3-2: Condition codes
3-5ARM Architecture Reference Manual
ARM DUI 0100B

The ARM Instruction Set

3.4 Branch Instructions

All ARM processors support a branch instruction that allows a conditional branch
forwards or backwards up to 32 Mbytes. As the Program Counter (PC) is one of
the general-purpose registers (register 15), a branch or jump can also be generated by
writing a value to register 15.

A subroutine call is a variant of the standard branch; as well as allowing a branch
forward or backward up to 32 Mbytes, the Branch with Link instruction preserves
the address of the instruction after the branch (the return address) in register 14
(the link register or LR).

Lastly, a load instruction provides a way to branch any where in the 4Gbyte address
space (known as a long branch). A 32-bit value is loaded directly from memory into
the PC, causing a branch. The load instruction may be preceded with a Move
instruction to store a return address in the link register (LR or R14)).

Examples

B label ; branch unconditionally to label

BCC label ; branch to label if carry flag is clear

BEQ label ; branch to label if zero flag is set

MOV PC, #0 ; R15 = 0, branch to location zero

BL func ; subroutine call to function

func .

.
MOV PC, LR ; R15=R14, return to instruction after the BL

MOV LR, PC ; store the address of the instruction after
; the next one into R14 ready to return

LDR PC, =func ; load a 32 bit value into the program counter
.

Processors that support the Thumb instruction set (Architecture v4T) also support
a branch instruction (BX) that jumps to a given address, and optionally switches
executing Thumb instructions.

3.4.1 List of branch instructions

B, BL Branch, and branch with link page 3-33

BX Branch and exchange instruction set page 3-35
3-6 ARM Architecture Reference Manual
ARM DUI 0100B

The ARM Instruction Set

3.5 Data Processing

ARM has 16 data-processing instructions. Most data-processing instructions take two
source operands (Move and Move Not have only one operand) and store a result in
a register (except for the Compare and Test instructions which only update
the condition codes). Of the two source operands, one is always a register, the other
is called a shifter operand, and is either an immediate value or a register. If the second
operand is a register value, it may have a shift applied to it before it is used as
the operand to the ALU.

Mnemonic Operation Opcode Action

MOV Move 1101 Rd := shifter_operand (no first operand)

MVN Move Not 1111 Rd := NOT shifter_operand (no first operand)

ADD Add 0100 Rd := Rn + shifter_operand

ADC Add with Carry 0101 Rd := Rn + shifter_operand + Carry Flag

SUB Subtract 0010 Rd := Rn - shifter_operand

SBC Subtract with Carry 0110 Rd := Rn - shifter_operand - NOT(Carry Flag)

RSB Reverse Subtract 0011 Rd := shifter_operand - Rn

RSC Reverse Subtract with Carry 0111 Rd := shifter_operand - Rn - NOT(Carry Flag)

AND Logical AND 0000 Rd := Rn AND shifter_operand

EOR Logical Exclusive OR 0001 Rd := Rn EOR shifter_operand

ORR Logical (inclusive) OR 1100 Rd := Rn OR shifter_operand

BIC Bit Clear 1110 Rd := Rn AND NOT shifter_operand

CMP Compare 1010 update flags after Rn - shifter_operand

CMN Compare Negated 1011 update flags after Rn + shifter_operand

TST Test 1000 update flags after Rn AND shifter_operand

TEQ Test Equivalence 1001 update flags after Rn EOR shifter_operand

 Table 3-3: Data-processing instructions
3-7ARM Architecture Reference Manual
ARM DUI 0100B

The ARM Instruction Set

3.5.1 Instruction encoding

<opcode1>{<cond>}{S} Rd, <shifter_operand>
<opcode1> := MOV | MVN

<opcode2>{<cond>} Rn, <shifter_operand>
<opcode2> := CMP | CMN | TST | TEQ

<opcode3>{<cond>}{S} Rd, Rn, <shifter_operand>
<opcode3> := ADD|SUB|RSB|ADC|SBC|RSC|AND|BIC|EOR|ORR

Rd specifies the destination register

Rn specifies the first source operand register

<shifter_operand> specifies the second source operand.
See 3.16 Data-processing Operands on
page 3-84 for details of the shifter operands.

Notes

The I bit: Bit 25 is used to distinguish between the immediate and register forms of
<shifter_operand> .

The S bit: Bit 20 is used to signify that the instruction updates the condition codes.

3.5.2 Condition code flags

Data-processing instructions can update the four condition code flags.

CMP, CMN, TST and TEQ always update the condition code flags; the remaining
instructions will update the flags if an S is appended to the instruction mnemonic
(which sets the S bit in the instruction).

Bits are set as follows:

N (Negative) flag is set if the result of a data-processing instruction is
negative

Z (Zero) flag is set if the result is equal to zero

C (Carry) flag is set if an add, subtract or compare causes a carry
(result bigger than 32 bits), or is set from the output of
the shifter for move and logical instructions

V (Overflow) flag is set if an Add or Subtract, or compare overflows
(signed result bigger than 31 bits); unaffected by move or
conditional instructions

31 28 27 26 25 24 21 20 19 16 15 12 11 0

cond 0 0 I opcode S Rn Rd shifter_operand
3-8 ARM Architecture Reference Manual
ARM DUI 0100B

The ARM Instruction Set

3.5.3 List of data-processing instructions

ADC Add with Carry page 3-30

ADD Add page 3-31

AND Logical AND page 3-32

BIC Logical Bit Clear page 3-34

CMN Compare Negative page 3-37

CMP Compare page 3-38

EOR Logical EOR page 3-39

MOV Move page 3-53

MVN Move negative page 3-59

ORR Logical OR page 3-60

RSB Reverse Subtract page 3-61

RSC Reverse Subtract with Carry page 3-62

SBC Subtract with Carry page 3-63

SUB Subtract page 3-74

TEQ Test Equivalence page 3-78

TST Test page 3-79
3-9ARM Architecture Reference Manual
ARM DUI 0100B

The ARM Instruction Set

3.6 Multiply Instructions

ARM has two classes of multiply instruction:
• normal, 32-bit result
• long, 64-bit result

All multiply instructions take two register operands as the input to the multiplier.
ARM does not directly support a multiply-by-constant instruction due to the efficiency
of shift and add, or shift and reverse subtract instructions.

3.6.1 Normal multiply

There are two multiply instructions that produce 32-bit results:
MUL multiplies the values of two registers together, truncates the result to

32 bits, and stores the result in a third register.
MLA multiplies the values of two registers together, adds the value of a third

register, truncates the result to 32 bits, and stores the result into a fourth
register (i.e. performs multiply and accumulate).

Both multiply instructions can optionally set the N (Negative) and Z (Zero) condition
code flags. No distinction is made between signed and unsigned variants; only
the least-significant 32 bits of the result are stored in the destination register, and
the sign of the operands does not affect this value.

MUL R4, R2, R1 ; Set R4 to value of R2 multiplied by R1
MULS R4, R2, R1 ; R4 = R2 x R1, set N and Z flags
MLA R7, R8, R9, R3 ; R7 = R8 x R9 + R3

3.6.2 Long multiply

There are four multiply instructions that produce 64-bit results (long multiply).

Two of the variants multiply the values of two registers together and store the 64-bit
result in a third and fourth register. There are a signed (SMULL) and unsigned (UMULL)
variants. (The signed variants produce a different result in the most significant 32 bits
if either or both of the source operands is negative).

The remaining two variants multiply the values of two registers together, add the 64-bit
value from and third and fourth register and store the 64-bit result back into those
registers (third and fourth). There are also signed (SMLAL) and unsigned (UMLAL)
variants. These instruction perform a long multiply and accumulate.

All four long multiply instructions can optionally set the N (Negative) and Z (Zero)
condition code flags:

SMULL R4, R8, R2, R3 ; R4 = bits 0 to 31 of R2 x R3
; R8 = bits 32 to 63 of R2 x R3

UMULL R6, R8, R0, R1 ; R6, R8 = R0 x R1
UMLAL R5, R8, R0, R1 ; R5, R8 = R0 x R1 + R5, R8
3-10 ARM Architecture Reference Manual
ARM DUI 0100B

The ARM Instruction Set

3.6.3 List of multiply instructions

MLA Multiply accumulate page 3-52

MUL Multiply page 3-58

SMLAL Signed multiply accumulate long page 3-64

SMULL Signed multiply long page 3-65

UMLAL Unsigned multiply accumulate long page 3-80

UMULL Unsigned multiply long page 3-81
3-11ARM Architecture Reference Manual
ARM DUI 0100B

The ARM Instruction Set

3.7 Status Register Access

There are two instructions for moving the contents of a program status register to or
from a general-purpose register. Both the CPSR and SPSR can be accessed.
Each status register is split into four 8-bit fields than can be individually written:

bits 31 to 24 the flags field

bits 23 to 16 the status field

bits 15 to 8 the extension field

bits 7 to 0 the control field

ARMv4 does not use the status and extension field, and 4 bits are unused in the flags
field. The four condition code flags occupy the remaining four bits of the flags field, and
the control field contains two interrupt disable bits, 5 processor mode bits, and the
Thumb bit on ARMv4T (See 2.4 Program Status Registers on page 2-3).

The unused bits of the status registers may be used in future ARM architectures, and
should not be modified by software. Therefore, a read-modify write strategy should be
used to update the value of a status register to ensure future compatibility. The status
registers are readable to allow the read part of the read-modify-write operation, and
to allow all processor state to be preserved (for instance, during process content
switches). The status registers are writeable to allow the write part of the
read-modify-write operation, and allow all processor state to be restored.

3.7.1 CPSR value Altering the value of the CPSR has three uses:
1 Sets the value of the condition code flags to a known value.
2 Enables or disables interrupts.
3 Changes processor mode (for instance to initialise stack pointers).

3.7.2 Examples MRS R0, CPSR ; Read the CPSR
BIC R0, R0, #0xf0000000 ; Clear the N, Z, C and V bits
MSR CPSR_f, R0 ; update the flag bits in the CPSR
; N, Z, C and V flags now all clear
MRS R0, CPSR ; Read the CPSR
ORR R0, R0, #0x80 ; Set the interrupt disable bit
MSR CPSR_c, R0 ; Update the control bits in the CPSR
; interrupts (IRQ) now disabled
MRS R0, CPSR ; Read the CPSR
BIC R0, R0, #0x1f ; Clear the mode bits
ORR R0, R0, #0x11 ; Set the mode bits to FIQ mode
MSR CPSR_c, R0 ; Update the control bits in the CPSR
; now in FIQ mode

3.7.3 List of status register access instructions

MRS Move SR to general-purpose register page 3-55

MSR Move general-purpose register to SR page 3-56
3-12 ARM Architecture Reference Manual
ARM DUI 0100B

The ARM Instruction Set

3.8 Load and Store Instructions

ARMv4 supports two broad classes of instruction which load or store the value of
a single register from or to memory.

• The first form can load or store a 32-bit word or an 8-bit unsigned byte

• The second form can load or store a 16-bit unsigned halfword, and can load
and sign extend a 16-bit halfword or an 8-bit byte

The first form (word and unsigned byte) allows a wider range of addressing modes
the second (halfword and signed byte). The Word and Unsigned Byte addressing
mode comes in two parts:

• the base register

• the offset

The base register is any one of the general-purpose registers (including the PC,
which allows PC-relative addressing for position-independent code).

The offset takes one of three forms:
1 Immediate Offset:

The offset is a 12-bit unsigned number, that may be added to or subtracted from
the base register. Immediate Offset addressing is useful for accessing data
elements that are a fixed distance from the start of the data object, such as
structure fields, stack offsets and IO registers.

2 Register Offset:
The offset is a general-purpose register (not the PC), that may be added to or
subtracted from the base register. Register offsets are useful for accessing arrays
or blocks of data.

3 Scaled Register Offset:
The offset is a general-purpose register (not the PC) shifted by an immediate
value, then added to or subtracted from the base register. The same shift
operations used for data-processing instructions can be used (Logical Shift Left,
Logical Shift Right, Arithmetic Shift Right and Rotate Right), but Logical Shift Left
is the most useful as it allows an array indexed to be scaled by size of each array
element.

As well as the three forms of offset, the offset and base register are used in three
different ways to form the memory address.
1 Offset addressing:

The base register and offset are simply added or subtracted to form the memory
address.

2 Pre-indexed addressing:
The base register and offset are added or subtracted to form the memory address.
The base register is then updated with this new address, to allow automatic
indexing through an array or memory block.

3 Post-indexed addressing:
The value of the base register alone is used as the memory address. The base
register and offset are added or subtracted and this value is stored back in
the base register, to allow automatic indexing through an array or memory block.
3-13ARM Architecture Reference Manual
ARM DUI 0100B

The ARM Instruction Set

3.8.1 Examples

LDR R1, [R0] ; Load register 1 from the address in register 0
LDR R8, [R3, #4] ; Load R8 from the address in R3 + 4
LDR R12, [R13, #-4] ; Load R12 from R13 - 4
STR R2, [R1, #0x100] ; Store R2 to the address in R1 + 0x100

LDRB R5, [R9] ; Load a byte into R5 from R9 (zero top 3 bytes)
LDRB R3, [R8, #3] ; Load byte to R3 from R8 + 3 (zero top 3 bytes)
STRB R4, [R10, #0x200] ; Store byte from R4 to R10 + 0x200

LDR R11, [R1, R2] ; Load R11 from the address in R1 + R2
STRB R10, [R7, -R4] ; Store byte from R10 to the address in R7 - R4

LDR R11,[R3,R5,LSL #2] ; Load R11 from R3 + (R5 x 4)
LDR R1, [R0, #4]! ; Load R1 from R0 + 4, then R0 = R0 + 4
STRB R7, [R6, #-1]! ; Store byte from R7 to R6 - 1, then R6 = R6 - 1

LDR R3, [R9], #4 ; Load R3 from R9, then R9 = R9 + 4
STR R2, [R5], #8 ; Store word from R2 to R5, then R5 = R5 + 8

LDR R0, [PC, #40] ; Load R0 from PC + 8 + 0x40
LDR R0, [R1], R2 : Load R0 from R1, then R1 = R1 + R2

3.8.2 Examples of halfword and signed byte addressing modes

The Halfword and Signed Byte addressing modes are a subset of the above addressing modes. The scaled
register offset is not supported, and the immediate offset contains 8 bits, not 12.

LDRH R1, [R0] ; Load a halfword to R1 from R0 (zero top bytes)
LDRH R8, [R3, #2] ; Load a halfword into R8 from R3 + 2
LDRH R12, [R13, #-6] ; Load a halfword R12 from R13 - 6
STRH R2, [R1, #0x80] ; Store halfword from R2 to R1 + 0x80

LDRSH R5, [R9] ; Load signed halfword to R5 from R9
LDRSB R3, [R8, #3] ; Load signed byte to R3 from R8 + 3
LDRSB R4, [R10, #0xc1] ; Load signed byte to R4 from R10 + 0xc1

LDRH R11, [R1, R2] ; Load halfword R11 from the address in R1 + R2
STRH R10, [R7, -R4] ; Store halfword from R10 to R7 - R4

LDRSH R1, [R0, #2]! ; Load signed halfword R1 from R0+2,then R0=R0+2
LDRSB R7, [R6, #-1]! ; Load signed byte to R7 from R6-1, then R6=R6-1

LDRH R3, [R9], #2 ; Load halfword to R3 from R9, then R9 = R9 + 2
STRH R2, [R5], #8 ; Store halfword from R2 to R5, then R5 = R5 + 8
3-14 ARM Architecture Reference Manual
ARM DUI 0100B

The ARM Instruction Set

3.9 Load and Store Word or Unsigned Byte Instructions

Load instructions load a single value from memory and write it to a general-purpose
register.

Store instructions read a value from a general-purpose register and store it to memory.

Load and store instructions have a single instruction format:
LDR|STR{<cond>}{B} Rd, <addressing_mode>

The I, P, U and W bits: These bits distinguish between different types of
<addressing_mode> .

The L bit: This bit distinguishes between a Load (L==1) and a Store instruction (L==0).

3.9.1 List of load and store word or unsigned byte instructions

LDR Load word page 3-44

LDRB Load byte page 3-45

LDRBT Load byte with user mode privilege page 3-46

LDRT Load word with user mode privilege page 3-50

STR Store word page 3-69

STRB Store byte page 3-70

STRBT Store byte with user mode privilege page 3-71

STRT Store word with user mode privilege page 3-73

31 28 27 26 25 24 23 22 21 20 19 16 15 12 11 0

cond 0 1 I P U B W L Rn Rd addressing_mode_specific
3-15ARM Architecture Reference Manual
ARM DUI 0100B

The ARM Instruction Set

3.10 Load and Store Halfword and Load Signed Byte Instructions

Load instructions load a single value from memory and write it to a general-purpose
register.

Store instructions read a value from a general-purpose register and store it to memory.

Load and store halfword and load signed byte instructions have a single instruction
format:

LDR|STR{<cond>}H|SH|SB Rd, <addressing_mode>

The addr_mode bits: These bits are addressing mode specific.

The I, P, U and W bits: These bits specify the type of <addressing_mode>
(see section 3.18 Load and Store Halfword or Load Signed Byte
Addressing Modes on page 3-109).

The L bit: This bit distinguishes between a Load (L==1) and a Store instruction (L==0).

The S bit: This bit distinguishes between a signed (S==1) and an unsigned (S==0)
halfword access.

The H bit: This bit distinguishes between a halfword (H==1) and a signed byte (H==0)
access.

3.10.1 List of load and store halfword and load signed byte instructions

LDRH Load unsigned halfword page 3-47

LDRSB Load signed byte page 3-48

LDRSH Load signed halfword page 3-49

STRH Store halfword page 3-72

31 28 27 26 25 24 23 22 21 20 19 16 15 12 11 8 7 6 5 4 3 0

cond 0 0 0 P U 1 W L Rn Rd addr_mode 1 S H 1 addr_mode
3-16 ARM Architecture Reference Manual
ARM DUI 0100B

The ARM Instruction Set

3.11 Load and Store Multiple Instructions

Load Multiple instructions load a subset (or possibly all) of the general-purpose
registers from memory.

Store Multiple instructions store a subset (or possibly all) of the general-purpose
registers to memory.

Load and Store Multiple instructions have a single instruction format.
LDM{<cond>}<addressing_mode> Rn{!}, <register_list>{^}
STM{<cond>}<addressing_mode> Rn{!}, <registers>{^}

where:
<addressing_mode> = IA | IB | DA | DB | FD | FA | ED | EA

The register list: The <register_list> has one bit for each general-purpose
register; bit 0 is for register zero, and bit 15 is for register 15 (the PC).
The register syntax list is an opening bracket, followed by a comma-separated list
of registers, followed by a closing bracket. A sequence of consecutive registers
may be specified by separating the first and last registers in the range with a minus
sign.

The P, U and W bits: These bits distinguish between the different types of addressing
mode. See 3.19 Load and Store Multiple Addressing Modes on page 3-116.

The S bit: For LDMs that load the PC, the S bit indicates that the CPSR is loaded from
the SPSR. For LDMs that do not load the PC and all STMs, it indicates that when
the processor is in a privileged mode, the user-mode banked registers are
transferred and not the registers of the current mode.

The L bit: This bit distinguishes between a Load (L==1) and a Store (L==0) instruction.

Addressing modes

For full details of the addressing modes for these instructions, refer to 3.19 Load and
Store Multiple Addressing Modes on page 3-116, and 3.20 Load and Store Multiple
Addressing Modes (Alternative names) on page 3-121.

3.11.1 Examples

STMFD R13!, {R0 - R12, LR}

LDMFD R13!, {R0 - R12, PC}

LDMIA R0, {R5 - R8}

STMDA R1!, {R2, R5, R7 - R9, R11}

31 28 27 26 25 24 23 22 21 20 19 16 15 0

cond 1 0 0 P U S W L Rn register list
3-17ARM Architecture Reference Manual
ARM DUI 0100B

The ARM Instruction Set

3.11.2 List of load and store multiple instructions

LDM Load multiple page 3-41

LDM User registers load multiple page 3-42

LDM Load multiple and restore CSPR page 3-43

STM Store multiple page 3-67

STM User registers store multiple page 3-68
3-18 ARM Architecture Reference Manual
ARM DUI 0100B

The ARM Instruction Set

3.12 Semaphore Instructions

The ARM instruction set has two semaphore instructions:
• Swap (SWP)

• Swap Byte (SWPB)

These instructions are provided for process synchronisation. Both instructions
generate an atomic load and store operation, allowing a memory semaphore to be
loaded and altered without interruption.

SWP and SWPB have a single addressing mode; the address is the contents of
a register. Separate registers are used to specify the value to store and the destination
of the load; if the same register is specified SWP exchanges the value in the register
and the value in memory.

The semaphore instructions do not provide a compare and conditional write facility;
this must be done explicitly.

Examples
SWP R12, R10, [R9] ; load R12 from address R9 and

; store R10 to address R9

SWPB R3, R4, [R8] ; load byte to R3 from address R8 and
; store byte from R4 to address R8

SWP R1, R1, [R2] ; Exchange value in R1 and address in R2

3.12.1 List of semaphore instructions

SWP Swap page 3-76

SWPB Swap Byte page 3-77
3-19ARM Architecture Reference Manual
ARM DUI 0100B

The ARM Instruction Set

3.13 Coprocessor Instructions

Note: Coprocessor instructions are not implemented in Architecture version 1.

The ARM instruction set provides 3 types of instruction for communicating with
coprocessors. The instruction set distinguishes up to 16 coprocessors with a 4-bit field
in each coprocessor instruction, so each coprocessor is assigned a particular number
(one coprocessor can use more than one of the 16 numbers if a large coprocessor
instruction set is required).

The three classes of coprocessor instruction allow:
• ARM to initiate a coprocessor data processing operation

• ARM registers to be transferred to and from coprocessor registers

• ARM to generate addresses for the coprocessor load and store instructions

Coprocessors execute the same instruction stream as ARM, ignoring ARM instructions
and coprocessor instructions for other coprocessors. Coprocessor instructions that
cannot be executed by coprocessor hardware cause an UNDEFINED instruction trap,
allowing software emulation of coprocessor hardware.

A coprocessor can partially execute an instruction and then cause an exception; this is
useful for handling run-time-generated exceptions (like divide-by-zero or overflow).

Not all fields in coprocessor instructions are used by ARM; coprocessor register
specifiers and opcodes are defined by individual coprocessors. Therefore, only generic
instruction mnemonics are provided for coprocessor instructions; assembler macros
can be used to transform custom coprocessor mnemonics into these generic
mnemonics (or to regenerate the opcodes manually).

Examples

CDP p5, 2, c12, c10, c3, 4 ; Coprocessor 5 data operation
; opcode 1 = 2, opcode 2 = 4
; destination register is 12
; source registers are 10 and 3

MRC p15, 5, R4, c0, c2, 3 ; Coprocessor 15 transfer to ARM register
; opcode 1 = 5, opcode 2 = 3
; ARM destination register = R4
; coproc source registers are 0 and 2

MCR p14, 1, R7, c7, c12, 6 ; ARM register transfer to Coprocessor 14
; opcode 1 = 1, opcode 2 = 6
; ARM source register = R7
; coproc dest registers are 7 and 12

LDC p6, CR1, [R4] ; Load from memory to coprocessor 6
; ARM register 4 contains the address
; Load to CP reg 1

LDC p6, CR4, [R2, #4] ; Load from memory to coprocessor 6
; ARM register R2 + 4 is the address
; Load to CP reg 4
3-20 ARM Architecture Reference Manual
ARM DUI 0100B

The ARM Instruction Set

STC p8, CR8, [R2, #4]! ; Store from coprocessor 8 to memory

; ARM register R2 + 4 is the address
; after the transfer R2 = R2 + 4
; Store from CP reg 8

STC p8, CR9, [R2], #-16 ; Store from coprocessor 8 to memory
; ARM register R2 holds the address
; after the transfer R2 = R2 - 16
; Store from CP reg 9

3.13.1 List of coprocessor instructions

CDP Coprocessor data operations page 3-36

LDC Load coprocessor register page 3-40

MCR Move to coprocessor from ARM register page 3-51

MRC Move to ARM register from coprocessor page 3-54

STC Store coprocessor register page 3-66
3-21ARM Architecture Reference Manual
ARM DUI 0100B

The ARM Instruction Set

3.14 Extending the Instruction Set

The ARM instruction set can be extended in four areas:
• Arithmetic instruction extension space

• Control instruction extension space

• Load/store instruction extension space

• Coprocessor instruction extension space

Currently, these instructions are UNDEFINED (they cause an undefined instruction
exception). These parts of the address space will be used in the future to add new
instructions.

3.14.1 Arithmetic instruction extension space

Instructions with the following opcodes are the arithmetic instruction extension space:

The field names given are only guidelines, which are likely to simplify implementation.

MUL and MLA

Multiply and Multiply Accumulate (MUL and MLA) instructions use op1 values 0 to 3.
Rn specifies the destination register
Rm and Rs specify source registers
Rd specifies the accumulated value

UMULL, UMLAL, SMULL, SMLAL

The Signed and Unsigned Multiple Long and Multiply Accumulate Long (UMULL,
UMLAL, SMULL, SMLAL) instructions use op1 values 8 to 15;

Rn and Rd specify the destination registers
Rm and Rs specify the source registers

Other opcodes

The meaning of all other opcodes in the arithmetic instruction extension space is:
• UNDEFINED on ARM Architecture 4

• UNPREDICTABLE on earlier versions of the architecture.

opcode[27:24] = 0

opcode[7:4] = 0b1001

31 28 27 26 25 24 23 20 19 16 15 12 11 8 7 6 5 4 3 0

cond 0 0 0 0 op1 Rn Rd Rs 1 0 0 1 Rm
3-22 ARM Architecture Reference Manual
ARM DUI 0100B

The ARM Instruction Set

3.14.2 Control instruction extension space

Instructions with:

and not:

are the control instruction extension space. The field names given are only guidelines,
which are likely to simplify implementation.

MRS

The Move status register to general-purpose register (MRS) instruction sets:

and uses both op1 = 0b00 and op1 = 0b10.

Rd is used to specify the destination register.

MSR

The Move general-purpose register to status register (MSR) instruction sets:

and uses both op1 = 0b01 and op1= 0b11 .

Rm specifies the source register

opcode[19:16] hold the write mask

opcode[27:26] = 0b00

opcode[24:23] = 0b10

opcode[20] = 0

opcode[25] = 0

opcode[7] = 1

opcode[4] = 1

31 28 27 26 25 24 23 22 21 20 19 16 15 12 11 8 7 6 5 4 3 0

cond 0 0 0 1 0 op1 0 Rn Rd Rs op2 0 Rm

cond 0 0 0 1 0 op1 0 Rn Rd Rs 0 op2 1 Rm

cond 0 0 1 1 0 op1 0 Rn Rd rotate_imm 8_bit_immediate

opcode[25] = 0

opcode[19:16] = 0b1111

opcode[11:0] = 0

opcode[25] = 0

opcode[15:12] = 0b1111

opcode[11:4] = 0
3-23ARM Architecture Reference Manual
ARM DUI 0100B

The ARM Instruction Set

The Move immediate value to status register (MSR) instruction sets:

and uses both op1 = 0b01 and op1= 0b11 .

Rm specifies the source register

opcode[11:0] specify the immediate operand

opcode[19:16] hold the write mask

BX

The Branch and Exchange Instruction Set (BX) instruction sets:

and uses op1 = 0b01 .

Rm is used to specify the source register.

Other opcodes

The meaning of all other opcodes in the control instruction extension space is:
• UNDEFINED on ARM Architecture 4

• UNPREDICTABLE on earlier versions of the architecture

3.14.3 Load/Store instruction extension space

Instructions with

and not

are the load/store instruction extension space.

The field names given are only guidelines, which are likely to simplify implementation.

opcode[25] = 1

opcode[15:12] = 0b1111

opcode[25] = 0

opcode[19:8] = 0b111111111111

opcode[7:4] = 0b0001

opcode[27:25] = 0b000

opcode[7] = 1

opcode[4] = 1

opcode[24] = 0

opcode[6:5] = 0

31 28 27 26 25 24 23 22 21 20 19 16 15 12 11 8 7 6 5 4 3 0

cond 0 0 0 P U B W L Rn Rd Rs 1 op1 1 Rm
3-24 ARM Architecture Reference Manual
ARM DUI 0100B

The ARM Instruction Set

SWP and SWPB

The Swap and Swap Byte (SWP and SWPB) instructions set:

where:

Rn specifies the base address

Rd specifies the destination register

Rm specifies the source register

Opcode[22] indicates a byte transfer

LDRH

The Load Halfword (LDRH) instruction sets:

where:

the B bit distinguishes between a register and an immediate offset

the P, U and W bits specify the addressing mode

Rn specifies the base register

Rd specifies the destination register

Rm specifies a register offset

Rs and Rm specify an immediate offset

LDRSH

The Load Signed Halfword (LDRSH) instruction sets:

where:

the B bit distinguishes between a register and an immediate offset

the P, U and W bits specify the addressing mode

Rn specifies the base register

Rd specifies the destination register

Rm specifies a register offset

Rs and Rm specify an immediate offset

opcode[24:23] = 0b10

opcode[21:20] = 0b00

opcode[11:4] = 0b00001001

opcode[20] = 1

op1 = 0b01

opcode[20] = 1

op1 = 0b11
3-25ARM Architecture Reference Manual
ARM DUI 0100B

The ARM Instruction Set

LDRSB

The Load Signed Byte (LDRSB) instruction sets:

where:

the B bit distinguishes between a register and an immediate offset

the P, U and W bits specify the addressing mode

Rn specifies the base register

Rd specifies the destination register

Rm specifies a register offset

Rs and Rm specify an immediate offset

STRH

The Store Halfword (STRH) instruction sets:

where:

the B bit distinguishes between a register and an immediate offset

the P, U and W bits specify the addressing mode

Rn specifies the base register

Rd specifies the source register

Rm specifies a register offset

Rs and Rm specify an immediate offset

Other opcodes

The meaning of all other opcodes in the Load/Store instruction extension space is:
• UNDEFINED on ARM Architecture 4

• UNPREDICTABLE on earlier versions of the architecture

opcode[20] = 1

op1 = 0b10

opcode[20] = 0

op1 = 0b01
3-26 ARM Architecture Reference Manual
ARM DUI 0100B

The ARM Instruction Set

3.14.4 Coprocessor instruction extension space

Instructions with

are the coprocessor instruction extension space. The names given to fields are only
guidelines, which if followed are likely to simplify implementation.

The meaning of instructions in the coprocessor instruction extension space is:
• UNDEFINED on ARM Architecture 4

• UNPREDICTABLE on earlier versions of the architecture

3.14.5 Undefined instruction Space

Instructions with

are UNDEFINED instruction space.

The meaning of instructions in the UNDEFINED instruction space is UNDEFINED on all
versions of the ARM Architecture.

opcode[27:24] = 0b1100

opcode[21] = 0

31 28 27 26 25 24 23 22 21 20 19 16 15 12 11 8 7 0

cond 1 1 0 0 X X 0 X Rn CRd cp_num offset

opcode[27:25] = 0b011

opcode[4] = 1

31 28 27 26 25 24 5 4 3 0

cond 0 1 1 x 1 x x x x
3-27ARM Architecture Reference Manual
ARM DUI 0100B

ARM Instructions

STRH
Load and store

Addressing mode 3

Architecture v4 only

A
R

M

STR{<cond>}H Rd, <addressing_mode>

Description Combined with a suitable addressing mode, the STRH (Store Register Halfw
16-bit data from a general-purpose register to be stored to memory. Using th
allows PC-relative addressing, to facilitate position-independent code.

STRH stores a halfword from the least-significant halfword of register Rd to
calculated by <addressing_mode> . If the address is not halfword-aligned,
UNPREDICTABLE.

The instruction is only executed if the condition specified in the instruction m
status.

Operation if ConditionPassed(<cond>) then
if <address>[0] == 0

<data> = Rd[15:0]
else /* <address>[0] == 1 */

<data> = UNPREDICTABLE

Memory[<address>,2] = <data>

Exceptions Data Abort

Qualifiers Condition Code

Notes Addressing modes: The I, P, U and W bits specify the type of <addressing_
Mode 3 starting on page -108).

The addr_mode bits: These bits are addressing-mode specific.

Register Rn: Specifies the base register used by <addressing_mode> .

Use of R15: If register 15 is specified for Rd, the result is UNPREDICTABLE.

Operand restrictions: If <addressing_mode> uses pre-indexed or post-inde
same register is specified for Rd and Rn, the results are UNPREDICTAB

Data Abort: If a data abort is signalled and <addressing_mode> uses pre-
addressing, the value left in Rn is IMPLEMENTATION DEFINED, but is eithe
value or the updated base register value (even if the same register is

Non-half-word aligned addresses: If the store address is not halfword-aligned, th
UNPREDICTABLE.

Alignment: If an implementation includes a System Control Coprocessor (see
checking is enabled, an address with bit[0] != 0 will cause an alignme

31 28 27 26 25 24 23 22 21 20 19 16 15 12 11

cond 0 0 0 P U I W 0 Rn Rd addr_mode

Instruction name

Functional area

Addressing mode

Architecture availability

SyntaxDescription

Encoding

Operation

Exceptions

Qualifiers and flag settings

User notes

given in the following alphabetical list

described in the preceding section of this chapter

indicates if an addressing mode applies to this instruction

indicates if there is a restriction on availability

specifies the bit patterns for the instruction

describes the operation of the instruction in pseudo-code

lists any possible exceptions

lists any conditions and flag settings

gives notes on using the instruction

Not all instructions are available in

that apply to the instruction

all versions of the ARM architecture

ADC

3-30

A
R

M

Data processing

Addressing mode 1
3
3.15 Alphabetical List of ARM Instructions

ADC{<cond>}{S} Rd, Rn, <shifter_operand>
Description The ADC (Add with Carry) instruction adds the value of <shifter_operand>
and the value of the Carry flag to the value of register Rn, and stores the result in
the destination register Rd. The condition code flags are optionally updated (based
on the result).

ADC is used to synthesize multi-word addition. If register pairs R0,R1 and R2,R3
hold 64-bit values (where 0 and R2 hold the least-significant words), the following
instructions leave the 64-bit sum in R4,R5:

ADDS R4,R0,R2
ADC R5,R1,R3

The instruction:
ADCS R0,R0,R0

produces a single-bit Rotate Left with Extend operation (33-bit rotate though
the carry flag) on R0. See 3-97 for more information.

The instruction is only executed if the condition specified in the instruction matches
the condition code status. The conditions are defined in 3.3 The Condition Field on
page 3-4.

Operation
if ConditionPassed(<cond>) then

Rd = Rn + <shifter_operand> + C Flag
if S == 1 and Rd == R15 then

CPSR = SPSR
else if S == 1 then

N Flag = Rd[31]
Z Flag = if Rd == 0 then 1 else 0
C Flag = CarryFrom(Rn + <shifter_operand> + C Flag)
V Flag = OverflowFrom (Rn + <shifter_operand> + C Flag)

Exceptions None

Qualifiers Condition Code
S updates condition code flags N,Z,C,V

Notes Shifter operand: The shifter operands for this instruction are given in Addressing
Mode 1 starting on page 3-84.

The I bit: Bit 25 is used to distinguish between the immediate and register forms of
<shifter_operand> .

Writing to R15: When Rd is R15 and the S flag in the instruction is not set, the result
of the operation is placed in the PC. When Rd is R15 and the S flag is set,
the result of the operation is placed in the PC and the SPSR corresponding to
the current mode is moved to the CPSR. This allows state changes which
atomically restore both PC and CPSR. This form of the instruction is
UNPREDICTABLE in User mode and System mode.

31 28 27 26 25 24 23 22 21 20 19 16 15 12 11 0

cond 0 0 I 0 1 0 1 S Rn Rd shifter_operand
ARM Architecture Reference Manual
ARM DUI 0100B

ADD

A
R

M
ADD{<cond>}{S} Rd, Rn, <shifter_operand>
Data processing

Addressing mode 1
Description The ADD instruction adds the value of <shifter_operand> to the value of
register Rn, and stores the result in the destination register Rd. The condition code
flags are optionally updated (based on the result).

ADD is used to add two values together to produce a third.

To increment a register value (in Rx), use:
ADD Rx, Rx, #1

Constant multiplication (of Rx) by 2n+1 (into Rd) can be performed with:
ADD Rd, Rx, Rx LSL #n

To form a PC-relative address, use:
ADD Rs, PC, #offset

The instruction is only executed if the condition specified in the instruction matches
the condition code status. The conditions are defined in 3.3 The Condition Field on
page 3-4.

Operation if ConditionPassed(<cond>) then
Rd = Rn + <shifter_operand>
if S == 1 and Rd == R15 then

CPSR = SPSR
else if S == 1 then

N Flag = Rd[31]
Z Flag = if Rd == 0 then 1 else 0
C Flag = CarryFrom(Rn + <shifter_operand>)
V Flag = OverflowFrom (Rn + <shifter_operand>)

Exceptions None

Qualifiers Condition Code
S updates condition code flags N,Z,C,V

Notes Shifter operand: The shifter operands for this instruction are given in Addressing
Mode 1 starting on page 3-84.

The I bit: Bit 25 is used to distinguish between the immediate and register forms of
<shifter_operand> .

Writing to R15: When Rd is R15 and the S flag in the instruction is not set, the result
of the operation is placed in the PC. When Rd is R15 and the S flag is set,
the result of the operation is placed in the PC and the SPSR corresponding to
the current mode is moved to the CPSR. This allows state changes which
atomically restore both PC and CPSR. This form of the instruction is
UNPREDICTABLE in User mode and System mode.

31 28 27 26 25 24 23 22 21 20 19 16 15 12 11 0

cond 0 0 I 0 1 0 0 S Rn Rd shifter_operand
3-31ARM Architecture Reference Manual
ARM DUI 0100B

AND

3-32

A
R

M

Data processing

Addressing mode 1
AND{<cond>}{S} Rd, Rn, <shifter_operand>
Description The AND instruction performs a bitwise AND of the value of register Rn with
the value of <shifter_operand> , and stores the result in the destination
register Rd. The condition code flags are optionally updated (based on the result).

AND is most useful for extracting a field from a register, by ANDing the register
with a mask value that has 1's in the field to be extracted, and 0's elsewhere.

The instruction is only executed if the condition specified in the instruction matches
the condition code status. The conditions are defined in 3.3 The Condition Field on
page 3-4.

Operation if ConditionPassed(<cond>) then
Rd = Rn AND <shifter_operand>
if S == 1 and Rd == R15 then

CPSR = SPSR
else if S == 1 then

N Flag = Rd[31]
Z Flag = if Rd == 0 then 1 else 0
C Flag = <shifter_carry_out>
V Flag = unaffected

Exceptions None

Qualifiers Condition Code
S updates condition code flags N,Z,C

Notes Shifter operand: The shifter operands for this instruction are given in Addressing
Mode 1 starting on page 3-84.

The I bit: Bit 25 is used to distinguish between the immediate and register forms of
<shifter_operand> .

Writing to R15: When Rd is R15 and the S flag in the instruction is not set, the
result of the operation is placed in the PC. When Rd is R15 and the S flag is
set, the result of the operation is placed in the PC and the SPSR
corresponding to the current mode is moved to the CPSR. This allows state
changes which atomically restore both PC and CPSR. This form of the
instruction is UNPREDICTABLE in User mode and System mode.

31 28 27 26 25 24 23 22 21 20 19 16 15 12 11 0

cond 0 0 I 0 0 0 0 S Rn Rd shifter_operand
ARM Architecture Reference Manual
ARM DUI 0100B

B BL

A
R

M
B{L}{<cond>} <target address>
Branch
Description The B (Branch) and BL (Branch and Link) instructions provide both conditional and
unconditional changes to program flow. The Branch with Link instruction is used to
perform a subroutine call; the return from subroutine is achieved by copying the LR
to the PC.

B and BL cause a branch to a target address. The branch target address is
calculated by:
1 shifting the 24-bit signed (two’s complement) offset left two bits
2 sign-extending the result to 32 bits
3 adding this to the contents of the PC (which contains the address of the

branch instruction plus 8)

The instruction can therefore specify a branch of +/- 32Mbytes.

In the BL variant of the instruction, the L (link) bit is set, and the address of the
instruction following the branch is copied into the link register (R14).

The instruction is only executed if the condition specified in the instruction matches
the condition code status. The conditions are defined in 3.3 The Condition Field on
page 3-4.

Operation
if ConditionPassed(<cond>) then

if L == 1 then
LR = address of the instruction after the branch instruction

PC = PC + (SignExtend(<24_bit_signed_offset>) << 2)

Exceptions None

Qualifiers Condition Code
L (Link) stores a return address in the LR (R14) register

Notes Offset calculation: An assembler will calculate the branch offset address from
the difference between the address of the current instruction and the address
of the target (given as a program label) minus eight (because the PC holds
the address of the current instruction plus eight).

Memory bounds: Branching backwards past location zero and forwards over
the end of the 32-bit address space is UNPREDICTABLE.

31 28 27 26 25 24 23 0

cond 1 0 1 L 24_bit_signed_offset
3-33ARM Architecture Reference Manual
ARM DUI 0100B

BIC

3-34

A
R

M

Data processing
BIC{<cond>}{S} Rd, Rn, <shifter_operand>
Description The BIC (Bit Clear) instruction performs a bitwise AND of the value of register Rn
with the complement of the value of <shifter_operand> , and stores the result
in the destination register Rd. The condition code flags are optionally updated
(based on the result).

BIC can be used to clear selected bits in a register; for each bit, BIC with 1 will clear
the bit, BIC with 0 will leave it unchanged.

The instruction is only executed if the condition specified in the instruction matches
the condition code status. The conditions are defined in 3.3 The Condition Field on
page 3-4.

Operation if ConditionPassed(<cond>) then
Rd = Rn AND NOT <shifter_operand>
if S == 1 and Rd == R15 then

CPSR = SPSR
else if S == 1 then

N Flag = Rd[31]
Z Flag = if Rd == 0 then 1 else 0
C Flag = <shifter_carry_out>
V Flag = unaffected

Exceptions None

Qualifiers Condition Code
S updates condition code flags N,Z,C

Notes Shifter operand: The shifter operands for this instruction are given in Addressing
Mode 1 starting on page 3-84.

Writing to R15: When Rd is R15 and the S flag in the instruction is not set, the
result of the operation is placed in the PC. When Rd is R15 and the S flag is
set, the result of the operation is placed in the PC and the SPSR
corresponding to the current mode is moved to the CPSR. This allows state
changes which atomically restore both PC and CPSR. This form of the
instruction is UNPREDICTABLE in User mode and System mode.

The I bit: Bit 25 is used to distinguish between the immediate and register forms of
<shifter_operand> .

31 28 27 26 25 24 23 22 21 20 19 16 15 12 11 0

cond 0 0 I 1 1 1 0 S Rn Rd shifter_operand
ARM Architecture Reference Manual
ARM DUI 0100B

BX

A
R

M
BX{<cond>} Rm
Branch

Architecture v4 only
Description The BX (Branch and Exchange instructions set) is UNDEFINED on ARM Architecture
Version 4. On ARM Architecture Version 4T, this instruction branches and selects
the instruction set decoder to use to decode the instructions at the branch
destination. The branch target address is the value of register Rm. The T flag is
updated with bit 0 of the value of register Rm.

BX is used to branch between ARM code and THUMB code. On ARM Architecture
4, it causes an UNDEFINED instruction exception to allow the THUMB instruction set
to be emulated.

The instruction is only executed if the condition specified in the instruction matches
the condition code status. The conditions are defined in 3.3 The Condition Field on
page 3-4.

Operation if ConditionPassed(<cond>) then
T Flag = Rm[0]
PC = Rm[31:1] << 1

Exceptions None

Operation Condition Code

Notes Transferring to THUMB: When transferring to the THUMB instruction set, bit[0] of
PC will be cleared (set to zero), and bits[31:1] will be copied from Rm to
the PC.

Transferring to ARM: When transferring to the ARM instruction set, bit[0] of PC will
be cleared (set to zero), and bits[31:1] will be copied from Rm to the PC.
If bit[1] of Rm is set, the result is UNPREDICTABLE.

31 28 27 26 25 24 23 22 21 20 19 16 15 12 11 8 7 6 5 4 3 0

cond 0 0 0 1 0 0 1 0 SBO SBO SBO 0 0 0 1 Rm
3-35ARM Architecture Reference Manual
ARM DUI 0100B

CDP

3-36

A
R

M

Coprocessor

Not in architecture v1
CDP{<cond>} p<cp#>, <opcode_1>, CRd, CRn, CRm, <opcode_2>
Description The CDP (Coprocessor Data Processing) instruction tells the coprocessor
specified by <cp#> to perform an operation that is independent of ARM registers
and memory. If no coprocessors indicate that they can execute the instruction,
an UNDEFINED instruction exception is generated.

CDP is used to initiate coprocessor instructions that do not operate on values in
ARM registers or in main memory; for example, a floating-point multiply instruction
for a floating-point accelerator coprocessor.

The instruction is only executed if the condition specified in the instruction matches
the condition code status. The conditions are defined in 3.3 The Condition Field on
page 3-4.

Operation if ConditionPassed(<cond>) then
Coprocessor[<cp_num>] dependent operation

Exceptions Undefined Instruction

Qualifiers Condition Code

Notes Coprocessor fields: Only instruction bits[31:24], bits[11:8] and bit[4] are which
architecture defined; the remaining fields are only recommendations, which
if followed, will be compatible with ARM Development Systems.

31 28 27 26 25 24 23 22 21 20 19 16 15 12 11 8 7 5 4 3 0

cond 1 1 1 0 opcode_1 CRn CRd cp_num opcode_2 0 CRm
ARM Architecture Reference Manual
ARM DUI 0100B

CMN

A
R

M
CMN{<cond>} Rn, <shifter_operand>
Data processing

Addressing mode 1
Description The CMN (Compare Negative) instruction compares an arithmetic value and
the negative of an arithmetic value (an immediate or the value of a register) and
sets the condition code flags so that subsequent instructions can be conditionally
executed.

CMN performs a comparison by adding (or subtracting the negative of) the value
of <shifter_operand> to (from) the value of register Rn, and updates
the condition code flags (based on the result). The comparison is the subtraction
of the negative of the second operand from the first operand (which is the same as
adding the two operands).

The instruction is only executed if the condition specified in the instruction matches
the condition code status. The conditions are defined in 3.3 The Condition Field on
page 3-4.

Operation if ConditionPassed(<cond>) then
<alu_out> = Rn + <shifter_operand>
N Flag = <alu_out>[31]
Z Flag = if <alu_out> == 0 then 1 else 0
C Flag = CarryFrom(Rn + <shifter_operand>)
V Flag = OverflowFrom (Rn + <shifter_operand>)

Exceptions None

Qualifiers Condition Code

Notes Shifter operand: The shifter operands for this instruction are given in Addressing
Mode 1 starting on page 3-84.

The I bit: Bit 25 is used to distinguish between the immediate and register forms of
<shifter_operand> .

31 28 27 26 25 24 23 22 21 20 19 16 15 12 11 0

cond 0 0 I 1 0 1 1 1 Rn SBZ shifter_operand
3-37ARM Architecture Reference Manual
ARM DUI 0100B

CMP

3-38

A
R

M

Data processing

Addressing mode 1
CMP{<cond>} Rn, <shifter_operand>
Description The CMP (Compare) instruction compares two arithmetic values and sets
the condition code flags so that subsequent instructions can be conditionally
executed. The comparison is a subtraction of the second operand from the first
operand.

CMP performs a comparison by subtracting the value of <shifter_operand>
from the value of register Rn and updates the condition code flags (based on
the result).

The instruction is only executed if the condition specified in the instruction matches
the condition code status. The conditions are defined in 3.3 The Condition Field on
page 3-4.

Operation if ConditionPassed(<cond>) then
<alu_out> = Rn - <shifter_operand>
N Flag = <alu_out>[31]
Z Flag = if <alu_out> == 0 then 1 else 0
C Flag = NOT BorrowFrom(Rn - <shifter_operand>)
V Flag = OverflowFrom (Rn - <shifter_operand>)

Exceptions None

Qualifiers Condition Code

Notes Shifter operand: The shifter operands for this instruction are given in Addressing
Mode 1 starting on page 3-84.

The I bit: Bit 25 is used to distinguish between the immediate and register forms of
<shifter_operand> .

31 28 27 26 25 24 23 22 21 20 19 16 15 12 11 0

cond 0 0 I 1 0 1 0 1 Rn SBZ shifter_operand
ARM Architecture Reference Manual
ARM DUI 0100B

EOR

A
R

M
EOR{<cond>}{S} Rd, Rn, <shifter_operand>
Data processing

Addressing mode 1
Description The EOR (Exclusive-OR) instruction performs a bitwise Exclusive-OR of the value
of register Rn with the value of <shifter_operand> , and stores the result in the
destination register Rd. The condition code flags are optionally updated (based on
the result).

EOR can be used to invert selected bits in a register; for each bit, EOR with 1 will
invert that bit, and EOR with 0 will leave it unchanged.

The instruction is only executed if the condition specified in the instruction matches
the condition code status. The conditions are defined in 3.3 The Condition Field on
page 3-4.

Operation if ConditionPassed(<cond>) then
Rd = Rn EOR <shifter_operand>
if S == 1 and Rd == R15 then

CPSR = SPSR
else if S == 1 then

N Flag = Rd[31]
Z Flag = if Rd == 0 then 1 else 0
C Flag = <shifter_carry_out>
V Flag = unaffected

Exceptions None

Qualifiers Condition Code
S updates condition code flags N,Z,C

Notes Shifter operand: The shifter operands for this instruction are given in Addressing
Mode 1 starting on page 3-84.

Writing to R15: When Rd is R15 and the S flag in the instruction is not set,
the result of the operation is placed in the PC. When Rd is R15 and the S flag
is set, the result of the operation is placed in the PC and the SPSR
corresponding to the current mode is moved to the CPSR. This allows state
changes which atomically restore both PC and CPSR. This form of the
instruction is UNPREDICTABLE in User mode and System mode.

The I bit: Bit 25 is used to distinguish between the immediate and register forms of
<shifter_operand> .

31 28 27 26 25 24 23 22 21 20 19 16 15 12 11 0

cond 0 0 I 0 0 0 1 S Rn Rd shifter_operand
3-39ARM Architecture Reference Manual
ARM DUI 0100B

LDC

3-40

A
R

M

Coprocessor

Addressing mode 5

Not in Architecture v1
LDC{<cond>} p<cp_num>, CRd, <addressing_mode>
Description The LDC (Load Coprocessor) instruction is useful to load coprocessor data from
memory. The N bit could be used to distinguish between a single- and
double-precision transfer for a floating-point load instruction.

LDC loads memory data from the sequence of consecutive memory addresses
calculated by <addressing_mode> to the coprocessor specified by <cp_num>.
If no coprocessors indicate that they can execute the instruction, an UNDEFINED
instruction exception is generated.

The instruction is only executed if the condition specified in the instruction matches
the condition code status. The conditions are defined in 3.3 The Condition Field on
page 3-4.

Operation if ConditionPassed(<cond>) then
<address> = <start_address>
while (NotFinished(coprocessor[<cp_num>]))

Coprocessor[<cp_num>] = Memory[<address>,4]
<address> = <address> + 4

assert <address> == <end_address>

Exceptions Undefined Instruction; Data Abort

Qualifiers Condition Code

Notes Addressing mode: The P, U and W bits specify the <addressing_mode> .
See Addressing Mode 5 starting on page 3-123.

The N bit: This bit is coprocessor-dependent. It can be used to distinguish
between two sizes of data to transfer.

Register Rn: Specifies the base register used by <addressing_mode> .

Coprocessor fields: Only instruction bits[31:23], bits [21:16} and bits[11:0] are
ARM architecture-defined; the remaining fields (bit[22] and bits[15:12]) are
recommendations for compatibility with ARM Development Systems.

Data Abort: If a data abort is signalled and <addressing_mode> uses
pre-indexed or post-indexed addressing, the value left in Rn is
IMPLEMENTATION DEFINED, but is either the original base register value or
the updated base register value.

Non-word-aligned addresses: Load coprocessor register instructions ignore
the least-significant two bits of <address> (the words are not rotated as for
load word).

Alignment: If an implementation includes a System Control Coprocessor
(see Chapter 7), and alignment checking is enabled, an address with
bits[1:0] != 0b00 will cause an alignment exception.

31 28 27 26 25 24 23 22 21 20 19 16 15 12 11 8 7 0

cond 1 1 0 P U N W 1 Rn CRd cp_num 8_bit_word_offset
ARM Architecture Reference Manual
ARM DUI 0100B

LDM (1)

A
R

M
LDM{<cond>}<addressing_mode> Rn{!}, <registers>
Load and store multiple

Addressing mode 4
Description This form of the LDM (Load Multiple) instruction is useful as a block load instruction
(combined with store multiple it allows efficient block copy) and for stack
operations, including procedure exit, to restore saved registers, load the PC with
the return address, and update the stack pointer.

In this case, LDM loads a non-empty subset (or possibly all) of the general-
purpose registers from sequential memory locations. The registers are loaded in
sequence, the lowest-numbered register first, from the lowest memory address
(<start_addr>); the highest-numbered register last, from the highest memory
address (<end_addr>). If the PC is specified in the register list (opcode bit 15 is
set), the instruction causes a branch to the address (data) loaded into the PC.

The instruction is only executed if the condition specified in the instruction matches
the condition code status. The conditions are defined in 3.3 The Condition Field on
page 3-4.

Operation if ConditionPassed(<cond>) then
<address> = <start_addr>
for i = 0 to 15

if <register_list>[i] == 1
Ri = Memory[<address>,4]
<address> = <address> + 4

assert <end_add> == <address> - 4

Exceptions Data Abort

Qualifiers Condition Code
! sets the W bit, causing base register update

Notes Addressing mode: The P, U and W bits distinguish between the different types of
addressing mode. See Addressing Mode 4 starting on page 3-116.

Register Rn: Specifies the base register used by <addressing_mode> .

Use of R15: Using R15 as the base register Rn gives an UNPREDICTABLE result.

Operand restrictions: If the base register Rn is specified in <register_list> ,
and writeback is specified, the final value of Rn is UNPREDICTABLE.

Data Abort: If a data abort is signalled and <addressing_mode> specifies
writeback, the value left in Rn is IMPLEMENTATION DEFINED, but is either
the original base register value or the updated base register value (even if Rn
is specified in <register_list>). If register 15 is specified in
<register_list> , it must not be overwritten if a data abort occurs.

Non-word-aligned addresses: Load multiple instructions ignore the least-significant
two bits of <address> (the words are not rotated as for load word).

Alignment: If an implementation includes a System Control Coprocessor
(see Chapter 7), and alignment checking is enabled, an address with
bits[1:0] != 0b00 will cause an alignment exception.

31 28 27 26 25 24 23 22 21 20 19 16 15 0

cond 1 0 0 P U 0 W 1 Rn register list
3-41ARM Architecture Reference Manual
ARM DUI 0100B

LDM (2)

3-42

A
R

M

Load and store multiple

Addressing mode 4
LDM{<cond>}<addressing_mode> Rn, <registers>^
Description This form of the LDM (Load Multiple) instruction loads user mode registers when
the processor is in a privileged mode (useful when performing process swaps).

In this case, LDM instruction loads a non-empty subset (or possibly all except
the PC) of the user mode general-purpose registers (which are also the system
mode general-purpose registers) from sequential memory locations. The registers
are loaded in sequence, the lowest-numbered register first, from the lowest
memory address (<start_address>); the highest-numbered register last, from
the highest memory address (<end_address>).

The instruction is only executed if the condition specified in the instruction matches
the condition code status. The conditions are defined in 3.3 The Condition Field on
page 3-4.

Operation if ConditionPassed(<cond>) then
<address> = <start_address>
for i = 0 to 14

if <register_list>[i] == 1
Ri_usr = Memory[<address>,4]
<address> = <address> + 4

assert <end_address> == <address> - 4

Exceptions Data Abort

Qualifiers Condition Code

Notes Addressing mode: The P and U bits distinguish between the different types of
addressing mode. See Addressing Mode 4 starting on page 3-116.

Banked registers: LDM must not be followed by an instruction which accesses
banked registers (a following NOP is a good way to ensure this).

Writeback: Setting bit 21 (the W bit) has UNPREDICTABLE results.

User and System mode: LDM is UNPREDICTABLE in user mode or system mode.

Register Rn: Specifies the base register used by <addressing_mode> .

Use of R15: If register 15 if specified as the base register Rn, the result is
UNPREDICTABLE.

Base register mode: The base register is read from the current processor mode
registers, not the user mode registers.

Data Abort: If a data abort is signalled, the value left in Rn is the original base
register value.

Non-word-aligned addresses: LDM instructions ignore the least-significant two bits
of <address> (words are not rotated as for load word).

Alignment: If an implementation includes a System Control Coprocessor
(see Chapter 7), and alignment checking is enabled, an address with
bits[1:0] != 0b00 will cause an alignment exception.

31 28 27 26 25 24 23 22 21 20 19 16 15 0

cond 1 0 0 P U 1 W 1 Rn 0 register list
ARM Architecture Reference Manual
ARM DUI 0100B

LDM (3)

A
R

M
LDM{<cond>}<addressing_mode> Rn{!}, <registers_and_pc>^
Load and store multiple

Addressing mode 4
Description This form of the LDM (Load Multiple) instruction is useful for returning from
an exception, to restore saved registers, load the PC with the return address,
update the stack pointer, and restore the CPSR from the SPSR.

In this case, LDM loads a non-empty subset (or possibly all) of the general-
purpose registers and the PC from sequential memory locations. The registers are
loaded in sequence, the lowest-numbered register first, from the lowest memory
address; the highest-numbered register last, from the highest memory address.
The SPSR of the current mode is copied to the CPSR.

The instruction is only executed if the condition specified in the instruction matches
the condition code status. The conditions are defined in 3.3 The Condition Field on
page 3-4.

Operation if ConditionPassed(<cond>) then
<address> = <start_address>
for i = 0 to 15

if <register_list>[i] == 1
Ri = Memory[<address>,4]
<address> = <address> + 4

assert <end_address> == <address> - 4
CPSR = SPSR

Exceptions Data Abort

Qualifiers Condition Code
! sets the W bit, causing base register update

Notes Addressing mode: The P, U and W bits distinguish between the different types of
addressing mode. See Addressing Mode 4 starting on page 3-116.

Register Rn: Specifies the base register used by <addressing_mode> .

Use of R15: Using R15 as the base register Rn gives an UNPREDICTABLE result.

User and System mode: This instruction is UNPREDICTABLE in user or system mode.

Operand restrictions: If the base register Rn is specified in <register_list> ,
and writeback is specified, the final value of Rn is UNPREDICTABLE.

Data Abort: If a data abort is signalled and <addressing_mode> specifies
writeback, the value left in Rn is IMPLEMENTATION DEFINED, but is either
the original base register value or the updated base register value (even if Rn
is specified in <register_list>). If register 15 is specified in
<register_list> , it must not be overwritten if a data abort occurs.

Non-word-aligned addresses: Load multiple instructions ignore the least-significant
two bits of <address> (the words are not rotated as for load word).

Alignment: If an implementation includes a System Control Coprocessor
(see Chapter 7), and alignment checking is enabled, an address with
bits[1:0] != 0b00 will cause an alignment exception.

31 28 27 26 25 24 23 22 21 20 19 16 15 0

cond 1 0 0 P U 1 W 1 Rn 1 register list
3-43ARM Architecture Reference Manual
ARM DUI 0100B

LDR

3-44

A
R

M

Load and store

Addressing mode 2
LDR{<cond>} Rd, <addressing_mode>
Description Combined with a suitable addressing mode, the LDR (Load register) instruction
allows 32-bit memory data to be loaded into a general-purpose register where its
value can be manipulated. If the destination register is the PC, this instruction
loads a 32-bit address from memory and branches to that address (precede
the LDR instruction with MOV LR, PC to synthesize a branch and link).

Using the PC as the base register allows PC-relative addressing, to facilitate
position-independent code.

LDR loads a word from the memory address calculated by <addressing_mode>
and writes it to register Rd. If the address is not word-aligned, the loaded data is
rotated so that the addressed byte occupies the least-significant byte of
the register. If the PC is specified as register Rd, the instruction loads a branch to
the address (data) into the PC.

The instruction is only executed if the condition specified in the instruction matches
the condition code status. The conditions are defined in 3.3 The Condition Field on
page 3-4.

Operation if ConditionPassed(<cond>) then
if <address>[1:0] == 0b00

Rd = Memory[<address>,4]
else if <address>[1:0] == 0b01

Rd = Memory[<address>,4] Rotate_Right 8
else if <address>[1:0] == 0b10

Rd = Memory[<address>,4] Rotate_Right 16
else /* <address>[1:0] == 0b11 */

Rd = Memory[<address>,4] Rotate_Right 24

Exceptions Data Abort

Qualifiers Condition Code

Notes Addressing modes: The I, P, U and W bits specify the type of
<addressing_mode> (see Addressing Mode 2 starting on page 3-98).

Register Rn: Specifies the base register used by <addressing_mode> .

Data Abort: If a data abort is signalled and <addressing_mode> uses pre-
indexed or post-indexed addressing, the value left in Rn is IMPLEMENTATION
DEFINED, but is either the original base register value or the updated base
register value (even if the same register is specified for Rd and Rn).

Operand restrictions: If <addressing_mode> uses pre-indexed or post-indexed
addressing, and the same register is specified for Rd and Rn, the results are
UNPREDICTABLE.

Alignment: If an implementation includes a System Control Coprocessor
(See Chapter 7), and alignment checking is enabled, an address with
bits[1:0] != 0b00 will cause an alignment exception.

31 28 27 26 25 24 23 22 21 20 19 16 15 12 11 0

cond 0 1 I P U 0 W 1 Rn Rd addressing mode specific
ARM Architecture Reference Manual
ARM DUI 0100B

LDRB

A
R

M
LDR{<cond>}B Rd, <addressing_mode>
Load and store

Addressing mode 2
Description Combined with a suitable addressing mode, the LDRB (Load Register Byte)
instruction allows 8-bit memory data to be loaded into a general-purpose register
where it can be manipulated. Using the PC as the base register allows PC-relative
addressing, to facilitate position-independent code.

LDRB loads a byte from the memory address calculated by
<addressing_mode> , zero-extends the byte to a 32-bit word, and writes
the word to register Rd.

The instruction is only executed if the condition specified in the instruction matches
the condition code status. The conditions are defined in 3.3 The Condition Field on
page 3-4.

Operation if ConditionPassed(<cond>) then
Rd = Memory[<address>,1]

Exceptions Data Abort

Qualifiers Condition Code

Notes Addressing modes: The I, P, U and W bits specify the type of
<addressing_mode> (see Addressing Mode 2 starting on page 3-98).

Register Rn: Specifies the base register used by <addressing_mode> .

Use of R15: If register 15 is specified for Rd the result is UNPREDICTABLE.

Operand restrictions: If <addressing_mode> uses pre-indexed or post-indexed
addressing, and the same register is specified for Rd and Rn, the results are
UNPREDICTABLE.

Non-word-aligned addresses: Store Word instructions ignore the least-significant
two bits of <address> (the words are not rotated as for Load Word).

Data Abort: If a data abort is signalled and <addressing_mode> uses
pre-indexed or post-indexed addressing, the value left in Rn is
IMPLEMENTATION DEFINED, but is either the original base register value or
the updated base register value (even if the same register is specified for Rd
and Rn).

31 28 27 26 25 24 23 22 21 20 19 16 15 12 11 0

cond 0 1 I P U 1 W 1 Rn Rd addressing mode specific
3-45ARM Architecture Reference Manual
ARM DUI 0100B

LDRBT

3-46

A
R

M

Load and store

Addressing mode 2
LDR{<cond>}BT Rd, <post_indexed_addressing_mode>
Description The LDRBT (Load Register Byte with Translation) instruction can be used by
a (privileged) exception handler that is emulating a memory access instruction that
would normally execute in User Mode. The access is restricted as if it has
User Mode privilege.

LDRBT loads a byte from the memory address calculated by
<post_indexed_addressing_mode> , zero-extends the byte to a 32-bit word,
and writes the word to register Rd. If the instruction is executed when
the processor is in a privileged mode, the memory system is signalled to treat
the access as if the processor was in user mode.

The instruction is only executed if the condition specified in the instruction matches
the condition code status. The conditions are defined in 3.3 The Condition Field on
page 3-4.

Operation if ConditionPassed(<cond>) then
Rd = Memory[<address>,1]

Exceptions Data Abort

Qualifiers Condition Code

Notes Addressing modes: The I, P, and U bits specify the type of <addressing_mode>
(see Addressing Mode 2 starting on page 3-98).

Register Rn: Specifies the base register used by
<post_indexed_addressing_mode> .

User mode: If this instruction is executed in user mode, an ordinary user mode
access is performed.

Use of R15: If register 15 is specified for Rd, the result is UNPREDICTABLE.

Operand restrictions: If the same register is specified for Rd and Rn, the results
are UNPREDICTABLE.

Data Abort: If a data abort is signalled, the value left in Rn is IMPLEMENTATION
DEFINED, but is either the original base register value or the updated base
register value (even if the same register is specified for Rd and Rn).

31 28 27 26 25 24 23 22 21 20 19 16 15 12 11 0

cond 0 1 I 0 U 1 1 1 Rn Rd addressing mode specific
ARM Architecture Reference Manual
ARM DUI 0100B

LDRH

A
R

M
LDR{<cond>}H Rd, <addressing_mode>
Load and store

Addressing mode 3

Architecture v4 only
Description Used with a suitable addressing mode, the LDRH (Load Register Halfword)
instruction allows 16-bit memory data to be loaded into a general-purpose register
where its value can be manipulated.

Using the PC as the base register allows PC-relative addressing to facilitate
position-independent code.

LDRH loads a halfword from the memory address calculated by
<addressing_mode> , zero-extends the halfword to a 32-bit word, and writes
the word to register Rd. If the address is not halfword-aligned, the result is
UNPREDICTABLE.

The instruction is only executed if the condition specified in the instruction matches
the condition code status. The conditions are defined in 3.3 The Condition Field on
page 3-4.

Operation if ConditionPassed(<cond>) then
if <address>[0] == 0

<data> = Memory[<address>,2]
else /* <address>[0] == 1 */

<data> = UNPREDICTABLE

Rd = <data>

Exceptions Data Abort

Qualifiers Condition Code

Notes Addressing modes: The I, P, U and W bits specify the type of
<addressing_mode> (see Addressing Mode 3 starting on page 3-109).

The addr_mode bits: These bits are addressing-mode specific.

Register Rn: Specifies the base register used by <addressing_mode> .

Use of R15: If register 15 is specified for Rd, the result is UNPREDICTABLE.

Operand restrictions: If <addressing_mode> uses pre-indexed or post-indexed
addressing, and the same register is specified for Rd and Rn, the results are
UNPREDICTABLE.

Data Abort: If a data abort is signalled and <addressing_mode> uses pre-
indexed or post-indexed addressing, the value left in Rn is IMPLEMENTATION
DEFINED, but is either the original base register value or the updated base
register value (even if the same register is specified for Rd and Rn).

Non-half-word aligned addresses: If the load address is not halfword-aligned,
the loaded value is UNPREDICTABLE.

Alignment: If an implementation includes a System Control Coprocessor
(see Chapter 7), and alignment checking is enabled, an address with
bit[0] != 0 will cause an alignment exception.

31 28 27 26 25 24 23 22 21 20 19 16 15 12 11 8 7 6 5 4 3 0

cond 0 0 0 P U I W 1 Rn Rd addr_mode 1 0 1 1 addr_mode
3-47ARM Architecture Reference Manual
ARM DUI 0100B

LDRSB

3-48

A
R

M

Load and store

Addressing mode 3

Architecture v4 only
LDR{<cond>}SB Rd, <addressing_mode>
Description Used with a suitable addressing mode, the LDRSB (Load Register Signed Byte)
instruction allows 8-bit signed memory data to be loaded into a general-purpose
register where it can be manipulated.

Using the PC as the base register allows PC-relative addressing, to facilitate
position-independent code.

LDRSB loads a byte from the memory address calculated by
<addressing_mode> , sign extends the byte to a 32-bit word, and writes the word
to register Rd.

The instruction is only executed if the condition specified in the instruction matches
the condition code status. The conditions are defined in 3.3 The Condition Field on
page 3-4.

Operation if ConditionPassed(<cond>) then
<data> = Memory[<address>,1]
Rd = SignExtend(<data>)

Exceptions Data Abort

Qualifiers Condition Code

Notes Addressing modes: The I, P, U and W bits specify the type of
<addressing_mode> (see Addressing Mode 3 starting on page 3-109).

The addr_mode bits: These bits are addressing mode specific.

Register Rn: Specifies the base register used by <addressing_mode> .

Use of R15: If register 15 is specified for Rd, the result is UNPREDICTABLE.

Operand restrictions: If <addressing_mode> uses pre-indexed or post-indexed
addressing, and the same register is specified for Rd and Rn, the results are
UNPREDICTABLE.

Data Abort: If a data abort is signalled and <addressing_mode> uses
pre-indexed or post-indexed addressing, the value left in Rn is
IMPLEMENTATION DEFINED, but is either the original base register value or
the updated base register value (even if the same register is specified for
Rd and Rn).

31 28 27 26 25 24 23 22 21 20 19 16 15 12 11 8 7 6 5 4 3 0

cond 0 0 0 P U I W 1 Rn Rd addr_mode 1 1 0 1 addr_mode
ARM Architecture Reference Manual
ARM DUI 0100B

LDRSH

A
R

M
LDR{<cond>}SH Rd, <addressing_mode>
Load and store

Addressing mode 3

Architecture v4 only
Description Used with a suitable addressing mode, the LDRSH (Load Register Signed
Halfword) instruction allows 16-bit signed memory data to be loaded into
a general-purpose register where its value can be manipulated.

Using the PC as the base register allows PC-relative addressing, to facilitate
position-independent code.

LDRSH loads a halfword from the memory address calculated by
<addressing_mode> , sign-extends the halfword to a 32-bit word, and writes
the word to register Rd. If the address is not halfword-aligned, the result is
UNPREDICTABLE.

The instruction is only executed if the condition specified in the instruction matches
the condition code status. The conditions are defined in 3.3 The Condition Field on
page 3-4.

Operation if ConditionPassed(<cond>) then
if <address>[0] == 0

<data> = Memory[<address>,2]
else /* <address>[0] == 1 */

<data> = UNPREDICTABLE

Rd = SignExtend(<data>)

Exceptions Data Abort

Qualifiers Condition Code

Notes Addressing modes: The I, P, U and W bits specify the type of
<addressing_mode> (see Addressing Mode 3 starting on page 3-109).

The addr_mode bits: These bits are addressing mode specific.

Register Rn: Specifies the base register used by <addressing_mode> .

Use of R15: If register 15 is specified for Rd, the result is UNPREDICTABLE.

Operand restrictions: If <addressing_mode> uses pre-indexed or post-indexed
addressing, and the same register is specified for Rd and Rn, the results are
UNPREDICTABLE.

Data Abort: If a data abort is signalled and <addressing_mode> uses
pre-indexed or post-indexed addressing, the value left in Rn is
IMPLEMENTATION DEFINED, but is either the original base register value or
the updated base register value (even if the same register is specified for
Rd and Rn).

Non-half-word aligned addresses: If the load address is not halfword-aligned,
the loaded value is UNPREDICTABLE.

Alignment: If an implementation includes a System Control Coprocessor
(see Chapter 7), and alignment checking is enabled, an address with
bit[0] != 0 causes an alignment exception.

31 28 27 26 25 24 23 22 21 20 19 16 15 12 11 8 7 6 5 4 3 0

cond 0 0 0 P U I W 1 Rn Rd addr_mode 1 1 1 1 addr_mode
3-49ARM Architecture Reference Manual
ARM DUI 0100B

LDRT

3-50

A
R

M

Load and store

Addressing mode 2
LDR{<cond>}T Rd, <post_indexed_addressing_mode>
Description The LDRT (Load Register with Translation) instruction can be used by
a (privileged) exception handler that is emulating a memory access instruction that
would normally execute in User Mode. The access is restricted as if it has
User Mode privilege.

LDRT loads a word from the memory address and writes it to register Rd.
If the instruction is executed when the processor is in a privileged mode,
the memory system is signalled to treat the access as if the processor was in user
mode.

The instruction is only executed if the condition specified in the instruction matches
the condition code status. The conditions are defined in 3.3 The Condition Field on
page 3-4.

Operation if ConditionPassed(<cond>) then
if <address>[1:0] == 0b00

Rd = Memory[<address>,4]
else if <address>[1:0] == 0b01

Rd = Memory[<address>,4] Rotate_Right 8
else if <address>[1:0] == 0b10

Rd = Memory[<address>,4] Rotate_Right 16
else /* <address>[1:0] == 0b11 */

Rd = Memory[<address>,4] Rotate_Right 24

Exceptions Data Abort

Qualifiers Condition Code

Notes Addressing modes: The I, P, and U bits specify the type of <addressing_mode>
(see Addressing Mode 2 starting on page 3-98).

Register Rn: Specifies the base register used by
<post_indexed_addressing_mode> .

User mode: If this instruction is executed in user mode, an ordinary user mode
access is performed.

Operand restrictions: If the same register is specified for Rd and Rn the results are
UNPREDICTABLE.

Data Abort: If data abort is signalled, the value left in Rn is IMPLEMENTATION
DEFINED, but is either the original base register value or the updated base
register value (even if the same register is specified for Rd and Rn).

Alignment: If an implementation includes a System Control Coprocessor
(See Chapter 7), and alignment checking is enabled, an address with
bits[1:0] != 0b00 causes an alignment exception.

31 28 27 26 25 24 23 22 21 20 19 16 15 12 11 0

cond 0 1 I 0 U 0 1 1 Rn Rd addressing mode specific
ARM Architecture Reference Manual
ARM DUI 0100B

MCR

A
R

M

MCR{<cond>} p<cp#>, <opcode_1>, Rd, CRn, CRm, <opcode_2>
Coprocessor

Not in architecture v1
Description The MCR (Move to Coprocessor from ARM Register) instruction is used to initiate
coprocessor instructions that operate on values in ARM registers, for example
a fixed-point to floating-point conversion instruction for a floating-point accelerator
coprocessor.

MCR passes the value of register Rd to the coprocessor specified by <cp_num>.
If no coprocessors indicate that they can execute the instruction, an UNDEFINED
instruction exception is generated.

The instruction is only executed if the condition specified in the instruction matches
the condition code status. The conditions are defined in 3.3 The Condition Field on
page 3-4.

Operation if ConditionPassed(<cond>) then
Coprocessor[<cp_num>] = Rd

Exceptions Undefined Instruction

Qualifiers Condition Code

Notes Coprocessor fields: Only instruction bits[31:24], bit[20], bits[15:8] and bit[4] are
ARM architecture-defined; the remaining fields are only recommendations, for
compatibility with ARM Development Systems.

31 28 27 26 25 24 23 21 20 19 16 15 12 11 8 7 5 4 3 0

cond 1 1 1 0 opcode_1 0 CRn Rd cp_num opcode_2 1 CRm
3-51ARM Architecture Reference Manual
ARM DUI 0100B

MLA

3-52

A
R

M

Multiply

Not in architecture v1
MLA{<cond>}{<S>} Rd, Rm, Rs, Rn
Description The MLA (Multiply Accumulate) instruction multiplies signed or unsigned operands
to produce a 32-bit result, which is then added to a third operand, and written to
the destination register.

MLA multiplies the value of register Rm with the value of register Rs, adds
the value of register Rn, and stores the result in the destination register Rd.
The condition code flags are optionally updated (based on the result).

The instruction is only executed if the condition specified in the instruction matches
the condition code status. The conditions are defined in 3.3 The Condition Field on
page 3-4.

Operation if ConditionPassed(<cond>) then
Rd = (Rm * Rs + Rn)[31:0]
if S == 1 then

N Flag = Rd[31]
Z Flag = if Rd == 0 then 1 else 0
C Flag = UNPREDICTABLE

V Flag = unaffected

Exceptions None

Qualifiers Condition Code
S updates condition code flags N and Z

Notes Use of R15: Specifying R15 for register Rd, Rm, Rs or Rn has UNPREDICTABLE
results.

Operand restriction: Specifying the same register for Rd and Rm has
UNPREDICTABLE results.

Early termination: If the multiplier implementation supports early termination,
it must be implemented on the value of the Rs operand. The type of early
termination used (signed or unsigned) is IMPLEMENTATION DEFINED.

Signed and unsigned: Because the MLA instruction produces only the lower
32 bits of the 64-bit product, MLA gives the same answer for multiplication of
both signed and unsigned numbers.

31 28 27 26 25 24 23 22 21 20 19 16 15 12 11 8 7 6 5 4 3 0

cond 0 0 0 0 0 0 1 S Rd Rn Rs 1 0 0 1 Rm
ARM Architecture Reference Manual
ARM DUI 0100B

MOV

A
R

M
MOV{<cond>}{S} Rd, <shifter_operand>
Data processing

Addressing mode 1
Description The MOV (Move) instruction is used to:
• move a value from one register to another

• put a constant value into a register

• perform a shift without any other arithmetic or logical operation

When the PC is the destination of the instruction, a branch occurs, and
MOV PC, LR can be used to return from a subroutine call (see the B and BL
instructions) and to return from some types of exception (See 2.5 Exceptions on
page 2-6).

MOV moves the value of <shifter_operand> to the destination register Rd,
and optionally updates the condition code flags (based on the result).

The instruction is only executed if the condition specified in the instruction matches
the condition code status. The conditions are defined in 3.3 The Condition Field on
page 3-4.

Operation if ConditionPassed(<cond>) then
Rd = <shifter_operand>
if S == 1 and Rd == R15 then

CPSR = SPSR
else if S == 1 then

N Flag = Rd[31]
Z Flag = if Rd == 0 then 1 else 0
C Flag = <shifter_carry_out>
V Flag = unaffected

Exceptions None

Qualifiers Condition Code
S updates condition code flags N,Z and C

Notes Shifter operand: The shifter operands for this instruction are given in Addressing
Mode 1 starting on page 3-84.

Writing to R15: When Rd is R15 and the S flag in the instruction is not set, the result
of the operation is placed in the PC. When Rd is R15 and the S flag is set,
the result of the operation is placed in the PC and the SPSR corresponding to
the current mode is moved to the CPSR. This allows state changes which
atomically restore both PC and CPSR. This form of the instruction is
UNPREDICTABLE in User mode and System mode.

The I bit: Bit 25 is used to distinguish between the immediate and register forms of
<shifter_operand> .

31 28 27 26 25 24 23 22 21 20 19 16 15 12 11 0

cond 0 0 I 1 1 0 1 S SBZ Rd shifter_operand
3-53ARM Architecture Reference Manual
ARM DUI 0100B

MRC

3-54

A
R

M

Load and store multiple

Addressing mode 4
MRC{<cond>} p<cp#>, <opcode_1>, Rd, CRn, CRm, <opcode_2>
Description The MRC (Move to ARM Register from Coprocessor) instruction is used to initiate
coprocessor instructions that return values to ARM registers, for example
a floating-point to fixed-point conversion instruction for a floating-point accelerator
coprocessor.

Specifying R15 as the destination register is useful for operations like
a floating-point compare instruction.

MRC has two uses:
1 If Rd specifies register 15, the condition code flags bits are updated from

the top four bits of the value from the coprocessor specified by <cp_num>
(to allow conditional branching on the status of a coprocessor) and the other
28 bits are IGNORED.

2 Otherwise the instruction writes into register Rd a value from the coprocessor
specified by <cp#> .

If no coprocessors indicate that they can execute the instruction an UNDEFINED
instruction exception is generated.

The instruction is only executed if the condition specified in the instruction matches
the condition code status. The conditions are defined in 3.3 The Condition Field on
page 3-4.

Operation if ConditionPassed(<cond>) then
if Rd == 15 then

N flag = (value from Coprocessor[<cp_num>])[31]
Z flag = (value from Coprocessor[<cp_num>])[30]
C flag = (value from Coprocessor[<cp_num>])[29]
V flag = (value from Coprocessor[<cp_num>])[28]

else /* Rd != 15 */
Rd = value from Coprocessor[<cp_num>]

Exceptions Undefined Instruction

Qualifiers Condition Code

Notes Coprocessor fields: Only instruction bits[31:24], bit[20], bits[15:8] and bit[4] are
ARM architecture-defined; the remaining fields are only recommendations,
that if followed, will be compatible with ARM Development Systems.

31 28 27 26 25 24 23 21 20 19 16 15 12 11 8 7 5 4 3 0

cond 1 1 1 0 opcode_1 1 CRn Rd cp_num opcode_2 1 CRm
ARM Architecture Reference Manual
ARM DUI 0100B

MRS

A
R

M

MRS{<cond>} Rd, CPSR

MRS{<cond>} Rd, SPSR
Status register access
Description The MRS instruction moves the value of the CPSR or the SPSR of the current
mode into a general-purpose register. In the general-purpose register, the value
can be examined or manipulated with normal data-processing instructions.

The MRS moves the value of the CPSR, or the value of the SPSR corresponding
to the current mode, to a general-purpose register.

The instruction is only executed if the condition specified in the instruction matches
the condition code status. The conditions are defined in 3.3 The Condition Field on
page 3-4.

Operation if ConditionPassed(<cond>) then
if R == 1 then

Rd = SPSR
else

Rd = CPSR

Exceptions None

Qualifiers Condition Code

Notes Opcode [11:0]: Execution of MRS instructions with any non-zero bits in
opcode[11:0] is UNPREDICTABLE.

Opcode [19:16]: Execution of MRS instructions with any non-one bits in
opcode[19:16] is UNPREDICTABLE.

User mode SPSR: Accessing the SPSR when in user mode or system mode is
UNPREDICTABLE.

31 28 27 26 25 24 23 22 21 20 19 16 15 12 11 0

cond 0 0 0 1 0 R 0 0 SBO Rd SBZ
3-55ARM Architecture Reference Manual
ARM DUI 0100B

MSR

3-56

A
R

M

Status register access

Architecture v3
and v4 only
MSR{<cond>} CPSR_f, #32bit immediate

MSR{<cond>} CPSR_<fields>,Rm

MSR{<cond>} SPSR_f, #32bit immediate

MSR{<cond>} SPSR_<fields>, Rm
Description The MSR (Move to Status register from ARM Register) instruction transfers
the value of a general-purpose register to the CPSR or the SPSR of the current
mode. This is used to update the value of the condition code flags, interrupt
enables, or the processor mode.

MSR moves the value of Rm or the value of the 32-bit immediate (encoded as
an 8-bit value with rotate) to the CPSR or the SPSR corresponding to the current
mode.

The instruction is only executed if the condition specified in the instruction matches
the condition code status. The conditions are defined in 3.3 The Condition Field on
page 3-4.

Immediate operand

Register operand

Operation

if ConditionPassed(<cond>) then
if opcode[25] == 1

<operand> = <8_bit_immediate> Rotate_Right (<rotate_imm> * 2)
else /* opcode[25] == 0 */

<operand>
if R == 0 then

if <field_mask>[0] == 1 and InAPrivilegedMode() then
CPSR[7:0] = <operand>[7:0]

if <field_mask>[1] == 1 and InAPrivilegedMode() then
CPSR[15:8] = <operand>[15:8]

if <field_mask>[2] == 1 and InAPrivilegedMode() then
CPSR[23:16] = <operand>[23:16]

if <field_mask>[3] == 1 then
CPSR[31:24] = <operand>[31:24]

else /* R == 1 */
if <field_mask>[0] == 1 and CurrentModeHasSPSR() then

SPSR[7:0] = <operand>[7:0]
if <field_mask>[1] == 1 and CurrentModeHasSPSR() then

SPSR[15:8] = <operand>[15:8]
if <field_mask>[2] == 1 and CurrentModeHasSPSR() then

SPSR[23:16] = <operand>[23:16]
if <field_mask>[3] == 1 and CurrentModeHasSPSR() then

SPSR[31:24] = <operand>[31:24]

31 28 27 26 25 24 23 22 21 20 19 16 15 12 11 8 7 0

cond 0 0 1 1 0 R 1 0 field_mask SBO rotate_imm 8_bit_immediate

31 28 27 26 25 24 23 22 21 20 19 16 15 12 11 5 4 3 0

cond 0 0 0 1 0 R 1 0 field_mask SBO SBZ 0 Rm
ARM Architecture Reference Manual
ARM DUI 0100B

MSR

A
R

M

Status register access

Architecture v3
and v4 only
Exceptions None

Qualifiers Condition Code

<fields> is one of
_c sets the control field mask bit (bit 0)
_x sets the extension field mask bit (bit 1)
_s sets the status field mask bit (bit 2)
_f sets the flags field mask bit (bit 3)

Notes Immediate Operand: The immediate form of this instruction can only be used to set
the flag bits (PSR bits 31:24). Using the immediate form on any other fields
has UNPREDICTABLE results.

PSR Update: The value of a PSR must be updated by moving the PSR to
a general-purpose register (using the MRS instruction), modifying
the relevant bits of the general-purpose register, and restoring the updated
general-purpose register value back into the PSR (using the MSR instruction).

User Mode CPSR: Any writes to CPSR[23:0] in user mode are IGNORED (so that
user mode programs cannot change to a privileged mode).

User mode SPSR: Accessing the SPSR when in user mode is UNPREDICTABLE.

System mode SPSR: Accessing the SPSR when in system mode is
UNPREDICTABLE.

Deprecated field specification: The CPSR, CPSR_flg, CPSR_ctl, CPSR_all,
SPSR, SPSR_flg, SPSR_ctl and SPSR_all forms of PSR field specification
have been superseded by the csxf format shown above.

CPSR, SPSR, CPSR_all and SPSR_all produce a field mask of 0b1001.
CPSR_flg and SPSR_flg produce a field mask of 0b1000.
CPSR_ctl and SPSR_ctl produce a field mask of 0b0001.
3-57ARM Architecture Reference Manual
ARM DUI 0100B

MUL

3-58

A
R

M

Multiply

Not in architecture v1
MUL{<cond>}{<S>} Rd, Rm, Rs
Description The MUL (Multiply) instruction is used to multiply signed or unsigned variables
to produce a 32-bit result.

MUL multiplies the value of register Rm with the value of register Rs, and stores
the result in the destination register Rd. The condition code flags are optionally
updated (based on the result).

The instruction is only executed if the condition specified in the instruction matches
the condition code status. The conditions are defined in 3.3 The Condition Field on
page 3-4.

Operation if ConditionPassed(<cond>) then
Rd = (Rm * Rs)[31:0]
if S == 1 then

N Flag = Rd[31]
Z Flag = if Rd == 0 then 1 else 0
C Flag = UNPREDICTABLE

V Flag = unaffected

Exceptions None

Qualifiers Condition Code
S update condition code flags N,Z

Notes Use of R15: Specifying R15 for register Rd, Rm or Rs has UNPREDICTABLE results.

Operand restriction: Specifying the same register for Rd and Rm has
UNPREDICTABLE results.

Early termination: If the multiplier implementation supports early termination,
it must be implemented on the value of the Rs operand. The type of early
termination used (signed or unsigned) is IMPLEMENTATION DEFINED.

Signed and unsigned: Because the MUL instruction produces only the lower
32 bits of the 64-bit product, MUL gives the same answer for multiplication of
both signed and unsigned numbers.

31 28 27 26 25 24 23 22 21 20 19 16 15 12 11 8 7 6 5 4 3 0

cond 0 0 0 0 0 0 0 S Rn SBZ Rs 1 0 0 1 Rm
ARM Architecture Reference Manual
ARM DUI 0100B

MVN

A
R

M
MVN{<cond>}{S} Rd, <shifter_operand>
Data processing

Addressing mode 1
Description The MVN (Move negative) instruction is used to:
• write a negative value into a register

• form a bit mask

• take the one’s complement of a value

MVN moves the logical one's compliment of the value of <shifter_operand>
to the destination register Rd, and optionally updates the condition code flags
(based on the result).

The instruction is only executed if the condition specified in the instruction matches
the condition code status. The conditions are defined in 3.3 The Condition Field on
page 3-4.

Operation if ConditionPassed(<cond>) then
Rd = NOT <shifter_operand>
if S == 1 and Rd == R15 then

CPSR = SPSR
else if S == 1 then

N Flag = Rd[31]
Z Flag = if Rd == 0 then 1 else 0
C Flag = <shifter_carry_out>
V Flag = unaffected

Exceptions None

Qualifiers Condition Code
S Update condition code flags N,Z,C

Notes Shifter operand: The shifter operands for this instruction are given in Addressing
Mode 1 starting on page 3-84.

Writing to R15: When Rd is R15 and the S flag in the instruction is not set, the result
of the operation is placed in the PC. When Rd is R15 and the S flag is set,
the result of the operation is placed in the PC and the SPSR corresponding to
the current mode is moved to the CPSR. This allows state changes which
atomically restore both PC and CPSR. This form of the instruction is
UNPREDICTABLE in User mode and System mode.

The I bit: Bit 25 is used to distinguish between the immediate and register forms of
<shifter_operand> .

31 28 27 26 25 24 23 22 21 20 19 16 15 12 11 0

cond 0 0 I 1 1 1 1 S SBZ Rd shifter_operand
3-59ARM Architecture Reference Manual
ARM DUI 0100B

ORR

3-60

A
R

M

Data processing

Addressing mode 1
ORR{<cond>}{S} Rd, Rn, <shifter_operand>
Description The ORR (Logical OR) instruction can be used to set selected bits in a register;
for each bit OR with 1 will set the bit, OR with 0 will leave it unchanged.

ORR performs a bitwise (inclusive) OR of the value of register Rn with the value of
<shifter_operand> , and stores the result in the destination register Rd.
The condition code flags are optionally updated (based on the result).

The instruction is only executed if the condition specified in the instruction matches
the condition code status. The conditions are defined in 3.3 The Condition Field on
page 3-4.

Operation if ConditionPassed(<cond>) then
Rd = Rn OR <shifter_operand>
if S == 1 and Rd == R15 then

CPSR = SPSR
else if S == 1 then

N Flag = Rd[31]
Z Flag = if Rd == 0 then 1 else 0
C Flag = <shifter_carry_out>
V Flag = unaffected

Exceptions None

Qualifiers Condition Code
S updates condition code flags N, Z and C

Notes Shifter operand: The shifter operands for this instruction are given in Addressing
Mode 1 starting on page 3-84.

Writing to R15: When Rd is R15 and the S flag in the instruction is not set,
the result of the operation is placed in the PC. When Rd is R15 and the S flag
is set, the result of the operation is placed in the PC and the SPSR
corresponding to the current mode is moved to the CPSR. This allows state
changes which atomically restore both PC and CPSR. This form of
the instruction is UNPREDICTABLE in User mode and System mode.

The I bit: Bit 25 is used to distinguish between the immediate and register forms of
<shifter_operand> .

31 28 27 26 25 24 23 22 21 20 19 16 15 12 11 0

cond 0 0 I 1 1 0 0 S Rn Rd shifter_operand
ARM Architecture Reference Manual
ARM DUI 0100B

RSB

A
R

M
RSB{<cond>}{S} Rd, Rn, <shifter_operand>
Data processing

Addressing mode 1
Description The RSB (Reverse Subtract) instruction subtracts the value of register Rn from
the value of <shifter_operand> , and stores the result in the destination
register Rd. The condition code flags are optionally updated (based on the result).

The following instruction stores the negative (two’s complement) of Rx in Rd.
RSB Rd, Rx, #0

Constant multiplication (of Rx) by 2n–1 (into Rd) can be performed with:
RSB Rd, Rx, Rx LSL #n

The instruction is only executed if the condition specified in the instruction matches
the condition code status. The conditions are defined in 3.3 The Condition Field on
page 3-4.

Operation if ConditionPassed(<cond>) then
Rd = <shifter_operand> - Rn
if S == 1 and Rd == R15 then

CPSR = SPSR
else if S == 1 then

N Flag = Rd[31]
Z Flag = if Rd == 0 then 1 else 0
C Flag = NOT BorrowFrom(<shifter_operand> - Rn)
V Flag = OverflowFrom (<shifter_operand> - Rn)

Exceptions None

Qualifiers Condition Code
S updates condition code flags N,Z,C,V

Notes Shifter operand: The shifter operands for this instruction are given in Addressing
Mode 1 starting on page 3-84.

Writing to R15: When Rd is R15 and the S flag in the instruction is not set,
the result of the operation is placed in the PC. When Rd is R15 and the S flag
is set, the result of the operation is placed in the PC and the SPSR
corresponding to the current mode is moved to the CPSR. This allows state
changes which atomically restore both PC and CPSR. This form of
the instruction is UNPREDICTABLE in User mode and System mode.

The I bit: Bit 25 is used to distinguish between the immediate and register forms of
<shifter_operand> .

31 28 27 26 25 24 23 22 21 20 19 16 15 12 11 0

cond 0 0 I 0 0 1 1 S Rn Rd shifter_operand
3-61ARM Architecture Reference Manual
ARM DUI 0100B

RSC

3-62

A
R

M

Data processing

Addressing mode 1
RSC{<cond>}{S} Rd, Rn, <shifter_operand>
Description The RSC (Reverse Subtract with Carry) instruction subtracts the value of register
Rn and the value of NOT (Carry Flag) from the value of <shifter_operand> ,
and stores the result in the destination register Rd. The condition code flags are
optionally updated (based on the result).

To negate the 64-bit value in R0, R1, use the following sequence (R0 holds
the least-significant word) and store the result in R2,R3:

RSBS R2,R0,#0
RSC R3,R1,#0

The instruction is only executed if the condition specified in the instruction matches
the condition code status. The conditions are defined in 3.3 The Condition Field on
page 3-4.

Operation
if ConditionPassed(<cond>) then

Rd = <shifter_operand> - Rn - NOT(C Flag)
if S == 1 and Rd == R15 then

CPSR = SPSR
else if S == 1 then

N Flag = Rd[31]
Z Flag = if Rd == 0 then 1 else 0
C Flag = NOT BorrowFrom(<shifter_operand> - Rn - NOT(C Flag))
V Flag = OverflowFrom (<shifter_operand> - Rn - NOT(C Flag))

Exceptions None

Qualifiers Condition Code
S updates condition code flags N,Z,C and V

Notes Shifter operand: The shifter operands for this instruction are given in Addressing
Mode 1 starting on page 3-84.

Writing to R15: When Rd is R15 and the S flag in the instruction is not set,
the result of the operation is placed in the PC. When Rd is R15 and the S flag
is set, the result of the operation is placed in the PC and the SPSR
corresponding to the current mode is moved to the CPSR. This allows state
changes which atomically restore both PC and CPSR. This form of
the instruction is UNPREDICTABLE in User mode and System mode.

The I bit: Bit 25 is used to distinguish between the immediate and register forms
of <shifter_operand> .

31 28 27 26 25 24 23 22 21 20 19 16 15 12 11 0

cond 0 0 I 0 1 1 1 S Rn Rd shifter_operand
ARM Architecture Reference Manual
ARM DUI 0100B

SBC

A
R

M
SBC{<cond>}{S} Rd, Rn, <shifter_operand>
Data processing

Addressing mode 1
Description The SBC (Subtract with Carry) instruction is used to synthesize multi-word
subtraction. If register pairs R0,R1 and R2,R3 hold 64-bit values (R0 and R2 hold
the least-significant words), the following instructions leave the 64-bit difference in
R4,R5:

SUBS R4,R0,R2
SBC R5,R1,R3

SBC subtracts the value of <shifter_operand> and the value of NOT (Carry
Flag) from the value of register Rn, and stores the result in the destination register
Rd. The condition code flags are optionally updated (based on the result).

The instruction is only executed if the condition specified in the instruction matches
the condition code status. The conditions are defined in 3.3 The Condition Field on
page 3-4.

Operation
if ConditionPassed(<cond>) then

Rd = Rn - <shifter_operand> - NOT(C Flag)
if S == 1 and Rd == R15 then

CPSR = SPSR
else if S == 1 then

N Flag = Rd[31]
Z Flag = if Rd == 0 then 1 else 0
C Flag = NOT BorrowFrom(Rn - <shifter_operand> - NOT(C Flag))
V Flag = OverflowFrom (Rn - <shifter_operand> - NOT(C Flag))

Exceptions None

Qualifiers Condition Code
S Update condition code flags N,Z,C,V

Notes Shifter operand: The shifter operands for this instruction are given in Addressing
Mode 1 starting on page 3-84.

Writing to R15: When Rd is R15 and the S flag in the instruction is not set,
the result of the operation is placed in the PC. When Rd is R15 and the S flag
is set, the result of the operation is placed in the PC and the SPSR
corresponding to the current mode is moved to the CPSR. This allows state
changes which atomically restore both PC and CPSR. This form of
the instruction is UNPREDICTABLE in User mode and System mode.

The I bit: Bit 25 is used to distinguish between the immediate and register forms
of <shifter_operand> .

31 28 27 26 25 24 23 22 21 20 19 16 15 12 11 0

cond 0 0 I 0 1 1 0 S Rn Rd shifter_operand
3-63ARM Architecture Reference Manual
ARM DUI 0100B

SMLAL

3-64

A
R

M

Multiply

Architecture v3
and v4 only
SMLAL{<cond>}{<S>} RdLo, RdHi, Rm, Rs
Description The SMLAL (Signed Multiply Accumulate Long) instruction multiplies signed
variables to produce a 64-bit result, which is added to the 64-bit value in the two
destination general-purpose registers. The result is written back to the two
destination general-purpose registers.

SMLAL multiplies the signed value of register Rm with the signed value of register
Rs to produce a 64-bit result. The lower 32 bits of the result are added to RdLo and
stored in RdLo; the upper 32 bits, and the carry from the addition to RdLo, are
added to RdHi and stored in RdHi. The condition code flags are optionally updated
(based on the 64-bit result).

The instruction is only executed if the condition specified in the instruction matches
the condition code status. The conditions are defined in 3.3 The Condition Field on
page 3-4.

Operation
if ConditionPassed(<cond>) then

RdLo = (Rm * Rs)[31:0] + RdLo
RdHi = (Rm * Rs)[63:32] + RdHi + CarryFrom((Rm * Rs)[31:0] + RdLo)
if S == 1 then

N Flag = RdHi[31]
Z Flag = if (RdHi == 0) and (RdLo == 0) then 1 else 0
C Flag = UNPREDICTABLE
V Flag = UNPREDICTABLE

Exceptions None

Qualifiers Condition Code
S updates condition code flags N,Z

Notes Use of R15: Specifying R15 for register RdHi, RdLo, Rm or Rs has UNPREDICTABLE
results.

Operand restriction: Specifying the same register for RdHi and Rm has
UNPREDICTABLE results.
Specifying the same register for RdLo and Rm has UNPREDICTABLE results.
Specifying the same register for RdHi and RdLo has UNPREDICTABLE results.

Early termination: If the multiplier implementation supports early termination,
it must be implemented on the value of the Rs operand. The type of early
termination used (signed or unsigned) is IMPLEMENTATION DEFINED.

31 28 27 26 25 24 23 22 21 20 19 16 15 12 11 8 7 6 5 4 3 0

cond 0 0 0 0 1 1 1 S RdHi RdLo Rs 1 0 0 1 Rm
ARM Architecture Reference Manual
ARM DUI 0100B

SMULL

A
R

M
SMULL{<cond>}{<S>} RdLo, RdHi, Rm, Rs
Multiply

Architecture v3M
and v4 only
Description The SMULL (Signed Multiply Long) instruction multiplies signed variables
to produce a 64-bit result in two general-purpose registers.

SMULL multiplies the signed value of register Rm with the signed value of register
Rs to produce a 64-bit result. The upper 32 bits of the result are stored in RdHi;
the lower 32 bits are stored in RdLo. The condition code flags are optionally
updated (based on the 64-bit result).

The instruction is only executed if the condition specified in the instruction matches
the condition code status. The conditions are defined in 3.3 The Condition Field on
page 3-4.

Operation
if ConditionPassed(<cond>) then

RdHi = (Rm * Rs)[63:32]
RdLo = (Rm * Rs)[31:0]
if S == 1 then

N Flag = RdHi[31]
Z Flag = if (RdHi == 0) and (RdLo == 0) then 1 else 0
C Flag = UNPREDICTABLE
V Flag = UNPREDICTABLE

Exceptions None

Qualifiers Condition Code
S updates condition code flags N,Z

Notes Use of R15: Specifying R15 for register RdHi, RdLo, Rm or Rs has UNPREDICTABLE
results.

Operand restriction: Specifying the same register for RdHi and Rm has
UNPREDICTABLE results.
Specifying the same register for RdLo and Rm has UNPREDICTABLE results.
Specifying the same register for RdHi and RdLo has UNPREDICTABLE results.

Early termination: If the multiplier implementation supports early termination,
it must be implemented on the value of the Rs operand. The type of early
termination used (signed or unsigned) is IMPLEMENTATION DEFINED.

31 28 27 26 25 24 23 22 21 20 19 16 15 12 11 8 7 6 5 4 3 0

cond 0 0 0 0 1 1 0 S RdHi RdLo Rs 1 0 0 1 Rm
3-65ARM Architecture Reference Manual
ARM DUI 0100B

STC

3-66

A
R

M

Coprocessor

Addressing mode 5

Not in architecture v1
STC{<cond>} p<cp_num>, CRd, <addressing_mode>
Description The STC (Store Coprocessor) instruction is useful for storing coprocessor data
to memory. The N bit could be used to distinguish between a single- and
double-precision transfer for a floating-point store instruction.

STC stores data from the coprocessor specified by <cp_num> to the sequence of
consecutive memory addresses calculated by <addressing_mode> . If no
coprocessors indicate that they can execute the instruction, an UNDEFINED
instruction exception is generated.

The instruction is only executed if the condition specified in the instruction matches
the condition code status. The conditions are defined in 3.3 The Condition Field on
page 3-4.

Operation
if ConditionPassed(<cond>) then

<address> = <start_address>
while (NotFinished(coprocessor[<cp_num>]))

Memory[<address>,4] = value from Coprocessor[<cp_num>]
<address> = <address> + 4

assert <address> == <end_address>

Operation Undefined Instruction; Data Abort

Qualifiers Condition Code

Notes Addressing mode: The P, U and W bits specify the <addressing_mode> .
See Addressing Mode 5 starting on page 3-123.

The N bit: This bit is coprocessor-dependent. It can be used to distinguish
between two sizes of data to transfer.

Register Rn: Specifies the base register used by <addressing_mode> .

Coprocessor fields: Only instruction bits[31:23], bits[21:16} and bits[11:0] are
ARM architecture-defined; the remaining fields (bit[22] and bits[15:12]) are
only recommendations, for compatibility with ARM Development Systems.

Data Abort: If a data abort is signalled and <addressing_mode> uses
pre-indexed or post-indexed addressing, the value left in Rn is
IMPLEMENTATION DEFINED, but is either the original base register value or
the updated base register value.

Non-word-aligned addresses: Store coprocessor register instructions ignore
the least-significant two bits of <address> (the words are not rotated as for
load word).

Alignment: If an implementation includes a System Control Coprocessor
(see Chapter 7), and alignment checking is enabled, an address with
bits[1:0] != 0b00 will cause an alignment exception.

31 28 27 26 25 24 23 22 21 20 19 16 15 12 11 8 7 0

cond 1 1 0 P U N W 0 Rn CRd cp_num 8_bit_word_offset
ARM Architecture Reference Manual
ARM DUI 0100B

STM (1)

A
R

M
STM{<cond>}<addressing_mode> Rn{!}, <registers>
Load and store multiple

Addressing mode 4
Description The STM (Store Multiple) instruction is useful as a block store instruction
(combined with load multiple it allows efficient block copy) and for stack
operations, including procedure entry to save general-purpose registers and the
return address, and for updating the stack pointer.

STM stores a non-empty subset (or possibly all) of the general-purpose registers
to sequential memory locations. The registers are stored in sequence, the
lowest-numbered register first, to the lowest memory address
(<start_address>); the highest-numbered register last, to the highest memory
address (<end_address>).

The instruction is only executed if the condition specified in the instruction matches
the condition code status. The conditions are defined in 3.3 The Condition Field on
page 3-4.

Operation if ConditionPassed(<cond>) then
<address> = <start_address>
for i = 0 to 15

if <register_list>[i] == 1
Memory[<address>,4] = Ri
<address> = <address> + 4

assert <end_address> == <address> - 4

Exceptions Data Abort

Qualifiers Condition Code
! sets the W bit, causing base register update

Notes Addressing mode: The P, U and W bits distinguish between the different types of
addressing mode. See Addressing Mode 4 starting on page 3-116.

Register Rn: Specifies the base register used by <addressing_mode> .

Use of R15: If register 15 if specified as the base register Rn, the result is
UNPREDICTABLE. If register 15 is specified in <register_list>, the value
stored is IMPLEMENTATION DEFINED.

Operand restrictions: If Rn is specified in <register_list> , and writeback is
specified, the stored value of Rn is UNPREDICTABLE.

Data Abort: If a data abort is signalled and <addressing_mode> specifies
writeback, the value left in Rn is IMPLEMENTATION DEFINED, but is either
the original base register value or the updated base register value.

Non-word-aligned addresses: STM instructions ignore the least-significant two bits
of <address> (words are not rotated as for load word).

Alignment: If an implementation includes a System Control Coprocessor
(See Chapter 7), and alignment checking is enabled, an address with
bits[1:0] != 0b00 will cause an alignment exception.

31 28 27 26 25 24 23 22 21 20 19 16 15 0

cond 1 0 0 P U 0 W 0 Rn register list
3-67ARM Architecture Reference Manual
ARM DUI 0100B

STM (2)

3-68

A
R

M

Load and store multiple

Addressing mode 4
STM{<cond>}<addressing_mode> Rn{!}, <registers>^
Description The STM (Store Multiple) instruction is used to store the user mode registers when
the processor is in a privileged mode (useful when performing process swaps).

This form of STM stores a subset (or possibly all) of the user mode general-
purpose registers (which are also the system mode general-purpose registers) to
sequential memory locations. The registers are stored in sequence, the lowest-
numbered register first, to the lowest memory address (<start_addr>); the
highest-numbered register last, to the highest memory address (<end_addr>).

The instruction is only executed if the condition specified in the instruction matches
the condition code status. The conditions are defined in 3.3 The Condition Field on
page 3-4.

Operation if ConditionPassed(<cond>) then
<address> = <start_addr>
for i = 0 to 15

if <register_list>[i] == 1
Memory[<address>,4] = Ri_usr
<address> = <address> + 4

assert <end_addr> == <address> - 4

Exceptions Data Abort

Qualifiers Condition Code

Notes Addressing mode: The P and W bits distinguish between the different types of
addressing mode. See Addressing Mode 4 starting on page 3-116.

Banked registers: This instruction must not be followed by an instruction which
accesses banked registers (a following NOP is a good way to ensure this).

Writeback: Setting bit 21 (the W bit) has UNPREDICTABLE results.

User and System mode: This instruction is UNPREDICTABLE in user or system mode.

Register Rn: Specifies the base register used by <addressing_mode> .

Use of R15: If register 15 is specified as the base register Rn, the result is
UNPREDICTABLE. If register 15 is specified in <register_list> the value
stored is IMPLEMENTATION DEFINED.

Base register mode: The base register is read from the current processor mode
registers, not the user mode registers.

Data Abort: If a data abort is signalled, the value left in Rn is the original base
register value.

Non-word-aligned addresses: Load multiple instructions ignore the least-significant
two bits of <address> (the words are not rotated as for load word).

Alignment: If an implementation includes a System Control Coprocessor
(see Chapter 7), and alignment checking is enabled, an address with
bits[1:0] != 0b00 causes an alignment exception.

31 28 27 26 25 24 23 22 21 20 19 16 15 0

cond 1 0 0 P U 1 0 0 Rn register list
ARM Architecture Reference Manual
ARM DUI 0100B

STR

A
R

M
STR{<cond>} Rd, <addressing_mode>
Load and store

Addressing mode 2
Description Combined with a suitable addressing mode, the STR (Store register) instruction
stores 32-bit data from a general purpose register into memory. Using the PC as
the base register allows PC-relative addressing, to facilitate position-independent
code.

STR stores a word from register Rd to the memory address calculated by
<addressing_mode> .

The instruction is only executed if the condition specified in the instruction matches
the condition code status. The conditions are defined in 3.3 The Condition Field on
page 3-4.

Operation if ConditionPassed(<cond>) then
Memory[<address>,4] = Rd

Exceptions Data Abort

Qualifiers Condition Code

Notes Addressing modes: The I, P, U and W bits specify the type of
<addressing_mode> (see Addressing Mode 2 starting on page 3-98).

Register Rn: Specifies the base register used by <addressing_mode>.

Use of R15: If register 15 is specified for Rd, the value stored is IMPLEMENTATION
DEFINED.

Operand restrictions: If <addressing_mode> uses pre-indexed or post-indexed
addressing, and the same register is specified for Rd and Rn, the results are
UNPREDICTABLE.

Data Abort: If a data abort is signalled and <addressing_mode> uses
preindexed or post-indexed addressing, the value left in Rn is IMPLEMENTATION
DEFINED, but is either the original base register value or the updated base
register value (even if the same register is specified for Rd and Rn).

Alignment: If an implementation includes a System Control Coprocessor
(See Chapter 7), and alignment checking is enabled, an address with
bits[1:0] != 0b00 will cause an alignment exception.

31 28 27 26 25 24 23 22 21 20 19 16 15 12 11 0

cond 0 1 I P U 0 W 0 Rn Rd addressing mode specific
3-69ARM Architecture Reference Manual
ARM DUI 0100B

STRB

3-70

A
R

M

Load and store

Addressing mode 2
STR{<cond>}B Rd, <addressing_mode>
Description Combined with a suitable addressing mode, the STRB (Store Register Byte) writes
the least-significant byte of a general-purpose register to memory.

Using the PC as the base register allows PC-relative addressing, to facilitate
position-independent code.

STRB stores a byte from the least-significant byte of register Rd to the memory
address calculated by <addressing_mode> .

The instruction is only executed if the condition specified in the instruction matches
the condition code status. The conditions are defined in 3.3 The Condition Field on
page 3-4.

Operation if ConditionPassed(<cond>) then
Memory[<address>,1] = Rd[7:0]

Exceptions Data Abort

Qualifiers Condition Code

Notes Addressing modes: The I, P, U and W bits specify the type of
<addressing_mode> (see Addressing Mode 2 starting on page 3-98).

Register Rn: Specifies the base register used by <addressing_mode> .

Use of R15: If register 15 is specified for Rd, the result is UNPREDICTABLE.

Operand restrictions: If <addressing_mode> uses pre-indexed or post-indexed
addressing, and the same register is specified for Rd and Rn, the results are
UNPREDICTABLE.

Data Abort: If a data abort is signalled and <addressing_mode> uses
pre-indexed or post-indexed addressing, the value left in Rn is
IMPLEMENTATION DEFINED, but is either the original base register value or
the updated base register value (even if the same register is specified for Rd
and Rn).

31 28 27 26 25 24 23 22 21 20 19 16 15 12 11 0

cond 0 1 I P U 1 W 0 Rn Rd addressing mode specific
ARM Architecture Reference Manual
ARM DUI 0100B

STRBT

A
R

M
STR{<cond>}BT Rd, <post_indexed_addressing_mode>
Load and store

Addressing mode 2
Description The STRBT (Store Register Byte with Translation) instruction can be used by
a (privileged) exception handler that is emulating a memory access instruction
which would normally execute in User Mode. The access is restricted as if it has
User Mode privilege.

STRBT stores a byte from the least-significant byte of register Rd to the memory
address calculated by <post_indexed_addressing_mode> . If the instruction
is executed when the processor is in a privileged mode, the memory system is
signalled to treat the access as if the processor were in user mode.

The instruction is only executed if the condition specified in the instruction matches
the condition code status. The conditions are defined in 3.3 The Condition Field on
page 3-4.

Operation if ConditionPassed(<cond>) then
Memory[<address>,1] = Rd[7:0]

Exceptions Data Abort

Qualifiers Condition Code

Notes Addressing modes: The I, P, and U bits specify the type of <addressing_mode>
(see Addressing Mode 2 starting on page 3-98).

Register Rn: Specifies the base register used by
<post_indexed_addressing_mode> .

User mode: If this instruction is executed in user mode, an ordinary user mode
access is performed.

Use of R15: If register 15 is specified for Rd, the result is UNPREDICTABLE.

Operand restrictions: If the same register is specified for Rd and Rn, the results are
UNPREDICTABLE.

Data Abort: If a data abort is signalled, the value left in Rn is IMPLEMENTATION
DEFINED, but is either the original base register value or the updated base
register value (even if the same register is specified for Rd and Rn).

31 28 27 26 25 24 23 22 21 20 19 16 15 12 11 0

cond 0 1 I 0 U 1 1 0 Rn Rd addressing mode specific
3-71ARM Architecture Reference Manual
ARM DUI 0100B

STRH

3-72

A
R

M

Load and store

Addressing mode 3

Architecture v4 only
STR{<cond>}H Rd, <addressing_mode>
Description Combined with a suitable addressing mode, the STRH (Store Register Halfword)
instruction allows 16-bit data from a general-purpose register to be stored to
memory. Using the PC as the base register allows PC-relative addressing,
to facilitate position-independent code.

STRH stores a halfword from the least-significant halfword of register Rd to
the memory address calculated by <addressing_mode> . If the address is not
halfword-aligned, the result is UNPREDICTABLE.

The instruction is only executed if the condition specified in the instruction matches
the condition code status. The conditions are defined in 3.3 The Condition Field on
page 3-4.

Operation if ConditionPassed(<cond>) then
if <address>[0] == 0

<data> = Rd[15:0]
else /* <address>[0] == 1 */

<data> = UNPREDICTABLE

Memory[<address>,2] = <data>

Exceptions Data Abort

Qualifiers Condition Code

Notes Addressing modes: The I, P, U and W bits specify the type of
<addressing_mode> (see Addressing Mode 3 starting on page 3-109).

The addr_mode bits: These bits are addressing-mode specific.

Register Rn: Specifies the base register used by <addressing_mode> .

Use of R15: If register 15 is specified for Rd, the result is UNPREDICTABLE.

Operand restrictions: If <addressing_mode> uses pre-indexed or post-indexed
addressing, and the same register is specified for Rd and Rn, the results are
UNPREDICTABLE.

Data Abort: If a data abort is signalled and <addressing_mode> uses
pre-indexed or post-indexed addressing, the value left in Rn is
IMPLEMENTATION DEFINED, but is either the original base register value or
the updated base register value (even if the same register is specified for Rd
and Rn).

Non-half-word aligned addresses: If the store address is not halfword-aligned,
the stored value is UNPREDICTABLE.

Alignment: If an implementation includes a System Control Coprocessor
(see Chapter 7), and alignment checking is enabled, an address with
bit[0] != 0 will cause an alignment exception.

31 28 27 26 25 24 23 22 21 20 19 16 15 12 11 8 7 6 5 4 3 0

cond 0 0 0 P U I W 0 Rn Rd addr_mode 1 0 1 1 addr_mode
ARM Architecture Reference Manual
ARM DUI 0100B

STRT

A
R

M
STR{<cond>}T Rd, <post_indexed_addressing_mode>
Load and store

Addressing mode 2
Description The STRT (Store Register with Translation) instruction can be used by
a (privileged) exception handler that is emulating a memory access instruction that
would normally execute in User Mode. The access is restricted as if it has
User Mode privilege.

STRT stores a word from register Rd to the memory address calculated by
<post_indexed_addressing_mode> . If the instruction is executed when
the processor is in a privileged mode, the memory system is signalled to treat
the access as if the processor was in user mode.

The instruction is only executed if the condition specified in the instruction matches
the condition code status. The conditions are defined in 3.3 The Condition Field on
page 3-4.

Operation if ConditionPassed(<cond>) then
Memory[<address>,4] = Rd

Exceptions Data Abort

Qualifiers Condition Code

Notes Addressing modes: The I, P, and U bits specify the type of <addressing_mode>
(see Addressing Mode 2 starting on page 3-98).

Register Rn: Specifies the base register used by
<post_indexed_addressing_mode> .

User mode: If this instruction is executed in user mode, an ordinary user mode
access is performed.

Use of R15: If register 15 is specified for Rd, the value stored is IMPLEMENTATION
DEFINED.

Operand restrictions: If the same register is specified for Rd and Rn, the results are
UNPREDICTABLE.

Data Abort: If a data abort is signalled, the value left in Rn is IMPLEMENTATION
DEFINED, but is either the original base register value or the updated base
register value (even if the same register is specified for Rd and Rn).

Alignment: If an implementation includes a System Control Coprocessor
(See Chapter 7), and alignment checking is enabled, an address with
bits[1:0] != 0b00 will cause an alignment exception.

31 28 27 26 25 24 23 22 21 20 19 16 15 12 11 0

cond 0 1 I 0 U 0 1 0 Rn Rd addressing mode specific
3-73ARM Architecture Reference Manual
ARM DUI 0100B

SUB

3-74

A
R

M

Data processing

Addressing mode 1
SUB{<cond>}{S} Rd, Rn, <shifter_operand>
Description The SUB (Subtract) instruction is used to subtract one value from another
to produce a third. To decrement a register value (in Rx) use:

SUB Rx, Rx, #1

SUB subtracts the value of <shifter_operand> from the value of register Rn,
and stores the result in the destination register Rd. The condition code flags are
optionally updated (based on the result).

SUBS is useful as a loop counter decrement, as the loop branch can test the flags
for the appropriate termination condition, without the need for a CMP Rx, #0.

Use SUBS PC, LR, #4 to return from an interrupt.

The instruction is only executed if the condition specified in the instruction matches
the condition code status. The conditions are defined in 3.3 The Condition Field on
page 3-4.

Operation if ConditionPassed(<cond>) then
Rd = Rn - <shifter_operand>
if S == 1 and Rd == R15 then

CPSR = SPSR
else if S == 1 then

N Flag = Rd[31]
Z Flag = if Rd == 0 then 1 else 0
C Flag = NOT BorrowFrom(Rn - <shifter_operand>)
V Flag = OverflowFrom (Rn - <shifter_operand>)

Exceptions None

Qualifiers Condition Code
S updates condition code flags N,Z,C and V

Notes Shifter operand: The shifter operands for this instruction are given in Addressing
Mode 1 starting on page 3-84.

Writing to R15: When Rd is R15 and the S flag in the instruction is not set,
the result of the operation is placed in the PC. When Rd is R15 and the S flag
is set, the result of the operation is placed in the PC and the SPSR
corresponding to the current mode is moved to the CPSR. This allows state
changes which atomically restore both PC and CPSR. This form of
the instruction is UNPREDICTABLE in User mode and System mode.

The I bit: Bit 25 is used to distinguish between the immediate and register forms of
<shifter_operand> .

31 28 27 26 25 24 23 22 21 20 19 16 15 12 11 0

cond 0 0 I 0 0 1 0 S Rn Rd shifter_operand
ARM Architecture Reference Manual
ARM DUI 0100B

SWI

A
R

M
SWI{<cond>} <24_bit_immediate>
Interrupt
Description The SWI instruction causes a SWI exception, see 2.5 Exceptions on page 2-6.

The SWI instruction is used as an operating system service call. It can be used in
two ways:

• to use the 24-bit immediate value to indicate the OS service that is
required

• to ignore the 24-bit field and indicate the service required with
a general-purpose register

A SWI exception is generated, which is handled by an operating system to provide
the requested service.

The instruction is only executed if the condition specified in the instruction matches
the condition code status. The conditions are defined in 3.3 The Condition Field on
page 3-4.

Operation if ConditionPassed(<cond>) then
R14_svc = address of SWI instruction + 4
SPSR_svc = CPSR
CPSR[5:0] = 0b010011; enter Supervisor mode
CPSR[7] = 1; disable IRQ
PC = 0x08

Exceptions None

Qualifiers Condition Code

31 28 27 26 25 24 23 0

cond 1 1 1 1 24_bit_immediate
3-75ARM Architecture Reference Manual
ARM DUI 0100B

SWP

3-76

A
R

M

Semaphore

Not in architecture
v1 or v2
SWP{<cond>} Rd, Rm, [Rn]
Description The SWP (Swap) instruction swaps a word between registers and memory.

SWP loads a word from the memory address given by the value of register Rn.
The value of register Rm is then stored to the memory address given by the value
of Rn, and the original loaded value is written to register Rd. If the same register is
specified for Rd and Rn, this instruction swaps the value of the register and
the value at the memory address.

The instruction is only executed if the condition specified in the instruction matches
the condition code status. The conditions are defined in 3.3 The Condition Field on
page 3-4.

Operation if ConditionPassed(<cond>) then
<temp> = Memory[Rn,4]
Memory[Rn,4] = Rm
Rd = <temp>

Exceptions Data Abort

Qualifiers Condition Code

Notes Non-word-aligned addresses: If the address is not word-aligned, the loaded value
is rotated right by 8 times the value of <address>[1:0] .

Use of R15: If register 15 is specified for Rd, Rn or Rm, the result is UNPREDICTABLE.

Operand restrictions: If the same register is specified as Rn and Rm, or Rn and
Rd, the result is UNPREDICTABLE.

Data Abort: If a data abort is signalled on either the load access or the store access
(or both), the loaded value is not written to Rd.

Alignment: If an implementation includes a System Control Coprocessor
(see Chapter 7), and alignment checking is enabled, an address with
bits[1:0] != 0b00 will cause an alignment exception.

31 28 27 26 25 24 23 22 21 20 19 16 15 12 11 8 7 6 5 4 3 0

cond 0 0 0 1 0 0 SBZ Rn Rd SBZ 1 0 0 1 Rm
ARM Architecture Reference Manual
ARM DUI 0100B

SWPB

A
R

M
SWP{<cond>}B Rd, Rm, [Rn]
Semaphore

Not in architecture
v1 or v2
Description The SWPB (Swap Byte) instruction swaps a byte between registers and memory.

SWPB loads a byte from the memory address given by the value of register Rn.
The value of the least-significant byte of register Rm is stored to the memory
address given by Rn, and the original loaded value is zero-extended to a 32-bit
word, and the word is written to register Rd. If the same register is specified for Rd
and Rn, this instruction swaps the value of the least-significant byte of the register
and the byte value at the memory address.

The instruction is only executed if the condition specified in the instruction matches
the condition code status. The conditions are defined in 3.3 The Condition Field on
page 3-4.

Operation if ConditionPassed(<cond>) then
<temp> = Memory[Rn,1]
Memory[Rn,1] = Rm[7:0]
Rd = <temp>

Exceptions Data Abort

Qualifiers Condition Code

Notes Use of R15: If register 15 is specified for Rd, Rn or Rm, the result is UNPREDICTABLE.

Operand restrictions: If the same register is specified as Rn and Rm, Rn and or Rd,
the result is UNPREDICTABLE.

Data Abort: If a data abort is signalled on either the load access or the store
access (or both), the loaded value is not written to Rd.

31 28 27 26 25 24 23 22 21 20 19 16 15 12 11 8 7 6 5 4 3 0

cond 0 0 0 1 0 1 SBZ Rn Rd SBZ 1 0 0 1 Rm
3-77ARM Architecture Reference Manual
ARM DUI 0100B

TEQ

3-78

A
R

M

Data processing

Addressing mode 1
TEQ{<cond>} Rn, <shifter_operand>
Description The TEQ (Test equivalence) instruction is used to test if two values are equal,
without affecting the V flag (as CMP does). TEQ is a lso useful for testing if two
values have the same sign.

The comparison is the Logical Exclusive OR of the two operands.

TEQ performs a comparison by logically Exclusive ORing the value of register Rn
with the value of <shofter_operand> , and updates the condition code flags
(based on the result).

The instruction is only executed if the condition specified in the instruction matches
the condition code status. The conditions are defined in 3.3 The Condition Field on
page 3-4.

Operation if ConditionPassed(<cond>) then
<alu_out> = Rn EOR <shifter_operand>
N Flag = <alu_out>[31]
Z Flag = if <alu_out> == 0 then 1 else 0
C Flag = <shifter_carry_out>
V Flag = unaffected

Exceptions None

Qualifiers Condition Code

Notes Shifter operand: The shifter operands for this instruction are given in Addressing
Mode 1 starting on page 3-84.

The I bit: Bit 25 is used to distinguish between the immediate and register forms of
<shifter_operand> .

31 28 27 26 25 24 23 22 21 20 19 16 15 12 11 0

cond 0 0 I 1 0 0 1 1 Rn SBZ shifter_operand
ARM Architecture Reference Manual
ARM DUI 0100B

TST

A
R

M
TST{<cond>} Rn, <shifter_operand>
Data processing

Addressing mode 1
Description The TST (Test) instruction is used to determine if many bits of a register are all
clear, or if at least one bit of a register is set. The comparison is a logical AND of
the two operands.

TST performs a comparison by logically ANDing the value of register Rn with
the value of <shifter_operand> , and updates the condition code flags (based
on the result).

The instruction is only executed if the condition specified in the instruction matches
the condition code status. The conditions are defined in 3.3 The Condition Field on
page 3-4.

Operation if ConditionPassed(<cond>) then
<alu_out> = Rn AND <shifter_operand>
N Flag = <alu_out>[31]
Z Flag = if <alu_out> == 0 then 1 else 0
C Flag = <shifter_carry_out>
V Flag = unaffected

Exceptions None

Qualifiers Condition Code

Notes Shifter operand: The shifter operands for this instruction are given in Addressing
Mode 1 starting on page 3-84.

The I bit: Bit 25 is used to distinguish between the immediate and register forms of
<shifter_operand> .

31 28 27 26 25 24 23 22 21 20 19 16 15 12 11 0

cond 0 0 I 1 0 0 0 1 Rn SBZ shifter_operand
3-79ARM Architecture Reference Manual
ARM DUI 0100B

UMLAL

3-80

A
R

M

Multiply

Architecture v3M
and v4 only
UMLAL{<cond>}{<S>} RdLo, RdHi, Rm, Rs
Description The UMLAL (Unsigned Multiply Accumulate Long) instruction multiplies unsigned
variables to produce a 64-bit result, which is added to the 64-bit value in the two
destination general-purpose registers.The result is written back to the two
destination general-purpose registers.

UMLAL multiplies the unsigned value of register Rm with the unsigned value of
register Rs to produce a 64-bit result. The lower 32 bits of the result are added
to RdLo and stored in RdLo; the upper 32 bits and the carry from the addition
to RdLo are added to RdHi and stored in RdHi. The condition code flags are
optionally updated (based on the 64-bit result).

The instruction is only executed if the condition specified in the instruction matches
the condition code status. The conditions are defined in 3.3 The Condition Field on
page 3-4.

Operation
if ConditionPassed(<cond>) then

RdLo = (Rm * Rs)[31:0] + RdLo
RdHi = (Rm * Rs)[63:32] + RdHi + CarryFrom((Rm * Rs)[31:0] + RdLo)
if S == 1 then

N Flag = RdHi[31]
Z Flag = if (RdHi == 0) and (RdLo == 0) then 1 else 0
C Flag = UNPREDICTABLE
V Flag = UNPREDICTABLE

Exceptions None

Qualifiers Condition Code
S updates condition code flags N and Z

Notes Use of R15: Specifying R15 for register RdHi, RdLo, Rm or Rs has UNPREDICTABLE
results.

Operand restriction: Specifying the same register for RdHi and Rm has
UNPREDICTABLE results.
Specifying the same register for RdLo and Rm has UNPREDICTABLE results.
Specifying the same register for RdHi and RdLo has UNPREDICTABLE results.

Early termination: If the multiplier implementation supports early termination,
it must be implemented on the value of the Rs operand. The type of early
termination used (signed or unsigned) is IMPLEMENTATION DEFINED.

31 28 27 26 25 24 23 22 21 20 19 16 15 12 11 8 7 6 5 4 3 0

cond 0 0 0 0 1 0 1 S RdHi RdLo Rs 1 0 0 1 Rm
ARM Architecture Reference Manual
ARM DUI 0100B

UMULL

A
R

M
UMULL{<cond>}{<S>} RdLo, RdHi, Rm, Rs
Multiply

Architecture v3M
and v4 only
Description The UMULL (Unsigned Multiply Long) instruction multiplies unsigned variables to
produce a 64-bit result in two general-purpose registers.

UMULL multiplies the unsigned value of register Rm with the unsigned value of
register Rs to produce a 64-bit result. The upper 32 bits of the result are stored in
RdHi; the lower 32 bits are stored in RdLo. The condition code flags are optionally
updated (based on the 64-bit result).

The instruction is only executed if the condition specified in the instruction matches
the condition code status.See 3.3 The Condition Field on page 3-4.

Operation
if ConditionPassed(<cond>) then

RdHi = (Rm * Rs)[63:32]
RdLo = (Rm * Rs)[31:0]
if S == 1 then

N Flag = RdHi[31]
Z Flag = if (RdHi == 0) and (RdLo == 0) then 1 else 0
C Flag = UNPREDICTABLE
V Flag = UNPREDICTABLE

Exceptions None

Qualifiers Condition Code
S updates condition code flags N and Z

Notes Use of R15: Specifying R15 for register RdHi, RdLo, Rm or Rs has UNPREDICTABLE
results.

Operand restriction: Specifying the same register for RdHi and Rm has
UNPREDICTABLE results.
Specifying the same register for RdLo and Rm has UNPREDICTABLE results.
Specifying the same register for RdHi and RdLo has UNPREDICTABLE results.

Early termination: If the multiplier implementation supports early termination,
it must be implemented on the value of the Rs operand. The type of early
termination used (signed or unsigned) is IMPLEMENTATION DEFINED.

31 28 27 26 25 24 23 22 21 20 19 16 15 12 11 8 7 6 5 4 3 0

cond 0 0 0 0 1 0 0 S RdHi RdLo Rs 1 0 0 1 Rm
3-81ARM Architecture Reference Manual
ARM DUI 0100B

ARM Addressing Modes

Addressing
Mode 3

Register
post-indexed

Architecture v4 only

A
R

M

[Rn], +/- Rm

Description If the condition specified in the instruction matches the condition code status
register Rm is added to or subtracted from the value of the base register Rn an
register Rn.

Operation <address> = Rn
if ConditionPassed(<cond>) then

if U == 1 then
Rn = Rn + Rm

else /* U == 0 */
Rn = Rn - Rm

Qualifiers None

Notes The L bit: This bit distinguishes between a Load (L==1) and a Store (L==0) in

The S bit: This bit distinguishes between a signed (S==1) and an unsigned (S

The H bit: This bit distinguishes between a halfword (H==1) and a signed byt

Use of R15: Specifying R15 as register Rm or Rn has UNPREDICTABLE results

31 28 27 26 25 24 23 22 21 20 19 16 15 12 11

cond 0 0 0 1 U 0 1 L Rn Rd SBZ

Addressing mode

Function

Architecture availability

SyntaxDescription

Encoding

Operation

Qualifiers and flag settings

User notes

Shifter operands for data-processing instructions

short description of the addressing mode

not all addressing modes are available in all

specifies the bit patterns for the addressing mode

describes the operation of

lists any conditions and flag settings

gives notes on using the addressing mode

versions of the ARM architecture

that apply to the addressing mode

Load and store word or unsigned byte
Load and store halfword or load signed byte
Load and store multiple
Load and store coprocessor

Mode 1
Mode 2
Mode 3
Mode 4
Mode 5

the addressing mode in pseudo-code

3

A

R
M Addressing

Mode 1
General encoding

3-84
3.16 Data-processing Operands

<opcode>{<cond>}{S}{Rd}, {Rn}, <shifter_operand>

32-bit immediate

Immediate shifts

Register shifts

Description <opcode> Describes the operation of the instruction
S bit Indicates that the instruction updates the condition codes.
Rd Specifies the destination register
Rn Specifies the first source operand register.
Bits[11:0] The fields within bits[11:0] are collectively called

a <shifter_operand> . This is described below.
Bit 25 Is referred to as the I bit, and is used to distinguish between

an immediate <shifter_operand> and a register-based
<shifter_operand>.

3.16.1 The shifter operand

As well as producing <shifter_operand> , the shifter produces a carry-out
which some instructions write into the Carry Flag.

The shifter operand takes one of 3 basic formats:
• Immediate operand value

• Register operand value

• Shifted register operand value

Format 1: Immediate operand value

An immediate operand value is formed by rotating an 8-bit constant (in a 32-bit
word) by an even number of bits (0,2,4,8...26,28,30). Thus, each instruction
contains an 8-bit constant and a 4-bit rotate to be applied to that constant.

31 28 27 26 25 24 21 20 19 16 15 12 11 8 7 0

cond 0 0 1 opcode S Rn Rd rotate_imm 8_bit_immediate

31 28 27 26 25 24 21 20 19 16 15 12 11 7 6 5 4 3 0

cond 0 0 0 opcode S Rn Rd Rs shift 0 Rm

31 28 27 26 25 24 21 20 19 16 15 12 11 8 7 6 5 4 3 0

cond 0 0 0 opcode S Rn Rd Rs 0 shift 1 Rm
ARM Architecture Reference Manual
ARM DUI 0100B

ARM Architecture Reference Manual
ARM DUI 0100B
A
R

M

Addressing
Mode 1
Shifter operands
Valid constants are:
0xff,0x104,0xff0,0xff00,0xff000,0xff000000,0xf000000f

Invalid constants are:
0x101,0x102,0xff1,0xff04,0xff003,0xffffffff,0xf000001f

For example:
MOV R0, #0 ; Move zero to R0
ADD R3, R3, #1 ; Add one to the value of register 3
CMP R7, #1000 ; Compare value of R7 with 1000
BIC R9, R8, #0xff00 ; Clear bits 8-15 of R8 and store in R9

Format 2: Register operand value

A register operand value is simply the value of a register. The value of the register
is used directly as the operand to the data-processing instruction.

For example:
MOV R2, R0 ; Move the value of R0 to R2
ADD R4, R3, R2 ; Add R2 to R3, store result in R4
CMP R7, R8 ; Compare the value of R7 and R8

Format 3: Shifted register operand value

A shifted register operand value is the value of a register, shifted (or rotated)
before it is used as the data-processing operand. There are five types of shift:

ASR Arithmetic shift right
LSL Logical shift left
LSR Logical shift right
ROR Rotate right
RRX Rotate right with extend

The number of bits to shift by is specified either as an immediate or as the value
of the register.

For example:

MOV R2, R0 LSL #2 ; Shift R0 left by 2, store in R2
; (R2=R0x4)

ADD R9, R5, R5 LSL #3 ; R9 = R5 + R5 x 8 or R9 = R5 x 9
RSB R9, R5, R5 LSL #3 ; R9 = R5 x 8 - R5 or R9 = R5 x 7
SUB R10, R9, R8 LSR #4 ; R10 = R9 - R8 / 16
MOV R12, R4 ROR R3 ; R12 = R4 rotated right by value of R3

The default shifter operand

The default register operand (register Rm specified with no shift) uses the form
register shift left by immediate, with the immediate set to zero.
3-85

A
R

M Addressing
Mode 1
Shifter operands

3-86
3.16.2 Shifter Operands

The 11 types of <shifter_operand> are described on the following pages:

Immediate page 3-87

Register page 3-88

Logical shift left by immediate page 3-89

Logical shift left by register page 3-90

Logical shift right by immediate page 3-91

Logical shift right by register page 3-92

Arithmetic shift right by immediate page 3-93

Arithmetic shift right by register page 3-94

Rotate right by immediate page 3-95

Rotate right by register page 3-96

Rotate right with extend page 3-97
ARM Architecture Reference Manual
ARM DUI 0100B

ARM Architecture Reference Manual
ARM DUI 0100B
A
R

M

Addressing
Mode 1
#<immediate>
Immediate
Description The <shifter_operand> value is formed by rotating (to the right) an 8-bit
immediate value to any even bit position in a 32-bit word. If the rotate immediate
is zero, the carry-out from the shifter is the value of the C flag, otherwise, it is set
to bit 31 of the value of <shifter_operand> .

This data-processing operand provides a constant (defined in the instruction)
operand to a data-processing instruction.

Operation <shifter_operand> = <8_bit_immediate> Rotate_Right
(<rotate_imm> * 2)
if <rotate_imm> == 0 then

<shifter_carry_out> = C flag
else /* <rotate_imm> > 31 */

<shifter_carry_out> = <shifter_operand>[31]

Notes Legitimate immediates: Not all 32-bit immediates are legitimate; only those that
can be formed by rotating an 8-bit immediate right by an even amount are
valid 32-bit immediates for this format.

Alternative assembly specification: The 32-bit immediate can also be specified by:

#<8_bit_immediate>, <rotate_amount>
where:

<rotate_amount> = <rotate_imm> << 1

31 28 27 26 25 24 21 20 19 16 15 12 11 8 7 0

cond 0 0 1 opcode S Rn Rd rotate_imm 8_bit_immediate
3-87

A
R

M Addressing
Mode 1
Register

3-88
Rm
Description This data-processing operand provides the value of a register directly.

This is an instruction operand produced by the value of register Rm. The carry-out
from the shifter is the C flag.

Operation <shifter_operand> = Rm
<shifter_carry_out> = C Flag

Notes Encoding: This instruction is encoded as a Logical shift left by immediate
(see page 3-89) with a shift of zero (<shift_imm> == 0).

Use of R15: If R15 is specified as register Rm or Rn, the value used is the address
of the current instruction plus 8.

31 28 27 26 25 24 21 20 19 16 15 12 11 10 9 8 7 6 5 4 3 0

cond 0 0 0 opcode S Rn Rd 0 0 0 0 0 0 0 0 Rm
ARM Architecture Reference Manual
ARM DUI 0100B

ARM Architecture Reference Manual
ARM DUI 0100B
A
R

M

Addressing
Mode 1
Rm, LSL #<shift_imm>
Logical shift left
by immediate
Description This data-processing operand is used to provide either the value of a register

directly (lone register operand (see page 3-88), or the value of a register shifted
left (multiplied by a constant power of two).

This instruction operand is produced by the value of register Rm, logically shifted
left by an immediate value in the range 0 to 31. Zeros are inserted into the vacated
bit positions. The carry-out from the shifter is the last bit shifted out, or the C flag if
no shift is specified (lone register operand, see page 3-88).

Operation if <shift_imm> == 0 then /* Register Operand */
<shifter_operand> = Rm
<shifter_carry_out> = C Flag

else /* <shift_imm> > 0 */
<shifter_operand> = Rm Logical_Shift_Left <shift_imm>
<shifter_carry_out> = Rm[32 - <shift_imm>]

Notes Default shift: If the value of <shift_imm> == 0 , the operand may be written as
just Rm, (see page 3-88).

Use of R15: If R15 is specified as register Rm or Rn, the value used is the address
of the current instruction plus 8.

31 28 27 26 25 24 21 20 19 16 15 12 11 7 6 5 4 3 0

cond 0 0 0 opcode S Rn Rd shift_imm 0 0 0 Rm
3-89

A
R

M Addressing
Mode 1
Logical shift left
by register

3-90
Rm, LSL Rs
Description This data-processing operand is used to provide the value of a register multiplied
by a variable (in a register) power of two.

It is produced by the value of register Rm, logically shifted left by the value in
the least-significant byte of register Rs. Zeros are inserted into the vacated bit
positions.

Operation if Rs[7:0] == 0 then
<shifter_operand> = Rm
<shifter_carry_out> = C Flag

else if Rs[7:0] < 32 then
<shifter_operand> = Rm Logical_Shift_Left Rs[7:0]
<shifter_carry_out> = Rm[32 - Rs[7:0]]

else if Rs[7:0] == 32 then
<shifter_operand> = 0
<shifter_carry_out> = Rm[0]

else /* Rs[7:0] > 32 */
<shifter_operand> = 0
<shifter_carry_out> = 0

Notes Use of R15: Specifying R15 as register Rm, register Rn or register Rs has
UNPREDICTABLE results.

31 28 27 26 25 24 21 20 19 16 15 12 11 8 7 6 5 4 3 0

cond 0 0 0 opcode S Rn Rd Rs 0 0 0 1 Rm
ARM Architecture Reference Manual
ARM DUI 0100B

ARM Architecture Reference Manual
ARM DUI 0100B
A
R

M

Addressing
Mode 1
Rm, LSR #<shift_imm>
Logical shift right
by immediate
Description This data-processing operand is used to provide the unsigned value of a register

shifted right (divided by a constant power of two).

It is produced by the value of register Rm logically shifted right by an immediate
value in the range 1 to 32. Zeros are inserted into the vacated bit positions. A shift
by 32 is encoded by <shift_imm> = 0 .

Operation if <shift_imm> == 0 then
<shifter_operand> = 0
<shifter_carry_out> = Rm[31]

else /* <shift_imm> > 0 */
<shifter_operand> = Rm Logical_Shift_Right <shift_imm>
<shifter_carry_out> = Rm[<shift_imm> - 1]

Notes Use of R15: If R15 is specified as register Rm or Rn, the value used is the address
of the current instruction plus 8.

31 28 27 26 25 24 21 20 19 16 15 12 11 7 6 5 4 3 0

cond 0 0 0 opcode S Rn Rd shift_imm 0 1 0 Rm
3-91

A
R

M Addressing
Mode 1
Logical shift right
by register

3-92
Rm, LSR Rs
Description This data-processing operand is used to provide the unsigned value of a register
shifted right (divided by a variable power of two (in a register)).

It is produced by the value of register Rm logically shifted right by the value in
the least-significant byte of register Rs. Zeros are inserted into the vacated bit
positions.

Operation if Rs[7:0] == 0 then
<shifter_operand> = Rm
<shifter_carry_out> = C Flag

else if Rs[7:0] < 32 then
<shifter_operand> = Rm Logical_Shift_Right Rs[7:0]
<shifter_carry_out> = Rm[Rs[7:0] - 1]

else if Rs[7:0] == 32 then
<shifter_operand> = 0
<shifter_carry_out> = Rm[31]

else /* Rs[7:0] > 32 */
<shifter_operand> = 0
<shifter_carry_out> = 0

Notes Use of R15: Specifying R15 as register Rm, register Rn or register Rs has
UNPREDICTABLE results.

31 28 27 26 25 24 21 20 19 16 15 12 11 8 7 6 5 4 3 0

cond 0 0 0 opcode S Rn Rd Rs 0 0 1 1 Rm
ARM Architecture Reference Manual
ARM DUI 0100B

ARM Architecture Reference Manual
ARM DUI 0100B
A
R

M

Addressing
Mode 1
Rm, ASR #<shift_imm>
Arithmetic shift right
by immediate
Description This data-processing operand is used to provide the signed value of a register

arithmetically shifted right (divided by a constant power of two).

It is produced by the value of register Rm arithmetically shifted right by
an immediate value in the range 1 to 32. The sign bit of Rm (Rm[31]) is inserted
into the vacated bit positions. A shift by 32 is encoded by <shift_imm> = 0 .

Operation if <shift_imm> == 0 then
if Rm[31] == 0 then

<shifter_operand> = 0
<shifter_carry_out> = Rm[31]

else /* Rm[31] == 1 */
<shifter_operand> = 0xffffffff
<shifter_carry_out> = Rm[31]

else /* <shift_imm> > 0 */
<shifter_operand> = Rm Arithmetic_Shift_Right

<shift_imm>
<shifter_carry_out> = Rm[<shift_imm> - 1]

Notes Use of R15: If R15 is specified as register Rm or Rn, the value used is the address
of the current instruction plus 8.

31 28 27 26 25 24 21 20 19 16 15 12 11 7 6 5 4 3 0

cond 0 0 0 opcode S Rn Rd shift_imm 1 0 0 Rm
3-93

A

A
R

M Addressing
Mode 1
rithmetic shift right
by register

3-94
Rm, ASR Rs
Description This data-processing operand is used to provide the signed value of a register
arithmetically shifted right (divided by a variable power of two (in a register)).

It is produced by the value of register Rm arithmetically shifted right by the value
in the least-significant byte of register Rs. The sign bit of Rm (Rm[31]) is inserted
into the vacated bit positions.

Operation if Rs[7:0] == 0 then
<shifter_operand> = Rm
<shifter_carry_out> = C Flag

else if Rs[7:0] < 32 then
<shifter_operand> = Rm Arithmetic_Shift_Right Rs[7:0]
<shifter_carry_out> = Rm[Rs[7:0] - 1]

else /* Rs[7:0] >= 32 */
if Rm[31] == 0 then

<shifter_operand> = 0
<shifter_carry_out> = Rm[31]

else /* Rm[31] == 1 */
<shifter_operand> = 0xffffffff
<shifter_carry_out> = Rm[31]

Notes Use of R15: Specifying R15 as register Rm, register Rn or register Rs has
UNPREDICTABLE results.

31 28 27 26 25 24 21 20 19 16 15 12 11 8 7 6 5 4 3 0

cond 0 0 0 opcode S Rn Rd Rs 0 1 0 1 Rm
ARM Architecture Reference Manual
ARM DUI 0100B

ARM Architecture Reference Manual
ARM DUI 0100B
A
R

M

Addressing
Mode 1
Rm, ROR #<shift_imm>
Rotate right
by immediate
Description This data-processing operand is used to provide the value of a register rotated by

a constant value.

An instruction operand produced by the value of register Rm rotated right by
an immediate value in the range 1 to 31. As bits are rotated off the right end, they
are inserted into the vacated bit positions on the left.

When <shift_imm> = 0 , a Rotate right with extend operation is performed;
see page 3-97.

Operation if <shift_imm> == 0 then
See Section , Rm, RRX, on page 3-97

else /* <shift_imm> > 0 */
<shifter_operand> = Rm Rotate_Right <shift_imm>
<shifter_carry_out> = Rm[<shift_imm> - 1]

Notes Use of R15: If R15 is specified as register Rm or Rn, the value used is the address
of the current instruction plus 8.

31 28 27 26 25 24 21 20 19 16 15 12 11 7 6 5 4 3 0

cond 0 0 0 opcode S Rn Rd shift_imm 1 1 0 Rm
3-95

A
R

M Addressing
Mode 1
Rotate right
by register

3-96
Rm, ROR Rs
Description This data-processing operand is used to provide the value of a register rotated by
a variable value (in a register).

It is produced by the value of register Rm rotated right by the value in the
least-significant byte of register Rs. As bits are rotated off the right end, they are
inserted into the vacated bit positions on the left.

Operation if Rs[7:0] == 0 then
<shifter_operand> = Rm
<shifter_carry_out> = C Flag

else if Rs[4:0] == 0 then
<shifter_operand> = Rm
<shifter_carry_out> = Rm[31]

else /* Rs[4:0] > 0 */
<shifter_operand> = Rm Rotate_Right Rs[4:0]
<shifter_carry_out> = Rm[Rs[4:0] - 1]

Notes Use of R15: Specifying R15 as register Rm, register Rn or register Rs has
UNPREDICTABLE results.

31 28 27 26 25 24 21 20 19 16 15 12 11 8 7 6 5 4 3 0

cond 0 0 0 opcode S Rn Rd Rs 0 1 1 1 Rm
ARM Architecture Reference Manual
ARM DUI 0100B

ARM Architecture Reference Manual
ARM DUI 0100B
A
R

M

Addressing
Mode 1
Rm, RRX
Rotate right
with extend
Description This data-processing operand can be used to perform a 33-bit rotate right using

the Carry Flag as the 33rd bit.

It is produced by the value of register Rm shifted right by one bit, with
the Carry Flag replacing the vacated bit position.

Operation <shifter_operand> = (C Flag Logical_Shift_Left 31) OR
(Rm Logical_Shift_Right 1)

<shifter_carry_out> = Rm[0]

Notes Encoding: The instruction encoding is in the space that would be used for
ROR #0.

Use of R15: If R15 is specified as register Rm or Rn, the value used is the address
of the current instruction plus 8.

ADC instruction: A rotate right with extend can be performed with an ADC
instruction.

31 28 27 26 25 24 21 20 19 16 15 12 11 10 9 8 7 6 5 4 3 0

cond 0 0 0 opcode S Rn Rd 0 0 0 0 0 1 1 0 Rm
3-97

A
R

M Addressing
Mode 2
General encoding

3-98
3.17 Load and Store Word or Unsigned Byte Addressing Modes

There are nine addressing modes used to calculate the address for a load and
store word or unsigned byte instruction. Each addressing mode is described in
detail on the following pages.

Immediate offset page 3-100

LDR|STR{<cond>}{B} Rd, [Rn, #+/-<12_bit_offset>]

Register offset page 3-101

LDR|STR{<cond>}{B} Rd, [Rn, +/-Rm]

Scaled register offsets page 3-102

LDR|STR{<cond>}{B} Rd, [Rn, +/-Rm, <shift> #<shift_imm>]

Immediate pre-indexed page 3-103

LDR|STR{<cond>}{B} Rd, [Rn, #+/-<12_bit_offset>]!

Register pre-indexed page 3-104

LDR|STR{<cond>}{B} Rd, [Rn, +/-Rm]!

Scaled register pre-indexed page 3-105

LDR|STR{<cond>}{B} Rd, [Rn, +/-Rm, <shift> #<shift_imm>]!

Immediate post-indexed page 3-106

LDR|STR{<cond>}{B}{T}Rd, [Rn], #+/-<12_bit_offset>

Register post-indexed page 3-107

LDR|STR{<cond>}{B}{T}Rd, [Rn], +/-Rm

Scaled register post-indexed page 3-108

LDR|STR{<cond>}{B}{T}Rd, [Rn], +/-Rm, <shift> #<shift_imm>

Immediate offset/index

Register offset/index

Scaled register offset/index

31 28 27 26 25 24 23 22 21 20 19 16 15 12 11 0

cond 0 1 0 P U B W L Rn Rd 12_bit_offset

31 28 27 26 25 24 23 22 21 20 19 16 15 12 11 10 9 8 7 6 5 4 3 0

cond 0 1 1 P U B W L Rn Rd 0 0 0 0 0 0 0 0 Rm

31 28 27 26 25 24 23 22 21 20 19 16 15 12 11 7 6 5 4 3 0

cond 0 1 I P U B W L Rn Rd shift_imm shift 0 Rm
ARM Architecture Reference Manual
ARM DUI 0100B

ARM Architecture Reference Manual
ARM DUI 0100B
A
R

M

Addressing
Mode 2
General encoding
Notes The P bit: Pre/Post indexing:

Pre-indexing (P==1) indicates the offset is applied to the base register, and
the result is used as the address.
Post-indexing (P==0) indicates the base register value is used for the
address; the offset is then applied to the base register and written back to the
base register.

The U bit: Indicates whether the offset is added to the base (U == 1) or subtracted
from the base (U == 0).

The B bit: This bit distinguishes between an unsigned byte (B == 1) and a word
(B == 0) access.

The W bit: This bit has two meanings:

if P == 1 if W == 1, the calculated address will be written back to the
base register. (If W == 0, the base register will not be
updated.)

if P == 0 if W == 1, the current access is treated (by the protection
and memory system) as a user mode access (if W == 0,
a normal access is performed)

The L bit: This bit distinguishes between a Load (L == 1) and a Store (L == 0).
3-99

A
R

M Addressing
Mode 2
Immediate offset

3-100
[Rn, #+/-<12_bit_offset]
Description This addressing mode is useful for accessing structure (record) fields, and
accessing parameters and locals variable in a stack frame. With an offset of zero,
the address produced is the unaltered value of the base register Rn.

It calculates an address by adding or subtracting the value of an immediate offset
to or from the value of the base register Rn.

Operation if U == 1 then
<address> = Rn + <12_bit_offset>

else /* U == 0 */
<address> = Rn - <12_bit_offset>

Notes The B bit: This bit distinguishes between an unsigned byte (B==1) and a word
(B==0) access.

The L bit: This bit distinguishes between a Load (L==1) and a Store (L==0)
instruction.

Use of R15: If R15 is specified as register Rn, the value used is the address of
the instruction plus 8.

31 28 27 26 25 24 23 22 21 20 19 16 15 12 11 0

cond 0 1 0 1 U B 0 L Rn Rd 12_bit_offset
ARM Architecture Reference Manual
ARM DUI 0100B

ARM Architecture Reference Manual
ARM DUI 0100B
A
R

M

Addressing
Mode 2
[Rn, +/- Rm]
Register offset
Description This addressing mode is used for pointer + offset arithmetic, and accessing
a single element of an array.

It calculates an address by adding or subtracting the value of the index register Rm
to or from the value of the base register Rn.

Operation if U == 1 then
<address> = Rn + Rm

else /* U == 0 */
<address> = Rn - Rm

Notes Encoding: This addressing mode is encoded as an LSL scaled register offset,
scaled by zero.

The B bit: This bit distinguishes between an unsigned byte (B==1) and a word
(B==0) access.

The L bit: This bit distinguishes between a Load (L==1) and a Store (L==0)
instruction.

Use of R15: If R15 is specified as register Rn, the value used is the address of
the instruction plus 8. Specifying R15 as register Rm has UNPREDICTABLE
results.

31 28 27 26 25 24 23 22 21 20 19 16 15 12 11 10 9 8 7 6 5 4 3 0

cond 0 1 1 1 U B 0 L Rn Rd 0 0 0 0 0 0 0 0 Rm
3-101

S

A
R

M Addressing
Mode 2
caled register offsets

3-102
[Rn, +/-Rm, LSL #<shift_imm>]

[Rn, +/-Rm, LSR #<shift_imm>]

[Rn, +/-Rm, ASR #<shift_imm>]

[Rn, +/-Rm, ROR #<shift_imm>]

[Rn, +/-Rm, RRX]
Description These addressing modes are used for accessing a single element of an array of
values larger than a byte.

They calculate an address by adding or subtracting the shifted or rotated value of
the index register Rm to or from the value of the base register Rn.

Operation case <shift> of
00 /* LSL */

<index> = Rm Logical_Shift_Left <shift_imm>
01 /* LSR */

<index> = Rm Logical_Shift_Right <shift_imm>
10 /* ASR */

<index> = Rm Arithmetic_Shift_Right <shift_imm>
11 /* ROR or RRX */

if <shift_imm> == 0 then /* RRX */
<index> = (C Flag Logical_Shift_Left 31)

OR (Rm Logical_Shift_Right 1)
else /* ROR */

<index> = Rm Rotate_Right <shift_imm>
endcase
if U == 1 then

<address> = Rn + <index>
else /* U == 0 */

<address> = Rn - <index>

Notes The B bit: This bit distinguishes between an unsigned byte (B==1) and a word
(B==0) access.

The L bit: This bit distinguishes between a Load (L==1) and a Store (L==0)
instruction.

Use of R15: If R15 is specified as register Rn, the value used is the address of
the instruction plus 8. Specifying R15 as register Rm has UNPREDICTABLE
results.

31 28 27 26 25 24 23 22 21 20 19 16 15 12 11 7 6 5 4 3 0

cond 0 1 1 1 U B 0 L Rn Rd shift_imm shift 0 Rm
ARM Architecture Reference Manual
ARM DUI 0100B

ARM Architecture Reference Manual
ARM DUI 0100B
A
R

M

Addressing
Mode 2
[Rn, #+/-<12_bit_offset>]!
Immediate pre-indexed
Description This addressing mode is used for pointer access to arrays with automatic update
of the pointer value.

It calculates an address by adding or subtracting the value of an immediate offset
to or from the value of the base register Rn.

If the condition specified in the instruction matches the condition code status,
the calculated address is written back to the base register Rn. The conditions are
defined in 3.3 The Condition Field on page 3-4.

Operation if U == 1 then
<address> = Rn + <12_bit_offset>

else /* if U == 0 */
<address> = Rn - <12_bit_offset>

if ConditionPassed(<cond>) then
Rn = <address>

Notes The B bit: This bit distinguishes between an unsigned byte (B==1) and a word
(B==0) access.

The L bit: This bit distinguishes between a Load (L==1) and a Store (L==0)
instruction.

Use of R15: Specifying R15 as register Rn has UNPREDICTABLE results.

31 28 27 26 25 24 23 22 21 20 19 16 15 12 11 0

cond 0 1 0 1 U B 1 L Rn Rd 12_bit_offset
3-103

R

A
R

M Addressing
Mode 2
egister pre-indexed

3-104
[Rn, +/- Rm]!
Description This addressing mode calculates an address by adding or subtracting the value of
an index register Rm to or from the value of the base register Rn.

If the condition specified in the instruction matches the condition code status,
the calculated address is written back to the base register Rn. The conditions are
defined in 3.3 The Condition Field on page 3-4.

Operation if U == 1 then
<address> = Rn + Rm

else /* U == 0 */
<address> = Rn - Rm

if ConditionPassed(<cond>) then
Rn = <address>

Notes The B bit: This bit distinguishes between an unsigned byte (B==1) and a word
(B==0) access.

The L bit: This bit distinguishes between a Load (L==1) and a Store (L==0)
instruction.

Use of R15: Specifying R15 as register Rm or Rn has UNPREDICTABLE results.

Operand Restrictions: If the same register is specified for Rn and Rm, the result is
UNPREDICTABLE.

31 28 27 26 25 24 23 22 21 20 19 16 15 12 11 10 9 8 7 6 5 4 3 0

cond 0 1 1 1 U B 1 L Rn Rd 0 0 0 0 0 0 0 0 Rm
ARM Architecture Reference Manual
ARM DUI 0100B

ARM Architecture Reference Manual
ARM DUI 0100B
A
R

M

Addressing
Mode 2
[Rn, +/-Rm, LSL #<shift_imm>]!

[Rn, +/-Rm, LSR #<shift_imm>]!

[Rn, +/-Rm, ASR #<shift_imm>]!

[Rn, +/-Rm, ROR #<shift_imm>]!

[Rn, +/-Rm, RRX]!
Scaled register
pre-indexed
Description These five addressing modes calculate an address by adding or subtracting

the shifted or rotated value of the index register Rm to or from the value of the base
register Rn.

If the condition specified in the instruction matches the condition code status,
the calculated address is written back to the base register Rn. The conditions are
defined in 3.3 The Condition Field on page 3-4.

Operation case <shift> of
00 /* LSL */

<index> = Rm Logical_Shift_Left <shift_imm>
01 /* LSR */

<index> = Rm Logical_Shift_Right <shift_imm>
10 /* ASR */

<index> = Rm Arithmetic_Shift_Right <shift_imm>
11 /* ROR or RRX */

if <shift_imm> == 0 then /* RRX */
<index> = (C Flag Logical_Shift_Left 31)
OR (Rm Logical_Shift_Right 1)

else /* ROR */
<index> = Rm Rotate_Right <shift_imm>

endcase
if U == 1 then

<address> = Rn + <index>
else /* U == 0 */

<address> = Rn - <index>
if ConditionPassed(<cond>) then

Rn = <address>

Notes The B bit: This bit distinguishes between an unsigned byte (B==1) and a word
(B==0) access.

The L bit: This bit distinguishes between a Load (L==1) and a Store (L==0)
instruction.

Use of R15: Specifying R15 as register Rm or Rn has UNPREDICTABLE results.

Operand Restrictions: If the same register is specified for Rn and Rm, the result is
UNPREDICTABLE.

31 28 27 26 25 24 23 22 21 20 19 16 15 12 11 7 6 5 4 3 0

cond 0 1 1 1 U B 1 L Rn Rd shift_imm shift 0 Rm
3-105

A
R

M Addressing
Mode 2
Immediate
post-indexed

3-106
[Rn], #+/-<12_bit_offset>
Description This addressing mode is used for pointer access to arrays with automatic update
of the pointer value.

It calculates an address from the value of base register Rn.

If the condition specified in the instruction matches the condition code status,
the value of the immediate offset added to or subtracted from the value of the base
register Rn and written back to the base register Rn. The conditions are defined in
3.3 The Condition Field on page 3-4

Operation <address> = Rn
if ConditionPassed(<cond>) then

if U == 1 then
Rn = Rn + <12_bit_offset>

else /* U == 0 */
Rn = Rn - <12_bit_offset>

Notes The B bit: This bit distinguishes between an unsigned byte (B==1) and a word
(B==0) access.

The L bit: This bit distinguishes between a Load (L==1) and a Store (L==0)
instruction.

Use of R15: Specifying R15 as register Rn has UNPREDICTABLE results.

31 28 27 26 25 24 23 22 21 20 19 16 15 12 11 0

cond 0 1 0 0 U B 0 L Rn Rd 12_bit_offset
ARM Architecture Reference Manual
ARM DUI 0100B

ARM Architecture Reference Manual
ARM DUI 0100B
A
R

M

Addressing
Mode 2
[Rn], +/- Rm
Register post-indexed
Description This addressing mode calculates its address from the value of base register Rn.

If the condition specified in the instruction matches the condition code status,
the value of the index register Rm is added to or subtracted from the value of
the base register Rn and written back to the base register Rn. The conditions are
defined in 3.3 The Condition Field on page 3-4.

Operation <address> = Rn
if ConditionPassed(<cond>) then

if U == 1 then
Rn = Rn + Rm

else /* U == 0 */
Rn = Rn - Rm

Notes The B bit: This bit distinguishes between an unsigned byte (B==1) and a word
(B==0) access.

The L bit: This bit distinguishes between a Load (L==1) and a Store (L==0)
instruction.

Use of R15: Specifying R15 as register Rn or Rm has UNPREDICTABLE results.

Operand Restrictions: If the same register is specified for Rn and Rm, the result is
UNPREDICTABLE.

31 28 27 26 25 24 23 22 21 20 19 16 15 12 11 10 9 8 7 6 5 4 3 0

cond 0 1 1 0 U B 0 L Rn Rd 0 0 0 0 0 0 0 0 Rm
3-107

A
R

M Addressing
Mode 2
Scaled register
post-indexed

3-108
[Rn], +/-Rm, LSL #<shift_imm>

[Rn], +/-Rm, LSR #<shift_imm>

[Rn], +/-Rm, ASR #<shift_imm>

[Rn], +/-Rm, ROR #<shift_imm>

[Rn], +/-Rm, RRX
Description If the condition specified in the instruction matches the condition code status,
the shifted or rotated value of index register Rm is added to or subtracted from
the value of the base register Rn and written back to the base register Rn.
The conditions are defined in 3.3 The Condition Field on page 3-4.

Operation <address> = Rn
case <shift> of

00 /* LSL */
<index> = Rm Logical_Shift_Left <shift_imm>

01 /* LSR */
<index> = Rm Logical_Shift_Right <shift_imm>

10 /* ASR */
<index> = Rm Arithmetic_Shift_Right <shift_imm>

11 /* ROR or RRX */
if <shift_imm> == 0 then /* RRX */

<index> = (C Flag Logical_Shift_Left 31)
OR (Rm Logical_Shift_Right 1)

else /* ROR */
<index> = Rm Rotate_Right <shift_imm>

endcase
if ConditionPassed(<cond>) then

if U == 1 then
Rn = Rn + <index>

else /* U == 0 */
Rn = Rn - <index>

Notes The B bit: This bit distinguishes between an unsigned byte (B==1) and a word
(B==0) access.

The L bit: This bit distinguishes between a Load (L==1) and a Store (L==0)
instruction.

Use of R15: Specifying R15 as register Rm or Rn has UNPREDICTABLE results.

Operand Restrictions: If the same register is specified for Rn and Rm, the result is
UNPREDICTABLE.

31 28 27 26 25 24 23 22 21 20 19 16 15 12 11 7 6 5 4 3 0

cond 0 1 1 0 U B 0 L Rn Rd shift_imm shift 0 Rm
ARM Architecture Reference Manual
ARM DUI 0100B

ARM Architecture Reference Manual
ARM DUI 0100B
A
R

M

Addressing
Mode 3
General encoding

Architecture v4 only
3.18 Load and Store Halfword or Load Signed Byte
Addressing Modes

There are six addressing modes which are used to calculate the address for a load
and store (signed or unsigned) halfword or load signed byte instructions.
1 Immediate offset page 3-110

LDR|STR{<cond>}H|SH|SB Rd, [Rn, #+/-<8_bit_offset>]

2 Register offset page 3-111
LDR|STR{<cond>}H|SH|SB Rd, [Rn, +/-Rm]

3 Immediate pre-indexed page 3-112
LDR|STR{<cond>}H|SH|SB Rd, [Rn, #+/-<8_bit_offset>]!

4 Register pre-indexed page 3-113
LDR|STR{<cond>}H|SH|SB Rd, [Rn, +/-Rm]!

5 Immediate post-indexed page 3-114
LDR|STR{<cond>}H|SH|SB Rd, [Rn], #+/-<8_bit_offset>

6 Register post-indexed page 3-115
LDR|STR{<cond>}H|SH|SB Rd, [Rn], +/-Rm

Immediate offset/index

Register offset/index

Notes The P bit: Pre-indexing (P==1) indicates the offset is applied to the base register,
and the result is used as the address.
Post-indexing (P==0) indicates the base register value is used for the
address; the offset is then applied to the base register and written back to the
base register.

The U bit: Indicates whether the offset is added to the base (U==1) or subtracted
from the base(U==0).

The W bit: If P is set, W indicates that the calculated address will be written back
to the base register; if P is clear, the W bit must be clear or the instruction is
UNPREDICTABLE.

The L bit: This bit distinguishes between a Load (L==1) and a Store (L==0)
instruction.

The S bit: This bit distinguishes between a signed (S==1) and an unsigned (S==0)
halfword access.

The H bit: This bit distinguishes between a halfword (H==1) and a signed byte
(H==0) access.

31 28 27 26 25 24 23 22 21 20 19 16 15 12 11 8 7 6 5 4 3 0

cond 0 0 0 P U 1 W L Rn Rd immedH 1 S H 1 ImmedL

31 28 27 26 25 24 23 22 21 20 19 16 15 12 11 8 7 6 5 4 3 0

cond 0 0 0 P U 0 W L Rn Rd SBZ 1 S H 1 Rm
3-109

A

A
R

M Addressing
Mode 3
Immediate offset

rchitecture v4 only

3-110
[Rn, #+/-<8_bit_offset>]
Description This addressing mode is used for accessing structure (record) fields, and
accessing parameters and locals variable in a stack frame. With an offset of zero,
the address produced is the unaltered value of the base register Rn.

It calculates an address by adding or subtracting the value of an immediate offset
to or from the value of the base register Rn.

Operation <8_bit_offset> = (<immedH> << 4) OR <immedL>
if U == 1 then

<address> = Rn + <8_bit_offset>
else /* U == 0 */

<address> = Rn - <8_bit_offset>

Notes The L bit: This bit distinguishes between a Load (L==1) and a Store (L==0)
instruction.

The S bit: This bit distinguishes between a signed (S==1) and an unsigned (S==0)
halfword access.

The H bit: This bit distinguishes between a halfword (H==1) and a signed byte
(H==0) access.

Use of R15: If R15 is specified as register Rn, the value used is the address of
the instruction plus 8.

31 28 27 26 25 24 23 22 21 20 19 16 15 12 11 8 7 6 5 4 3 0

cond 0 0 0 1 U 1 0 L Rn Rd ImmedH 1 S H 1 ImmedL
ARM Architecture Reference Manual
ARM DUI 0100B

ARM Architecture Reference Manual
ARM DUI 0100B
A
R

M

Addressing
Mode 3
[Rn, +/- Rm]
Register offset

Architecture v4 only
Description This addressing mode is useful for pointer + offset arithmetic, and for accessing
a single element of an array.

It calculates an address by adding or subtracting the value of the index register Rm
to or from the value of the base register Rn.

Operation if U == 1 then
<address> = Rn + Rm

else /* U == 0 */
<address> = Rn - Rm

Notes The L bit: This bit distinguishes between a Load (L==1) and a Store (L==0)
instruction.

The S bit: This bit distinguishes between a signed (S==1) and an unsigned (S==0)
halfword access.

The H bit: This bit distinguishes between a halfword (H==1) and a signed byte
(H==0) access.

Use of R15: If R15 is specified as register Rn, the value used is the address of
the instruction plus 8. Specifying R15 as register Rm has UNPREDICTABLE
results.

31 28 27 26 25 24 23 22 21 20 19 16 15 12 11 8 7 6 5 4 3 0

cond 0 0 0 1 U 0 0 L Rn Rd SBZ 1 S H 1 Rm
3-111

Im

A

A
R

M Addressing
Mode 3
mediate pre-indexed

rchitecture v4 only

3-112
[Rn, #+/-<8_bit_offset>]!
Description This addressing mode gives pointer access to arrays, with automatic update of
the pointer value.

It calculates an address by adding or subtracting the value of an immediate offset
to or from the value of the base register Rn.

If the condition specified in the instruction matches the condition code status,
the calculated address is written back to the base register Rn. The conditions are
defined in 3.3 The Condition Field on page 3-4.

Operation <8_bit_offset> = (<immedH> << 4) OR <immedL>
if U == 1 then

<address> = Rn + <8_bit_offset>
else /* U == 0 */

<address> = Rn - <8_bit_offset>
if ConditionPassed(<cond>) then

Rn = <address>

Notes The L bit: This bit distinguishes between a Load (L==1) and a Store (L==0)
instruction.

The S bit: This bit distinguishes between a signed (S==1) and an unsigned (S==0)
halfword access.

The H bit: This bit distinguishes between a halfword (H==1) and a signed byte
(H==0) access.

Use of R15: Specifying R15 as register Rn has UNPREDICTABLE results.

31 28 27 26 25 24 23 22 21 20 19 16 15 12 11 8 7 6 5 4 3 0

cond 0 0 0 1 U 1 1 L Rn Rd immedH 1 S H 1 ImmedL
ARM Architecture Reference Manual
ARM DUI 0100B

ARM Architecture Reference Manual
ARM DUI 0100B
A
R

M

Addressing
Mode 3
[Rn, +/- Rm]!
Register pre-indexed

Architecture v4 only
Description This addressing mode calculates an address by adding or subtracting the value of
the index register Rm to or from the value of the base register Rn.

If the condition specified in the instruction matches the condition code status,
the calculated address is written back to the base register Rn. The conditions are
defined in 3.3 The Condition Field on page 3-4.

Operation if U == 1 then
<address> = Rn + Rm

else /* U == 0 */
<address> = Rn - Rm

if ConditionPassed(<cond>) then

Rn = <address>

Notes The L bit: This bit distinguishes between a Load (L==1) and a Store (L==0)
instruction.

The S bit: This bit distinguishes between a signed (S==1) and an unsigned (S==0)
halfword access.

The H bit: This bit distinguishes between a halfword (H==1) and a signed byte
(H==0) access.

Use of R15: Specifying R15 as register Rm or Rn has UNPREDICTABLE results.

31 28 27 26 25 24 23 22 21 20 19 16 15 12 11 8 7 6 5 4 3 0

cond 0 0 0 1 U 0 1 L Rn Rd SBZ 1 S H 1 Rm
3-113

A

A
R

M Addressing
Mode 3
Immediate
post-indexed

rchitecture v4 only

3-114
[Rn], #+/-<8_bit_offset>
Description This addressing mode gives pointer access to arrays, with automatic update of
the pointer value.

It calculates an address from the value of base register Rn.

If the condition specified in the instruction matches the condition code status,
the value of the immediate offset is added to or subtracted from the value of
the base register Rn and written back to the base register Rn. The conditions are
defined in 3.3 The Condition Field on page 3-4.

Operation <address> = Rn
<8_bit_offset> = (<immedH> << 4) OR <immedL>
if ConditionPassed(<cond>) then

if U == 1 then
Rn = Rn + <8_bit_offset>

else /* U == 0 */
Rn = Rn - <8_bit_offset>

Notes The L bit: This bit distinguishes between a Load (L==1) and a Store (L==0)
instruction.

The S bit: This bit distinguishes between a signed (S==1) and an unsigned (S==0)
halfword access.

The H bit: This bit distinguishes between a halfword (H==1) and a signed byte
(H==0) access.

Use of R15: Specifying R15 as register Rn has UNPREDICTABLE results.

31 28 27 26 25 24 23 22 21 20 19 16 15 12 11 8 7 6 5 4 3 0

cond 0 0 0 0 U 1 0 L Rn Rd immedH 1 S H 1 ImmedL
ARM Architecture Reference Manual
ARM DUI 0100B

ARM Architecture Reference Manual
ARM DUI 0100B
A
R

M

Addressing
Mode 3
[Rn], +/- Rm
Register post-indexed

Architecture v4 only
Description If the condition specified in the instruction matches the condition code status,
the value of the index register Rm is added to or subtracted from the value of
the base register Rn and written back to the base register Rn. The conditions are
defined in 3.3 The Condition Field on page 3-4.

Operation <address> = Rn
if ConditionPassed(<cond>) then

if U == 1 then
Rn = Rn + Rm

else /* U == 0 */
Rn = Rn - Rm

Notes The L bit: This bit distinguishes between a Load (L==1) and a Store (L==0)
instruction.

The S bit: This bit distinguishes between a signed (S==1) and an unsigned (S==0)
halfword access.

The H bit: This bit distinguishes between a halfword (H==1) and a signed byte
(H==0) access.

Use of R15: Specifying R15 as register Rm or Rn has UNPREDICTABLE results.

31 28 27 26 25 24 23 22 21 20 19 16 15 12 11 8 7 6 5 4 3 0

cond 0 0 0 1 U 0 1 L Rn Rd SBZ 1 S H 1 Rm
3-115

A
R

M Addressing
Mode 4
General encoding

3-116
3.19 Load and Store Multiple Addressing Modes

Load Multiple instructions load a subset (possibly all) of the general-purpose
registers from memory. Store Multiple instructions store a subset (possibly all) of
the general purpose registers to memory. These instructions have a single
instruction format.

Load and Store Multiple addressing modes produce a sequential range of
addresses. The lowest-numbered register is stored at the lowest memory address
and the highest-numbered register at the highest memory address.

There are four Load and Store Multiple addressing modes:
1 Increment After page 3-117

LDM|STM{<cond>}IA Rn{!}, <registers>{^}

2 Increment Before page 3-118
LDM|STM{<cond>}IB Rn{!}, <registers>{^}

3 Decrement After page 3-119
LDM|STM{<cond>}DA Rn{!}, <registers>{^}

4 Decrement Before page 3-120
LDM|STM{<cond>}DB Rn{!}, <registers>{^}

Notes The register list: The <register_list> has 1 bit for each general-purpose
register; bit 0 is for register zero, bit 15 is for register 15 (the PC).
The <register_list> is specified in the instruction mnemonic using
a comma-separated list of registers, surrounded by brackets. If no bits are set,
the result is UNPREDICTABLE.

The U bit: Indicates that the transfer is made upwards (U==1) or downwards
(U==0) from base register.

The P bit: Pre-indexing or post-indexing:
P==1 indicates that each address in the range is incremented (U==1) or

decremented (U==0) before it is used to access memory.
P==0 indicates that each address in the range is incremented (U==1) or

decremented (U==0) after it is used to access memory.
The W bit: Indicates that the base register will be updated after the transfer. The

base register is incremented (U==1) or decremented (U==0) by four times
the number of registers in the register list.

The S bit: For LDMs that load the PC, the S bit indicates that the CPSR is loaded
from the SPSR. For LDMs that do not load the PC and all STMs, the S bit
indicates that when the processor is in a privileged mode, the user mode
banked registers are transferred and not the registers of the current mode.

The L bit: Distinguishes between Load (L==1) and Store (L==0) instructions.

31 28 27 26 25 24 23 22 21 20 19 16 15 0

cond 1 0 0 P U S W L Rn register list
ARM Architecture Reference Manual
ARM DUI 0100B

ARM Architecture Reference Manual
ARM DUI 0100B
A
R

M

Addressing
Mode 4
LDM|STM{<cond>}IA Rd{!}, <registers>{^}
Increment after
Description This addressing mode is for Load and Store multiple instructions, and forms
a range of addresses.

The first address formed is the <start_address> , and is the value of the base
register Rn. Subsequent addresses are formed by incrementing the previous
address by four. One address is produced for each register that is specified in
<register_list> .

The last address produced is the <end_address> ; its value is four less than
the sum of the value of the base register and four times the number of registers
specified in <register_list> .

If the condition specified in the instruction matches the condition code status and
the W bit is set, Rn is incremented by four times the numbers of registers in
<register_list> . The conditions are defined in 3.3 The Condition Field on
page 3-4.

Operation <start_address> = Rn
<end_address> = Rn + (Number_Of_Set_Bits_In(<register_list>) * 4) - 4
if ConditionPassed(<cond>) and W == 1 then

Rn = Rn + (Number_Of_Set_Bits_In(<register_list>) * 4)

Qualifiers ! sets the W bit, causing base register update
^ is used to set the S bit, see below.

Notes The L bit: This bit distinguishes between a load multiple and a store multiple.

The S bit: The action of the S bit is described in section 3.19 Load and Store
Multiple Addressing Modes on page 3-116.

31 28 27 26 25 24 23 22 21 20 19 16 15 0

cond 1 0 0 0 1 S W L Rn register list
3-117

A
R

M Addressing
Mode 4
Increment before

3-118
LDM|STM{<cond>}IB Rd{!}, <registers>{^}
Description This addressing mode is for Load and Store multiple instructions, and forms
a range of addresses.

The first address formed is the <start_address> , and is the value of the base
register Rn plus four. Subsequent addresses are formed by incrementing
the previous address by four. One address is produced for each register that is
specified in <register_list> .

The last address produced is the <end_address> ; its value is the sum of
the value of the base register and four times the number of registers specified in
<register_list> .

If the condition specified in the instruction matches the condition code status and
the W bit is set, Rn is incremented by four times the numbers of registers in
<register_list> . The conditions are defined in 3.3 The Condition Field on
page 3-4.

Operation <start_address> = Rn + 4
<end_address> = Rn + (Number_Of_Set_Bits_In(<register_list>) * 4)
if ConditionPassed(<cond>) and W == 1 then

Rn = Rn + (Number_Of_Set_Bits_In(<register_list>) * 4)

Qualifiers ! sets the W bit, causing base register update
^ is used to set the S bit, see below.

Notes The L bit: This bit distinguishes between a load multiple and a store multiple.

The S bit: The action of the S bit is described in section 3.19 Load and Store
Multiple Addressing Modes on page 3-116.

31 28 27 26 25 24 23 22 21 20 19 16 15 0

cond 1 0 0 1 1 S W L Rn register list
ARM Architecture Reference Manual
ARM DUI 0100B

ARM Architecture Reference Manual
ARM DUI 0100B
A
R

M

Addressing
Mode 4
LDM|STM{<cond>}DA Rd{!}, <registers>{^}
Decrement after
Description This addressing mode is for Load and Store multiple instructions, and forms
a range of addresses.

The first address formed is the <start_address> , and is the value of the base
register minus four times the number of registers specified in <register_list> ,
plus 4. Subsequent addresses are formed by incrementing the previous address
by four. One address is produced for each register that is specified in
<register_list> .

The last address produced is the <end_address> ; its value is the value of base
register Rn.

If the condition specified in the instruction matches the condition code status and
the W bit is set, Rn is decremented by four times the numbers of registers in
<register_list> . The conditions are defined in 3.3 The Condition Field on
page 3-4.

Operation
<start_address> = Rn - (Number_Of_Set_Bits_In(<register_list>) * 4) + 4
<end_address> = Rn
if ConditionPassed(<cond>) and W == 1 then

Rn = Rn - (Number_Of_Set_Bits_In(<register_list>) * 4)

Qualifiers ! sets the W bit, causing base register update
^ is used to set the S bit, see below.

Notes The L bit: This bit distinguishes between a load multiple and a store multiple.

The S bit: The action of the S bit is described in section 3.19 Load and Store
Multiple Addressing Modes on page 3-116.

31 28 27 26 25 24 23 22 21 20 19 16 15 0

cond 1 0 0 0 0 S W L Rn register list
3-119

A
R

M Addressing
Mode 4
Decrement before

3-120
LDM|STM{<cond>}DB Rd{!}, <registers>{^}
Description This addressing mode is for Load and Store multiple instructions which form
a range of addresses.

The first address formed is the <start_address> , and is the value of the base
register minus four times the number of registers specified in <register_list> .
Subsequent addresses are formed by incrementing the previous address by four.
One address is produced for each register that is specified in <register_list> .

The last address produced is the <end_address> ; its value is the value of base
register Rn minus four.

If the condition specified in the instruction matches the condition code status and
the W bit is set, Rn is decremented by four times the numbers of registers in
<register_list> . The conditions are defined in 3.3 The Condition Field on
page 3-4.

Operation <start_address> = Rn - (Number_Of_Set_Bits_In(<register_list>) * 4)
<end_address> = Rn - 4
if ConditionPassed(<cond>) and W == 1 then

Rn = Rn - (Number_Of_Set_Bits_In(<register_list>) * 4)

Qualifiers ! sets the W bit, causing base register update
^ is used to set the S bit, see below.

Notes The L bit: This bit distinguishes between a load multiple and a store multiple.

The S bit: The action of the S bit is described in section 3.19 Load and Store
Multiple Addressing Modes on page 3-116.

31 28 27 26 25 24 23 22 21 20 19 16 15 0

cond 1 0 0 1 0 S W L Rn register list
ARM Architecture Reference Manual
ARM DUI 0100B

ARM Architecture Reference Manual
ARM DUI 0100B
A
R

M

Addressing
Mode 4
Alternative names
3.20 Load and Store Multiple Addressing Modes
(Alternative names)

3.20.1 Block data transfer

The four addressing mode names given in 3.18 Load and Store Halfword or
Load Signed Byte Addressing Modes on page 3-109 (IA, IB, DA, DB) are most
useful when a load and store multiple instruction is being used for block data
transfer, as it is likely that the Load Multiple and Store Multiple will have the same
addressing mode, so that the data is stored in the same way that it was loaded.

However, if Load Multiple and Store Multiple are being used to access a stack,
the data will not be loaded with the same addressing mode that was used to store
the data, because the load (pop) and store (push) operations must adjust the stack
in opposite directions.

3.20.2 Stack operations

Load Multiple and Store Multiple addressing modes may be specified with an
alternative syntax, which is more applicable to stack operations. Two attributes are
used to describe the stack.

Full or Empty

Full is defined to have the stack pointer pointing to the last used
(full) location in the stack

Empty is defined to have the stack pointer pointing to the first
unused (empty) location in the stack

Ascending or Descending

Descending grows towards decreasing memory address
(towards the bottom of memory)

Ascending grows towards increasing memory address
(towards the top of memory)

This allows four types of stack to be defined:
1 Full Descending (FD)
2 Empty Descending (ED)
3 Full Ascending (FA)
4 Empty Ascending (EA)

Table 3-1: LDM/STM addressing modes shows the relationship between the four
types of stack, the four types of addressing mode shown above, and the L, U and
P bits in the instruction format:
3-121

A
R

M Addressing
Mode 4
Alternative names

3-122
Instruction Addressing Mode Stack Type L bit P Bit U bit

LDM (Load) IA (Increment After) FD (Full Descending) 1 0 1

STM (Store) IA (Increment After) EA (Empty Ascending) 0 0 1

LDM (Load) IB (Increment Before) ED (Empty Descending) 1 1 1

STM (Store) IB (Increment Before) FA (Full Ascending) 0 1 1

LDM (Load) DA (Decrement After) FA (Full Ascending) 1 0 0

STM (Store) DA (Decrement After) ED (Empty Descending) 0 0 0

LDM (Load) DB (Decrement Before) EA (Empty Ascending) 1 1 0

STM (Store) DB (Decrement Before) FD (Full Descending) 0 1 0

 Table 3-1: LDM/STM addressing modes
ARM Architecture Reference Manual
ARM DUI 0100B

ARM Architecture Reference Manual
ARM DUI 0100B
A
R

M

Addressing
Mode 5
General encoding
3.21 Load and Store Coprocessor Addressing Modes

There are three addressing modes which are used to calculate the address of
a load or store coprocessor instruction:
1 Immediate offset page 3-124

<opcode>{<cond>}{L}p<cp#>,CRd,[Rn,#+/-(<8_bit_offset>*4)]

2 Immediate pre-indexed page 3-125
<opcode>{<cond>}{L} p<cp#>, CRd, [Rn,#+/-(<8_bit_offset>*4)]!

3 Immediate post-indexed page 3-126
<opcode>{<cond>}{L}p<cp#>,CRd,[Rn],#+/-(<8_bit_offset>*4)

Notes The P bit: Pre-indexing (P==1) or post-indexing (P==0):
(P==1) indicates that the offset is added to the base register, and the result

is used as the address.
(P==0) indicates that the base register value is used for the address; the

offset is then added to the base register and written back to the base
register (because W will equal 1, see below).

The U bit: Indicates that the offset is added to the base (U==1) or that the offset is
subtracted from the base (U==0).

The N bit: The meaning of this bit is coprocessor-dependent; its recommended
use is to distinguish between different-sized values to be transferred.

The W bit: This indicates that the calculated address will be written back to
the base register. If P is 0, W must equal 1 or the result is UNPREDICTABLE.

The L bit: Distinguishes between Load (L==1) and Store (L==0) instructions.

31 28 27 26 25 24 23 22 21 20 19 16 15 12 11 8 7 0

cond 1 1 0 P U N W L Rn CRd cp# 8_bit_offset
3-123

A
R

M Addressing
Mode 5
Immediate offset

3-124
[Rn, #+/-(<8_bit_offset>*4)]
Description This addressing mode produces a sequence of consecutive addresses.

The first address is calculated by adding or subtracting 4 times the value of
an immediate offset to or from the value of the base register Rn. The subsequent
addresses in the sequence are produced by incrementing the previous address by
four until the coprocessor signals the end of the instruction. This allows
a coprocessor to access data whose size is coprocessor-defined.

The coprocessor must not request a transfer of more than 16 words.

Operation if ConditionPassed(<cond>) then
if U == 1 then

<address> = Rn + <8_bit_offset> * 4
else /* U == 0 */

<address> = Rn - <8_bit_offset> * 4
<start_address> = <address>
while (NotFinished(coprocessor[<cp_num>]))

<address> = <address> + 4
<end_address> = <address>

Notes The N bit: This bit is coprocessor-dependent.

The L bit: Distinguishes between Load (L==1) and Store (L==0) instructions.

Use of R15: If R15 is specified as register Rn, the value used is the address of
the instruction plus 8.

31 28 27 26 25 24 23 22 21 20 19 16 15 12 11 8 7 0

cond 1 1 0 1 U N 0 L Rn CRd cp_num 8_bit_offset
ARM Architecture Reference Manual
ARM DUI 0100B

ARM Architecture Reference Manual
ARM DUI 0100B
A
R

M

Addressing
Mode 5
[Rn, #+/-(<8_bit_offset>*4)]!
Immediate pre-indexed
Description This addressing mode produces a sequence of consecutive addresses.

The first address is calculated by adding or subtracting 4 times the value of
an immediate offset to or from the value of the base register Rn. The first address
is written back to the base register Rn. The subsequent addresses in the sequence
are produced by incrementing the previous address by four until the coprocessor
signals the end of the instruction. This allows a coprocessor to access data whose
size is coprocessor-defined.

The coprocessor must not request a transfer of more than 16 words.

Operation if ConditionPassed(<cond>) then
if U == 1 then

Rn = Rn + <8_bit_offset> * 4
else /* U == 0 */

Rn = Rn - <8_bit_offset> * 4
<start_address> = Rn
<address> = <start_address>
while (NotFinished(coprocessor[<cp_num>]))

<address> = <address> + 4
<end_address> = <address>

Notes The N bit: This bit is coprocessor-dependent.

The L bit: Distinguishes between Load (L==1) and Store (L==0) instructions.

Use of R15: If R15 is specified as register Rn, the value used is the address of
the instruction plus 8.

31 28 27 26 25 24 23 22 21 20 19 16 15 12 11 8 7 0

cond 1 1 0 1 U N 1 L Rn CRd cp_num 8_bit_offset
3-125

A
R

M Addressing
Mode 5
Immediate
post-indexed

3-126
[Rn], #+/-(<8_bit_offset>*4)
Description This addressing mode produces a sequence of consecutive addresses.

The first address is the value of the base register Rn. The subsequent addresses
in the sequence are produced by incrementing the previous address by four until
the coprocessor signals the end of the instruction. This allows a coprocessor to
access data whose size is coprocessor-defined.

The base register Rn is updated by adding or subtracting 4 times the value of
an immediate offset to or from the value of the base register Rn.

The coprocessor must not request a transfer of more than 16 words.

Operation if ConditionPassed(<cond>) then
<start_address> = Rn
if U == 1 then

Rn = Rn + <8_bit_offset> * 4
else /* U == 0 */

Rn = Rn - <8_bit_offset> * 4
<address> = <start_address>
while (NotFinished(coprocessor[<cp_num>]))

<address> = <address> + 4
<end_address> = <address>

Notes The N bit: This bit is coprocessor-dependent.

The L bit: Distinguishes between Load (L==1) and Store (L==0) instructions.

Use of R15: If R15 is specified as register Rn the value used is the address of
the instruction plus 8.

The W bit: If bit 21 (the Writeback bit) is not set, the result is UNPREDICTABLE.

31 28 27 26 25 24 23 22 21 20 19 16 15 12 11 8 7 0

cond 1 1 0 0 U N 1 L Rn CRd cp_num 8_bit_offset
ARM Architecture Reference Manual
ARM DUI 0100B

4

ARM Code Sequences

ARM Code Sequences

The ARM instruction set is a powerful tool for generating high-performance
microprocessor systems. Used to full extent, the ARM instruction set allows very
compact and efficient algorithms to be coded. This chapter contains some sample
routines that provide insight into the ARM instruction set.

4.1 Arithmetic Instructions 4-2

4.2 Branch Instructions 4-4

4.3 Load and Store Instructions 4-6

4.4 Load and Store Multiple Instructions 4-8

4.5 Semaphore Instructions 4-9

4.6 Other Code Examples 4-10

4

ARM Architecture Reference Manual
ARM DDI 0100B

4-1

ARM Code Sequences

4.1 Arithmetic Instructions

The following code sequences illustrate some ways of using ARM’s data-processing
instructions.

4.1.1 Bit field manipulation

ARM shift and logical operations are very useful for bit manipulation:

; Extract 8 bits from the top of R2 and insert them into
; the bottom of R3
; R0 is a temporary value

MOV R0, R2, LSR #24 ; extract top bits from R2 into R0
ORR R3, R0, R3, LSL #8 ; shift up R3 and insert R0

4.1.2 Multiplication by constant

Combinations of shifts, add with shifts, and reverse subtract with shift can be used to
perform multiplication by constant:

; multiplication of R0 by 2 n

MOV R0, R0, LSL #n ; R0 = R0 << n
; multiplication of R0 by 2 n + 1

ADD R0, R0, R0, LSL #n ; R0 = R0 + R0 << n
; multiplication of R0 by 2 n - 1

RSB R0, R0, LSL #n ; R0 = R0 << n - R0

; R0 = R0 * 10 + R1
ADD R0, R0, R0, LSL #4 ; R0 = R0 * 5
ADD R0, R1, R0, LSL #1 ; R0 = R1 + R0 * 2

; R0 = R0 * 100 + R1, R2 is destroyed
ADD R2, R0, R0, LSL #3 ; R2 = R0 * 9
ADD R0, R2, R0, LSL #4 ; R0 = R2 + R0 * 16 (R0 = R0 * 25)
ADD R0, R1, R0, LSL #2 ; R0 = R1 + R0 * 4
ARM Architecture Reference Manual
ARM DDI 0100B

4-2

ARM Code Sequences

4.1.3 Multi-precision arithmetic

Arithmetic instructions allow efficient arithmetic on 64-bit or larger objects:

Add, and Add with Carry perform multi-precision addition

Subtract, and Subtract with Carry perform subtraction

Compare can be used for comparison

; On entry :R0 and R1 hold a 64-bit number
; (R0 is least significant)
; :R2 and R3 hold a second 64-bit number
; On exit :R0 and R1 hold the 64-bit sum (or difference) of the 2 numbers
add64 ADDSR0, R0, R2 ; add lower halves and update Carry flag

ADC R1, R1, R3 ; add the high halves and Carry flag

sub64 SUBSR0, R0, R2 ; subtract lower halves, update Carry
SBC R1, R1, R3 ; subtract high halves and Carry

; This routine compares two 64-bit numbers
; On entry: As above
; On exit: N, Z, C and V flags updated correctly
cmp64 CMP R1, R3 ; compare high halves, if they are

CMPEQR0, R2 ; equal, then compare lower halves

4.1.4 Swapping endianness

Swapping the order of bytes in a word (the endianness) can be performed in two ways.

1 The first method is best for single words:

; On entry:R0 holds the word to be swapped
; On exit: R0 holds the swapped word, R1 is destroyed
byteswap ; R0 = A , B , C , D

EOR R1, R0, R0, ROR #16 ; R1 = A^C,B^D,C^A,D^B
BIC R1, R1, #0xff0000 ; R1 = A^C, 0 ,C^A,D^B
MOV R0, R0, ROR #8 ; R0 = D , A , B , C
EOR R0, R0, R1, LSR #8 ; R0 = D , C , B , A

2 The second method is best for swapping the endianness of a large number of
words:

; On entry: R0 holds the word to be swapped
; On exit : R0 holds the swapped word,
; : R1, R2 and R3 are destroyed
byteswap ; first the three instruction initialisation

MOV R2, #0xff ; R2 = 0xff
ORR R2, R2, #0xff0000 ; R2 = 0x00ff00ff
MOV R3, R2, LSL #8 ; R3 = 0xff00ff00
; repeat the following code for each word to swap

; R0 = A B C D
AND R1, R2, R0, ROR #24 ; R1 = 0 C 0 A
AND R0, R3, R0, ROR #8 ; R0 = D 0 B 0
ORR R0, R0, R1 ; R0 = D C B A
ARM Architecture Reference Manual
ARM DDI 0100B

4-3

ARM Code Sequences

4.2 Branch Instructions

The following code sequences show some different ways of controlling the flow of
execution in ARM code.

4.2.1 Procedure call and return

The BL (Branch and Link) instruction makes a procedure call by preserving the address
of the instruction after the BL in R14 (the link register or LR), and then branching to the
target address. Returning from a procedure is achieved by moving R14 to the PC:

....
BL function ; call ‘function’
.... ; procedure returns to here
....

function ; function body
....
....
MOV PC, LR ; Put R14 into PC to return

4.2.2 Conditional execution

Conditional execution allow if-then-else statements to be collapsed into sequences that
do not require forward branches:

/* C code for Euclid’s Greatest Common Divisor (GCD)*/
/* Returns the GCD of its two parameters */
int gcd(int a, int b)
{ while (a != b)

if (a > b)
a = a - b ;

else
b = b - a ;

return a ;
}

; ARM assembler code for Euclid’s Greatest Common Divisor
; On entry: R0 holds ‘a’, R1 holds ‘b’
; On exit : R0 hold GCD of A and B
gcd CMP R0, R1 ; compare ‘a’ and ‘b’

SUBGT R0, R0, R1; if (a>b) a=a-b (if a==b do nothing)
SUBLT R1, R1, R0; if (b>a) b=b-a (if a==b do nothing)
BNE gcd ; if (a!=b) then keep going
MOV PC, LR ; return to caller
ARM Architecture Reference Manual
ARM DDI 0100B

4-4

ARM Code Sequences

4.2.3 Conditional compare instructions

Compare instructions can be conditionally executed to implement more complicated
expressions:

if (a==0 || b==1)
c = d + e ;

CMP R0, #0 ; compare a with 0
CMPNE R1, #1 ; if a is not 0, compare b to 1
ADDEQ R2, R3, R4 ; if either was true c = d + e

4.2.4 Loop variables

The subtract instruction can be used to both decrement a loop counter and set the
condition codes to test for a zero.

MOV R0, #loopcount ; initialise the loop counter
loop ; loop body

....

....
SUBS R0, R0, #1 ; subtract 1 from counter

; set condition codes
BNE loop ; if not zero, continue looping
....

4.2.5 Multi-way branch

A very simple multi-way branch can be implemented with a single instruction.
The following code dispatches the control of execution to any number of routines, with
the restriction that the code to handle each case of the multi-way branch is the same
size, and that size is a power of two bytes.

; Multi-way branch
; On entry: R0 holds the branch index
gcd CMP R0, #maxindex ; (optional) checks the index is in range

ADDLT PC, PC, R0, LSL #RoutineSizeLog2
; scale index by the log of the size of
; each handler; add to the PC; jump there

B IndexOutOfRange; jump to the error handler
Index0Handler

....

....
Index1Handler

....

....
Index2Handler

....

....
Index3Handler

....
ARM Architecture Reference Manual
ARM DDI 0100B

4-5

ARM Code Sequences

4.3 Load and Store Instructions

Load and Store instructions are the best way to load or store a single word. They are
also the only instructions that can load or store a byte or halfword.

4.3.1 Simple string compare

The following code performs a very simple string compare on two zero-terminated
strings.

; String compare
; On entry : R0 points to the first string
; : R1 points to the second string
; : Call this code with a BL
; On exit : R0 is < 0 if the first string is less than the second
; : R0 is = 0 if the first string is equal to the second
; : R0 is > 0 if the first string is greater than the second
; : R1, R2 and R3 are destroyed

strcmp
LDRB R2, [R0] #1 ; get a byte from the first string
LDRB R3, [R1] #1; get a byte from the second string
CMP R2, #0; reached the end?
BEQ return; go to return code; calculate return value
SUBS R0, R2, R3; compare the two bytes
BEQ strcmp; if they are equal, keep looking

return
MOV PC, LR; put R14 (LR) into PC to return

Much faster implementations of this code are possible by loading a word of each string
at a time and comparing all four bytes.

4.3.2 Linked lists

The following code searches for an element in a linked list. The linked list has two
elements in each record; a single byte value and a pointer to the next record. A null next
pointer indicates this is the last element in the list.

; Linked list search
; On entry: R0 holds a pointer to the first record in the list
; R1 holds the byte we are searching for
; : Call this code with a BL
: On exit : R0 hold the address of the first record matched
: R2 is destroyed
or a null pointer if no match was found
llsearch

CMP R0, #0 ; null pointer?
LDRNEBR2, [R0] ; load the byte value from this record
CMPNER1, R2 ; compare with the lokked-for value
LDRNER0, [R0, #4] ; if not found, follow the link to the
BNE llsearch ; next record and then keep looking
MOV PC, LR ; return with pointer in R0
ARM Architecture Reference Manual
ARM DDI 0100B

4-6

ARM Code Sequences

4.3.3 Long branch

A load instruction can be used to generate a branch to anywhere in the 4Gbyte address
space. By manually setting the value of the link register(R14), a subroutine call can be
made to anywhere in the address space.

; Long branch (and link)
ADD LR, PC, #4 ; set the return address to be 8 byte

; after the next instruction
LDR PC, [PC, #-4] ; get the address from the next word
DCD function ; store the address of the function

; (DCD is an assembler directive)
; return to here

This code uses the location after the load to hold the address of the function to call.
In practice, this location can be accessing as long as it is within 4Kbytes of the load
instruction. Notice also, that this code is position-independent except for the address of
the function to call. Full position-independence can be achieved by storing the offset of
the branch target after the load, and using an ADD instruction to add it to the PC.

4.3.4 Multi-way branches

The following code improves on the multi-way branch code shown above by using
a table of addresses of functions to call.

; Multi-way branch
; On entry: R0 holds the branch index

CMP R0, #maxindex ; (optional) checks the index is in range
LDRLT PC, [PC, LSL #2] ; convert the index to a word offset

; do a look up in the table put the loaded
; value into the PC and jump there

B IndexOutOfRange ; jump to the error handler
DCD Handler0 ; DCD is an assembler directive to
DCD Handler1 ; store a word (in this case an
DCD Handler2 ; address in memory.
DCD Handler3
ARM Architecture Reference Manual
ARM DDI 0100B

4-7

ARM Code Sequences

4.4 Load and Store Multiple Instructions

Load and Store Multiple instructions are the most efficient way to manipulate blocks of
data.

4.4.1 Simple block copy

This code performs very simple block copy, 48 bytes at a time, and will approach the
maximum throughput for a particular machine. The source and destination must be
word-aligned, and objects with less than 48 bytes must be handled separately.

; Simple block copy function
; R12 points to the start of the source block
; R13 points to the start of the destination block
; R14 points to the end of the source block
loop LDMIA R12!, (R0-R11} ; load 48 bytes

STMIA R13!, {R0-R11} ; store 48 bytes
CMP R12, R14 ; reached the end yet?
BLT loop ; branch to the top of the loop

4.4.2 Procedure entry and exit

This code uses load and store multiple to preserve and restore the processor state
during a procedure. The code assumes the register r0 to r3 are argument registers,
preserved by the caller of the function, and therefore do not need to be preserved.
R13 is also assumed to point to a full descending stack.

function
STMFD R13!, {R4 - R12, R14}; preserve all the local registers

; and the return address, and
; update the stack pointer.

; function body

LDMFD R13!, {R4 - R12, PC} ; restore the local register, load
; the PC from the saved return
; update the stack pointer.

Notice that this code restores all saved registers, updates the stack pointer, and returns
the caller (by loading the PC value) all in with single instruction. This allows very efficient
conditional return for exceptional cases from a procedure (by checking the condition
with a compare instruction and the conditionally executing the load multiple).
ARM Architecture Reference Manual
ARM DDI 0100B

4-8

ARM Code Sequences

4.5 Semaphore Instructions

This code controls the entry and exit from a critical section of code. The semaphore
instructions do not provide a compare and conditional write facility; this must be done
explicitly. The following code achieves this by using a semaphore value to indicate that
the lock is being inspected.

The code below causes the calling process to busy-wait until the lock is free; to ensure
progress, three OS calls need to be made (one before each loop branch) to sleep
the process if the lock cannot be accessed.

; Critical section entry and exit
; The code uses a process ID to identify the lock owner
; An ID of zero indicates the lock is free
; An ID of -1 indicates the lock is being inspected
; On entry: R0 holds the address of the semaphore
; R1 holds the ID of the process requesting the lock

MVN R2, #0 ; load the ‘looking’ value (-1) in R2
spinin SWP R3, R2, [R0] ; look at the lock, and lock others out

CMN R3, #1 ; anyone else trying to look?
: conditional OS call to sleep process
BEQ spinin ; yes, so wait our turn
CMP R3, #0 ; no-one looking, is the lock free?
STRNE R3, [R0] ; no, then restore the previous owner
: conditional OS call to sleep process
BNE spinin ; and wait again
STR R1, [R0] ; otherwise grab the lock
.....
Insert critical code here
.....

spinout SWP R3, R2, [R0] ; look at the lock, and lock others out
CMN R3, #1 ; anyone else trying to look ?
: conditional OS call to sleep process
BEQ spinout ; yes, so wait our turn
CMP R3, R1 ; check we own it
BNE CorruptSemaphore ; we should have been the owner!
MOV R2, #0 ; load the ‘free’ value
STR R2, [R0] ; and open the lock
ARM Architecture Reference Manual
ARM DDI 0100B

4-9

ARM Code Sequences

4.6 Other Code Examples

The following sequences illustrate some other applications of ARM assembly language.

4.6.1 Software Interrupt dispatch

This code segment dispatches software interrupts (SWIs) to individual handlers.
The SWI instruction has a 24-bit field that can be used to encode specific SWI functions.

STMFD SP!, {R12} ; save some registers
LDR R12, [R14, #-4] ; load the SWI instruction
BIC R12, R12, #0xff000000; preserve the SWI number
CMP R12, #MaximumSWI ; check the SWI number is in range, if so
LDRLE PC, [PC, R12, LSL #2]; branch through a table to the handler
B UnkownSWI ; this SWI number is not supported

DCD SWI0Handler ; address of handler for SWI 0
DCD SWI1Handler ; address of handler for SWI 1
DCD SWI2Handler ; address of handler for SWI 2

4.6.2 Single-channel DMA transfer

The following code is an interrupt handler to perform interrupt driven IO to memory
transfers (soft DMA). The code is especially useful as a FIQ handler, as it uses the
banked FIQ registers to maintain state between interrupts. Therefore this code is best
situated at location 0x1c.

R8 points to the base address of the IO device that data is read from

IOData is the offset from the base address to the 32-bit data register that is
read. Reading this register disables the interrupt

R9 points to the memory location where data is being transferred

R10 points to the last address to transfer to

The entire sequence to handle a normal transfer is just 4 instructions; code situated after
the conditional return is used to signal that the transfer is complete.

LDR r11, [r8, #IOData] ; load port data from the IO device
STR r11, [r9], #4 ; store it to memory: update the pointer
CMP r9, r10 ; reached the end?
SUBLTS pc, lr, #4 ; no, so return
; Insert transfer complete code here

Of course, byte transfers can be made by replacing the load instructions with load byte
instructions, and transfers from memory to and IO device are made by swapping the
addressing modes between the load instruction and the store instruction.
ARM Architecture Reference Manual
ARM DDI 0100B

4-10

ARM Code Sequences

4.6.3 Dual-channel DMA transfer

This code is similar to the example in 4.6.2 Single-channel DMA transfer on page 4-10,
except that it handles two channels (which may be the input and output side of the same
channel). Again this code is especially useful as a FIQ handler, as it uses the banked
FIQ registers to maintain state between interrupts. Therefore, this code is best situated
at location 0x1c.

The entire sequence to handle a normal transfer is just 9 instructions; code situated after
the conditional return is used to signal that the transfer is complete.

LDR r13, [r8, #IOStat] ; load status register to find
TST r13, #IOPort1Active ; which port caused the interrupt?
LDREQ r13, [r8, #IOPort1] ; load port 1 data
LDRNE r13, [r8, #IOPort2] ; load port 2 data
STREQ r13, [r9], #4 ; store to buffer 1
STRNE r13, [r10], #4 ; store to buffer 2
CMP r9, r11 ; reached the end?
CMPNE r10, r12 ; on either channel?
SUBNES pc, lr, #4 ; return
; Insert transfer complete code here

where:

R8 points to the base address of the IO device that data is read
from

IOStat is the offset from the base address to a register indicating
which of two ports caused the interrupt

IOPort1Active is a bit mask indicating if the first port caused the interrupt
(otherwise it is assumed that the second port caused the
interrupt)

IOPort, IOPort2 are offsets to the two data registers to be read.
Reading a data register disables the interrupt for that port

R9 points to the memory location that data from the first port is
being transferred to

R10 points to the memory location that data from the second port
is being transferred to

R11 and R12 point to the last address to transfer to
(R11 for the first port, R12 for the second)

Again, byte transfers can be made by replacing the load instructions with load byte
instructions, and transfers from memory to and IO device are made by swapping the
addressing modes between the conditional load instructions and the conditional store
instructions.
ARM Architecture Reference Manual
ARM DDI 0100B

4-11

ARM Code Sequences

4.6.4 Interrupt prioritisation

This code dispatches up to 32 interrupt source to their appropriate handler routines.
This code is intended to use the normal interrupt vector, and so should be branched to
from location 0x18.

External hardware is used to prioritise the interrupt and present the number of
the highest-priority active interrupt in an IO register.

IntBase holds the base address of the interrupt handler

IntLevel holds the offset (from IntBase) of the register containing the
highest-priority active interrupt

R13 is assumed to point to a small (60 byte) full descending stack

Interrupts are enabled after 10 instructions (including the branch to this code)

; first save the critical state
SUB r14, r14, #4 ; adjust return address before saving it
STMFD r13!, {r12, r14} ; stack return address and working register
MRS r12, SPSR ; get the SPSR ...
STMFD r13!, {r12} ; ... and stack that too
; now get the priority level of the highest priority active interrupt
MOV r12, #IntBase ; get interrupt controller's base address
LDR r12, [r12, #IntLevel] ; get the interrupt level (0 to 31)
; now read-modify-write the CPSR to enable interrupts
MRS r14, CPSR ; read the status register
BIC r14, r14, #0x40 ; clear the F bit (use 0x80 for the I bit)
MSR CPSR, r14 ; write it back to re-enable interrupts
; jump to the correct handler
LDR PC, [PC, r12, LSL #2] ; and jump to the correct handler

; PC base address points to this
; instruction + 8

NOP ; pad so the PC indexes this table
; table of handler start addresses
DCD Priority0Handler
DCD Priority1Handler

Priority0Handler
STMFD r13!, {r0 - r11} ; save working registers
; insert handler code here
........
LDMFD r13!, {r0 - r12} ; restore the working registers and the

SPSR
ORR r14, r14, #0x40 ; set the F bit (use 0x80 for the I bit)
MSR CPSR, r14 ; write it back to disable interrupts
MSR SPSR, r12 ; stick the SPSR back
LDMFD r13!, {r12, PC}^ ; restore last working register and return

Priority1Handler
........
ARM Architecture Reference Manual
ARM DDI 0100B

4-12

ARM Code Sequences

4.6.5 Context switch

This code performs a context switch on the user mode process. The code is based
around a list of pointers to process control blocks (PCBs) of processes that are ready to
run.

The pointer to the PCB of
the next process to run is
pointed to by R12, and the end
of the list has a zero pointer.

R13 is a pointer to the PCB,
and is preserved between
timeslices (so that on entry
R13 points to the PCB of
the currently running process).

The code assumes the layout
of the PCBs, as shown in
Figure 4-1: PCB layout.

 Figure 4-1: PCB layout

STMIA r13, {r0 - r14}^ ; dump user registers above r13
MSR r0, SPSR ; pick up the user status
STMDB r13, {r0, r14} ; and dump with return address below
LDR r13, [r12], #4 ; load next process info pointer
CMP r13, #0 ; if it is zero, it is invalid
LDMNEDB r13, {r0, r14} ; pick up status and return address
MRSNE SPSR, r0 ; restore the status
LDMNEIA r13, {r0 - r14}^ ; get the rest of the registers
MOVNES pc, r14 ; and return and restore CPSR
; insert “no next process code” here

CPSR
PC
R0
R1

R3

R5

R2

R4

R6
R7

R13

R8

R11
R10
R9

R12

R14

PCB pointer
ARM Architecture Reference Manual
ARM DDI 0100B

4-13

5

The 26-bit Architectures

The 26-bit Architectures

This chapter describes the differences between 32-bit and 26-bit architectures.

5.1 Introduction 5-2

5.2 Format of Register 15 5-3

5.3 Writing just the PSR in 26-bit architectures 5-4

5.5 Address Exceptions 5-6

5.4 26-bit PSR Update Instructions 5-5

5.6 Backwards Compatibility from 32-bit Architectures 5-7

5

ARM Architecture Reference Manual
ARM DDI 0100B

5-1

The 26-bit Architectures

5.1 Introduction

ARM architecture versions 1, 2 and 2a are earlier versions of the ARM architecture
which implement only a 26-bit address bus, and are known as 26-bit architectures.
ARM architecture versions 3 and 4 implement a 32-bit address space (and are known
as 32-bit architectures). For backwards compatibility, they also implement the 26-bit
address space (except Version 3G). Implementation of a backwards-compatible 26-bit
address space on ARM architecture version 4 is optional.

There are several differences between the 26-bit and the 32-bit architectures:

Program counter The 26-bit architectures implement only a 24-bit program
counter in register 15, which allows 64Mbytes of program
space. The 32-bit architectures have a 30-bit program
counter in register 15 which allows 4Gbytes of program
space on 32-bit architectures.

Processor modes Only four processor modes are supported on 26-bit
architectures:

User (0b00)
FIQ (0b01)
IRQ (0b10)
Supervisor (0b11)

Register 15 In the 26-bit architectures, the following are also stored in
register 15:

Four condition flags (N, Z, C and V)
The interrupt disable flags (I and F)
Two processor mode bits (M1 and M0)

CPSR/SPSR The 26-bit architectures do not have a CPSR or any SPSRs.

Exceptions An exception (called an address exception) is raised if a
memory access instruction uses an address that is greater
than 226-1 bytes.

Together, these differences make up the fundamental distinction between 26-bit and
32-bit architectures:

26-bit architectures all process status (namely the condition flags, interrupt
status and processor mode) can be preserved across
subroutine calls and nested exceptions without adding any
instructions to the entry or exit sequence.

32-bit architectures give up this functionality to allow 32-bit instruction addresses
to be used.
ARM Architecture Reference Manual
ARM DDI 0100B

5-2

The 26-bit Architectures

5.2 Format of Register 15

Bits[25:2] are collectively known as the Program Counter. Because the Program
Counter occupies only 24 bits of register 15, only 224 instructions (226 bytes) can be
addressed, giving a maximum addressable program size of 64Mbytes.

Bits[31:26] and bits[1:0] are collectively known as the Program Status Register or PSR.

The N, Z, C, V, I, and F bits have the same meaning in both 26-bit and 32-bit
architectures.

M[1:0] also have the same meaning in both architectures.

Abort mode and Undef mode are not supported in 26-bit architectures.

Aborts and undefined instruction exceptions have exactly the same actions in both
modes, except that in 26-bit architectures, Supervisor mode is entered instead of Abort
or Undef mode.

The I, F and M[1:0] bits cannot be written directly when the processor is in User mode;
in User mode they are only changed by an exception occurring.

5.2.1 Reading register 15

In 26-bit architectures, the value of register 15 is read in five different ways.

1 Most importantly, if register 15 has an unpredictable value in the 32-bit
architecture, it also has an unpredictable value when used in the same way in
the 26-bit architecture.

2 If register 15 is specified in bits[19:16] of an instruction (and its value is not
unpredictable), only the Program Counter (bits[25:2]) are used; all other bits
read as zero.

3 If register 15 is specified in bits[3:0] of an instruction (and its value is not
unpredictable), all 32 bits are used.

4 If register 15 is stored using STR or STM, the value of the program counter
(bits[25:0]) is IMPLEMENTATION DEFINED, but all 32 bits of register are stored.

5 All 32 bits are stored in the Link register (R14) after a Branch with Link
instruction or an exception entry.

31 30 29 28 27 26 25 2 1 0

N Z C V I F Program Counter M1M0
ARM Architecture Reference Manual
ARM DDI 0100B

5-3

The 26-bit Architectures

5.2.2 Writing register 15

In 26-bit architectures the value of register 15, is written in three different ways:

1 Data-processing instructions without the S bit set, Load, and Load Multiple only
write the PC part of register 15, and leave the PSR part unchanged.

2 Data-processing instructions with the S bit set and Load Multiple with restore
PSR write the PC and the PSR part of register 15.

3 Variants of the CMP, CMN, TST and TEQ instructions write just the PSR part
of register 15, and leave the PC part unchanged. These instruction variants are
described below.

These read/write rules mean that register 15 is used in three basic ways. It is used as:

• The Rn specifier in data-processing instructions, and as the base address for
load and store instructions; only the value of the program counter is used,
to simplify PC-relative addressing and position-independent code.

• The Rm specifier in data-processing operands to allow all process status to be
restored after a subroutine call or exception by subroutine-return instructions
like MOVS PC, LR and LDM..., PC}^. These instructions are unpredictable in
user mode on 32-bit architectures, but are legal on 26-bit architectures, as they
are used preserve the condition code values across procedure calls.

• The value saved in the Link register to preserve the Program Counter and the
PSR across subroutine calls and exceptions.

5.3 Writing just the PSR in 26-bit architectures
On 26-bit architectures, the MSR and MRS instructions are not supported. Instead,
variants of the CMP, CMN, TST and TEQ instructions are used to write just the PSR part
of register 15. These variants are called CMPP, CMNP, TSTP and TEQP, and are
distinguished by having instruction bits[15:12] equal to 0b1111 (these bits are usually
set to zero for these instructions).

These instructions write their ALU result directly to the PSR part of register 15 (only N,
Z, C and V are affected in User mode).
ARM Architecture Reference Manual
ARM DDI 0100B

5-4

The 26-bit Architectures

5.4 26-bit PSR Update Instructions

TST{<cond>}P Rn, <shifter_operand>
TEQ{<cond>}P Rn, <shifter_operand>
CMP{<cond>}P Rn, <shifter_operand>
CMN{<cond>}P Rn, <shifter_operand>

Description The instruction is only executed if the condition specified in the instruction matches the
condition code status. The conditions are defined in 3.3 The Condition Field on page
3-4.

The TSTP, TEQP, CMPP and CMNP are 26-bit-only instructions and are used to write
the PSR part of register 15 without affecting the PC part of register 15. When the
processor is in user mode, only the condition codes will be affected; all other modes
allow all PSR bits to be altered.

Operation if ConditionPassed(<cond>) then
case <opc> of

0b00 /* TSTP */
<alu_out> = Rn AND <shifter_operand>

0b01 /* TEQP */
<alu_out> = Rn EOR <shifter_operand>

0b10 /* CMP */
<alu_out> = Rn - <shifter_operand>

0b11 /* CMN */
<alu_out> = Rn + <shifter_operand>

endcase
if R15[1:0] == 0b00 then /* M[1:0] == 0b00, user mode */

R15[31:28] = <alu_out>[31:28] /* update just NZCV */
else /* a privileged mode */

R15[31:26] = <alu_out>[31:26] /* update NZCVIF and ...
*/

R15[1:0] = <alu_out>[1:0] /* ... update M[1:0] */

Exceptions None

Qualifiers Condition Code

Notes The I bit: Bit 25 is used to distinguish the immediate and register forms of
<shifter_operand> . See the data processing instructions for the types of shifter
operand.

31 27 26 25 24 23 22 21 20 19 16 15 12 11 0

cond 0 0 I 1 0 opc 1 Rn SBO shifter_operand
ARM Architecture Reference Manual
ARM DDI 0100B

5-5

The 26-bit Architectures

5.5 Address Exceptions

On 26-bit architectures, all data addresses are checked to ensure that they are between
0 and 64 Megabytes (26-bit). If a data address is produced with a 1 in any of the top 6
bits, an address exception is generated. When an address exception is generated,
the following actions are performed:

R14_svc = address of address exception generating instruction + 4

CPSR[4:0] = 0b00011 ; Supervisor mode

CPSR[7] = 1 ; (Normal) Interrupts disabled

PC = 0x14

The address of the instruction which caused the address exception is the value in
register 14 minus 8.

Returning from an address exception

As this exception implies a programming error, it is not usual to return from address
exceptions, but if a return is required, use:

SUBS PC,R14,#8

This restores both the PC and PSR (from R14_svc) and returns to the instruction that
generated the address exception.
ARM Architecture Reference Manual
ARM DDI 0100B

5-6

The 26-bit Architectures

5.6 Backwards Compatibility from 32-bit Architectures

As well as the six (seven in Version 4) 32-bit processor modes, ARM Architecture
Version 3 (but not 3G), and 4 (optionally on 4T) implement the four 26-bit processor
modes described above, including the register 15 format shown. This allows backwards
compatibility for the older 26-bit programs by executing those programs in a 26-bit
mode. If the backwards-compatibility support is not implemented, CPSR bit 4 (M[4])
always reads as 1, and all writes are ignored.

The complete list of processor modes is shown in Table 5-1: 32-bit and 26-bit modes.

M[4:0] Mode Accessible Registers

0b00000 User_26 R0 to R14, PC, (CPSR)

0b00001 FIQ_26 R0 to R7, R8_fiq to R14_fiq, PC, (CPSR, SPSR_fiq)

0b00010 IRQ_26 R0 to R12, R13_irq, R14_irq, PC, (CPSR, SPSR_irq)

0b00011 SVC_26 R0 to R12, R13_svc, R14_svc, PC, (CPSR, SPSR_svc)

0b10000 User_32 R0 to R14, PC, CPSR

0b10001 FIQ_32 R0 to R7, R8_fiq to R14_fiq, PC, CPSR, SPSR_fiq

0b10010 IRQ_32 R0 to R12, R13_irq, R14_irq, PC, CPSR, SPSR_irq

0b10011 SVC_32 R0 to R12, R13_svc, R14_svc, PC, CPSR, SPSR_svc

0b10111 Abort_32 R0 to R12, R13_abt, R14_abt, PC, CPSR, SPSR_abt

0b11011 Undef_32 R0 to R12, R13_und, R14_und, PC, CPSR, SPSR_und

0b11111 System_32 R0 to R14, PC, CPSR, (Architecture Version 4 only)

 Table 5-1: 32-bit and 26-bit modes
ARM Architecture Reference Manual
ARM DDI 0100B

5-7

The 26-bit Architectures

5.6.1 32-bit and 26-bit configuration

ARM Architecture Version 3, 3M and 4 (but not 3G or 4T) optionally incorporate two
signals that control 32-bit instruction accesses and 32 bit data accesses. The signals are
mapped to two bits in register 1 of the system control coprocessor. These signals are:

• PROG32

• DATA32

32-bit configuration

1 If PROG32 is active, the processor switches to a 32-bit mode when processing
exceptions (including Reset), using the _32 modes for handling all exceptions.
This is called a 32-bit configuration. Abort_32 mode is used for handling
memory aborts, and Undef_32 for handling undefined instruction exceptions.
A 26-bit mode can be selected by putting a 26-bit mode number into the M[4:0]
bits of the CPSR (either using MSR or an exception return sequence). A 32-bit
mode can also be entered from a 26-bit mode using the MSR instruction. Once
in a 26-bit mode, another 26-bit mode can be entered using one of the TEQP,
TSTP, CMPP and CMNP instructions, or the MSR instruction.

If an exception occurs when the processor is in a 26-bit mode, only the PC bits
from R15[25:2] are copied to the link register; the remaining bits in the link
register are zeroed. The PSR bits from R15[31:26] and R15[1:0] are copied
into the SPSR, ready for a normal 32-bit return sequence.

2 If PROG32 is active, and DATA32 is not active (32-bit programs with 26-bit
data), the result is unpredictable.

26-bit configuration

1 If PROG32 is not active, the processor is locked into 26-bit modes (cannot be
placed into a 32-bit mode by any means) and handles exceptions in 26-bit
modes. This is called a 26-bit configuration. In this configuration, TEQP, TSTP,
CMPP and CMNP instructions, or the MSR instruction can be used to switch
to 26-bit mode. Attempts to write CPSR bits[4:2] (M[4:2]) are ignored, stopping
any attempts to switch to a 32-bit mode, and SVC_26 mode is used to handle
memory aborts and undefined instruction exceptions. The program counter is
limited to 24 bits, limiting the addressable program memory to 64 Megabytes.

2 If PROG32 is not active, DATA32 has the following actions.

a) If DATA32 is not active , all data addresses are checked to ensure
that they are between 0 and 64 Megabytes (26 bit). If a data address
is produced with a 1 in any of the top 6 bits, an address exception is
generated.

b) If DATA32 is active, full 32-bit addresses may be produced and are
not checked for address exceptions. This allows 26-bit programs to
access 32-bit data.
ARM Architecture Reference Manual
ARM DDI 0100B

5-8

The 26-bit Architectures

5.6.2 Vector exceptions

When the processor is in a 32-bit configuration (PROG32 is active) and in a 26-bit mode
(CPSR[4] == 0), data access (but not instruction fetches) to the hard vectors
(address 0x0 to 0x1f) cause a data abort, known as a vector exception.

Vector exceptions are always produced if the hard vectors are written in a 32-bit
configuration and a 26-bit mode, and it is IMPLEMENTATION DEFINED whether reading
the hard vectors in a 32-bit configuration and a 26-bit mode also causes a vector
exception.

Vector exceptions are provided to support 26-bit backwards compatibility.
When a vector exception is generated, it indicates that a 26-bit mode process is trying
to install a (26-bit) vector handler. Because the processor is in a 32-bit configuration,
exceptions will be handled in a 32-bit mode, so a veneer must be used to change from
the 32-bit exception mode to a 26-bit mode before calling the 26-bit exception handler.
This veneer may be installed on each vector, and can switch to a 26-bit mode before
calling any 26-bit handlers.

The 26-bit exception handler’s return may also need to be veneered. Some SWI
handlers return status information in the processor flags, and this information will need
to be transferred from the link register to the SPSR with a return veneer for the SWI
handler.
ARM Architecture Reference Manual
ARM DDI 0100B

5-9

6

The Thumb Instruction Set

The Thumb Instruction Set

The Thumb instruction set is a subset of the ARM instruction set.

Thumb is designed to increase the performance of ARM implementations that use
a memory data bus, and to allow better code density than ARM. The ARMv4T
architecture incorporates both a full 32-bit ARM instruction set and the 16-bit Thumb
instruction set. Every Thumb instruction can be encoded in 16 bits.

This chapter lists every Thumb instruction, and gives information on its format and
encoding.

6.1 Using this Chapter 6-2
6.2 Introduction to Thumb 6-3
6.3 Instruction Set Overview 6-4
6.4 Branch Instructions 6-5
6.5 Data-processing Instructions 6-7
6.6 Load and Store Register Instructions 6-12
6.7 Load and Store Multiple Instructions 6-14
6.8 Alphabetical List of Thumb Instructions 6-19

6

6-1ARM Architecture Reference Manual
ARM DUI 0100B

The Thumb Instruction Set

6.1 Using this Chapter

This chapter is divided into three parts:
1 Introduction to Thumb
2 Overview of the Thumb instruction types
3 Alphabetical list of instructions

6.1.1 Introduction to Thumb (page 6-3 through 6-4)

This part describes the Thumb concepts and how it fits in with ARM instruction
execution.

6.1.2 Overview of the Thumb instruction types (page 6-5 through 6-15)

This part describes the functional groups within the Thumb instruction set, and shows
relevant examples and encodings. Each functional group lists all its instructions, which
you can then find in the alphabetical section. The functional groups are:
1 Branch Instructions
2 Data-processing Instructions
3 Load and Store Register Instructions
4 Load and Store Multiple Instructions

6.1.3 Alphabetical list of instructions (page 6-19 through 6-82)

This part lists every Thumb instruction in alphabetical order, and gives:
• instruction syntax and functional group

• encoding and operation

• relevant exceptions and qualifiers

• notes on usage

Where relevant, the instruction descriptions show the equivalent ARM instruction and
encoding.
6-2 ARM Architecture Reference Manual
ARM DUI 0100B

The Thumb Instruction Set

6.2 Introduction to Thumb

Thumb does not alter the underlying structure of the ARM architecture; it merely
presents restricted access to the ARM architecture. All Thumb data-processing
instructions operate on full 32-bit values, and full 32-bit bit addresses are produced by
both data-access instructions and for instruction fetches.

When the processor is executing Thumb, eight general-purpose integer registers are
available, R0 to R7, which are the same physical registers as R0 to R7 when executing
ARM. Some Thumb instructions also access the Program Counter (ARM Register 15),
the Link Register (ARM Register 14) and the Stack Pointer (ARM Register 13). Further
instructions allow limited access to ARM registers 8 to 15 (known as the high registers).

When R15 is read, bit[0] is zero and bits [31:1] contain the PC. When R15 is written,
bit[0] is IGNORED and bits[31:1] are written to the PC. Depending on how it is used,
the value of the PC is either the address of the instruction plus 4 or is UNPREDICTABLE.

Thumb does not provide direct access to the CPSR or any SPSR (as in the ARM MSR
and MRS instructions). Thumb execution is flagged by the T bit (bit 5) in the CPSR:

T == 0 32-bit instructions are fetched (and the PC is incremented by 4) and
are executed as ARM instructions

T == 1 16-bit instructions are fetched from memory (and the PC is
incremented by two) and are executed as Thumb instructions

6.2.1 Entering Thumb state

Thumb execution is normally entered by executing an ARM BX instruction (Branch and
eXchange instruction set). This instruction branches to the address held in a
general-purpose register, and if bit[0] of that register is 1, Thumb execution begins at
the branch target address. If bit[0] of the target register is 0, ARM execution continues
from the branch target address.

Thumb execution can also be initiated by setting the T bit in the SPSR and executing
an ARM instruction, which restores the CPSR from the SPSR (a data-processing
instruction with the S bit set and the PC as the destination, or a Load Multiple and
Restore CPSR instruction). This allows an operating system to automatically restart
a process independently of whether that process is executing Thumb code or ARM
code.

The result is UNPREDICTABLE if the T bit is altered directly by writing the CPSR.

6.2.2 Exceptions

Exceptions generated during Thumb execution switch to ARM execution before
executing the exception handler (whose first instruction is at the hardware vector).
The state of the T bit is preserved in the SPSR, and the LR of the exception mode is
set so that the same return instruction performs correctly, regardless of whether
the exception occurred during ARM or Thumb execution.

Table 6-1: Exception return instructions lists the values of the exception mode LR for
exceptions generated during Thumb execution.
6-3ARM Architecture Reference Manual
ARM DUI 0100B

The Thumb Instruction Set
6.3 Instruction Set Overview

 Figure 6-1: The Thumb instruction set (expanded)

Exception Exception Link Register Value Return Instruction
Reset Unpredictable value MOVS PC, R14

Undefined Address of Undefined instruction + 2 MOVS PC, R14

SWI Address of SWI instruction + 2 MOVS PC, R14

Prefetch Abort Address of aborted instruction fetch + 4 SUBS PC, R14, #4

Data Abort Address of the instruction that generated the abort + 8 SUBS PC, R14, #8

IRQ Address of the next instruction to be executed + 4 SUBS PC, R14, #4

FIQ Address of the next instruction to be executed + 4 SUBS PC, R14, #4

 Table 6-1: Exception return instructions

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Shift by immediate 0 0 0 opcode immediate Rm Rd

Add/Subtract register 0 0 0 1 1 0 op Rm Rn Rd

Add/Subtract immediate 0 0 0 1 1 1 op immediate Rn Rd

Add/Subtract/Compare immediate 0 0 1 opcode Rd|Rn immediate

Data-processing register 0 1 0 0 0 0 opcode Rm|Rs Rd|Rn

Special data processing 0 1 0 0 0 1 opcode H1 H2 Rm Rd|Rn

Load from literal pool 0 1 0 0 1 Rd PC-relative offset

Load/Store Word/Byte Register 0 1 0 1 L B 0 Rm Rn Rd

Load/Store Signed Byte/Halfword Register 0 1 0 1 H S 1 Rm Rn Rd

Load/Store Word/Byte Immediate 0 1 1 B L immediate Rn Rd

Load/Store Halfword immediate 1 0 0 0 L immediate Rn Rd

Load/Store to/from stack 1 0 0 1 L Rd SP-relative offset

Add/Subtract to/from SP or PC 1 0 1 0 SP Rd immediate

Adjust stack pointer 1 0 1 1 SBZ 0 SBZ SBZ immediate

Push/Pop register list 1 0 1 1 L 1 SBZ R register_list

Load/Store Multiple 1 1 0 0 L Rn register_list

Conditional branch 1 1 0 1 cond offset

Software interrupt 1 1 0 1 1 1 1 1 SWI number

Unconditional branch 1 1 1 0 0 offset

Undefined instruction 1 1 1 0 1 x x x x x x x x x x x

BL prefix 1 1 1 1 0 offset

BL 1 1 1 1 1 offset
6-4 ARM Architecture Reference Manual
ARM DUI 0100B

The Thumb Instruction Set

6.4 Branch Instructions

Thumb supports four types of branch instruction.
• an unconditional branch that allows a forward or backward branch of up to

2 Kbytes

• a conditional branch to allow forward and backward branches of up to
256 bytes

• a branch and link (subroutine call) is supported with a pair of instructions that
allow forward and backwards branches of up to 4 Mbytes

• a branch and exchange instruction branches to an address in a register and
optionally switches to ARM code execution.

6.4.1 Encoding

The encoding for these formats is given below:

Format 1
B<cond> <target_address>

Format 2
B <target_address>

Format 3
BL <target_address>

Format 4
BX Rm

15 14 13 12 11 8 7 0

1 1 0 1 cond 8_bit_signed_offset

15 14 13 12 11 10 0

1 1 1 0 0 11_bit_signed_offset

15 14 13 12 11 10 0

1 1 1 1 H 11_bit_signed_offset

15 14 13 12 11 10 9 8 7 6 5 3 2 0

0 1 0 0 0 1 1 0 0 H2 Rm SBZ
6-5ARM Architecture Reference Manual
ARM DUI 0100B

The Thumb Instruction Set

6.4.2 Examples

B label ; unconditionally branch to label
BCC label ; branch to label if carry flags is clear
BEQ label ; branch to label if zero flag is set

BL func ; subroutine call to function

func .
 .
MOV PC, LR ; R15=R14, return to instruction after the BL

BX R12 ; branch to address in R12; begin Thumb execution if
; bit 0 of R12 is zero; otherwise continue executing
; Thumb code

6.4.3 List of branch instructions

The following instructions follow the formats shown above.

B Conditional branch page 6-30

B Unconditional branch page 6-31

BL Branch with Link page 6-33

BX Branch and exchange instruction set page 6-34
6-6 ARM Architecture Reference Manual
ARM DUI 0100B

The Thumb Instruction Set

6.5 Data-processing Instructions

Thumb data-processing instructions are a subset of the ARM data-processing
instructions, as shown below.

All Thumb data-processing instructions set the condition codes.

Mnemonic Operation Action

MOV Rd, #0 to 255 Move Rd := 8-bit immediate

MVN Rd, Rm Move Not Rd := NOT Rm

ADD Rd, Rn, Rm Add Rd := Rn + Rm

ADD Rd, Rn, #0 to 7 Add Rd := Rn + 3-bit immediate

ADD Rd, #0 to 255 Add Rd := Rd + 8-bit immediate

ADC Rd, Rm Add with Carry Rd := Rd + Rm + Carry Flag

SUB Rd, Rn, Rm Subtract Rd := Rn - Rm

SUB Rd, Rn, #0 to 7 Subtract Rd := Rn - 3-bit immediate

SUB Rd, #0 to 255 Subtract Rd := Rd - 8-bit immediate

SBC Rd, Rm Subtract with Carry Rd := Rd - Rm - NOT(Carry Flag)

NEG Rd, Rm Negate Rd := 0 - Rm

AND Rd, Rm Logical AND Rd := Rd AND Rm

EOR Rd, Rm Logical Exclusive OR Rd := Rd EOR Rm

ORR Rd, Rm Logical (inclusive) OR Rd := Rd OR Rm

BIC Rd, Rm Bit Clear Rd := Rd AND NOT Rm

CMP Rn, #0 to 255 Compare update flags after Rn - 8-bit immediate

CMP Rn, Rm Compare update flags after Rn - Rm

CMN Rn, Rm Compare Negated update flags after Rn + Rm

TST Rn, Rm Test update flags after Rn AND Rm

MUL Rd, Rs Multiply Rd := Rs x Rd

LSL Rd, Rm, #0 to 31 Logical Shift Left Rd := Rm LSL 5-bit immediate

LSL Rd, Rs Logical Shift Left Rd := Rd LSL Rs

LSR Rd, Rm, #0 to 31 Logical Shift Right Rd := Rm LSR 5-bit immediate

LSR Rd, Rs Logical Shift Right Rd := Rd LSR Rs

ASR Rd, Rm, #0 to 31 Arithmetic Shift Right Rd := Rm ASR 5-bit immediate

ASR Rd, Rs Arithmetic Shift Right Rd := Rd ASR Rs

ROR Rd, Rs Rotate Right Rd := Rd ROR Rs

 Table 6-2: Thumb data-processing instructions
6-7ARM Architecture Reference Manual
ARM DUI 0100B

The Thumb Instruction Set

Examples

ADD R0, R4, R7 ; R0 = R4 + R7

SUB R6, R1, R2 ; R6 = R1 - R2

ADD R0, #255 ; R0 = R0 + 255

ADD R1, R4, #4 ; R1 = R4 + 4

NEG R3, R1 ; R3 = 0 - R1

AND R2, R5 ; R2 = R2 AND R5

EOR R1, R6 ; R1 = R1 EOR R6

CMP R2, R3 ; update flags after R2 - R3

CMP R7, #100 ; update flags after R7 - 100

MOV R0, #200 ; R0 = 200

6.5.1 High registers

There are seven types of data-processing instruction which operate on ARM registers
8 to 14 and the PC (called the high registers).

Examples

MOV R0, R12 ; R0 = R12

ADD R10, R1, R2 ; R6 = R1 - R2

MOV PC, LR ; PC = R14

CMP R10, R11 ; update flags after R10 - R11

SUB SP, SP, #10 ; increase stack size by 100 bytes

ADD SP, SP, #16 ; decrease stack size by 16 bytes

ADD R2, SP, #20 ; R2 = SP + 20

ADD R0, PC, #500 ; R0 = PC + 500

Mnemonic Operation Action

MOV Rd, Rn Move Rd := Rn

ADD Rd, Rn Add Rd := Rd + Rm

CMP Rn, Rm Compare update flags after Rn - Rm

ADD SP, SP, #0 to 511 Increment stack pointer R13 = R13 + #9-bit immediate

SUB SP, SP, #0 to 511 Decrement stack pointer R13 = R13 - #9-bit immediate

ADD Rd, SP, #0 to 1020 Form Stack address Rd = R13 + #10-bit immediate

ADD Rd, PC, #0 to 1020 Form PC address Rd = PC + #10-bit immediate

 Table 6-3: High register data-processing instructions
6-8 ARM Architecture Reference Manual
ARM DUI 0100B

The Thumb Instruction Set

6.5.2 Formats

Data-processing instructions perform an operation on the general processor registers:

Format 1
<opcode1> Rd, Rn, Rm
<opcode1> := ADD | SUB

Format 2
<opcode2> Rd, Rn, <3_bit_immed>
<opcode2> := ADD | SUB

Format 3
<opcode3> Rd|Rn, #<8_bit_immed>
<opcode3> := ADD | SUB | MOV | CMP

Format 4
<opcode4> Rd, Rn #<shift_imm>
<opcode4> := LSL | LSR | ASR

Format 5
<opcode5> Rd | Rn, Rm | Rs
<opcode5> := MVN|CMP|CMN|TST|ADC|SBC|NEG|MUL|

LSL|LSR|ASR|ROR|AND|EOR|ORR|BIC

15 14 13 12 11 10 9 8 6 5 3 2 0

0 0 0 1 1 0 op_1 Rm Rn Rd

15 14 13 12 11 10 9 8 6 5 3 2 0

0 0 0 1 1 1 op_2 3_bit_immediate Rn Rd

15 14 13 12 11 10 8 7 0

0 0 1 op_3 Rd|Rn 8_bit_immediate

15 14 13 12 11 10 6 5 3 2 0

0 0 0 op_4 shift_immediate Rm Rd

15 14 13 12 11 10 9 6 5 3 2 0

0 1 0 0 0 0 op_5 Rm|Rs Rd|Rn
6-9ARM Architecture Reference Manual
ARM DUI 0100B

The Thumb Instruction Set

Format 6

ADD Rd, <reg>, #<8_bit_immed>
<reg> := SP | PC

Format 7
<opcode6> SP, SP, #<7_bit_immed>
<opcode6> := ADD | SUB

6.5.3 List of data-processing instructions

The following instructions follow the formats shown above.

ADC Add with Carry (register) page 6-19

ADD Add (immediate) page 6-20

ADD Add (large immediate) page 6-21

ADD Add (register) page 6-22

ADD Add high registers page 6-23

ADD Add (immediate to program counter) page 6-24

ADD Add (immediate to stack pointer) page 6-25

ADD Increment stack pointer page 6-26

AND Logical AND page 6-27

ASR Arithmetic shift right (immediate) page 6-28

ASR Arithmetic shift right (register) page 6-29

BIC Bit clear page 6-32

CMN Compare negative (register) page 6-35

CMP Compare (immediate) page 6-36

CMP Compare (register) page 6-37

CMP Compare high registers page 6-38

EOR Exclusive OR page 6-39

LSL Logical shift left (immediate) page 6-52

LSL Logical shift left (register) page 6-53

LSR Logical shift right (immediate) page 6-54

LSR Logical shift right (register) page 6-55

15 14 13 12 11 10 8 7 0

1 0 1 0 reg Rd 8_bit_immediate

15 14 13 12 11 10 9 8 7 6 0

1 0 1 1 0 0 0 0 op_6 7_bit_immediate
6-10 ARM Architecture Reference Manual
ARM DUI 0100B

The Thumb Instruction Set

MOV Move (immediate) page 6-56

MOV Move high registers page 6-57

MUL Multiply page 6-58

MVN Move NOT (register) page 6-59

NEG Negate (register) page 6-60

ORR Logical OR page 6-61

ROR Rotate right (register) page 6-66

SBC Subtract with Carry (register) page 6-67

SUB Subtract (immediate) page 6-77

SUB Subtract (large immediate) page 6-78

SUB Subtract (register) page 6-79

SUB Decrement stack pointer page 6-80

TST Test (register) page 6-82
6-11ARM Architecture Reference Manual
ARM DUI 0100B

The Thumb Instruction Set

6.6 Load and Store Register Instructions

Thumb supports 8 types of load and store register instructions. Two basic addressing
modes are available:

• register plus register

• register plus 5-bit immediate

If an immediate offset is used, it is scaled by 4 for word access and 2 for halfword
accesses. Three special instructions allow a load using the PC as a base with a 1 Kbyte
(word-aligned) immediate offset, and a load and store instructions with the stack pointer
(R13) as the base and a 1Kbyte (word aligned) immediate offset.

6.6.1 Formats

Load and Store instructions perform an operation on the general processor registers.
Load and store instructions have the following formats:

Format 1
<opcode1> Rd, [Rn, #<5_bit_offset>]
<opcode1> := LDR|LDRH|LDRB|STR|STRH|STRB

Format 2
<opcode2> Rd, [Rn, Rm]
<opcode2> := LDR|LDRH|LDRSH|LDRB|LDRSB|STR|STRH|STRB

Format 3
LDR Rd, [PC, #<8_bit_offset>]

Format 4
<opcode3> Rd, [SP, #<8_bit_offset>]
<opcode3> := LDR | STR

15 11 10 6 5 3 2 0

opcode1 5_bit_offset Rn Rd

15 9 8 6 5 3 2 0

opcode2 Rm Rn Rd

15 14 13 12 11 10 8 7 0

0 1 0 0 1 Rd 8_bit_immediate

15 14 13 12 11 10 8 7 0

1 0 0 1 L Rd 8_bit_immediate
6-12 ARM Architecture Reference Manual
ARM DUI 0100B

The Thumb Instruction Set

6.6.2 Examples

LDR R4, [R2, #4] ; Load word into R4 from address R2 + 4
LDR R4, [R2, R1] ; Load word into R4 from address R2 + R1
STR R0, [R7, #0x7c] ; Store word from R0 to address R7 + 124
STRB R1, [R5, #31] ; Store byte from R1 to address R5 + 31
STRH R4, [R2, R3] ; Store halfword from R4 to R2 + R3
LDRSB R5, [R0, #0] ; Load signed byte into R5 byte from R0
LDRSH R1, [R2, #10] ; Load signed halfword to R1 from R2 + 10
LDRH R3, [R6, R5] ; Load word into R3 from R6 + R5
LDRB R2, [R1, #5] ; Load byte into R2 from R1 + 5
LDR R6, [PC, #0x3fc]; Load R6 from PC + 0x3fc
LDR R5, [SP, #64] ; Load R5 from SP + 64
STR R4, [SP, #0x260]; Load R5 from SP + 0x260

6.6.3 List of load and store register instructions

The following instructions follow the formats shown above.

LDR Load word (immediate offset) page 6-42

LDR Load word (register offset) page 6-43

LDR Load word (PC-relative) page 6-44

LDR Load word (SP-relative) page 6-45

LDRB Load unsigned byte (immediate offset) page 6-46

LDRB Load unsigned byte (register offset) page 6-47

LDRH Load unsigned halfword (immediate offset) page 6-48

LDRH Load unsigned halfword (register offset) page 6-49

LDRSB Load signed byte (register offset) page 6-50

LDRSH Load signed halfword (register offset) page 6-51

STR Store word (immediate offset) page 6-70

STR Store word (register offset) page 6-71

STR Store word (SP-relative) page 6-72

STRB Store byte (immediate offset) page 6-73

STRB Store byte (register offset) page 6-74

STRH Store halfword (immediate offset) page 6-75

STRH Store halfword (register offset) page 6-76
6-13ARM Architecture Reference Manual
ARM DUI 0100B

The Thumb Instruction Set

6.7 Load and Store Multiple Instructions

Thumb supports four types of load and store multiple instructions.

Two (a load and a store) are designed to support block copy; they have a fixed
increment-after addressing mode from a base register.

The other two instructions (called PUSH and POP) also have a fixed addressing mode.
They implement a full descending stack, and the stack pointer (R13) is used as the
base register.

All four instructions can transfer any or all of the lower 8 registers. PUSH can also stack
the return address and POP can load the PC. All four instructions update the base
register after the transfer.

6.7.1 Formats

Format 1
<opcode1> Rn!, <register_list>
<opcode1> := LDMIA | STMIA

Format 2
POP {<register_list>,<PC>}
PUSH {<register_list>,<LR>}

6.7.2 Examples

LDMIA R7!, {R0 - R3, R5} ; Load R0 to R3 and R5 from R7
; then add 20 to R7

STMIA R0!, {R3, R4, R5} ; Store R3-R5 to R0: add 12 to R0 function
STMFD R13!, {R0-R7, LR} ; save all regs and return address
. ; code of the function body
.
STMFD R13!, {R0-R7, PC} ; restore all register and return

PUSH {R0 - R7, LR} ; push onto the stack (R13) R0 - R7 and
; the return address

POP {R0 - R7, PC} ; restore R0 - R7 from the stack
; and the program counter, and return

15 14 13 12 11 10 8 7 0

1 1 0 0 L Rn register_list

15 14 13 12 11 10 9 8 7 0

1 0 1 1 1 1 L R register_list
6-14 ARM Architecture Reference Manual
ARM DUI 0100B

The Thumb Instruction Set

6.7.3 List of load and store multiple instructions

The following instructions follow the formats shown above.

LDM Load multiple page 6-40

POP Pop multiple page 6-62

PUSH Push multiple page 6-64

STM Store multiple page 6-68
6-15ARM Architecture Reference Manual
ARM DUI 0100B

Thumb Instructions

B (1)
Conditional branch

Architecture v4T only

A
R

M

Instruction name

Function

Architecture availability

SyntaxDescription

Encoding

Operation

Exceptions

Qualifiers and flag settings

User notes

given in the following alphabetical list

short description of the instruction

Thumb instructions are avalable

specifies the bit patterns for the instruction

describes the operation of the instruction in pseudo-code

lists any possible exceptions

lists any conditions and flag settings

gives notes on using the instruction

in Architecture v4 only

that apply to the instruction

Operation
describes the operation of the instruction in pseudo-code

Equivalent ARM instruction
gives the syntax and encoding

for the equivalent ARM instruction
B<cond> <target_address>

Description This form of the B (Branch) instruction provides conditional changes to prog

In this case, B causes a conditional branch to a target address. The branch ta
by shifting the 8-bit signed offset left by one bit, sign-extending the result to
the contents of the PC (which contains the address of the branch instruction p
therefore specify a branch of +/- 256 bytes.

The instruction is only executed if the condition specified in the instruction m
status. The conditions are defined in 3.2 The Condition Field on page 3-3.

Operation if ConditionPassed(<cond>) then
PC = PC + (SignExtend(<8_bit_signed_offset>) <

Exceptions None

Qualifiers Condition Code

Notes Offset calculation: An assembler will calculate the branch offset address from t
address of the current instruction and the address of the target (given
four (because the PC holds the address of the current instruction plus

Memory bounds: Branching backwards past location zero and forwards over t
address space is UNPREDICTABLE.

15 14 13 12 11 8 7

1 1 0 1 cond 8_bit_signed_off
Equivalent ARM syntax and encoding

B<cond> <target_address>

31 28 27 26 25 24 23

cond 1 0 1 L sign extension of 8_bit_signed_offset

ADC

T
hum

b

6
6.8 Alphabetical List of Thumb Instructions

ADC Rd, Rm
Add with carry
(register)

Architecture v4T only
Description The ADC (Add with Carry) instruction is used to synthesize 64-bit addition.
If register pairs R0,R1 and R2,R3 hold 64-bit values (R0 and R2 hold
the least-significant word), the following instructions leave the 64-bit sum in
R0,R1:

ADD R0,R2
ADC R1,R3

The instruction ADC R0,R0 produces a single-bit Rotate Left with Extend
operation (33-bit rotate though the carry flag) on R0.

ADC adds the value of register Rd, and the value of the Carry flag, and the value
of register Rm, and stores the result in register Rd. The condition code flags are
updated (based on the result).

Operation Rd = Rd + Rm + C Flag
N Flag = Rd[31]
Z Flag = if Rd == 0 then 1 else 0
C Flag = CarryFrom(Rd + Rm + C Flag)
V Flag = OverflowFrom(Rd + Rm + C Flag)

Exceptions None

Qualifiers None

6

15 14 13 12 11 10 9 8 7 6 5 3 2 0

0 1 0 0 0 0 0 1 0 1 Rm Rd
Equivalent ARM syntax and encoding

ADCS Rd, Rd, Rm

31 30 29 28 27 26 25 24 23 22 21 20 19 16 15 12 11 10 9 8 7 6 5 4 3 0

1 1 1 0 0 0 0 0 1 0 1 1 Rd Rd 0 0 0 0 0 0 0 0 Rm
6-19ARM Architecture Reference Manual
ARM DUI 0100B

ADD (1)

6-20

Add immediate

Architecture v4T only

T
hu

m
b

ADD Rd, Rn, #<3_bit_immediate>
Description This form of the ADD instruction adds a small constant value to the value of
a register and stores the result in a second register.

In this case, ADD adds the value of register Rn and the value of the 3-bit immediate
(values 0 to 7), and stores the result in the destination register Rd. The condition
code flags are updated (based on the result).

Operation Rd = Rn + <3_bit_immediate>
N Flag = Rd[31]
Z Flag = if Rd == 0 then 1 else 0
C Flag = CarryFrom(Rn + <3_bit_immed>)
V Flag = OverflowFrom(Rn + <3_bit_immed>)

Exceptions None

Qualifiers None

15 14 13 12 11 10 9 8 6 5 3 2 0

0 0 0 1 1 1 0 3_bit_immediate Rn Rd
Equivalent ARM syntax and encoding

ADDS Rd, Rn, #<3_bit_immediate>

31 30 29 28 27 26 25 24 23 22 21 20 19 16 15 12 11 10 9 8 7 6 5 4 3 2 0

1 1 1 0 0 0 1 0 1 0 0 1 Rn Rd 0 0 0 0 0 0 0 0 0 #3_bit_imm
ARM Architecture Reference Manual
ARM DUI 0100B

ADD (2)

T
hum

b
ADD Rd, #<8_bit_immediate>
Add large immediate

Architecture v4T only
Description This form of the ADD instruction is also used to add a large constant value to
the value of a register and to store the result back in the same register.

In this case, ADD instruction adds the value of register Rd and the value of the 8-bit
immediate (values 0 to 255), and stores the result back in register Rd.
The condition code flags are updated (based on the result).

Operation Rd = Rd + <8_bit_immed>
N Flag = Rd[31]
Z Flag = if Rd == 0 then 1 else 0
C Flag = CarryFrom(Rd + <8_bit_immed>)
V Flag = OverflowFrom(Rd + <8_bit_immed>)

Exceptions None

Qualifiers None

15 14 13 12 11 10 9 8 7 0

0 0 1 1 0 Rd 8_bit_immediate
Equivalent ARM syntax and encoding

ADDS Rd, Rd, #<8_bit_immediate>

31 30 29 28 27 26 25 24 23 22 21 20 19 16 15 12 11 10 9 8 7 0

1 1 1 0 0 0 1 0 1 0 0 1 Rd Rd 0 0 0 0 8_bit_immediate
6-21ARM Architecture Reference Manual
ARM DUI 0100B

ADD (3)

6-22

Add register

Architecture v4T only

T
hu

m
b

ADD Rd, Rn, Rm
Description This form of the ADD instruction adds the value of one register to the value of
a second register, and stores the result in a third register.

In this case, ADD adds the value of register Rn and the value of register Rm,
and stores the result in the destination register Rd. The condition code flags are
updated (based on the result).

Operation Rd = Rn + Rm
N Flag = Rd[31]
Z Flag = if Rd == 0 then 1 else 0
C Flag = CarryFrom(Rn + Rm)
V Flag = OverflowFrom(Rn + Rm)

Exceptions None

Qualifiers None

15 14 13 12 11 10 9 8 6 5 3 2 0

0 0 0 1 1 0 0 Rm Rn Rd
Equivalent ARM syntax and encoding

ADDS Rd, Rn, Rm

31 30 29 28 27 26 25 24 23 22 21 20 19 16 15 12 11 10 9 8 7 6 5 4 3 0

1 1 1 0 0 0 0 0 1 0 0 1 Rn Rn 0 0 0 0 0 0 0 0 Rm
ARM Architecture Reference Manual
ARM DUI 0100B

ADD (4)

T
hum

b
ADD Rd, Rm
Add high registers

Architecture v4T only
Description This form of the ADD instruction is used for addition of values in the high registers.

In this case, ADD:
• adds the value of a low register to a high register (H1=1, H2=0), or

• adds the value of a high register to a low register (H1=0, H2=1), or

• adds the value of a high register to another high register (H1=1, H2=1)

The condition code flags are not affected.

Operation Rd = Rd + Rm

Exceptions None

Qualifiers None

Notes Operand restriction: If a low register is specified for Rd and Rm (H1=0 and H2=0),
the result is UNPREDICTABLE.

15 14 13 12 11 10 9 8 7 6 5 3 2 0

0 1 0 0 0 1 0 0 H1 H2 Rm Rd
Equivalent ARM syntax and encoding

ADD Rd, Rd, Rm

31 30 29 28 27 26 25 24 23 22 21 20 19 18 16 15 14 12 11 10 9 8 7 6 5 4 3 2 0

1 1 1 0 0 0 0 0 1 0 0 0 H1 Rd H1 Rd 0 0 0 0 0 0 0 0 H2 Rm
6-23ARM Architecture Reference Manual
ARM DUI 0100B

ADD (5)

6-24

Add immediate
to program counter

Architecture v4T only

T
hu

m
b

ADD Rd, PC, #<8_bit_immediate>)
Description This form of the ADD instruction is used to address a PC-relative (word-sized)
variable.

In this case, ADD clears the bottom two bits of the value of the PC and adds
the result to the value of the 8-bit immediate (values 0 to 255), and stores the result
in register Rd.

Operation Rd = (PC AND 0xfffffffc) + <8_bit_immed>

Exceptions None

Qualifiers None

15 14 13 12 11 10 8 7 0

1 0 1 0 0 Rd 8_bit_immediate
Equivalent ARM syntax and encoding

ADD Rd, PC, #<8_bit_immediate>

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 12 11 10 9 8 7 0

1 1 1 0 0 0 1 0 1 0 0 0 1 1 1 1 Rd 0 0 0 0 8_bit_immediate
ARM Architecture Reference Manual
ARM DUI 0100B

ADD (6)

T
hum

b
ADD Rd, SP, #<8_bit_immediate>
Add immediate
to stack pointer

Architecture v4T only
Description This form of the ADD instruction is used to address an SP-relative (word-sized)
variable.

In this case, ADD adds the value of the SP and the value of the 8-bit immediate
(values 0 to 255), and stores the result in register Rd.

Operation Rd = SP + <8_bit_immed>

Exceptions None

Qualifiers None

15 14 13 12 11 10 8 7 0

1 0 1 0 1 Rd 8_bit_immediate
Equivalent ARM syntax and encoding

ADD Rd, SP, #<8_bit_immediate>

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 12 11 10 9 8 7 0

1 1 1 0 0 0 1 0 1 0 0 0 1 1 0 1 Rd 0 0 0 0 8_bit_immediate
6-25ARM Architecture Reference Manual
ARM DUI 0100B

ADD (7)

6-26

Increment
stack pointer

Architecture v4T only

T
hu

m
b

ADD SP, SP, #<7_bit_immediate>
Description This form of the ADD instruction is used to decrease the size of the stack.

In this case, ADD adds the value of the SP and the value of the 7-bit immediate
(values 0 to 127), and stores the result back in the SP.

Operation SP = SP + <7_bit_immed>

Exceptions None

Qualifiers None

15 14 13 12 11 10 9 8 7 6 0

1 0 1 1 0 0 0 0 0 7_bit_immediate
Equivalent ARM syntax and encoding

ADD SP, SP, #<7_bit_immediate>

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 0

1 1 1 0 0 0 1 0 1 0 0 0 1 1 0 1 1 1 0 1 0 0 0 0 0 7_bit_immediate
ARM Architecture Reference Manual
ARM DUI 0100B

AND

T
hum

b
AND Rd, Rm
Logical AND

Architecture v4T only
Description The AND (Logical AND) instruction is most useful for extracting a field from
a register, by ANDing the register with a mask value that has 1’s in the field to be
extracted, and 0’s elsewhere.

AND performs a bitwise AND of the value of register Rm with the value of register
Rd, and stores the result back in register Rd. The condition code flags are updated
(based on the result).

Operation Rd = Rd AND Rm
N Flag = Rd[31]
Z Flag = if Rd == 0 then 1 else 0
C Flag = <shifter_carry_out>
V Flag = unaffected

Exceptions None

Qualifiers None

15 14 13 12 11 10 9 8 7 6 5 3 2 0

0 1 0 0 0 0 0 0 0 0 Rm Rd
Equivalent ARM syntax and encoding

ANDS Rd, Rd, Rm

31 30 29 28 27 26 25 24 23 22 21 20 19 16 15 12 11 10 9 8 7 6 5 4 3 0

1 1 1 0 0 0 0 0 0 0 0 1 Rd Rd 0 0 0 0 0 0 0 0 Rm
6-27ARM Architecture Reference Manual
ARM DUI 0100B

ASR (1)

6-28

Arithmetic shift right
(immediate)

Architecture v4T only

T
hu

m
b

ASR Rd, Rm, #<shift_imm>
The ASR (Arithmetic Shift Right) instruction is used to provide the signed value of
a register divided by a constant power of 2.

In this case, ASR performs an arithmetic shift right of the value of register Rm by
an immediate value in the range 1 to 32, and stores the result into the destination
register Rd. The sign bit of Rm (Rm[31]) is inserted into the vacated bit positions.

A shift by 32 is encoded by:
<shift_imm> = 0

The condition code flags are updated (based on the result).

Operation if <shift_imm> == 0
if Rd[31] == 0 then

C Flag = Rd[31]
Rd = 0

else /* Rd[31] == 1 */
C Flag = Rm[31]
Rd = 0xffffffff

else /* <shift_imm> > 0 */
C Flag = Rd[<shift_imm> - 1]
Rd = Rd Arithmetic_Shift_Right <shift_imm>

N Flag = Rd[31]
Z Flag = if Rd == 0 then 1 else 0
V Flag = unaffected

Exceptions None

Qualifiers None

15 14 13 12 11 10 6 5 3 2 0

0 0 0 1 0 shift_imm Rm Rd
Equivalent ARM syntax and encoding

MOVS Rd, Rm, ASR #<shift_imm>

31 30 29 28 27 26 25 24 23 22 21 20 19 16 15 12 11 7 6 5 4 3 0

1 1 1 0 0 0 0 1 1 0 1 1 SBZ Rd shift_imm 1 0 0 Rd
ARM Architecture Reference Manual
ARM DUI 0100B

ASR (2)

T
hum

b
ASR Rd, Rs
Arithmetic shift right
(register)

Architecture v4T only
Description This form of the ASR (Arithmetic Shift Right) instruction is used to provide
the signed value of a register divided by a constant power of 2.

In this case, ASR performs an arithmetic shift right of the value of register Rd by
the value in the least-significant byte of register Rs, and stores the result back into
the register Rd. The sign bit of the original Rd (Rd[31]) is inserted into the vacated
bit positions. The condition code flags are updated (based on the result).

Operation if Rs[7:0] == 0 then
C Flag = unaffected
Rd = unaffected

else if Rs[7:0] < 32 then
C Flag = Rd[Rs[7:0] - 1]
Rd = Rd Arithmetic_Shift_Right Rs[7:0]

else /* Rs[7:0] >= 32 */
if Rd[31] == 0 then

C Flag = Rd[31]
Rd = 0

else /* Rd[31] == 1 */
C Flag = Rd[31]
Rd = 0xffffffff

Exceptions None

Qualifiers None

15 14 13 12 11 10 9 8 7 6 5 3 2 0

0 1 0 0 0 0 0 1 0 0 Rs Rd
Equivalent ARM syntax and encoding

MOVS Rd, Rd, ASR Rs

31 30 29 28 27 26 25 24 23 22 21 20 19 16 15 12 11 8 7 6 5 4 3 0

1 1 1 0 0 0 0 1 1 0 1 1 SBZ Rd Rs 0 1 0 1 Rd
6-29ARM Architecture Reference Manual
ARM DUI 0100B

B (1)

6-30

Conditional branch

Architecture v4T only

T
hu

m
b

B<cond> <target_address>
Description This form of the B (Branch) instruction provides conditional changes to program
flow.

In this case, B causes a conditional branch to a target address. The branch target
address is calculated by shifting the 8-bit signed offset left by one bit,
sign-extending the result to 32 bits, and adding this to the contents of the PC
(which contains the address of the branch instruction plus 4). The instruction can
therefore specify a branch of +/- 256 bytes.

The instruction is only executed if the condition specified in the instruction matches
the condition code status. The conditions are defined in 3.3 The Condition Field on
page 3-4.

Operation if ConditionPassed(<cond>) then
PC = PC + (SignExtend(<8_bit_signed_offset>) << 1)

Exceptions None

Qualifiers Condition Code

Notes Offset calculation: An assembler will calculate the branch offset address from
the difference between the address of the current instruction and the address
of the target (given as a program label) minus four (because the PC holds
the address of the current instruction plus four).

Memory bounds: Branching backwards past location zero and forwards over
the end of the 32-bit address space is UNPREDICTABLE.

15 14 13 12 11 8 7 0

1 1 0 1 cond 8_bit_signed_offset
Equivalent ARM syntax and encoding

B<cond> <target_address>

31 28 27 26 25 24 23 8 7 0

cond 1 0 1 L sign extension of 8_bit_signed_offset 8_bit_signed_offset
ARM Architecture Reference Manual
ARM DUI 0100B

B (2)

T
hum

b
B <target_address>
Unconditional branch

Architecture v4T only
Description This form of the B (Branch) instruction provides unconditional changes to program
flow.

In this case, B causes an unconditional branch to a target address. The branch
target address is calculated by shifting the 11-bit signed (two’s complement) offset
left one bit, sign-extending the result to 32 bits, and adding this to the contents of
the PC (which contains the address of the branch instruction plus 4).
The instruction can therefore specify a branch of +/- 2048 bytes.

Operation PC = PC + (SignExtend(<11_bit_signed_offset>) << 1)

Exceptions None

Qualifiers None

Notes Offset calculation: An assembler will calculate the branch offset address from
the difference between the address of the current instruction and the address
of the target (given as a program label) minus four (because the PC holds
the address of the current instruction plus four).

Memory bounds: Branching backwards past location zero and forwards over
the end of the 32-bit address space is UNPREDICTABLE.

15 14 13 12 11 10 0

1 1 1 0 0 11_bit_signed_offset
Equivalent ARM syntax and encoding

B <target_address>

31 28 27 26 25 24 23 12 11 10 0

cond 1 0 1 0 sign extension of 11_bit_signed_offset 11_bit_signed_offset
6-31ARM Architecture Reference Manual
ARM DUI 0100B

BIC

6-32

Bit clear

Architecture v4T only

T
hu

m
b

BIC Rd, Rm
Description The BIC (Bit Clear) instruction can be used to clear selected bits in a register.
For each bit, BIC with 1 clears the bit, and BIC with 0 leaves it unchanged.

BIC performs a bitwise AND of the complement of the value of register Rm with the
value of register Rd, and stores the result back in register Rd. The condition code
flags are updated (based on the result).

Operation Rd = Rd AND NOT Rm
N Flag = Rd[31]
Z Flag = if Rd == 0 then 1 else 0
C Flag = <shifter_carry_out>
V Flag = unaffected

Exceptions None

Qualifiers None

15 14 13 12 11 10 9 8 7 6 5 3 2 0

0 1 0 0 0 0 1 1 1 0 Rm Rd
Equivalent ARM syntax and encoding

BICS Rd, Rd, Rm

31 30 29 28 27 26 25 24 23 22 21 20 19 16 15 12 11 10 9 8 7 6 5 4 3 0

1 1 1 0 0 0 0 1 1 1 0 1 Rd Rd 0 0 0 0 0 0 0 0 Rm
ARM Architecture Reference Manual
ARM DUI 0100B

BL

T
hum

b
BL <target_address>
Branch with link

Architecture v4T only
Description The BL (Branch with Link) instruction provides an unconditional subroutine call;
the return from subroutine is achieved by copying the LR to the PC (se page 6-57).
BL causes an unconditional subroutine call to a target address, and stores
the return address into the LR (link register or R14). Thumb subroutine calls are
made using a two-instruction sequence:
1 The first instruction (H==0) sign-extends the value of

<11_bit_signed_offset> , shifts the result left by 12 bits, adds the value
of the PC (the address of the branch instruction plus 4), and stores the result
in LR.

2 The second instruction shifts the value of <11_bit_signed_offset> left
by one bit, adds the value of LR (that was calculated by the first instruction),
stores the result in the PC, places the address of the instruction after
the second BL in LR.

The instruction can therefore specify a branch of +/- 4 Mbytes.

Operation if H==0
LR = PC + (SignExtend(<11_bit_signed_offset>) << 12)

else /* H==1 */
<return_address> = PC + 2 | 1
PC = LR + (<11_bit_signed_offset> << 1)
LR = <return_address>

Exceptions None

Qualifiers None

Notes Memory bounds: Branching backwards past location zero and forwards over
the end of the 32-bit address space is UNPREDICTABLE.

Offset calculation: An assembler will calculate the branch offset address from
the difference between the address of the current instruction and the address
of the target (given as a program label) minus four (because the PC holds
the address of the current instruction plus four).

15 14 13 12 11 10 0

1 1 1 1 H 11_bit_signed_offset
Equivalent ARM syntax and encoding

BL <target_address>

31 28 27 26 25 24 23 22 21 0

cond 1 0 1 1 offset
sign 22_bit_signed_offset
6-33ARM Architecture Reference Manual
ARM DUI 0100B

BX

6-34

Branch with exchange

Architecture v4T only

T
hu

m
b

BX Rm
Description The BX (Branch and Exchange) instruction is used to branch between ARM code
and Thumb code.

BX branches and selects the instruction set decoder to use to decode
the instructions at the branch destination. The branch target address is the value
of register Rm. The T flag is updated with bit 0 of the value of register Rm.

Operation T Flag = Rm[0]
PC = Rm[31:1] << 1

Exceptions None

Qualifiers Condition Code

Notes The H2 bit: This bit is the high register specifier:

H2 == 0 indicates that Rm specifies a low register
H2 == 1 indicates Rm specifies a high register

Tranferring to Thumb: When transferring to the Thumb instruction set, bit[0] of Rm
will be set to zero when transferred to the PC.

Transferring to ARM: When transferring to the ARM instruction set, bit[1:0] of Rm
will be set to zero when transferred to the PC.

15 14 13 12 11 10 9 8 7 6 5 3 2 0

0 1 0 0 0 1 1 1 0 H2 Rm SBZ
Equivalent ARM syntax and encoding

BX Rm

31 30 29 28 27 26 25 24 23 22 21 20 19 16 15 12 11 8 7 6 5 4 3 0

1 1 1 0 0 0 0 1 0 0 1 0 SBO SBO SBO 0 0 0 1 Rm
ARM Architecture Reference Manual
ARM DUI 0100B

CMN

T
hum

b
CMN Rn, Rm
Compare negative
(register)

Architecture v4T only
Description The CMN (Compare Negative) instruction compares an arithmetic value and
the negative of an arithmetic value and sets the condition code flags so that
subsequent instructions can be conditionally executed (using a conditional branch
instruction).

CMN performs a comparison by adding (or subtracting the negative of) the value
of register Rm to (from) the value of register Rd. The condition code flags are
updated (based on the result).

Operation <alu_out> = Rn + Rm
N Flag = <alu_out>[31]
Z Flag = if <alu_out> == 0 then 1 else 0
C Flag = NOT BorrowFrom(Rn + Rm)
V Flag = OverflowFrom (Rn + Rm)

Exceptions None

Qualifiers None

15 14 13 12 11 10 9 8 7 6 5 3 2 0

0 1 0 0 0 0 1 0 1 1 Rm Rn
Equivalent ARM syntax and encoding

CMN Rn, Rm

31 30 29 28 27 26 25 24 23 22 21 20 19 16 15 12 11 10 9 8 7 6 5 4 3 0

1 1 1 0 0 0 0 1 0 1 1 1 Rn SBZ 0 0 0 0 0 0 0 0 Rm
6-35ARM Architecture Reference Manual
ARM DUI 0100B

CMP (1)

6-36

Compare immediate

Architecture v4T only

T
hu

m
b

CMP Rn, #<8_bit_immediate>
Description This form of the CMP (Compare) instruction compares two arithmetic values and
sets the condition code flags so that subsequent instructions can be conditionally
executed (using a conditional branch instruction).

In this case, CMP performs a comparison by subtracting the value of the 8-bit
immediate (values 0 to 255) from the value of register Rd. The condition code flags
are updated (based on the result).

Operation <alu_out> = Rn - <8_bit_immed>
N Flag = <alu_out>[31]
Z Flag = if <alu_out> == 0 then 1 else 0
C Flag = NOT BorrowFrom(Rn - <8_bit_immed>)
V Flag = OverflowFrom (Rn - <8_bit_immed>)

Exceptions None

Qualifiers None

15 14 13 12 11 10 8 7 0

0 0 1 0 1 Rn 8_bit_immediate
Equivalent ARM syntax and encoding

CMP Rn, #<8_bit_immediate>

31 30 29 28 27 26 25 24 23 22 21 20 19 16 15 12 11 10 9 8 7 0

1 1 1 0 0 0 1 1 0 1 0 1 Rn SBO 0 0 0 0 8_bit_immediate
ARM Architecture Reference Manual
ARM DUI 0100B

CMP (2)

T
hum

b
CMP Rm, Rm
Compare register

Architecture v4T only
Description This form of the CMP (Compare) instruction compares two arithmetic values and
sets the condition code flags so that subsequent instructions can be conditionally
executed (using a conditional branch instruction).

In this case, CMP performs a comparison by subtracting the value of register Rm
from the value of register Rd. The condition code flags are updated (based on
the result).

Operation <alu_out> = Rn - Rm
N Flag = <alu_out>[31]
Z Flag = if <alu_out> == 0 then 1 else 0
C Flag = NOT BorrowFrom(Rn - Rm)
V Flag = OverflowFrom (Rn - Rm)

Exceptions None

Qualifiers None

15 14 13 12 11 10 9 8 7 6 5 3 2 0

0 1 0 0 0 0 1 0 1 0 Rm Rn
Equivalent ARM syntax and encoding

CMP Rd, Rm

31 30 29 28 27 26 25 24 23 22 21 20 19 16 15 12 11 10 9 8 7 6 5 4 3 0

1 1 1 0 0 0 0 1 1 1 1 1 Rn SBZ 0 0 0 0 0 0 0 0 Rm
6-37ARM Architecture Reference Manual
ARM DUI 0100B

CMP (3)

6-38

Compare
high registers

Architecture v4T only

T
hu

m
b

CMP Rn, Rm
Description This form of the CMP (Compare) instruction compares two arithmetic values in
the high registers.

In this case, CMP :
• compares the value of a low register and a high register (H1=1, H2=0), or

• compares the value of a high register and a low register (H1=0, H2=1), or

• compares the value of a high register and another high register
(H1=1, H2=1) and sets the condition code flags so that subsequent
instructions can be conditionally executed (using a conditional branch
instruction)

Operation <alu_out> = Rn - Rm
N Flag = <alu_out>[31]
Z Flag = if <alu_out> == 0 then 1 else 0
C Flag = NOT BorrowFrom(Rn - Rm)
V Flag = OverflowFrom(Rn - Rm)

Exceptions None

Qualifiers None

Notes Operand restriction: If a low register is specified for Rd and Rm (H1=0 and H2=0),
the result is UNPREDICTABLE.

15 14 13 12 11 10 9 8 7 6 5 3 2 0

0 1 0 0 0 1 0 1 H1 H2 Rm Rd
Equivalent ARM syntax and encoding

CMP Rn, Rm

31 30 29 28 27 26 25 24 23 22 21 20 19 18 16 15 14 12 11 10 9 8 7 6 5 4 3 2 0

1 1 1 0 0 0 0 1 0 1 0 1 H1 Rd H1 Rd 0 0 0 0 0 0 0 0 H2 Rm
ARM Architecture Reference Manual
ARM DUI 0100B

EOR

T
hum

b
EOR Rd, Rm
Exclusive OR

Architecture v4T only
Description The EOR (Exclusive OR) instruction can be used to invert selected bits in
a register. For each bit, EOR with 1 will invert that bit, and EOR with 0 will leave it
unchanged.

EOR performs a bitwise Exclusive OR of the value of register Rm with the value of
register Rd, and stores the result back in register Rd. The condition code flags are
updated (based on the result).

Operation Rd = Rd EOR Rm
N Flag = Rd[31]
Z Flag = if Rd == 0 then 1 else 0
C Flag = <shifter_carry_out>
V Flag = unaffected

Exceptions None

Qualifiers None

15 14 13 12 11 10 9 8 7 6 5 3 2 0

0 1 0 0 0 0 0 0 0 1 Rm Rd
Equivalent ARM syntax and encoding

EORS Rd, Rd, Rm

31 30 29 28 27 26 25 24 23 22 21 20 19 16 15 12 11 10 9 8 7 6 5 4 3 0

1 1 1 0 0 0 0 0 0 0 1 1 Rd Rd 0 0 0 0 0 0 0 0 Rm
6-39ARM Architecture Reference Manual
ARM DUI 0100B

LDM

6-40

Load multiple
increment after

Architecture v4T only

T
hu

m
b

LDMIA Rn!, <register_list>
Description The LDM instruction is useful as a block load instruction. Combined with STM
(store multiple), it allows efficient block copy.

The LDMIA (Load Multiple Increment After) instruction loads a subset (or possibly
all) of the general-purpose registers from sequential memory locations.
The registers are loaded in sequence:

• the lowest-numbered register first, from the lowest memory address
(<start_address>)

• the highest-numbered register last, from the highest memory address
(<end_address>)

The <start_address> is the value of the base register Rn.

Subsequent addresses are formed by incrementing the previous address by four.
One address is produced for each register that is specified in <register_list> .

The <end_address> value is four less than the sum of the value of the base
register and four times the number of registers specified in <register_list> .

Finally, the base register Rn is incremented by four times the numbers of registers
in <register_list> .

Operation
<start_address> = Rn
<end_address> = Rn + (Number_Of_Set_Bits_In(<register_list>) * 4) - 4
<address> = <start_address>
for i = 0 to 7

if <register_list>[i] == 1
Ri = Memory[<address>,4]
<address> = <address> + 4

assert <end_address> == <address> - 4
Rn = Rn + (Number_Of_Set_Bits_In(<register_list>) * 4)

15 14 13 12 11 10 8 7 0

1 1 0 0 1 Rn register_list
Equivalent ARM syntax and encoding

LDMIA Rn!, <register_list>

31 30 29 28 27 26 25 24 23 22 21 20 19 16 15 14 13 12 11 10 9 8 7 0

1 1 1 0 1 0 0 0 1 0 1 1 Rn 0 0 0 0 0 0 0 0 register_list
ARM Architecture Reference Manual
ARM DUI 0100B

LDM

T
hum

b

Load multiple
increment after

Architecture v4T only
Exceptions Data Abort

Qualifiers None

Notes Register Rn: Specifies the base register used by <addressing_mode> .

Operand restrictions: If the base register Rn is specified in <register_list> ,
the final value of Rn is the loaded value (not the written-back value).

Data Abort: If a data abort is signalled, the value left in Rn is IMPLEMENTATION
DEFINED, but is either the original base register value or the updated base
register value (even if Rn is specified in <register_list>).

Non-word-aligned addresses: Load multiple instructions ignore the least-significant
two bits of <address> (the words are not rotated as for load word).

Alignment: If an implementation includes a System Control Coprocessor
(see Chapter 7, System Architecture and System Control Coprocessor), and
alignment checking is enabled, an address with bits[1:0] != 0b00 will cause
an alignment exception.
6-41ARM Architecture Reference Manual
ARM DUI 0100B

LDR (1)

6-42

Load word
immediate offset

Architecture v4T only

T
hu

m
b

LDR Rd, [Rn, #5_bit_offset])
Description This form of the LDR (Load Register) instruction allows 32-bit memory data to be
loaded into a general-purpose register where its value can be manipulated.
The addressing mode is useful for accessing structure (record) fields.
With an offset of zero, the address produced is the unaltered value of the base
register Rn.

In this case, LDR loads a word from memory and writes it to register Rd.
The memory address is calculated by adding 4 times the value of
<5_bit_offset> to the value of register Rn. If the address is not word-aligned,
the result is UNPREDICTABLE.

Operation <address> = Rn + (5_bit_offset * 4)
if <address>[1:0] == 0b00

<data> = Memory[<address>,4]
else

<data> = UNPREDICTABLE

Rd = <data>

Exceptions Data Abort

Qualifiers None

Notes Alignment: If an implementation includes a System Control Coprocessor
(see Chapter 7, System Architecture and System Control Coprocessor), and
alignment checking is enabled, an address with bits[1:0] != 0b00 will cause
an alignment exception.

15 14 13 12 11 10 6 5 3 2 0

0 1 1 0 1 5_bit_offset Rn Rd
Equivalent ARM syntax and encoding

LDR Rd, [Rn, #5_bit_offset]

31 30 29 28 27 26 25 24 23 22 21 20 19 16 15 12 11 10 9 8 7 6 2 1 0

1 1 1 0 0 1 0 1 1 0 0 1 Rn Rd 0 0 0 0 0 5_bit_offset 0 0
ARM Architecture Reference Manual
ARM DUI 0100B

LDR (2)

T
hum

b
LDR Rd, [Rn, Rm]
Load word
register offset

Architecture v4T only
Description This form of the LDR (Load Register) instruction allows 32-bit memory data to be
loaded into a general-purpose register where its value can be manipulated.
The addressing mode is useful for pointer + large offset arithmetic (use MOV
immediate to set the offset), and accessing a single element of an array.

In this case, LDR loads a word from memory and writes it to register Rd.
The memory address is calculated by adding the value of register Rm to the value
of register Rn. If the address is not word aligned, the result is UNPREDICTABLE.

Operation <address> = Rn + Rm
if <address>[1:0] == 0b00

<data> = Memory[<address>,4]
else

<data> = UNPREDICTABLE

Rd = <data>

Exceptions Data Abort

Qualifiers None

Notes Alignment: If an implementation includes a System Control Coprocessor
(see Chapter 7, System Architecture and System Control Coprocessor), and
alignment checking is enabled, an address with bits[1:0] != 0b00 will cause
an alignment exception.

15 14 13 12 11 10 9 8 6 5 3 2 0

0 1 0 1 1 0 0 Rm Rn Rd
Equivalent ARM syntax and encoding

LDR Rd, [Rn, Rm]

31 30 29 28 27 26 25 24 23 22 21 20 19 16 15 12 11 10 9 8 7 6 2 1 0

1 1 1 0 0 1 1 1 1 0 0 1 Rn Rd 0 0 0 0 0 5_bit_offset 0 0
6-43ARM Architecture Reference Manual
ARM DUI 0100B

LDR (3)

6-44

Load word
PC-relative

Architecture v4T only

T
hu

m
b

LDR Rd, [PC, #8_bit_offset]
Description This form of the LDR (Load Register) instruction allows 32-bit memory data to be
loaded into a general-purpose register where its value can be manipulated.
The addressing mode is useful for accessing PC relative data.

In this case, LDR loads a word from memory and writes it to register Rd.
The memory address is calculated by adding 4 times the value of
<8_bit_offset> to the value of the PC. If the address is not word-aligned,
the result is UNPREDICTABLE.

Operation <address> = (PC[31:1] << 1) + (8_bit_offset * 4)
if <address>[1:0] == 0b00

<data> = Memory[<address>,4]
else

<data> = UNPREDICTABLE

Rd = <data>

Exceptions Data Abort

Qualifiers None

Notes Alignment: If an implementation includes a System Control Coprocessor
(see Chapter 7, System Architecture and System Control Coprocessor), and
alignment checking is enabled, an address with bits[1:0] != 0b00 will cause
an alignment exception.

15 14 13 12 11 10 8 7 0

0 1 0 0 1 Rn 8_bit_offset
Equivalent ARM syntax and encoding

LDR Rd, [PC, #8_bit_offset]

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 12 11 10 9 2 1 0

1 1 1 0 0 1 0 1 1 0 0 1 1 1 1 1 Rd 0 0 8_bit_offset 0 0
ARM Architecture Reference Manual
ARM DUI 0100B

LDR (4)

T
hum

b
LDR Rd, [SP, #8_bit_offset]
Load word
SP-relative

Architecture v4T only
Description This form of the LDR (Load Register) instruction allows 32-bit memory data to be
loaded into a general-purpose register where its value can be manipulated.
The addressing mode is useful for accessing stack data.

In this case, LDR loads a word from memory and writes it to register Rd.
The memory address is calculated by adding 4 times the value of
<8_bit_offset> to the value of the SP. If the address is not word-aligned,
the result is UNPREDICTABLE.

Operation <address> = SP + (8_bit_offset * 4)
if <address>[1:0] == 0b00

<data> = Memory[<address>,4]
else

<data> = UNPREDICTABLE

Rd = <data>

Exceptions Data Abort

Qualifiers None

Notes Alignment: If an implementation includes a System Control Coprocessor
(see Chapter 7, System Architecture and System Control Coprocessor), and
alignment checking is enabled, an address with bits[1:0] != 0b00 will cause
an alignment exception.

15 14 13 12 11 10 8 7 0

1 0 0 1 1 Rn 8_bit_offset
Equivalent ARM syntax and encoding

LDR Rd, [SP, #8_bit_offset]

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 12 11 10 9 2 1 0

1 1 1 0 0 1 0 1 1 0 0 1 1 1 0 1 Rd 0 0 8_bit_offset 0 0
6-45ARM Architecture Reference Manual
ARM DUI 0100B

LDRB (1)

6-46

Load unsigned byte
immediate offset

Architecture v4T only

T
hu

m
b

LDRB Rd, [Rn, #5_bit_offset]
Description This form of the LDRB (Load Register Byte) instruction allows 8-bit memory data
to be loaded into a general-purpose register where its value can be manipulated.
The addressing mode is useful for accessing structure (record) fields.
With an offset of zero, the address produced is the unaltered value of the base
register Rn.

This form of the LDRB:
1 loads a byte from memory
2 zero-extends the byte to a 32-bit word
3 writes the word to register Rd

The memory address is calculated by adding the value of <5_bit_offset>
to the value of register Rn.

Operation <address> = Rn + 5_bit_offset
Rd = Memory[<address>,1]

Exceptions Data Abort

Qualifiers None

15 14 13 12 11 10 6 5 3 2 0

0 1 1 1 1 5_bit_offset Rn Rd
Equivalent ARM syntax and encoding

LDRB Rd, [Rn, #5_bit_offset]

31 30 29 28 27 26 25 24 23 22 21 20 19 16 15 12 11 10 9 8 7 6 2 1 0

1 1 1 0 0 1 0 1 1 1 0 1 Rn Rd 0 0 0 0 0 5_bit_offset 0 0
ARM Architecture Reference Manual
ARM DUI 0100B

LDRB (2)

T
hum

b
LDRB Rd, [Rn, Rm]
Load unsigned byte
register offset

Architecture v4T only
Description This form of the LDRB (Load Register Byte) instruction allows 8-bit memory data
to be loaded into a general-purpose register where its value can be manipulated.
The addressing mode is useful for pointer + large offset arithmetic (use the MOV
immediate to set the offset), and accessing a single element of an array.

In this case, LDRB:
1 loads a byte from memory
2 zero-extends the byte to a 32-bit word
3 writes the word to register Rd

The memory address is calculated by adding the value register Rm to the value of
register Rn.

Operation <address> = Rn + Rm
Rd = Memory[<address>,1]

Exceptions Data Abort

Qualifiers None

15 14 13 12 11 10 9 8 6 5 3 2 0

0 1 0 1 1 1 0 Rm Rn Rd
Equivalent ARM syntax and encoding

LDRB Rd, [Rn, Rm]

31 30 29 28 27 26 25 24 23 22 21 20 19 16 15 12 11 10 9 8 7 6 5 4 3 1 0

1 1 1 0 0 1 1 1 1 1 0 1 Rn Rd 0 0 0 0 0 0 0 0 Rm
6-47ARM Architecture Reference Manual
ARM DUI 0100B

LDRH (1)

6-48

Load unsigned halfword
Immediate offset

Architecture v4T only

T
hu

m
b

LDRH Rd, [Rn, #5_bit_offset]
Description This form of the LDRH (Load Register Halfword) instruction allows 16-bit memory
data to be loaded into a general-purpose register where its value can be
manipulated. The addressing mode is useful for accessing structure (record)
fields. With an offset of zero, the address produced is the unaltered value of
the base register Rn.

In this case, LDRH:
1 loads a halfword from memory
2 zero-extends the halfword to a 32-bit word
3 writes the word to register Rd

The memory address is calculated by adding 2 times the value of
<5_bit_offset> to the value of register Rn. If the address is not
halfword-aligned, the result is UNPREDICTABLE.

Operation <address> = Rn + (5_bit_offset * 2)
if <address>[1:0] == 0

<data> = Memory[<address>,2]
else

<data> = UNPREDICTABLE

Rd = <data>

Exceptions Data Abort

Qualifiers None

Notes Alignment: If an implementation includes a System Control Coprocessor
(see Chapter 7, System Architecture and System Control Coprocessor), and
alignment checking is enabled, an address with bit[0] != 0 will cause
an alignment exception.

15 14 13 12 11 10 6 5 3 2 0

1 0 0 0 1 5_bit_offset Rn Rd
Equivalent ARM syntax and encoding

LDRH Rd, [Rn, #5_bit_offset]

31 30 29 28 27 26 25 24 23 22 21 20 19 16 15 12 11 10 9 8 7 6 54 3 0

1 1 1 0 0 0 0 1 1 1 0 1 Rn Rd 0 0 0 O4 1 0 1 1 offset[3:0]
ARM Architecture Reference Manual
ARM DUI 0100B

LDRH (2)

T
hum

b
LDRH Rd, [Rn, Rm]
Load unsigned halfword
register offset

Architecture v4T only
Description This form of the LDRH (Load Register Halfword) instruction allows 16-bit memory
data to be loaded into a general-purpose register where its value can be
manipulated. The addressing mode is useful for pointer + large offset arithmetic
(use MOV immediate to set the offset), and accessing a single element of an array.

In this case, LDRH:
1 loads a halfword from memory
2 zero-extends the halfword to a 32-bit word
3 writes the word to register Rd

The memory address is calculated by adding the value of register Rm to the value
of register Rn. If the address is not halfword-aligned, the result is UNPREDICTABLE.

Operation <address> = Rn + Rm
if <address>[0] == 0

<data> = Memory[<address>,2]
else

<data> = UNPREDICTABLE

Rd = <data>

Exceptions Data Abort

Qualifiers None

Notes Alignment: If an implementation includes a System Control Coprocessor
(see Chapter 7, System Architecture and System Control Coprocessor), and
alignment checking is enabled, an address with bit[0] != 0 will cause
an alignment exception.

15 14 13 12 11 10 9 8 6 5 3 2 0

0 1 0 1 1 0 1 Rm Rn Rd
Equivalent ARM syntax and encoding

LDRH Rd, [Rn, Rm]

31 30 29 28 27 26 25 24 23 22 21 20 19 16 15 12 11 8 7 6 5 4 3 0

1 1 1 0 0 0 0 1 1 0 0 1 Rn Rd SBZ 1 0 1 1 Rm
6-49ARM Architecture Reference Manual
ARM DUI 0100B

LDRSB

6-50

Load signed byte
register offset

Architecture v4T only

T
hu

m
b

LDRSB Rd, [Rn, Rm]
Description The LDRSB (Load Register Signed Byte) instruction allows 8-bit signed memory
data to be loaded into a general-purpose register where its value can be
manipulated. The addressing mode is useful for pointer + large offset arithmetic
(use the MOV immediate to set the offset), and accessing a single element of
an array.

LDRSB:
1 loads a byte from memory
2 sign-extends the byte to a 32-bit word
3 writes it to register Rd

The memory address is calculated by adding the value register Rm to the value of
register Rn.

Operation <address> = Rn + Rm
Rd = SignExtend(Memory[<address>,1])

Exceptions Data Abort

Qualifiers None

15 14 13 12 11 10 9 8 6 5 3 2 0

0 1 0 1 0 1 1 Rm Rn Rd
Equivalent ARM syntax and encoding

LDRSB Rd, [Rn, Rm]

31 30 29 28 27 26 25 24 23 22 21 20 19 16 15 12 11 8 7 6 5 4 3 0

1 1 1 0 0 0 0 1 1 0 0 1 Rn Rd SBZ 1 1 0 1 Rm
ARM Architecture Reference Manual
ARM DUI 0100B

LDRSH

T
hum

b
LDRSH Rd, [Rn, Rm]
Load signed halfword
register offset

Architecture v4T only
Description The LDRSH (Load Register Signed Halfword) instruction allows 16-bit signed
memory data to be loaded into a general-purpose register where its value can be
manipulated. The addressing mode is useful for pointer + large offset arithmetic
(use the MOV immediate to set the offset), and accessing a single element of
an array.

LDRSH:
1 loads a halfword from memory
2 sign-extends the halfword to a 32-bit word
3 writes the word to register Rd

The memory address is calculated by adding the value register Rm to the value of
register Rn. If the address is not halfword-aligned, the result is UNPREDICTABLE.

Operation <address> = Rn + Rm
if <address>[1:0] == 0

<data> = Memory[<address>,2]
else

<data> = UNPREDICTABLE

Rd = SignExtend(<data>)

Exceptions Data Abort

Qualifiers None

Notes Alignment: If an implementation includes a System Control Coprocessor
(see Chapter 7, System Architecture and System Control Coprocessor), and
alignment checking is enabled, an address with bit[0] != 0 will cause
an alignment exception.

15 14 13 12 11 10 9 8 6 5 3 2 0

0 1 0 1 1 1 1 Rm Rn Rd
Equivalent ARM syntax and encoding

LDRSH Rd, [Rn, Rm

31 30 29 28 27 26 25 24 23 22 21 20 19 16 15 12 11 8 7 6 5 4 3 0

1 1 1 0 0 0 0 1 1 0 0 1 Rn Rd SBZ 1 1 1 1 Rm
6-51ARM Architecture Reference Manual
ARM DUI 0100B

LSL (1)

6-52

Logical shift left
(immediate)

Architecture v4T only

T
hu

m
b

LSL Rd, Rm, #<shift_imm>
Description This form of the LSL (Logical Shift Left) instruction is used to provide either
the value of a register directly (LSL #0), or the value of a register multiplied by
a constant power of two.

In this case, LSL performs a logical shift left of the value of register Rm by
an immediate value in the range 0 to 31 and stores the result into the destination
register Rd. Zeros are inserted into the vacated bit positions. The condition code
flags are updated (based on the result).

Operation if <shift_imm> == 0
C Flag = UNAFFECTED

Rd = UNAFFECTED

else /* <shift_imm> > 0 */
C Flag = Rm[32 - <shift_imm>]
Rd = Rd Logical_Shift_Left <shift_imm>

N Flag = Rd[31]
Z Flag = if Rd == 0 then 1 else 0
V Flag = unaffected

Exceptions None

Qualifiers None

15 14 13 12 11 10 6 5 3 2 0

0 0 0 0 0 shift_imm Rm Rd
Equivalent ARM syntax and encoding

MOVS Rd, Rm, LSL #<shift_imm>

31 30 29 28 27 26 25 24 23 22 21 20 19 16 15 12 11 7 6 5 4 3 0

1 1 1 0 0 0 0 1 1 0 1 1 SBZ Rd shift_imm 0 0 0 Rd
ARM Architecture Reference Manual
ARM DUI 0100B

LSL (2)

T
hum

b
LSL Rd, Rs
Logical shift left
(register)

Architecture v4T only
This form of the LSL (Logical Shift Left) instruction is used to provide the unsigned
value of a register multiplied by a variable (in a register) power of two.

In this case, LSL instruction performs a logical shift left of the value of register Rd
by the value in the least-significant byte of register Rs and stores the result back
into the register Rd. Zeros are inserted into the vacated bit positions. The condition
code flags are updated (based on the result).

Operation if Rs[7:0] == 0
C Flag = UNAFFECTED

Rd = UNAFFECTED

else if Rs[7:0] < 32 then
C Flag = Rd[32 - Rs[7:0]]
Rd = Rd Logical_Shift_Left Rs[7:0]

else if Rs[7:0] == 32 then
C Flag = Rd[0]
Rd = 0

else /* Rs[7:0] > 32 */
C Flag = 0
Rd = 0

N Flag = Rd[31]
Z Flag = if Rd == 0 then 1 else 0
V Flag = unaffected

Exceptions None

Qualifiers None

15 14 13 12 11 10 9 8 7 6 5 3 2 0

0 1 0 0 0 0 0 0 1 0 Rs Rd
Equivalent ARM syntax and encoding

MOVS Rd, Rd, LSL Rs

31 30 29 28 27 26 25 24 23 22 21 20 19 16 15 12 11 8 7 6 5 4 3 0

1 1 1 0 0 0 0 1 1 0 1 1 SBZ Rd Rs 0 0 0 1 Rd
6-53ARM Architecture Reference Manual
ARM DUI 0100B

LSR (1)

6-54

Logical shift right
(immediate)

Architecture v4T only

T
hu

m
b

LSR Rd, Rm, #<shift_imm>
Description This form of the LSR (Logical Shift Right) instruction is used to provide the value
of a register, divided by a constant power of two.

In this case, LSR performs a logical shift right of the value of register Rm by
an immediate value in the range 1 to 32, and stores the result into the destination
register Rd. Zeros are inserted into the vacated bit positions.

A shift by 32 is encoded by:
<shift_imm> = 0

The condition code flags are updated (based on the result).

Operation if <shift_imm> == 0
C Flag = Rd[31]
Rd = 0

else /* <shift_imm> > 0 */
C Flag = Rd[<shift_imm> - 1]
Rd = Rd Logical_Shift_Right <shift_imm>

N Flag = Rd[31]
Z Flag = if Rd == 0 then 1 else 0
V Flag = unaffected

Exceptions None

Qualifiers None

15 14 13 12 11 10 6 5 3 2 0

0 0 0 0 1 shift_imm Rm Rd
Equivalent ARM syntax and encoding

MOVS Rd, Rm, LSR #<shift_imm>

31 30 29 28 27 26 25 24 23 22 21 20 19 16 15 12 11 7 6 5 4 3 0

1 1 1 0 0 0 0 1 1 0 1 1 SBZ Rd shift_imm 0 1 0 Rd
ARM Architecture Reference Manual
ARM DUI 0100B

LSL (2)

T
hum

b
LSR Rd, Rs
Logcal shift right
(register)

Architecture v4T only
Description This form of the LSR (Logical Shift Right) instruction is used to provide
the unsigned value of a register divided by a variable (in a register) power of two.

In this case, LSR instruction performs a logical shift right of the value of register Rd
by the value in the least-significant byte of register Rs, and stores the result back
into the register Rd. Zeros are inserted into the vacated bit positions. The condition
code flags are updated (based on the result).

Operation if Rs[7:0] == 0 then
C Flag = unaffected
Rd = unaffected

else if Rs[7:0] < 32 then
C Flag = Rd[Rs[7:0] - 1]
Rd = Rd Logical_Shift_Right Rs[7:0]

else if Rs[7:0] == 32 then
C Flag = Rd[31]
Rd = 0

else /* Rs[7:0] > 32 */
C Flag = 0
Rd = 0

N Flag = Rd[31]
Z Flag = if Rd == 0 then 1 else 0
V Flag = unaffected

Exceptions None

Qualifiers None

15 14 13 12 11 10 9 8 7 6 5 3 2 0

0 1 0 0 0 0 0 0 1 1 Rs Rd
Equivalent ARM syntax and encoding

MOVS Rd, Rd, LSR Rs

31 30 29 28 27 26 25 24 23 22 21 20 19 16 15 12 11 8 7 6 5 4 3 0

1 1 1 0 0 0 0 1 1 0 1 1 SBZ Rd Rs 0 0 1 1 Rd
6-55ARM Architecture Reference Manual
ARM DUI 0100B

MOV (1)

6-56

Move immediate

Architecture v4T only

T
hu

m
b

MOV Rd, #<8_bit_immediate>
Description This form of the MOV (Move) instruction moves a large constant value to a
register.

In this case, MOV writes the value of the 8-bit immediate (values 0 to 255)
to the destination register Rd. The condition code flags are updated (based on
the result).

Operation Rd = <8_bit_immed>
N Flag = Rd[31]
Z Flag = if Rd == 0 then 1 else 0
C Flag = unaffected
V Flag = unaffected

Exceptions None

Qualifiers None

15 14 13 12 11 10 8 7 0

0 0 1 0 1 Rd 8_bit_immediate
Equivalent ARM syntax and encoding

MOV Rn, #<8_bit_immediate>

31 30 29 28 27 26 25 24 23 22 21 20 19 16 15 12 11 10 9 8 7 0

1 1 1 0 0 0 1 1 0 1 0 1 SBZ Rd 0 0 0 0 8_bit_immediate
ARM Architecture Reference Manual
ARM DUI 0100B

MOV (2)

T
hum

b
MOV Rd, Rm
Move high registers

Architecture v4T only
Description This form of the MOV (Move) instruction is used to move a value to, from, or
between high registers.

In this case, MOV :
• moves the value of a low register to a high register (H1=1, H2=0), or

• moves the value of a high register to a low register (H1=0, H2=1), or

• moves the value of a high register and another high register
(H1=1, H2=1).

The subroutine return instruction is:
MOV PC, LR

(after executing a BL sequence; see page 6-33).

Operation Rd = Rm

Exceptions None

Qualifiers None

Notes Operand restriction: If a low register is specified for Rd and Rm (H1=0 and H2=0),
the result is UNPREDICTABLE.

15 14 13 12 11 10 9 8 7 6 5 3 2 0

0 1 0 0 0 1 1 0 H1 H2 Rm Rd
Equivalent ARM syntax and encoding

MOV Rd, Rm

31 30 29 28 27 26 25 24 23 22 21 20 19 18 16 15 14 12 11 10 9 8 7 6 5 4 3 2 0

1 1 1 0 0 0 0 1 1 0 1 0 H1 Rd H1 Rd 0 0 0 0 0 0 0 0 H2 Rm
6-57ARM Architecture Reference Manual
ARM DUI 0100B

MUL

6-58

Multiply

Architecture v4T only

T
hu

m
b

MUL Rd, Rm
Description The MUL (Multiply) instruction multiplies signed or unsigned variables to produce
a 32-bit result.

MUL multiplies the value of register Rm with the value of register Rd, and stores
the result back in the register Rd. The condition code flags are updated (based on
the result).

Operation Rd = (Rm * Rd)[31:0]
N Flag = Rd[31]
Z Flag = if Rd == 0 then 1 else 0
C Flag = UNPREDICTABLE

V Flag = UNAFFECTED

Exceptions None

Qualifiers None

Notes Operand restriction: Specifying the same register for Rd and Rm has
UNPREDICTABLE results.

Early termination: If the multiplier implementation supports early termination,
it must be implemented on the value of the Rd operand. The type of early
termination used (signed or unsigned) is IMPLEMENTATION DEFINED.

Signed and unsigned: Because the MUL instruction produces only the lower
32 bits of the 64-bit product, MUL gives the same answer for multiplication of
both signed and unsigned numbers.

15 14 13 12 11 10 9 8 7 6 5 3 2 0

0 1 0 0 0 0 1 1 0 1 Rm Rd
Equivalent ARM syntax and encoding

MULS Rd, Rm, Rd

31 30 29 28 27 26 25 24 23 22 21 20 19 16 15 12 11 8 7 6 5 4 3 0

1 1 1 0 0 0 0 0 0 0 0 1 Rd SBZ Rd 1 0 0 1 Rm
ARM Architecture Reference Manual
ARM DUI 0100B

MVN

T
hum

b
MVN Rd, Rm
Move NOT (register)

Architecture v4T only
Description The MVN (Move NOT) instruction is used to compliment a register value, often
to form a bit mask.

MVN writes the logical one’s compliment value of register Rn to the destination
register Rd. The condition code flags are updated (based on the result).

Operation Rd = NOT Rm
N Flag = Rd[31]
Z Flag = if Rd == 0 then 1 else 0
C Flag = unaffected
V Flag = unaffected

Exceptions None

Qualifiers None

15 14 13 12 11 10 9 8 7 6 5 3 2 0

0 0 1 0 1 0 1 1 1 1 Rm Rd
Equivalent ARM syntax and encoding

MVNS Rd, Rm

31 30 29 28 27 26 25 24 23 22 21 20 19 16 15 12 11 10 9 8 7 6 5 4 3 0

1 1 1 0 0 0 0 1 1 1 1 1 SBZ Rd 0 0 0 0 0 0 0 0 Rm
6-59ARM Architecture Reference Manual
ARM DUI 0100B

NEG

6-60

Negate register

Architecture v4T only

T
hu

m
b

NEG Rd, Rm
Description The NEG (Negate) instruction negates the value of one register and stores
the result in a second register.

NEG subtracts the value of register Rn from zero, and stores the result in
the destination register Rd. The condition code flags are updated (based on
the result).

Operation Rd = 0 - Rn
N Flag = Rd[31]
Z Flag = if Rd == 0 then 1 else 0
C Flag = NOT BorrowFrom(0 - Rn)
V Flag = OverflowFrom(0 - Rn)

Exceptions None

Qualifiers None

15 14 13 12 11 10 9 6 5 3 2 0

0 1 0 0 0 0 1 0 0 1 Rn Rd
Equivalent ARM syntax and encoding

RSBS Rd, Rn, #0

31 30 29 28 27 26 25 24 23 22 21 20 19 16 15 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 0 0 0 1 0 0 1 1 1 Rd Rd 0 0 0 0 0 0 0 0 0 0 0 0
ARM Architecture Reference Manual
ARM DUI 0100B

ORR

T
hum

b
ORR Rd, Rm
Logical OR

Architecture v4T only
Description The ORR (Logical OR) instruction can be used to set selected bits in a register;
for each bit, ORR with 1 will set the bit, and ORR with 0 will leave it unchanged.

ORR performs a bitwise (inclusive) OR of the value of register Rm with the value
of register Rd, and stores the result back in register Rd. The condition code flags
are updated (based on the result).

Operation Rd = Rd OR Rm
N Flag = Rd[31]
Z Flag = if Rd == 0 then 1 else 0
C Flag = <shifter_carry_out>
V Flag = unaffected

Exceptions None

Qualifiers None

15 14 13 12 11 10 9 8 7 6 5 3 2 0

0 1 0 0 0 0 1 1 0 0 Rm Rd
Equivalent ARM syntax and encoding

ORRS Rd, Rd, Rm

31 30 29 28 27 26 25 24 23 22 21 20 19 16 15 12 11 10 9 8 7 6 5 4 3 0

1 1 1 0 0 0 0 1 1 0 0 1 Rd Rd 0 0 0 0 0 0 0 0 Rm
6-61ARM Architecture Reference Manual
ARM DUI 0100B

POP

6-62

Pop multiple registers

Architecture v4T only

T
hu

m
b

POP {<register_list>, <PC>}
Description The POP (Pop Multiple Registers) instruction is useful for stack operations,
including procedure exit, to restore saved registers, load the PC with the return
address, and update the stack pointer.

POP loads a subset (or possibly all) of the general-purpose registers and
optionally the PC from sequential memory locations. Registers are loaded in
sequence:

• the lowest-numbered register first, from the lowest memory address
(<start_address>)

• the highest-numbered register last, from the highest memory address
(<end_address>)

The <start_address> is the value of the SP.

Subsequent addresses are formed by incrementing the previous address by four.
One address is produced for each register that is specified in <register_list> .

The <end_address> value is four less than the sum of the value of the SP and
four times the number of registers specified in <register_list> (including
the R bit).

Finally, the base register Rn is incremented by four times the numbers of registers
in <register_list> (plus the R bit).

Operation
<start_address> = Rn
<end_address> = Rn + (Number_Of_Set_Bits_In(<register_list> + R) * 4) - 4
<address> = <start_address>
for i = 0 to 7

if <register_list>[i] == 1
Ri = Memory[<address>,4]
<address> = <address> + 4

if R == 1
PC = Memory[<address>,4]
<address> = <address> + 4

assert <end_address> == <address> - 4
Rn = Rn + (Number_Of_Set_Bits_In(<register_list> + R) * 4)

15 14 13 12 11 10 9 8 7 0

1 0 1 1 1 1 0 R register_list
Equivalent ARM syntax and encoding

LDMIA SP!, <register_list>, {PC}

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 0

1 1 1 0 1 0 0 0 1 0 1 1 1 1 0 1 R 0 0 0 0 0 0 0 register_list
ARM Architecture Reference Manual
ARM DUI 0100B

POP

T
hum

b

Pop multiple registers

Architecture v4T only
Exceptions Data Abort

Qualifiers None

Notes The R bit: If R == 1, the PC is also loaded from the stack; if R == 0, the PC is not
loaded.

Data Abort: If a data abort is signalled, the value left in SP is IMPLEMENTATION
DEFINED, but is either the original SP value or the updated SP value.

Non-word aligned addresses: Pop multiple instructions ignore the least-significant
two bits of <address> (the words are not rotated as for load word).

Alignment: If an implementation includes a System Control Coprocessor
(see Chapter 7, System Architecture and System Control Coprocessor), and
alignment checking is enabled, an address with bits[1:0] != 0b00 will cause
an alignment exception.
6-63ARM Architecture Reference Manual
ARM DUI 0100B

PUSH

6-64

Push multiple registers

Architecture v4T only

T
hu

m
b

PUSH {<register_list>, <LR>}
The PUSH (Push Multiple Registers) instruction is useful for stack operations,
including procedure entry, to save registers (optionally including the return
address), and to update the stack pointer.

PUSH stores a subset (or possibly all) of the general-purpose registers and
optionally the LR to sequential memory locations. The registers are stored in
sequence:

• the lowest-numbered register first, to the lowest memory address
(<start_address>)

• the highest-numbered register last, to the highest memory address
(<end_address>)

The <start_address> is the value of the SP.

Subsequent addresses are formed by incrementing the previous address by four.
One address is produced for each register that is specified in <register_list> .

The <end_address> value is four less than the sum of the value of the SP and
four times the number of registers specified in <register_list> (including the
R bit).

Finally, the base register Rn is incremented by four times the numbers of registers
in <register_list> (plus the R bit).

Operation
<start_address> = Rn
<end_address> = Rn + (Number_Of_Set_Bits_In(<register_list> + R) * 4) - 4
<address> = <start_address>
for i = 0 to 7

if <register_list>[i] == 1
Memory[<address>,4] = Ri
<address> = <address> + 4

if R == 1
Memory[<address>,4] = LR
<address> = <address> + 4

assert <end_address> == <address> - 4
Rn = Rn + (Number_Of_Set_Bits_In(<register_list> + R) * 4)

15 14 13 12 11 10 9 8 7 0

1 0 1 1 0 1 0 R register_list
Equivalent ARM syntax and encoding

LDMDB SP!, <register_list>, {LR}

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 0

1 1 1 0 1 0 0 1 0 0 1 0 1 1 0 1 0 R 0 0 0 0 0 0 register_list
ARM Architecture Reference Manual
ARM DUI 0100B

PUSH

T
hum

b

Push multiple registers

Architecture v4T only
Exceptions Data Abort

Qualifiers None

Notes The R bit: If R == 1, the LR is also stored to the stack; if R == 0, the LR is not stored.

Data Abort: If a data abort is signalled, the value left in SP is IMPLEMENTATION
DEFINED, but is either the original SP value or the updated SP value.

Non-word aligned addresses: Push multiple instructions ignore the least-significant
two bits of <address> (the words are not rotated as for load word).

Alignment: If an implementation includes a System Control Coprocessor
(see Chapter 7, System Architecture and System Control Coprocessor), and
alignment checking is enabled, an address with bits[1:0] != 0b00 will cause
an alignment exception.
6-65ARM Architecture Reference Manual
ARM DUI 0100B

ROR

6-66

Rotate right
(register)

Achitecture v4T only

T
hu

m
b

ROR Rd, Rs
Description The ROR (Rotate Right Register) instruction is used to provide the value of
a register rotated by a variable value (in a register).

ROR performs a rotate right of the value of register Rd by the value in
the least-significant byte of register Rs, and stores the result back into register Rd.
The bits that are rotated off the right end are inserted into the vacated bit positions
on the left. The condition code flags are updated (based on the result).

Operation if Rs[7:0] == 0 then
C Flag = unaffected
Rd = unaffected

else if Rs[4:0] == 0 then
C Flag = Rd[31]
Rd = unaffected

else /* Rs[4:0] > 0 */
C Flag = Rd[Rs[4:0] - 1]
Rd = Rd Rotate_Right Rs[4:0]

Exceptions None

Qualifiers None

15 14 13 12 11 10 9 8 7 6 5 3 2 0

0 1 0 0 0 0 0 1 1 1 Rs Rd
Equivalent ARM syntax and encoding

MOVS Rd, Rd, ROR Rs

31 30 29 28 27 26 25 24 23 22 21 20 19 16 15 12 11 8 7 6 5 4 3 0

1 1 1 0 0 0 0 1 1 0 1 1 SBZ Rd Rs 0 1 1 1 Rd
ARM Architecture Reference Manual
ARM DUI 0100B

SBC

T
hum

b
SBC Rd, Rm
Subtract with carry
(register)

Architecture v4T only
Description The SBC (Subtract with Carry) instruction is used to synthesize 64-bit subtraction.
If register pairs R0,R1 and R2,R3 hold 64-bit values (R0 and R2 hold the
least-significant word), the following instructions leave the 64-bit sum in R0,R1.

SUB R0,R2
SBC R1,R3

SBC subtracts the value of register Rm and the value of NOT(Carry Flag) from
the value of register Rd, and stores the result in register Rd. The condition code
flags are updated (based on the result).

Operation Rd = Rd - Rm - NOT(C Flag)
N Flag = Rd[31]
Z Flag = if Rd == 0 then 1 else 0
C Flag = CarryFrom(Rd - Rm - NOT(C Flag))
V Flag = OverflowFrom(Rd - Rm - NOT(C Flag))

Exceptions None

Qualifiers None

15 14 13 12 11 10 9 6 5 3 2 0

0 1 0 0 0 0 0 1 1 0 Rm Rd
Equivalent ARM syntax and encoding

SBCS Rd, Rd, Rm

31 30 29 28 27 26 25 24 23 22 21 20 19 16 15 12 11 10 9 8 7 6 5 4 3 0

1 1 1 0 0 0 0 0 1 1 0 1 Rd Rd 0 0 0 0 0 0 0 0 Rm
6-67ARM Architecture Reference Manual
ARM DUI 0100B

STM

6-68

Store multiple
increment after

Architecture v4T only

T
hu

m
b

STMIA Rn!, <register_list>
Description The STM (Store Multiple) instruction is useful as a block store instruction.
Combined with LDM (load multiple), it allows efficient block copy.

The STMIA (Store Multiple Increment After) instruction stores a subset (or possibly
all) of the general-purpose registers to sequential memory locations. The registers
are stored in sequence:

• the lowest-numbered register first, to the lowest memory address
(<start_address>)

• the highest-numbered register last, to the highest memory address
(<end_address>)

The <start_address> is the value of the base register Rn.

Subsequent addresses are formed by incrementing the previous address by four.
One address is produced for each register that is specified in <register_list> .

The <end_address> value is four less than the sum of the value of the base
register and four times the number of registers specified in <register_list> .

Finally, the base register Rn is incremented by 4 times the numbers of registers in
<register_list> .

Operation
<start_address> = Rn
<end_address> = Rn + (Number_Of_Set_Bits_In(<register_list>) * 4) - 4
<address> = <start_address>
for i = 0 to 7

if <register_list>[i] == 1
Memory[<address>,4] = Ri
<address> = <address> + 4

assert <end_address> == <address> - 4
Rn = Rn + (Number_Of_Set_Bits_In(<register_list>) * 4)

15 14 13 12 11 10 8 7 0

1 1 0 0 0 Rn register_list
Equivalent ARM syntax and encoding

STMIA Rn!, <register_list>

31 30 29 28 27 26 25 24 23 22 21 20 19 16 15 14 13 12 11 10 9 8 7 0

1 1 1 0 1 0 0 0 1 0 1 0 Rn 0 0 0 0 0 0 0 0 register_list
ARM Architecture Reference Manual
ARM DUI 0100B

STM

T
hum

b

Store multiple
increment after

Architecture v4T only
Exceptions Data Abort

Qualifiers None

Notes Register Rn: Specifies the base register used by <addressing_mode> .

Operand restrictions: If the base register Rn is specified in <register_list> ,
and writeback is specified, the value of Rn stored for Rn is UNPREDICTABLE.

Data Abort: If a data abort is signalled, the value left in Rn is IMPLEMENTATION
DEFINED, but is either the original base register value or the updated base
register value.

Non-word-aligned addresses: Store multiple instructions ignore the
least-significant two bits of <address> (the words are not rotated as for load
word).

Alignment: If an implementation includes a System Control Coprocessor
(see Chapter 7, System Architecture and System Control Coprocessor), and
alignment checking is enabled, an address with bits[1:0] != 0b00 will cause
an alignment exception.
6-69ARM Architecture Reference Manual
ARM DUI 0100B

STR (1)

6-70

Store word
immediate offset

Architecture v4T only

T
hu

m
b

STR Rd, [Rn, #5_bit_offset])
Description The STR (Store Register) instruction allows 32-bit data from a general-purpose
register to be stored to memory. The addressing mode is useful for accessing
structure (record) fields. With an offset of zero, the address produced is
the unaltered value of the base register Rn.

STR stores a word from register Rd to memory. The memory address is calculated
by adding 4 times the value of <5_bit_offset> to the value of register Rn.
If the address is not word-aligned, the result is UNPREDICTABLE.

Operation <address> = Rn + (5_bit_offset * 4)
<data> = Rd
if <address>[1:0] == 0b00

Memory[<address>,4] = <data>
else

Memory[<address>,4] = UNPREDICTABLE

Exceptions Data Abort

Qualifiers None

Notes Alignment: If an implementation includes a System Control Coprocessor
(see Chapter 7, System Architecture and System Control Coprocessor), and
alignment checking is enabled, an address with bits[1:0] != 0b00 will cause
an alignment exception.

15 14 13 12 11 10 6 5 3 2 0

0 1 1 0 0 5_bit_offset Rn Rd
Equivalent ARM syntax and encoding

STR Rd, [Rn, #5_bit_offset]

31 30 29 28 27 26 25 24 23 22 21 20 19 16 15 12 11 10 9 8 7 6 2 1 0

1 1 1 0 0 1 0 1 1 0 0 0 Rn Rd 0 0 0 0 0 5_bit_offset 0 0
ARM Architecture Reference Manual
ARM DUI 0100B

STR (2)

T
hum

b
STR Rd, [Rn, Rm]
Store word
register offset

Architecture v4T only
Description This form of the STR (Store Register) instruction allows 32-bit data from
a general-purpose register to be stored to memory. The addressing mode is useful
for pointer + large offset arithmetic (use the MOV immediate to set the offset), and
for accessing a single element of an array.

In this case, STR stores a word from register Rd to memory. The memory address
is calculated by adding the value of register Rm to the value of register Rn.
If the address is not word-aligned, the result is UNPREDICTABLE.

Operation <address> = Rn + Rm
<data> = Rd
if <address>[1:0] == 0b00

Memory[<address>,4] = <data>
else

Memory[<address>,4] = UNPREDICTABLE

Exceptions Data Abort

Qualifiers None

Notes Alignment: If an implementation includes a System Control Coprocessor
(see Chapter 7, System Architecture and System Control Coprocessor), and
alignment checking is enabled, an address with bits[1:0] != 0b00 will cause
an alignment exception.

15 14 13 12 11 10 9 8 6 5 3 2 0

0 1 0 1 0 0 0 Rm Rn Rd
Equivalent ARM syntax and encoding

STR Rd, [Rn, Rm]

31 30 29 28 27 26 25 24 23 22 21 20 19 16 15 12 11 10 9 8 7 6 5 4 3 1 0

1 1 1 0 0 1 1 1 1 0 0 0 Rn Rd 0 0 0 0 0 0 0 0 Rm
6-71ARM Architecture Reference Manual
ARM DUI 0100B

STR (3)

6-72

Store word
SP-relative

Architecture v4T only

T
hu

m
b

STR Rd, [SP, #8_bit_offset]
Description This form of the STR (Store Register) instruction allows 32-bit data from
a general-purpose register to be stored to memory. The addressing mode is useful
for accessing stack data.

In this case, STR stores a word from register Rd to memory. The memory address
is calculated by adding 4 times the value of <8_bit_offset> to the value of
the SP. If the address is not word-aligned, the result is UNPREDICTABLE.

Operation <address> = SP + (8_bit_offset * 4)
<data> = Rd
if <address>[1:0] == 0b00

Memory[<address>,4] = Rd
else

Memory[<address>,4] = UNPREDICTABLE

Exceptions Data Abort

Qualifiers None

Notes Alignment: If an implementation includes a System Control Coprocessor
((see Chapter 7, System Architecture and System Control Coprocessor), and
alignment checking is enabled, an address with bits[1:0] != 0b00 will cause
an alignment exception.

15 14 13 12 11 10 9 8 7 6 0

1 0 0 1 0 Rn 8_bit_offset
Equivalent ARM syntax and encoding

STR Rd, [SP, #8_bit_offset]

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 12 11 10 9 2 1 0

1 1 1 0 0 1 0 1 1 0 0 0 1 1 0 1 Rd 0 0 8_bit_offset 0 0
ARM Architecture Reference Manual
ARM DUI 0100B

STRB (1)

T
hum

b
STRB Rd, [Rn, #5_bit_offset]
Store byte
immediate offset

Architecture v4T only
Description This form of the STRB (Store Register Byte) instruction allows 8-bit data from
a general-purpose register to be stored to memory. The addressing mode is useful
for accessing structure (record) fields. With an offset of zero, the address produced
is the unaltered value of the base register Rn.

In this case, STRB stores a byte from the least-significant byte of register Rd to
memory. The memory address is calculated by adding the value of
<5_bit_offset> to the value of register Rn.

Operation <address> = Rn + 5_bit_offset
Memory[<address>,1] = Rd[7:0]

Exceptions Data Abort

Qualifiers None

15 14 13 12 11 10 6 5 3 2 0

0 1 1 1 0 5_bit_offset Rn Rd
Equivalent ARM syntax and encoding

STRB Rd, [Rn, #5_bit_offset]

31 30 29 28 27 26 25 24 23 22 21 20 19 16 15 12 11 10 9 8 7 6 2 1 0

1 1 1 0 0 1 0 1 1 1 0 0 Rn Rd 0 0 0 0 0 5_bit_offset 0 0
6-73ARM Architecture Reference Manual
ARM DUI 0100B

STRB (2)

6-74

Store byte
register offset

Architecture v4T only

T
hu

m
b

STRB Rd, [Rn, Rm]
Description This form of the STRB (Store Register Byte) instruction allows 8-bit data from
a general-purpose register to be stored to memory. The addressing mode is useful
for pointer + large offset arithmetic (use the MOV immediate to set the offset), and
for accessing a single element of an array.

In this case, STRB stores a byte from the least-significant byte of register Rd
to memory. The memory address is calculated by adding the value register Rm
to the value of register Rn.

Operation <address> = Rn + Rm
Memory[<address>,1] = Rd[7:0]

Exceptions Data Abort

Qualifiers None

15 14 13 12 11 10 9 8 6 5 3 2 0

0 1 0 1 0 1 0 Rm Rn Rd
Equivalent ARM syntax and encoding

STRB Rd, [Rn, Rm]

31 30 29 28 27 26 25 24 23 22 21 20 19 16 15 12 11 10 9 8 7 6 5 4 3 0

1 1 1 0 0 1 1 1 1 1 0 0 Rn Rd 0 0 0 0 0 0 0 0 Rm
ARM Architecture Reference Manual
ARM DUI 0100B

STRH (1)

T
hum

b
STRH Rd, [Rn, #5_bit_offset]
Store halfword
immediate offset

Architecture v4T only
Description This form of the STRH (Store Register Halfword) instruction allows 16-bit data from
a general-purpose register to be stored to memory. The addressing mode is useful
for accessing structure (record) fields. With an offset of zero, the address produced
is the unaltered value of the base register Rn.

In this case, STRH stores a halfword from the least-significant halfword of register
Rd to memory. The memory address is calculated by adding 2 times the value of
<5_bit_offset> to the value of register Rn. If the address is not
halfword-aligned, the result is UNPREDICTABLE.

Operation <address> = Rn + (5_bit_offset * 2)
<data> = Rd
if <address>[1:0] == 0

Memory[<address>,2] = <data>[15:0]
else

Memory[<address>,2] = UNPREDICTABLE

Exceptions Data Abort

Qualifiers None

Notes Alignment: If an implementation includes a System Control Coprocessor
(see Chapter 7, System Architecture and System Control Coprocessor), and
alignment checking is enabled, an address with bit[0] != 0 will cause
an alignment exception.

15 14 13 12 11 10 6 5 3 2 0

1 0 0 0 0 5_bit_offset Rn Rd
Equivalent ARM syntax and encoding

STRH Rd, [Rn, #5_bit_offset]

31 30 29 28 27 26 25 24 23 22 21 20 19 16 15 12 11 10 9 8 7 6 5 4 3 0

1 1 1 0 0 0 0 1 1 1 0 0 Rn Rd 0 0 0 O4 1 0 1 1 offset[3:0]
6-75ARM Architecture Reference Manual
ARM DUI 0100B

STRH (2)

6-76

Store halfword
register offset

Architecture v4T only

T
hu

m
b

STRH Rd, [Rn, Rm]
Description This form of the STRH (Store Register Halfword) instruction allows 16-bit data from
a general-purpose register to be stored to memory. The addressing mode is useful
for pointer + large offset arithmetic (use the MOV immediate to set the offset), and
accessing a single element of an array.

In this case, STRH stores a halfword from the least-significant halfword of register
Rd to memory. The memory address is calculated by adding the value of register
Rm to the value of register Rn. If the address is not halfword-aligned, the result is
UNPREDICTABLE.

Operation <address> = Rn + Rm
<data> = Rd
if <address>[1:0] == 0

Memory[<address>,2] = <data>[15:0]
else

Memory[<address>,2] = UNPREDICTABLE

Exceptions Data Abort

Qualifiers None

Notes Alignment: If an implementation includes a System Control Coprocessor (see
Chapter 7, System Architecture and System Control Coprocessor), and
alignment checking is enabled, an address with bit[0] != 0 will cause
an alignment exception.

15 14 13 12 11 10 9 8 6 5 3 2 0

0 1 0 1 0 0 1 Rm Rn Rd
Equivalent ARM syntax and encoding

STRH Rd, [Rn, Rm]

31 30 29 28 27 26 25 24 23 22 21 20 19 16 15 12 11 8 7 6 5 4 3 2 1 0

1 1 1 0 0 0 0 1 1 0 0 0 Rn Rd SBZ 1 0 1 1 Rm
ARM Architecture Reference Manual
ARM DUI 0100B

SUB (1)

T
hum

b
SUB Rd, Rn, #<3_bit_immediate>
Subtract immediate

Architecture v4T only
Description This form of the SUB (Subtract) instruction subtracts a small constant value from
the value of a register and stores the result in a second register.

In this case, SUB subtracts the value of the 3-bit immediate (values 0 to 7) from
the value of register Rn, and stores the result in the destination register Rd.
The condition code flags are updated (based on the result).

Operation Rd = Rn - <3_bit_immed>
N Flag = Rd[31]
Z Flag = if Rd == 0 then 1 else 0
C Flag = NOT BorrowFrom(Rn - <3_bit_immed>)
V Flag = OverflowFrom(Rn - <3_bit_immed>)

Exceptions None

Qualifiers None

15 14 13 12 11 10 9 8 6 5 3 2 0

0 0 0 1 1 1 1 3_bit_immediate Rn Rd
Equivalent ARM syntax and encoding

SUBS Rd, Rn, #<3_bit_immediate>

31 30 29 28 27 26 25 24 23 22 21 20 19 16 15 12 11 10 9 8 7 6 5 4 3 2 0

1 1 1 0 0 0 1 0 0 1 0 1 Rn Rd 0 0 0 0 0 0 0 0 0 #3_bit_imm
6-77ARM Architecture Reference Manual
ARM DUI 0100B

SUB (2)

6-78

Subtract
large immediate

Architecture v4T only

T
hu

m
b

SUB Rd, #<8_bit_immediate>
Description This form of the SUB (Subtract) instruction subtracts a large constant value from
the value of a register and stores the result back in the same register.

In this case, SUB subtracts the value of the 8-bit immediate (values 0 to 255) from
the value of register Rd, and stores the result back in the register Rd.
The condition code flags are updated (based on the result).

Operation Rd = Rd - <8_bit_immed>
N Flag = Rd[31]
Z Flag = if Rd == 0 then 1 else 0
C Flag = NOT BorrowFrom(Rd - <8_bit_immed>)
V Flag = OverflowFrom(Rd - <8_bit_immed>)

Exceptions None

Qualifiers None

15 14 13 12 11 10 8 7 0

0 0 1 1 1 Rd 8_bit_immediate
Equivalent ARM syntax and encoding

SUBS Rd, Rd, #<8_bit_immediate>

31 30 29 28 27 26 25 24 23 22 21 20 19 16 15 12 11 10 9 8 7 0

1 1 1 0 0 0 1 0 0 1 0 1 Rd Rd 0 0 0 0 8_bit_immediate
ARM Architecture Reference Manual
ARM DUI 0100B

SUB (3)

T
hum

b
SUB Rd, Rn, Rm
Subtract register

Architecture v4T only
This form of the SUB (Subtract) instruction subtracts the value of one register from
the value of a second register and stores the result in a third register.

In this case, SUB subtracts the value of register Rm from the value of register Rn,
and stores the result in the destination register Rd. The condition code flags are
updated (based on the result).

Operation Rd = Rn - Rm
N Flag = Rd[31]
Z Flag = if Rd == 0 then 1 else 0
C Flag = NOT BorrowFrom(Rn - Rm)
V Flag = OverflowFrom(Rn - Rm)

Exceptions None

Qualifiers None

15 14 13 12 11 10 9 8 6 5 3 2 0

0 0 0 1 1 0 1 Rm Rn Rd
Equivalent ARM syntax and encoding

SUBS Rd, Rn, Rm

31 30 29 28 27 26 25 24 23 22 21 20 19 16 15 12 11 10 9 8 7 6 5 4 3 0

1 1 1 0 0 0 0 0 0 1 0 1 Rn Rn 0 0 0 0 0 0 0 0 Rm
6-79ARM Architecture Reference Manual
ARM DUI 0100B

SUB (4)

6-80

Decrement
stack pointer

Architecture v4T only

T
hu

m
b

SUB, SP, SP, #<7_bit_immediate>
Description This form of the SUB (Subtract) instruction is used to increase the size of the stack.

In this case, SUB subtracts the value of the 7-bit immediate (values 0 to 127) and
the value of the SP, and stores the result back in the SP.

Operation SP = SP - <7_bit_immed>

Exceptions None

Qualifiers None

15 14 13 12 11 10 9 8 7 6 5 0

1 0 1 1 0 0 0 0 1 7_bit_immediate
Equivalent ARM syntax and encoding

SUB SP, SP, #<7_bit_immediate>

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 0

1 1 1 0 0 0 1 0 0 1 0 0 1 1 0 1 1 1 0 1 0 0 0 0 0 7_bit_immediate
ARM Architecture Reference Manual
ARM DUI 0100B

SWI

T
hum

b
SWI <8_bit_immediate>
Software Interrupt

Architecture v4T only
Description The SWI instruction is used as an operating system service call. It can be used in
two ways:
1 Uses the 8-bit offset to indicate the OS service that is required.
2 Ignores the 8-bit field and indicates the service required with

a general-purpose register.

A SWI exception is generated, which is handled by an operating system to provide
the requested service; see 2.5 Exceptions on page 2-6.

Operation R14_svc = PC
SPSR_svc = CPSR
CPSR[7] = 0 ; begin ARM execution
CPSR[4:0] = 0b10011 ; enter Supervisor mode
CPSR[7] = 1 ; disable IRQ
PC = 0x08

Exceptions None

Qualifiers None

15 14 13 12 11 10 9 8 7 0

1 1 0 1 1 1 1 1 8_bit_immediate
Equivalent ARM syntax and encoding

SWI <8_bit_immediate>

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 0

1 1 1 0 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 8_bit_immediate
6-81ARM Architecture Reference Manual
ARM DUI 0100B

TST

6-82

Test bits

Architecture v4T only

T
hu

m
b

TST Rn, Rm
Description The TST (Test) instruction is used to determine if many bits of a register are all
clear, or if at least one bit of a register is set.

TST performs a comparison by logically ANDing the value of register Rm from
the value of register Rd. The condition code flags are updated (based on the
result).

Operation <alu_out> = Rn AND Rm
N Flag = <alu_out>[31]
Z Flag = if <alu_out> == 0 then 1 else 0
C Flag = UNAFFECTED

V Flag = UNAFFECTED

Exceptions None

Qualifiers None

15 14 13 12 11 10 9 8 7 6 5 3 2 0

0 1 0 0 0 0 1 0 0 0 Rm Rn
Equivalent ARM syntax and encoding

TST Rn, Rm

31 30 29 28 27 26 25 24 23 22 21 20 19 16 15 12 11 10 9 8 7 6 5 4 3 0

1 1 1 0 0 0 0 1 0 0 0 1 Rn SBZ 0 0 0 0 0 0 0 0 Rm
ARM Architecture Reference Manual
ARM DUI 0100B

7

System Architecture and
System Control Coprocessor

System Architecture and
System Control Coprocessor

This chapter describes ARM system architecture, and the system control
processor.

7.1 Introduction 7-2

7.2 CP15 Access 7-2

7.3 CP15 Architectures 7-2

7.4 ARMv4 System Control Coprocessor 7-3

7.5 ARMv3 System Control Coprocessor 7-10

7.6 Memory Management Unit (MMU) Architecture 7-14

7.7 Cache and Write Buffer Control 7-22

7.8 Access Permissions 7-22

7.10 Aborts 7-24

7.11 MMU Faults 7-24

7.9 Domains 7-23

7.12 External Aborts 7-28

7.13 System-level Issues 7-29

7.14 Semaphores 7-31

7

ARM Architecture Reference Manual
ARM DDI 0100B

7-1

System Architecture and System Control Coprocessor

7.1 Introduction

Implementations of the ARM architecture optionally incorporate:

• on-chip Memory Management Unit (MMU) (including Translation Lookaside
Buffer(s) (TLB))

• Instruction and/or Data Cache (IDC)
• Write Buffer (WB)

If these functions are implemented, coprocessor 15 is used to control them.
Coprocessor 15 is called the System Control Coprocessor or just CP15.

The MMU incorporates a two-level page table for virtual to physical address translation,
and access permission attributes for each virtual to physical translation. The MMU page
tables also contain cache and write buffer enables; therefore, if a cache or a write buffer
is implemented, the MMU must also be implemented

7.2 CP15 Access
CP15 defines 16 registers. CP15 registers can only be accessed with MRC and MCR
instructions (CDP, LDC and STC instructions to CP15 will cause an undefined
instruction trap). The CRn field of MRC and MCR instructions specify the coprocessor
register to access, and the CRm field and opcode_2 field are used to specify a particular
action when addressing some registers.

Opcode_1 should be zero (SBZ) for all CP15 instructions.

If a cache, MMU and Write Buffer are not implemented, CP15 will not be implemented,
and all accesses to CP15 will cause undefined exceptions.

Any access to CP15 while the processor is in User mode will cause an undefined
instruction exception.

An MRC instruction from coprocessor 15 to register 15 is UNPREDICTABLE.

7.3 CP15 Architectures
If a cache, MMU and Write Buffer are implemented, CP15 register 0 contains
an architecture field that specifies a particular layout and functionality for the remaining
registers.

Reading from CP15 register 0 returns an architecture and implementation-defined
identification from the processor:

31 28 27 26 25 24 23 21 20 19 16 15 12 11 8 7 5 4 3 0

cond 1 1 1 0 opcode_1 0 CRn Rd 1 1 1 1 opcode_2 1 CRm

31 24 23 16 15 4 3 0

Implementor Architecture version Part number Revision
ARM Architecture Reference Manual
ARM DDI 0100B

7-2

System Architecture and System Control Coprocessor

Bits[3:0] contain the revision number for the processor

Bits[15:4] contain a 3-digit part number in binary-coded decimal format

Bits[23:16] contain the architecture version:
0x00 Version 3 (see 7.5 ARMv3 System Control Coprocessor on

page 7-10)
0x01 Version 4 (see 7.4 ARMv4 System Control Coprocessor

below)

Bits[31:24] contain the ASCII code of an implementor’s trademark:
0x41 = A ARM Ltd
0x44 = D Digital Equipment Corporation

7.4 ARMv4 System Control Coprocessor
ARM Architecture Version 4 System Control Coprocessor is designed to control a single
combined instruction and data cache, or separate instructions and data caches, a write
buffer, a prefetch buffer, and a virtual to physical address translator including combined
instruction and data TLB or separate instruction and data TLB. CP15 also controls
various system configuration signals.

Register Reads Writes Update Policy

0 ID Register UNPREDICTABLE No update

1 Control Control Read Modify Write

2 Translation Table Base Translation Table Base

3 Domain Access Control Domain Access Control

4 UNPREDICTABLE UNPREDICTABLE

5 Fault Status Fault Status

6 Fault Address Fault Address

7 Cache Operations Cache operations Write only

8 TLB operations TLB operations Write only

9 to 15 UNPREDICTABLE UNPREDICTABLE

 Table 7-1: ARMv4 CP15 register summary
ARM Architecture Reference Manual
ARM DDI 0100BI

7-3

System Architecture and System Control Coprocessor

7.4.1 Register 0: ID register

Reading from CP15 register 0 returns the implementation-defined identification for
the processor. The CRm and opcode_2 fields are ignored when reading CP15
register 0, and SHOULD BE ZERO.

Bits[3:0] contain the revision number for the processor

Bits[15:4] contain a 3-digit part number in binary-coded decimal format
(for example, 0x810 for ARM810)

Bits[23:16] contain the architecture version
(for example, 0x01 = Version 4)

Bits[31:24] contain the ASCII code of an implementation trademark
(0x41 = A = ARM Ltd.)

Note Writing to CP15 register 0 is unpredictable.

7.4.2 Register 1: Control register

Reading from CP15 register 1 reads the control bits. The CRm and opcode_2 fields are
IGNORED when reading CP15 register 1, and should be zero.

Writing to CP15 register 1 sets the control bits. The CRm and opcode_2 fields are not
used when writing CP15 register 1, and should be zero.

All control bits are set to zero on reset. The control bits have the following functions:

M Bit 0 Memory Management Unit (MMU) Enable/Disable
0 = MMU disabled
1 = MMU enabled

A Bit 1 Alignment Fault Enable/Disable
0 = Address alignment fault checking disabled
1 = Address alignment fault checking enabled

C Bit 2 Instruction and data cache Enable/Disable
If separate instruction and data caches are implemented, this bit
controls only the data cache enable/disable, and the I bit (bit 12)
controls the instruction cache enable/disable.
0 = Instruction and data cache (IDC) disabled
1 = Instruction and data cache (IDC) enabled

W Bit 3 Write buffer Enable/Disable
0 = Write buffer disabled
1 = Write buffer enabled

31 24 23 16 15 4 3 0

Implementor 0 0 0 0 0 0 0 1 Part number Revision

31 13 12 11 10 9 8 7 6 5 4 3 2 1 0

DNM/SBZ I Z F R S B L D P W C A M
ARM Architecture Reference Manual
ARM DDI 0100B

7-4

System Architecture and System Control Coprocessor

P Bit 4 32-bit/26-bit Exception handlers

Implementations that support 26-bit configurations (see Chapter 5,
The 26-bit Architectures) use this bit to control the PROG32 signal.
0 = 26-bit exception handlers
1 = 32-bit exception handlers
This bit is UNPREDICTABLE on implementations that do not support
26-bit configurations, and should be 1.

D Bit 5 32-bit/26-bit data address range
Implementations that support 26-bit data spaces use this bit to control
the DATA32 signal (see Chapter 5, The 26-bit Architectures).
0 = 26-bit data address checking enabled
1 = 26-bit data address checking disabled (32-bit data addresses)
This bit is UNPREDICTABLE on implementations that do not support
26-bit data spaces, and should be 1.

L Bit 6 IMPLEMENTATION DEFINED.

B Bit 7 Big endian/Little endian
0 = Little endian operation
1 = Big endian operation

S Bit 8 System protection
This bit modifies the MMU protection system.

R Bit 9 ROM protection
This bit modifies the MMU protection system.

F Bit 10 IMPLEMENTATION DEFINED

Z Bit 11 IMPLEMENTATION DEFINED

I Bit 12 Instruction cache enable/disable
0 = Instruction cache disabled
1 = Instruction cache enabled
If separate instruction and data caches are implemented, this bit
controls the instruction cache enable/disable, and the C bit (bit 2)
controls the data cache enable/disable. If a combined instruction and
data cache is implemented, any writes to this bit are IGNORED, and
reads return an UNPREDICTABLE value.

Bits 31:13 When read return an UNPREDICTABLE value, and when written SHOULD
BE ZERO.

Enabling the MMU

Care must be taken if the translated address differs from the untranslated address,
as the instructions following the enabling of the MMU will have been fetched using no
address translation and enabling the MMU may be considered as a branch with delayed
execution. A similar situation occurs when the MMU is disabled. The correct code
sequence for enabling and disabling the MMU is IMPLEMENTATION DEFINED.

If the cache and/or write buffer are enabled when the MMU is not enabled, the results
are UNPREDICTABLE.
ARM Architecture Reference Manual
ARM DDI 0100BI

7-5

System Architecture and System Control Coprocessor

7.4.3 Register 2: Translation table base register

Reading from CP15 register 2 returns the pointer to the currently active first-level
translation table in bits[31:14] and an unpredictable value in bits[13:0]. The CRm and
opcode_2 fields are IGNORED when reading CP15 register 2, and SHOULD BE ZERO.

Writing to CP15 register 2 updates the pointer to the currently active first-level
translation table from the value in bits[31:14] of the written value. Bits[13:0] must be
written as zero. The CRm and opcode_2 fields are ignored when writing CP15
register 2, and SHOULD BE ZERO.

7.4.4 Register 3: Domain access control register

Reading from CP15 register 3 returns the value of the Domain Access Control Register.
The CRm and opcode_2 fields are IGNORED when reading CP15 register 3, and SHOULD

BE ZERO.

Writing to CP15 register 3 writes the value of the Domain Access Control Register.
The CRm and opcode_2 fields are IGNORED when writing CP15 register 3, and SHOULD

BE ZERO.

The Domain Access Control Register consists of sixteen 2-bit fields, each defining
the access permissions for one of the 16 Domains (D15-D0). For the meaning of each
field, see 7.9 Domains on page 7-23.

7.4.5 Register 4: Reserved

Reading and writing CP15 register 4 is unpredictable.

31 14 13 0

Translation Table Base UNP/SBZP

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

D15 D14 D13 D12 D11 D10 D9 D8 D7 D6 D5 D4 D3 D2 D1 D0
ARM Architecture Reference Manual
ARM DDI 0100B

7-6

System Architecture and System Control Coprocessor

7.4.6 Register 5: Fault status register

Reading CP15 register 5 returns the value of the Fault Status Register (FSR). The FSR
contains the source of the last data fault. Note that only the bottom 9 bits are returned.
The upper 23 bits are unpredictable. The FSR indicates the domain and type of access
being attempted when an abort occurred.

Bit 8 returns zero

Bits 7:4 specify which of the 16 domains (D15-D0) was being accessed when
a fault occurred

Bits 3:0 indicate the type of access being attempted. The encoding of these
bits is shown in Table 7-9: Priority encoding of fault status on page
7-25.

The FSR is only updated for data faults, not for prefetch faults. The CRm and opcode_2
fields are IGNORED when reading CP15 register 5, and SHOULD BE ZERO.

Writing CP15 register 5 sets the Fault Status Register to the value of the data written.
This is useful for a debugger to restore the value of the FSR. The upper 24 bits written
should be zero (SBZ). The CRm and opcode_2 fields are IGNORED when writing CP15
register 5, and SHOULD BE ZERO.

7.4.7 Register 6: Fault address register

Reading CP15 register 6 returns the value of the Fault Address Register (FAR).
The FAR holds the virtual address of the access which was attempted when a fault
occurred. The FAR is only updated for data faults, not for prefetch faults. The CRm and
opcode_2 fields are IGNORED when reading CP15 register 6, and SHOULD BE ZERO.

Writing CP15 register 6 sets the Fault Address Register to the value of the data written.
This is useful for a debugger to restore the value of the FAR. The CRm and opcode_2
fields are IGNORED when writing CP15 register 6, and SHOULD BE ZERO.

31 9 8 7 4 3 0

UNP/SBZP 0 Domain Status

31 0

Fault Address
ARM Architecture Reference Manual
ARM DDI 0100BI

7-7

System Architecture and System Control Coprocessor

7.4.8 Register 7: Cache functions

Writing to CP15 register 7 is used to control caches and buffers.

An ARM implementation may include a combined instruction and data cache, or
separate instruction and data caches. A write buffer, prefetch buffer and branch target
cache may also be implemented and are controlled by this register. Several cache
functions are defined, and the function to be performed is selected by the opcode_2 and
CRm fields in the MCR instruction used to write CP15 register 7.

The Flush ID functions flush (invalidate) all cache data.

The Flush Entry functions may be implemented to flush more than a single entry, up to
the entire cache.

The Clean D cache functions write out dirty data held in a writeback cache. They do not
invalidate any cached data.

Any functions that are not relevant to a particular implementation are UNPREDICTABLE.
All unused values of opcode_2 and CRm are UNPREDICTABLE.

Not all functions are provided by all implementations.

Reading CP15 register 7 is UNPREDICTABLE.

Function opcode_2 value CRm value Data Instruction

Flush ID cache(s) 0b000 0b0111 SBZ MCR p15, 0, Rd, c7, c7, 0

Flush ID single entry 0b001 0b0111 IMP MCR p15, 0, Rd, c7, c7, 1

Flush I cache 0b000 0b0101 SBZ MCR p15, 0, Rd, c7, c5, 0

Flush I single entry 0b001 0b0101 IMP MCR p15, 0, Rd, c7, c5, 1

Flush D cache 0b000 0b0110 SBZ MCR p15, 0, Rd, c7, c6, 0

Flush D single entry 0b001 0b0110 IMP MCR p15, 0, Rd, c7, c6, 1

Clean ID cache 0b000 0b1011 SBZ MCR p15, 0, Rd, c7, c11, 0

Clean ID cache entry 0b001 0b1011 IMP MCR p15, 0, Rd, c7, c11, 1

Clean D cache 0b000 0b1010 SBZ MCR p15, 0, Rd, c7, c10, 0

Clean D cache entry 0b001 0b1010 IMP MCR p15, 0, Rd, c7, c10, 1

Clean and Flush ID cache 0b000 0b1111 SBZ MCR p15, 0, Rd, c7, c15, 0

Clean and Flush ID entry 0b001 0b1111 IMP MCR p15, 0, Rd, c7, c15, 1

Clean and Flush D cache 0b000 0b1110 SBZ MCR p15, 0, Rd, c7, c14, 0

Clean and Flush D entry 0b001 0b1110 IMP MCR p15, 0, Rd, c7, c14, 1

Flush Prefetch Buffer 0b100 0b0101 SBZ MCR p15, 0, Rd, c7, c5, 4

Drain Write Buffer 0b100 0b1010 SBZ MCR p15, 0, Rd, c7, c10, 4

Flush Branch Target Cache 0b110 0b0101 SBZ MCR p15, 0, Rd, c7, c5, 6

Flush Branch Target Entry 0b111 0b0101 IMP MCR p15, 0, Rd, c7, c5, 7

 Table 7-2: Cache functions
ARM Architecture Reference Manual
ARM DDI 0100B

7-8

System Architecture and System Control Coprocessor

7.4.9 Register 8: TLB functions

Writing to CP15 register 8 is used to control Translation Lookaside Buffers (TLBs).
An ARM implementation may include a combined instruction and data TLB, or separate
instruction and data TLBs. Several TLB functions are defined, and the function to be
performed is selected by the opcode_2 and CRm fields in the MCR instruction used to
write CP15 register 6.

Not all functions are provided by all implementations.

The Flush ID functions flush (invalidate) all TLB data.

The Flush I and Flush D functions are intended for use on implementations with split
instruction and data TLBs; if used on an implementation with a combined TLB,
the behaviour is as if a Flush ID function was used.

The Flush Entry functions may be implemented to flush from more than a single entry
to the entire TLB.

Any functions that are not relevant to a particular implementation are UNPREDICTABLE.
All unused values of opcode_2 and CRm are UNPREDICTABLE.

Reading CP15 register 8 is UNPREDICTABLE.

7.4.10 11-15: Reserved

Accessing (reading or writing) any of these registers is unpredictable.

Function opcode_2 CRm Data Instruction

Flush ID TLB(s) 0b000 0b0111 SBZ MCR p15, 0, Rd, c8, c7, 0

Flush ID single entry 0b001 0b0111 Virtual Address MCR p15, 0, Rd, c8, c7, 1

Flush I TLB 0b000 0b0101 SBZ MCR p15, 0, Rd, c8, c5, 0

Flush I single entry 0b001 0b0101 Virtual Address MCR p15, 0, Rd, c8, c5, 1

Flush D TLB 0b000 0b0110 SBZ MCR p15, 0, Rd, c8, c6, 0

Flush D single entry 0b001 0b0110 Virtual Address MCR p15, 0, Rd, c8, c6, 1

 Table 7-3: TLB functions
ARM Architecture Reference Manual
ARM DDI 0100BI

7-9

System Architecture and System Control Coprocessor

7.5 ARMv3 System Control Coprocessor

The ARM Architecture Version 3 System Control Coprocessor is designed to control
a single combined instruction and data cache, a write buffer, and a virtual to physical
address translator including combined instruction and data TLB.

CP15 also controls various system configuration signals:

7.5.1 Register 0: ID register

Reading from CP15 register 0 returns an architecture and IMPLEMENTATION DEFINED

identification for the processor. The CRm and opcode_2 fields are IGNORED when
reading CP15 register 0, and SHOULD BE ZERO.

Bits[3:0] contain the revision number for the processor

Bits[15:4] contain a 3 digit part number in binary coded decimal format
(for example, 0x700 for ARM700)

Bits[23:16] contain the architecture version
(for example, 0x00 = Version 3)

Bits[31:24] contain the ASCII code of an implementor’s trademark
(for example, 0x41 = A = ARM Ltd.)

Writing to CP15 register 0 is unpredictable.

Register Reads Writes

0 ID Register UNPREDICTABLE

1 UNPREDICTABLE Control

2 UNPREDICTABLE Translation Table Base

3 UNPREDICTABLE Domain Access Control

4 UNPREDICTABLE UNPREDICTABLE

5 Fault Status Flush TLB

6 Fault Address Flush TLB Entry

7 UNPREDICTABLE Flush Cache

8 to 15 UNDEFINED UNDEFINED

 Table 7-4: ARMv3 CP15 register summary

31 24 23 16 15 4 3 0

Implementor 0 0 0 0 0 0 0 0 Part number Revision
ARM Architecture Reference Manual
ARM DDI 0100B

7-10

System Architecture and System Control Coprocessor

7.5.2 Register 1: Control Register

Reading from CP15 register 1 is UNPREDICTABLE.

Writing to CP15 register 1 sets the control bits. The CRm and opcode_2 fields are
IGNORED when writing CP15 register 1, and SHOULD BE ZERO.

All control bits are set to zero on reset. The control bits have the following functions:

M Bit 0 Memory Management Unit (MMU) Enable/Disable
0 = MMU disabled
1 = MMU enabled

A Bit 1 Alignment Fault Enable/Disable
0 = Address alignment fault checking disabled
1 = Address alignment fault checking enabled

C Bit 2 Instruction and data cache Enable/Disable
0 = Instruction and data cache (IDC) disabled
1 = Instruction and data cache (IDC) enabled

W Bit 3 Write buffer Enable/Disable
0 = Write buffer disabled
1 = Write buffer enabled

P Bit 4 32-bit/26-bit Exception handlers
Implementations that support 26-bit configurations use this bit to
control the PROG32 signal (see Chapter 5, The 26-bit Architectures)
0 = 26-bit exception handlers
1 = 32-bit exception handlers

D Bit 5 32-bit/26-bit data address range
Implementations that support 26-bit data spaces use this bit to control
the DATA32 signal (Chapter 5, The 26-bit Architectures)
0 = 26-bit data address checking enabled
1 = 26-bit data address checking disabled (32-bit data addresses)

L Bit 6 IMPLEMENTATION DEFINED.

B Bit 7 Big endian/Little endian
0 = Little endian operation
1 = Big endian operation

S Bit 8 System protection
This bit modifies the MMU protection system.

R Bit 9 ROM protection
This bit modifies the MMU protection system.

F Bit 10 IMPLEMENTATION DEFINED

Bits 31:11 When read, these bits return an UNPREDICTABLE value;
when written, SHOULD BE ZERO.

31 11 10 9 8 7 6 5 4 3 2 1 0

UNP/SBZ F R S B L D P W C A M
ARM Architecture Reference Manual
ARM DDI 0100BI

7-11

System Architecture and System Control Coprocessor

Enabling the MMU

Care must be taken if the translated address differs from the untranslated address,
as the instructions following the enabling of the MMU will have been fetched using no
address translation, and enabling the MMU may be considered as a branch with delayed
execution. A similar situation occurs when the MMU is disabled.

The correct code sequence for enabling and disabling the MMU is IMPLEMENTATION

DEFINED.

If the cache and/or write buffer are enabled when the MMU is not enabled, the results
are UNPREDICTABLE.

7.5.3 Register 2: Translation Table Base Register

Reading from CP15 register 2 is UNPREDICTABLE.

Writing to CP15 register 2 updates the pointer to the currently active first-level
translation table from the value in bits[31:14] of the written value. Bits[13:0] must be
written as zero. The CRm and opcode_2 fields are IGNORED when writing CP15
register 2, and SHOULD BE ZERO.

7.5.4 Register 3: Domain Access Control Register

Reading from CP15 register 3 is UNPREDICTABLE.

Writing to CP15 register 3 writes the value of the Domain Access Control Register.
The CRm and opcode_2 fields are IGNORED when writing CP15 register 3, and SHOULD

BE ZERO.

The Domain Access Control Register consists of sixteen 2-bit fields, each of which
defines the access permissions for one of the sixteen Domains (D15-D0).
For the meaning of each field, see 7.9 Domains on page 7-23.

7.5.5 Register 4: Reserved

Reading and writing CP15 register 4 is UNPREDICTABLE.

31 14 13 0

Translation Table Base UNP/SBZ

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

D15 D14 D13 D12 D11 D10 D9 D8 D7 D6 D5 D4 D3 D2 D1 D0
ARM Architecture Reference Manual
ARM DDI 0100B

7-12

System Architecture and System Control Coprocessor

7.5.6 Register 5: Fault Status Register and Flush TLB

Reading CP15 register 5 returns the value of the Fault Status Register (FSR). The FSR
contains the source of the last data fault. Note that only the bottom 9 bits are returned.
The upper 23 bits are UNPREDICTABLE. The FSR indicates the domain and type of access
being attempted when an abort occurred:

Bit 8 returns zero

Bits 7:4 specify which of the 16 domains (D15-D0) was being accessed when
a fault occurred

Bits 3:0 indicate the type of access being attempted

The encoding is shown in Table 7-9: Priority encoding of fault status on page 7-25.
The FSR is only updated for data faults, not for prefetch faults. The CRm and opcode_2
fields are IGNORED when reading CP15 register 5, and SHOULD BE ZERO.

Writing CP15 register 5 flushes the TLB. An ARMv3 implementation may only include
a combined instruction and data TLB, and not separate instruction and data TLBs.
The data written to the register is IGNORED, and SHOULD BE ZERO.

7.5.7 Register 6: Fault Address Register and Flush TLB Entry

Reading CP15 register 6 returns the value of the Fault Address Register (FAR).
The FAR holds the virtual address of the access which was attempted when a fault
occurred. The FAR is only updated for data faults, not for prefetch faults. The CRm and
opcode_2 fields are IGNORED when reading CP15 register 6, and SHOULD BE ZERO.

Writing CP15 register 6 flushes a single entry from the TLB. An ARMv3 implementation
may only include a combined instruction and data TLB, and not separate instruction and
data TLBs. The data written to the register is the virtual address to be flushed.

7.5.8 Register 7: Flush Cache

Reading CP15 register 7 is UNPREDICTABLE.
Writing to CP15 register 7 is used to flush the instruction and data cache. An ARMv3
implementation may only include a combined instruction and data cache, and not
separate instruction and data caches. The data written to the register is IGNORED, and
SHOULD BE ZERO.

7.5.9 Registers 8-15: Reserved

Accessing (reading or writing) any of these registers will cause an undefined instruction
exception.

31 9 8 7 4 3 0

UNP/SBZ 0 Domain Status

31 0

Fault address
ARM Architecture Reference Manual
ARM DDI 0100BI

7-13

System Architecture and System Control Coprocessor

7.6 Memory Management Unit (MMU) Architecture

7.6.1 Overview

The ARM MMU performs two primary functions:

• it translates virtual addresses into physical addresses

• it controls memory access permissions

The MMU hardware required to perform these functions consists of:

• at least one Translation Lookaside Buffer (TLB)

• access control logic

• translation-table-walking logic

For implementations with separate Instruction and Data caches, separate TLBs for
instruction and data are also likely.

The translation lookaside buffer

The TLB caches virtual to physical address translations and access permissions for
each translation. If the TLB contains a translated entry for the virtual address, the access
control logic determines whether access is permitted. If access is permitted, the MMU
outputs the appropriate physical address corresponding to the virtual address. If access
is not permitted, the MMU signals the CPU to abort.

If the TLB misses (it does not contain a translated entry for the virtual address),
the translation table walk hardware is invoked to retrieve the translation and access
permission information from a translation table in physical memory. Once retrieved,
the information is placed into the TLB, possibly overwriting an existing entry.

Memory accesses

The MMU supports memory accesses based on sections or pages:

Sections are comprised of 1MB blocks of memory

Pages Two different page sizes are supported:

small pages consist of 4kB blocks of memory

large pages consist of 64kB blocks of memory

Sections and large pages are supported to allow mapping of a large region of memory
while using only a single entry in the TLB. Additional access control mechanisms are
extended within small pages to 1kB sub-pages and within large pages to 16kB
sub-pages.

Translation table

The translation table held in main memory has two levels:

first-level table holds both section translations and pointers to second-level
tables

second-level tables hold both large and small page translations
ARM Architecture Reference Manual
ARM DDI 0100B

7-14

System Architecture and System Control Coprocessor

Domains

The MMU also supports the concept of domains. These are areas of memory that can
be defined to possess individual access rights. The Domain Access Control Register is
used to specify access rights for up to 16 separate domains.

When the MMU is turned off (as happens on reset), the virtual address is output directly
as the physical address, and no memory access permission checks are performed.

It is UNPREDICTABLE if two TLB entries address overlapping areas of memory. This can
occur if the TLB is not flushed after memory is re-mapped with different-sized pages
(leaving an old mapping with different sizes in the TLB, and a new mapping gets loaded
into a different TLB location).

7.6.2 Translation process

The MMU translates virtual addresses generated by the CPU into physical addresses
to access external memory, and also derives and checks the access permission. There
are three routes by which the address translation (and hence permission check) takes
place. The route taken depends on whether the address in question has been marked
as a section-mapped access or a page-mapped access; and there are two sizes of
page-mapped access (large pages and small pages).

However, the translation process always starts out in the same way, as described
below, with a first-level fetch. A section-mapped access only requires a first level fetch,
but a page-mapped access also requires a second-level fetch.

7.6.3 Translation table base

The translation process is initiated when the on-chip TLB does not contain an entry for
the requested virtual address. The Translation Table Base Register points to the base
of the first-level table. Only bits 31 to 14 of the Translation Table Base Register are
significant; bits 13 to 0 should be zero. Therefore, the first-level page table must reside
on a 16Kbyte boundary.

7.6.4 First-level fetch

Bits 31:14 of the Translation Table Base register are concatenated with bits 31:20 of
the virtual address to produce a 30-bit address as illustrated in Figure 7-1: Accessing
the translation table first-level descriptors on page 7-16. This address selects a
four-byte translation table entry which is a first-level descriptor for a section or a pointer
to a second-level page table.
ARM Architecture Reference Manual
ARM DDI 0100BI

7-15

System Architecture and System Control Coprocessor
 Figure 7-1: Accessing the translation table first-level descriptors

7.6.5 First-level descriptors

The first-level descriptor may define either a section descriptor or a pointer to
a second-level page table and its format varies accordingly.Figure 7-2: First-level
descriptor format shows the format, bits[1:0] indicate the descriptor type and validity.

Accessing a descriptor that has bits[1:0] = 0b00 generates a translation fault
(see 7.10 Aborts on page 7-24).

Accessing a descriptor that has bits[1:0] = 0b11 is UNPREDICTABLE.

 Figure 7-2: First-level descriptor format

Translation base

Translation base

Table index

Table index 0 0

31 20 19 0

2 131 14 13 0

31 14 13 0

SBZ

31 20 19 12 11 10 9 8 5 4 3 2 1 0

Fault
SBZ 0 0

Page Table Page table base address
S
B
Z

Domain IMP 0 1

Section
Section base address SBZ AP

S
B
Z

Domain
I
M
P

C B 1 0

Reserved
SBZ 1 1
ARM Architecture Reference Manual
ARM DDI 0100B

7-16

System Architecture and System Control Coprocessor

7.6.6 Section descriptor and translating section references

If the first-level descriptor is a section descriptor, the fields have the following meanings:

Bits 1:0 Identify the type of descriptor (0b10 marks a section descriptor).

Bit 3:2 The cachable and bufferable bits. See 7.7 Cache and Write Buffer
Control on page 7-22.

Bit 4 The meaning of this bit is IMPLEMENTATION DEPENDENt.

Bits 8:5 The domain field specifies one of the sixteen possible domains for all
the pages controlled by this descriptor.

Bits 9 This bit is not currently used, and SHOULD BE ZERO.

Bits 11:10 Access permissions. These bits control the access to the section.
See Table 7-7: Access permissions on page 7-23 for the
interpretation of these bits.

Bits 19:12 These bits are not currently used, and SHOULD BE ZERO.

Bits 31:20 The Section Base Address forms the top 12 bits of the physical
address.

Figure 7-3: Section translation illustrates the complete section translation sequence.
Note that the access permissions contained in the first-level descriptor must be checked
before the physical address is generated. The sequence for checking access
permissions is described in 7.8 Access Permissions on page 7-22.

 Figure 7-3: Section translation

Translation base

Table index

Table index 0 0

31 20 19 0

2 131 14 13 0

31 14 13 0

Translation base SBZ

Section index

Section base address 1 0

2 131 0

Section base address Section index

31 0

Translation
table base

Virtual
Address

Address of
first-level
descriptor

First-level
descriptor

Physical
address

5 4 3
I
M
P

C B
S
B
Z

12 1110 9 8

20 19

20 19

APSBZ Domain

First-level fetch
ARM Architecture Reference Manual
ARM DDI 0100BI

7-17

System Architecture and System Control Coprocessor

7.6.7 Page table descriptor

If the first-level descriptor is a page table descriptor, the fields have the following
meanings:

Bits 1:0 Identify the type of descriptor (0b01 marks a page table descriptor).

Bit 4:2 The meaning of these bits is IMPLEMENTATION DEPENDENT.

Bits 8:5 The domain field specifies one of the sixteen possible domains for all
the pages controlled by this descriptor.

Bits 9 This bit is not currently used, and SHOULD BE ZERO.

Bits 31:10 The Page Table Base Address is a pointer to a second-level page
table, giving the base address for a second level fetch to be
performed. Second level page tables must be aligned on a 1Kbyte
boundary.

If a page table descriptor is returned from the first-level fetch, a second-level fetch is
initiated to retrieve a second level descriptor, as shown in Figure 7-4: Accessing the
translation table second-level descriptors.

 Figure 7-4: Accessing the translation table second-level descriptors

Translation base

First-level

0 0

31 20 19 0

2 131 14 13 0

31 14 13 0

Translation base SBZ

Second-level

Page table base address 0 1

2 131 0

Page table base address

31 0

Translation
table base

Virtual
Address

Address of
first-level
descriptor

First-level
descriptor

5 4

IMP
S
B
Z

10 9 8

Domain

table index table index

12 11

First-level
table index

First-level fetch

Second-level
table index 0 0

10 9Address of
second-level
descriptor

2 1
ARM Architecture Reference Manual
ARM DDI 0100B

7-18

System Architecture and System Control Coprocessor

7.6.8 Second-level descriptor

The second-level descriptor may define either a large page or a small page access.
Table 7-5: Second-level descriptor format shows the format; bits[1:0] indicate
the descriptor type and validity.

Accessing a descriptor that has bits[1:0] = 0b00 generates a translation fault
(see 7.10 Aborts on page 7-24).

Accessing a descriptor that has bits[1:0] = 0b11 is UNPREDICTABLE.

 Table 7-5: Second-level descriptor format

The fields in both large and small pages have the following meanings:

Bits 1:0 identifies the type of descriptor

Bits 2:3 The cachable and bufferable bits. See 7.7 Cache and Write Buffer
Control on page 7-22.

Bits 11:4 Access permissions
These bits control access to the page. See Table 7-7: Access
permissions on page 7-23 for the interpretation of these bits.

Both large and small pages are split into four sub-pages:

AP0 encodes the access permissions for the first sub-page

AP1 encodes the access permissions for the second
sub-page

AP2 encodes the access permissions for the third sub-page

AP3 encodes the access permissions for the fourth (last)
sub-page

Bits 15:12 are not currently used for large pages, and must be zero

Bits 31:12 are used to form the corresponding bits of the physical address
(small pages)

Bits 31:16 are used to form the corresponding bits of the physical address
(large pages)

31 16 15 12 11 10 9 8 7 6 5 4 3 2 1 0

Fault SBZ 0 0

Large page Large page base address SBZ AP3 AP2 AP1 AP0 C B 0 1

Small page Small page base address AP3 AP2 AP1 AP0 C B 1 0

Reserved SBZ 1 1
ARM Architecture Reference Manual
ARM DDI 0100BI

7-19

System Architecture and System Control Coprocessor

7.6.9 Translating large page references

Figure 7-5: Large page translation shows the complete translation sequence for a
64Kbyte large page.

Note As the upper four bits of the Page Index and low-order four bits of the Second-level
Table Index overlap, each page table entry for a large page must be duplicated 16 times
(in consecutive memory locations) in the page table.

 Figure 7-5: Large page translation

Translation base

First-level

0 0

31 20 19 0

2 131 14 13 0

Translation base SBZ

Second-level

Page table base address 0 1

2 131 0

Page table base address

31 0

Translation
table base

Virtual
Address

Address of
first-level
descriptor

First-level
descriptor

5 4 3

I M P

10 9 8

Domain

table index table index

12 11

First-level
table index

First-level fetch

Second-level
table index 0 0

10 9Address of
second-level
descriptor

2 1

Page index

16 15

S
B
Z

Page base address 0 1

2 131 0

Page base address

31 0

Second-level
descriptor

5 4 310 9 8

Second-level fetch

16 15

S B Z

Physical
address

Page index

16 15 12 11 7 6

AP3 AP2 AP1 AP0 C B
ARM Architecture Reference Manual
ARM DDI 0100B

7-20

System Architecture and System Control Coprocessor

7.6.10 Translating small page references

Figure 7-6: Small page translation shows the complete translation sequence for
a 4Kbyte small page.

 Figure 7-6: Small page translation

Translation base

First-level

0 0

31 20 19 0

2 131 14 13 0

Translation base SBZ

Second-level

Page table base address 0 1

2 131 0

Page table base address

31 0

Translation
table base

Virtual
Address

Address of
first-level
descriptor

First-level
descriptor

5 4 3

I M P

10 9 8

Domain

table index table index

12 11

First-level
table index

First-level fetch

Second-level
table index 0 0

10 9Address of
second-level
descriptor

2 1

Page index

16 15

S
B
Z

Page base address 1 0

2 131 0

Page base address

31 0

Second-level
descriptor

5 4 310 9 8

Second-level fetch

Physical
address

Page index

12 11 7 6

AP3 AP2 AP1 AP0 C B

12 11
ARM Architecture Reference Manual
ARM DDI 0100BI

7-21

System Architecture and System Control Coprocessor

7.7 Cache and Write Buffer Control

The ARM memory system is controlled by two attributes which are individually
selectable for each virtual page:

Cacheable This attribute indicates that data in the page may be cached, so that
subsequent accesses may not access main memory. Cacheable also
indicates that instruction speculative prefetching beyond the current
point of execution may be performed. The cache implementation may
use a write-back or a write-through policy (or a choice of either for
individual virtual pages).

Bufferable This attribute indicates that data in the page may be stored in the write
buffer, allowing faster write operations for processors that operate
faster than main memory. The write buffer may not preserve strict
write ordering, and may not ensure that multiple writes to the same
location result in multiple off-chip writes.

The Cacheable and Bufferable bits in the Section and Page descriptors control caching
and buffering.

Implementations that offer both writethrough or writeback caching use the 0b10 value to
specify writethrough caching, and the 0b11 value to specify writeback caching.
Implementations that only offer one type of cache behaviour (writeback or writethrough)
use the C and B bits strictly as cache enable and write buffer enable respectively.

Note that writeback cache implementations that do not also support writethrough
caching, may not provide cached, unbuffered memory (as the writeback cache
effectively buffers writes).

7.8 Access Permissions
The access permission bits in section and page descriptors control access to the
corresponding section or page. The access permissions are modified by the System (S)
and ROM (R) control bits. Table 7-7: Access permissions on page 7-23 describes the
meaning of the access permission bits in conjunction with the S and R bits. If an access
if made to an area of memory without the required permission, a Permission Fault is
raised; see 7.10 Aborts on page 7-24.

C B Meaning

0 0 Uncached, Unbuffered

0 1 Uncached, Buffered

1 0 Cached, Unbuffered or Writethrough cached, Buffered

1 1 Cached, Buffered or Writeback cached, Buffered

 Table 7-6: Cache and bufferable bit meanings
ARM Architecture Reference Manual
ARM DDI 0100B

7-22

System Architecture and System Control Coprocessor
7.9 Domains
A domain is a collection of sections, large pages and small pages. The ARM
architecture supports 16 domains; access to each domain is controlled by a 2-bit field
in the Domain Access Control Register. Each field allows the access to an entire domain
to be enabled and disabled very quickly, so that whole memory areas can be swapped
in and out of virtual memory very efficiently.

Two kinds of domain access are supported:

Clients are users of domains (execute programs, access data), and are
guarded by the access permissions of the individual sections and
pages that make up the domain

Managers control the behaviour of the domain (the current sections and pages
in the domain, and the domain access), and are not guarded by the
access permissions of individual sections and pages in the domain

One program can be a client of some domains, and a manager of some other domains,
and have no access to the remaining domains. This allows very flexible memory
protection for programs that access different memory resources. Table 7-8: Domain
Access Values illustrates the encoding of the bits in the Domain Access Control
Register.

AP S R
 Permissions

Supervisor User

00 0 0 No Access No Access

00 1 0 Read Only No Access

00 0 1 Read Only Read Only

00 1 1 UNPREDICTABLE

01 x x Read/Write No Access

10 x x Read/Write Read Only

11 x x Read/Write Read/Write

 Table 7-7: Access permissions

Value Access Types Description

0b00 No Access Any access will generate a domain fault

0b01 Client Accesses are checked against the access permission
bits in the section or page descriptor

0b10 Reserved Using this value has unpredictable results

0b11 Manager Accesses are not checked against the access
permission bits in the section or page descriptor,
so a permission fault cannot be generated

 Table 7-8: Domain Access Values
ARM Architecture Reference Manual
ARM DDI 0100BI

7-23

System Architecture and System Control Coprocessor

7.10 Aborts

The mechanisms that can cause the ARM processor to halt execution because of
memory access restrictions are:

MMU fault The MMU detects the restriction and signals the processor.

External abort The external memory system signals an illegal memory
access.

Collectively, MMU faults and external aborts are just called aborts. Accesses that cause
aborts are said to be aborted.

If the memory request that is aborted is an instruction fetch, then a Prefetch Abort
Exception is raised if and when the processor attempts to execute the instruction
corresponding to the illegal access. If the aborted access is a data access, a Data Abort
Exception is raised. See 2.5 Exceptions on page 2-6 for more information about
Prefetch and Data Aborts.

7.11 MMU Faults
The MMU generates four types of faults:

• Alignment Fault

• Translation Fault

• Domain Fault

• Permission Fault

The memory system may abort three types of access:

• Line Fetches

• Memory Accesses (uncached or unbuffered accesses)

• Translation Table Accesses

Aborts that are detected by the MMU are stopped before any external memory access
takes place. It is the responsibility of the external system to stop external accesses that
cause external aborts.

The System Control coprocessor contains two registers which are updated when a data
access is aborted. These registers are not updated for prefetch aborts, as the aborted
instruction may not be executed due to changes in program flow.
ARM Architecture Reference Manual
ARM DDI 0100B

7-24

System Architecture and System Control Coprocessor

7.11.1 Fault Address Register (FAR) and Fault Status Register (FSR)

Aborts resulting from data accesses (data aborts) are immediately acted upon by
the CPU. The Fault Status Register (FSR) is updated with a 4-bit Fault Status (FS[3:0])
and the domain number of the access. In addition, the virtual address which caused the
data abort is written into the Fault Address Register (FAR). If a data access
simultaneously generates more than one type of data abort, they are prioritised in the
order given in Table 7-9: Priority encoding of fault status.

Aborts arising from instruction fetches are simply flagged as the instruction enters
the instruction pipeline. Only when (and if) the instruction is executed does it cause
a prefetch abort; a prefetch abort is not acted upon if the instruction is not used
(e.g. it is branched around). Because instruction prefetch aborts may or may not be
acted upon, the FSR and FAR are not updated (the value of the PC saved in R14_abt
after the exception occurs can be used to calculate the fault address).

Notes

1 Alignment faults may write either 0b0001 or 0b0011 into FS[3:0].

2 Invalid values in Domain[3:0] occur because the fault is raised before a valid
domain field has been loaded.

3 Any abort masked by the priority encoding may be regenerated by fixing
the primary abort and restarting the instruction.

4 The FS[3:0] encoding for Vector Exception breaks from the pattern that FS[0]
is zero for all external aborts.

Priority Sources FS[3:0] Domain[3:0] FAR

Highest Terminal Exception 0b0010 invalid IMPLEMENTATION

DEFINED

Vector Exception 0b0000 invalid valid

Alignment 0b00x1 invalid valid

External Abort on Translation First level
Second level

0b1100
0b1110

invalid
valid

valid
valid

Translation Section
Page

0b0101
0b0111

invalid
valid

valid
valid

Domain Section
Page

0b1001
0b1011

valid
valid

valid
valid

Permission Section
Page

0b1101
0b1111

valid
valid

valid
valid

External Abort on Linefetch Section
Page

0b0100
0b0110

valid
valid

valid
valid

Lowest External Abort on
Non-linefetch

Section
Page

0b1000
0b1010

valid
valid

valid
valid

 Table 7-9: Priority encoding of fault status
ARM Architecture Reference Manual
ARM DDI 0100BI

7-25

System Architecture and System Control Coprocessor

7.11.2 Fault-checking sequence

The sequence by which the MMU checks for access faults is slightly different for
Sections and Pages. Figure 7-7: Sequence for checking faults on page 7-27 illustrates
the sequence for both types of access. The sections and figures that follow describe
the conditions that generate each of the faults.

7.11.3 Vector Exceptions

When the processor is in a 32-bit configuration (PROG32 is active) and in a 26-bit mode
(CPSR[4] == 0), data access (but not instruction fetches) to the hard vectors (address
0x0 to 0x1f) will cause a data abort, known as a vector exception. See 7.11.3 Vector
Exceptions on page 7-26 for a full description. It is IMPLEMENTATION DEFINED if vector
exceptions are generated when the MMU is not enabled.

7.11.4 Alignment fault

If Alignment Faults are enabled, an alignment fault will be generated on any data word
access whose address is not word-aligned (virtual address bits [1:0] != 0b00), or any
halfword access that is not halfword-aligned (virtual address bit[0] != 0). Alignment faults
will not be generated on any instruction fetch, or on any byte access.

Note that if the access generates an alignment fault, the access will be aborted without
reference to further permission checks. It is IMPLEMENTATION DEFINED if alignment
exceptions are generated when the MMU is not enabled.

7.11.5 Translation fault

There are two types of translation fault:

Section is generated if the first-level descriptor is marked as invalid.
This happens if bits[1:0] of the descriptor are both 0.

Page is generated if the second-level descriptor is marked as invalid.
This happens if bits[1:0] of the descriptor are both 0.

7.11.6 Domain fault

There are two types of domain fault:

• Section

• Page

In both cases, the first descriptor holds the 4-bit Domain field which selects one of
the sixteen 2-bit domains in the Domain Access Control Register. The two bits of
the specified domain are then checked for access permissions as detailed in Table
7-8: Domain Access Values on page 7-23.

In the case of a section, the domain is checked when the first-level descriptor is
returned, and in the case of a page, the domain is checked when the second-level
descriptor is returned. If the specified access is marked as No Access in the Domain
Access Control Register, either a Section Domain Fault or Page Domain Fault occurs.
ARM Architecture Reference Manual
ARM DDI 0100B

7-26

System Architecture and System Control Coprocessor
 Figure 7-7: Sequence for checking faults

Get first-level descriptor
Alignment

fault

Checking
alignment?

Misaligned?

External
abort

Descriptor
fault

Section
or page?

Translation
external

abort

Section
translation

fault

Get second-level descriptor

External
abort

Invalid
descriptor?

Access
type

Access
type

Violation?

Section
domain

fault

Section
permission

fault

Page
domain

fault

Sub-page
permission

fault

Translation
external

abort

Violation?

Physical address

Virtual address

Yes

No

Yes

Yes

Yes

No

No

Section Page

Yes

Yes

YesYes

No

No

NoNo

No
Access

No
Access

Client

Manager

Client

Check address alignment

Page
translation

fault

Check domainCheck domain

Check access permissionsCheck access permissions
ARM Architecture Reference Manual
ARM DDI 0100BI

7-27

System Architecture and System Control Coprocessor

7.11.7 Permission fault

There are section permission faults and sub-page permission faults.

Permission faults are checked at the same time as domain faults. If the 2-bit domain field
returns client (01), the permission access check is invoked as follows:

Section If the first-level descriptor defines a section access, the AP bits of
the descriptor define whether or not the access is allowed, according
to Table 7-7: Access permissions on page 7-23. If the access is not
allowed, a Section Permission fault is generated.

Sub-page If the first-level descriptor defines a page-mapped access, the
second-level descriptor specifies four access permission fields
(ap3, ap2, ap1, ap0) each corresponding to one quarter of the page.
For small pages, ap3 is selected by the top 1kB of the page, and ap0
is selected by the bottom 1kB of the page. For large pages, ap3 is
selected by the top 16kB of the page, and ap0 is selected by the
bottom 16kB of the page. The selected AP bits are then interpreted in
exactly the same way as for a section, (see Table 7-7: Access
permissions on page 7-23) the only difference being that the fault
generated is a Sub-page Permission fault.

7.12 External Aborts
In addition to the MMU faults, the ARM Architecture defines an external abort pin which
may be used to flag an error on an external memory access. However, not all accesses
can be aborted in this way, so this pin must be used with great care. The following
accesses may be externally aborted and restarted safely:

• Reads

• Unbuffered writes

• First-level descriptor fetch

• Second-level descriptor fetch

• Multi-bus master semaphores

A linefetch may be safely aborted on any word in the line transfer. If the abort happens
on data that has been requested by the processor (rather than data that is being fetched
as the remainder of a cache line), the access will be aborted. Any data transferred that
is not immediately accessed (the remainder of the cache line) will only be aborted when
it is accessed.

It is IMPLEMENTATION-DEFINED if the FAR points to the start address of the cache line, or
the address that generated the abort.

Buffered writes cannot be externally aborted. Therefore, the system must be configured
such that it does not do buffered writes to areas of memory which are capable of flagging
an external abort, or a different mechanism should be used to signal the abort
(an interrupt for example).

The contents of a memory location that causes an abort is UNPREDICTABLE after
the abort.
ARM Architecture Reference Manual
ARM DDI 0100B

7-28

System Architecture and System Control Coprocessor

7.13 System-level Issues

This section lists a number of issues that need to be addressed by the system designer
and operating systems to provide an ARMv4 compatible system.

7.13.1 Memory systems, write buffers and caches

ARMv4 processors and software expect to be connected to a byte-addressed memory.
Word and halfword accesses to the memory will ignore the alignment of the address and
return the naturally-aligned value that is addressed (so a memory access will ignore
address bits 0 and 1 for word access, and will ignore bit 0 for halfword accesses).
ARMv4 processors must implement some method for switching between big-endian
and little-endian addressing of the memory system (if CP15 is implemented, bit 7 of
register 1 controls endianness). It is IMPLEMENTATION DEFINED if the endianness can be
changed dynamically.

Memory that is used to hold programs and data will be marked as follows:

Main (RAM) memory will normally be set as cacheable and bufferable

ROM memory will normally be set as cacheable, and will be
marked as read only (so the bufferable attribute is
not used, and SHOULD BE ONE)

Write buffers

An ARMv4 implementation may incorporate a merging write buffer, that subsumes
multiple writes to the same location into a single write to main memory. Furthermore,
a write buffer may re-order writes, so that writes are issued to memory in a different
order to the order in which they are issued by the processor. Thus IO locations should
never be marked as bufferable, to ensure all writes are issued, and in the correct order,
to the IO device.

Caches

Frame buffers may be cacheable, but frame buffers on writeback cache
implementations must be copied back to memory after the frame buffer has been
updated. Frame buffers may be bufferable, but again the write buffer must be written
back to memory after the frame buffer has been updated.

ARMv4 does not support cache coherency between the ARM and other system bus
masters (bus snooping is not supported). Memory data that is shared between multiple
bus masters should be mapped as uncacheable to ensure that all reads access main
memory, and unbufferable to ensure all writes do access main memory. IO devices that
are mapped into the memory map should be marked as uncacheable and unbufferable.

The coherency of data buffers that are read or written by another bus master may be
managed in software, by cleaning data from writeback caches and write buffers to
memory when the processor has written to the data buffer and before the other bus
reads the buffer, and flushing relevant data from caches when the buffer is being read
after the other bus master has written the buffer. An uncached, unbuffered semaphore
can be used to maintain synchronisation between multiple bus masters.
See 7.14 Semaphores on page 7-31.
ARM Architecture Reference Manual
ARM DDI 0100BI

7-29

System Architecture and System Control Coprocessor

For implementations with writeback caches, all dirty cache data must be written back
before any alterations are made to the MMU page tables, to ensure that cache line write
back may use the page tables to form the correct physical address for the transfer.

Caches may be indexed using either virtual or physical addresses. Physical pages must
only be mapped into a single virtual page, otherwise the result is unpredictable. ARMv4
does not provide coherency between multiple virtual copies of a single physical page.

Some ARM implementations support separate instruction and data caches.
The coherency between the data and instruction cache may not be maintained in
hardware, so if the instruction stream is written, the instruction cache and data cache
must be made coherent. This may entail cleaning the data cache (storing dirty data to
memory), draining the write buffer (completing all buffered writes), and flushing the
instruction cache. Instruction and data memory incoherency occurs after a program has
been loaded (and thus treated as data) and is about to be executed, or if self-modifying
code is used or generated.

7.13.2 Interrupts

ARM processors implement fast and normal levels of interrupt.

Both interrupts are signalled externally, and many implementations will synchronise
interrupts before an exception is raised. A fast interrupt request (FIQ) will disable
subsequent normal and fast interrupts by setting the I and F bits in the CPSR, and
a normal interrupt request (IRQ) will disable subsequent normal interrupts by setting
the I bit in the CPSR. See 2.5 Exceptions on page 2-6.

Cancelling interrupts

It is the responsibility of software (the interrupt handler) to ensure that the cause of
an interrupt is cancelled (no longer signalled to the processor) before interrupts are
re-enabled (by clearing the I and/or F bit in the CPSR). Interrupts may be cancelled with
any instruction that may make an external data bus access; that is, any load or store,
a swap, or any coprocessor instruction.

Cancelling an interrupt via an instruction fetch is UNPREDICTABLE.

Cancelling an interrupt with a load multiple that restores the CPSR and re-enables
interrupts is UNPREDICTABLE.

Devices that do not instantaneously cancel an interrupt (i.e. they do not cancel
the interrupt before letting the access complete) should be probed by software to ensure
that interrupts have been cancelled before interrupts are re-enabled. This allows
a device connected to a remote IO bus to operate correctly.
ARM Architecture Reference Manual
ARM DDI 0100B

7-30

System Architecture and System Control Coprocessor

7.14 Semaphores

The Swap and Swap Byte instructions have predictable behaviour when used in two
ways:

• Multi-bus master systems that use the Swap instructions to implement
semaphores to control interaction between different bus masters.
In this case, the semaphores must be placed in an uncached and unbufferable
region of memory. The Swap instruction will then cause a (locked) read-write
bus transaction.
This type of semaphore may be externally aborted.

• Systems with multiple threads running on a uni-processor that use the Swap
instructions to implement semaphores to control interaction of the threads.
In this case, the semaphores may be placed in a cached and bufferable region
of memory, and a (locked) read-write bus transaction may not occur.
This system is likely to have better performance than the multi bus master
system above.
This type of semaphore has unpredictable behaviour if it is externally aborted.

Semaphores placed in non-cacheable/bufferable memory regions have UNPREDICTABLE

results. Semaphores placed in cacheable/non-bufferable memory regions have
UNPREDICTABLE results.
ARM Architecture Reference Manual
ARM DDI 0100BI

7-31

Index

Numerics
16-bit instructions 6-1

26-bit
addressing 5-8
architectures 5-1

address exceptions 5-6
compatibility with 32-bit architectures 5-7
program counter 5-3
program status register 5-4

configuration 5-8

32-bit
address space 5-2
addressing 5-8
architecture 5-2

compatibility with 26-bit architectures 5-7
configuration 5-8
immediate 3-87
multiply 3-10

64-bit
multiply 3-10
objects 4-3
value 3-10, 3-30, 3-63 to 3-65, 3-80 to 3-81

A
aborts 7-24

external 7-28

access permissions 7-22

ADC
ARM 3-30
Thumb 6-19

ADD
ARM 3-31
Thumb 6-20 to 6-26

add (ADD) instruction
ARM 3-31
Thumb

high registers 6-23
immediate 6-20
immediate to PC 6-24
immediate to SP 6-25
increment stack pointer 6-26
large immediate 6-21
registers 6-22

add with carry (ADC) instruction
ARM 3-30
Thumb 6-19

address exceptions, 26-bit architectures 5-6

Index
ARM Architecture Reference Manual
ARM DDI 0100B

Index-i

Index

addressing modes 1-2, 1-6

data-processing
arithmetic shift right by immediate 3-93
arithmetic shift right by register 3-94
immediate 3-87
logical shift left by immediate 3-89
logical shift left by register 3-90
logical shift right by immediate 3-91
logical shift right by register 3-92
register 3-88
rotate right and extend 3-97
rotate right by immediate 3-95
rotate right by register 3-96

load and store coprocessor
immediate offset 3-124
immediate post-indexed 3-126
immediate pre-indexed 3-125

load and store halfword or load signed byte
immediate offset 3-110
immediate post-indexed 3-114
immediate pre-indexed 3-112
register offset 3-111
register post-indexed 3-115
register pre-indexed 3-113

load and store multiple
decrement after 3-119
decrement before 3-120
increment after 3-117
increment before 3-118
stack operations 3-121

load and store word or unsigned byte
immediate offset 3-100
immediate post-indexed offset 3-106
immediate pre-indexed 3-103
register offset 3-101
register post-indexed offset 3-107
register pre-indexed offset 3-104
scaled register offset 3-102
scaled register post-indexed 3-108
scaled register pre-indexed 3-105

mode 1 3-84 to 3-97
mode 2 3-98 to 3-108
mode 3 3-109 to 3-115
mode 4 3-116 to 3-122
mode 5 3-123 to 3-126

alignment fault 7-26
AND

ARM 3-32
Thumb 6-27

and (AND) instruction
ARM 3-32
Thumb 6-27

architecture version 4T (Thumb) 6-1
arithmetic instructions 1-4, 4-3

examples 4-2
extension space 3-22

arithmetic shift right (ASR) instruction
ARM

as addressing mode 3-102, 3-105, 3-108,
3-115

by immediate 3-93
by register 3-94

Thumb
by immediate 6-28
by register 6-29

ARM
addressing modes

See addressing modes 1-2
branch instructions 3-6
code 1-4, 3-35
coprocessor instructions 3-20
data-processing instructions 3-7, 3-8
instruction set 3-3

extending 3-22
load and store instructions 3-13
multiply instructions 3-10
semaphore instructions 3-19
status register access instructions 3-12

ARM architecture
26-bit 5-1
coprocessor 15 7-2
implementations of 7-2
overview 1-2
version 4 system control coprocessor 7-2, 7-10

ASR
ARM 3-93 to 3-94, 3-102, 3-105, 3-108, 3-115
Thumb 6-28, 6-29

atomic update 1-6

B
B

ARM 3-33
Thumb 6-30, 6-31

BIC
ARM 3-34
Thumb 6-32

bit clear (BIC) instruction
ARM 3-34
Thumb 6-32

bit manipulation 4-2
ARM Architecture Reference Manual
ARM DDI 0100B

Index-ii

Index

BL

ARM 3-33
Thumb 6-33

block copy 1-6, 4-8
branch (B) instruction 1-4

ARM 3-33
Thumb

conditional 6-30
unconditional 6-31

branch instructions
ARM

examples 3-6, 4-4
list of 3-6
long branch 4-7
multi-way 4-5, 4-7

Thumb 6-5
examples 6-6
list of 6-6

branch with exchange (BX) instruction
ARM 3-35
Thumb 6-34

branch with link (BL) instruction 1-2, 1-4, 3-6
ARM 3-33
Thumb 6-33

BX
ARM 3-35
Thumb 6-34

byte 1-5
order (endianness) 4-3

C
cache 7-22, 7-29

coprocessor 15 functions 7-8
CDP 3-36
CMN

ARM 3-37
Thumb 6-35

CMNP (26-bit compare negative) instruction 5-4
CMNP (26-bit compare) negative instruction 5-5, 5-8
CMP

ARM 3-38
Thumb 6-36 to 6-38

CMPP (26-bit compare) instruction 5-4 to 5-5, 5-8
code samples 4-1

arithmetic instructions 4-2
branch instructions 4-4
load and store instructions 4-6
load and store multiple instructions 4-8
semaphore instructions 4-9

compare (CMP) instruction
ARM 3-38
Thumb

high registers 6-38
immediate 6-36
registers 6-37

compare instructions, conditional 4-4
compare negative (CMN) instruction

ARM 3-37
Thumb 6-35

comparing strings 4-6
condition code flags 1-3 to 1-5, 3-8, 3-56

26-bit architectures 5-2
carry (C) 2-3, 3-4, 3-8
negative (N) 2-3, 3-4, 3-8
overflow (V) 2-3, 3-4, 3-8
zero (Z) 2-3, 3-4, 3-8

conditional branch 3-6
conditional execution 1-2, 1-4, 3-4

examples 4-4
configuration

26-bit 5-8
32-bit 5-8

constant value. See immediate value
constants

dividing by 3-91
multiplying by 4-2

context switch 4-13
control instruction extension space 3-23
control register

architecture version 3 7-11
coprocessor 15 7-4

coprocessor
external 2-7
instructions 1-6, 3-20

extension space 3-27
software emulation 2-7

coprocessor 15
architecture 7-2
cache functions 7-8
control register

architecture version 3 7-11
architecture version 4 7-4

domain access control register
architecture version 3 7-12
architecture version 4 7-6

fault address register 7-7
fault status register 7-7
ARM Architecture Reference Manual
ARM DDI 0100B

Index-iii

Index

flush cache

architecture version 3 7-13
ID register

architecture version 3 7-10
architecture version 4 7-4

registers 7-2
translation lookaside buffers 7-9
translation table base register 7-6

architecture version 3 7-12
coprocessor data processing (CDP) instruction 3-36
CPSR 1-3, 1-5, 2-3, 3-12

26-bit architectures 5-2
condition code flags 3-4

See also condition code flags
control bits 2-5

Current Program Status Register. See CPSR

D
data abort 2-6

See also exception, data abort
data types 2-2
DATA32 signal 5-8
data-processing

addressing modes 3-87 to 3-97
instructions

ARM 1-4
examples 3-7, 4-2
list of 3-9

Thumb 6-7
examples 6-8
list of 6-10

default shifter operand 3-85
divide by constant 3-91
DMA transfer examples 4-10, 4-11
domain access control register

architecture version 3 7-12
coprocessor 15 7-6

domain fault 7-26
domains, MMU 7-15, 7-23

E
endianness, swapping byte order 4-3
EOR

ARM 3-39
Thumb 6-39

examples of code 4-1, 4-2, 4-4

exceptions 2-6
26-bit

address 5-6
architectures 5-2

data abort 2-8
fast interrupt request 2-9
handler 1-3
interrupt request 2-9
prefetch abort 2-8
priorities 2-10
return 3-53
software interrupt 2-7, 3-75
undefined instruction 2-7
vector 5-9, 7-26

26-bit architectures 5-8
See also vectors

See also interrupt and fast interrupt
exchanging ARM and THUMB state 6-3
exclusive OR (EOR) instruction

ARM 3-39
Thumb 6-39

extending the ARM instruction set 3-22
external aborts 7-28

F
fast interrupt 1-3, 2-6

See also processor mode, fast interrupt mode
fault address register 7-25

coprocessor 15 7-7
fault status register 7-25

coprocessor 15 7-7
faults

alignment 7-26
domain 7-26
permission 7-28
translation 7-26

FIQ. See processor mode, fast interrupt mode
first-level descriptors 7-16
first-level fetch 7-15
flush functions

architecture version 3 7-13
architecture version 4 7-9

H
halfword 1-5
high registers 6-8
ARM Architecture Reference Manual
ARM DDI 0100B

Index-iv

Index

I
ID register

architecture version 3 7-10
architecture version 4 7-4

IDC, instruction and/or data cache 7-2
immediate

operand 3-84
value 1-5, 3-7, 3-87

indivisible bus operation 1-6
instruction sets

ARM 3-1
Thumb 6-1

instructions
26-bit

CMNP 5-4 to 5-5, 5-8
CMPP 5-4 to 5-5, 5-8
TEQP 5-4 to 5-5, 5-8
TSTP 5-4 to 5-5, 5-8

ARM
ADC 3-30
ADD 3-31
AND 3-32
ASR 3-93 to 3-94, 3-102, 3-105, 3-108, 3-115
B 3-33
BIC 3-34
BL 3-33
BX 3-35
CDP 3-36
CMN 3-37
CMP 3-38
EOR 3-39
LDC 3-40
LDM 3-41 to 3-43
LDR 3-44
LDRB 3-45
LDRBT 3-46
LDRH 3-47
LDRSB 3-48
LDRSH 3-49
LDRT 3-50
LSL 3-89 to 3-90, 3-102, 3-105, 3-108
LSR 3-91 to 3-92, 3-102, 3-105, 3-108
MCR 3-51
MLA 3-52
MOV 3-53
MRC 3-54
MRS 3-55
MSR 3-56
MUL 3-58
MVN 3-59
ORR 3-60

ROR 3-95 to 3-96, 3-102, 3-105, 3-108
RRX 3-97, 3-102, 3-105, 3-108
RSB 3-61
RSC 3-62
SBC 3-63
SMLAL 3-64
SMULL 3-65
STC 3-66
STM 3-67 to 3-68
STR 3-69
STRB 3-70
STRBT 3-71
STRH 3-72
STRT 3-73
SUB 3-74
SWI 3-75
SWP 3-76
SWPB 3-77
TEQ 3-78
TST 3-79
UMLAL 3-80
UMULL 3-81

Thumb
ADC 6-19
ADD 6-20 to 6-26
AND 6-27
ASR 6-28, 6-29
B 6-30, 6-31
BIC 6-32
BL 6-33
BX 6-34
CMN 6-35
CMP 6-36 to 6-38
EOR 6-39
LDM 6-40
LDR 6-42 to 6-45
LDRB 6-46 to 6-47
LDRH 6-48 to 6-49
LDRSB 6-50
LDRSH 6-51
LSL 6-52 to 6-53
LSR 6-54 to 6-55
MOV 6-56 to 6-57
MUL 6-58
MVN 6-59
NEG 6-60
ORR 6-61
POP 6-62
PUSH 6-64
ROR 6-66
SBC 6-67
STM 6-68
STR 6-70 to 6-72
ARM Architecture Reference Manual
ARM DDI 0100B

Index-v

Index

STRB 6-73 to 6-74
STRH 6-75 to 6-76
SUB 6-77 to 6-80
SWI 6-81
TST 6-82

interrupt 1-3, 2-6, 7-30
disable 1-3, 2-5

26-bit architectures 5-2
enable 1-5, 3-56
handlers 4-10, 4-12
priority 4-12

IRQ. See processor mode, interrupt

J
jump 1-6

L
LDC 3-40
LDM

ARM 3-41 to 3-43
Thumb 6-40

LDR
ARM 3-44
Thumb 6-42

LDRB
ARM 3-45
Thumb 6-46 to 6-47

LDRBT
ARM 3-46

LDRH
ARM 3-47
Thumb 6-48 to 6-49

LDRSB
ARM 3-48
Thumb 6-50

LDRSH
ARM 3-49
Thumb 6-51

LDRT 3-50
link register (LR) 1-2, 1-4, 2-3, 3-6
linked lists 4-6
load and store coprocessor

addressing modes 3-123 to 3-126
instructions 3-20

list of 3-21
load and store halfword and load signed byte

addressing modes 3-109 to 3-115
instruction list 3-16

load and store instructions 1-5, 3-13, 6-12
addressing mode

offset 1-6
post-indexed 1-6
pre-indexed 1-6

examples 4-6
extension space 3-24
Thumb 6-12

examples 6-13
list of 6-13

See also LDR and STR
load and store multiple

addressing modes 3-116 to 3-122
post-decrement 1-6
post-increment 1-6
pre-decrement 1-6
pre-increment 1-6

instructions 1-2, 3-17
base address 1-6
examples 4-8
list of 1-6, 3-18
See also LDM and STM

Thumb
instructions 6-14

examples 6-14
list of 6-15

load and store word and unsigned byte
addressing modes 3-98 to 3-108
instructions

list of 3-15
load coprocessor (LDC) instruction 3-40
load instructions

used as a branch 4-7
load multiple (LDM) instruction

ARM 3-41 to 3-43
Thumb 6-40

load register (LDR) instruction
ARM 3-44
Thumb

immediate 6-42
PC-relative 6-44
register offset 6-43
SP-relative 6-45

load register byte (LDRB) instruction
ARM 3-45
Thumb

immediate offset 6-46
register offset 6-47

load register byte with translation (LDRBT) instruction
3-46
ARM Architecture Reference Manual
ARM DDI 0100B

Index-vi

Index

load register halfword (LDRH) instruction

ARM 3-47
Thumb

immediate offset 6-48
register offset 6-49

load register signed byte (LDRSB) instruction
ARM 3-48
Thumb 6-50

load register signed halfword (LDRSH) instruction
ARM 3-49
Thumb 6-51

load register with translation (LDRT) instruction 3-50
load-store architecture 1-2
logical OR (ORR) instruction

ARM 3-60
Thumb 6-61

logical shift left (LSL) instruction
ARM 3-90

as addressing mode 3-102, 3-105, 3-108
immediate 3-89

Thumb
immediate 6-52
register 6-53

logical shift right (LSR) instruction
ARM 3-91, 3-92

as addressing mode 3-102, 3-105, 3-108
Thumb

immediate 6-54
register 6-55

long branch 3-6
loop counter 4-5
LR. See link register
LSL

ARM 3-89 to 3-90, 3-102, 3-105, 3-108
Thumb 6-52 to 6-53

LSR
ARM 3-91 to 3-92, 3-102, 3-105, 3-108
Thumb 6-54 to 6-55

M
MCR 3-51
memory

aborts 1-3
access restrictions 7-24
accesses 7-14
protection 1-3
virtual 1-3

memory management unit. See MMU
MLA 3-52

MMU 7-2, 7-5, 7-12
architecture 7-14
domains 7-15, 7-23
faults 7-24

MOV
ARM 3-53
Thumb 6-56 to 6-57

move (MOV) instruction
ARM 3-53
Thumb

immediate 6-56
register 6-57

move general-purpose register or immediate to status
register (MSR) instruction 3-56

move not (MVN) instruction
ARM 3-59
Thumb 6-59

move status register to general-purpose register (MRS)
instruction 3-55

move to ARM register from coprocessor (MRC)
instruction 3-54

move to coprocessor from ARM register (MCR)
instruction 3-51

MRC 3-54
MRS 3-55
MSR 3-56
MUL

ARM 3-58
Thumb 6-58

multiply
32-bit 3-10
64-bit 3-10
by constant 3-89

example 4-2
instructions 1-5

list of 3-10, 3-11
multiply (MUL) instruction

ARM 3-58
Thumb 6-58

multiply accumulate (MLA) instruction 3-52
multi-way branch 4-5, 4-7
MVN

ARM 3-59
Thumb 6-59

N
NEG 6-60
negate (NEG) instruction 6-60
ARM Architecture Reference Manual
ARM DDI 0100B

Index-vii

Index

O
operands

data-processing 3-84
immediate 3-84
shifted register 3-85
shifter 3-86

operating system 1-3, 1-4, 2-7, 3-75
ORR

ARM 3-60
Thumb 6-61

P
page table descriptor 7-18
PC. See Program Counter
permission fault 7-28
POP 6-62
pop multiple registers (POP) instruction 6-62
prefetch abort 2-6
procedure

call and return 4-4
entry and exit

example 4-8
processor mode 1-3, 1-5

26-bit and 32-bit 5-7
26-bit architectures 5-2
abort mode 2-2
changing 2-2, 3-56
fast interrupt mode 2-2, 2-3
interrupt mode 2-2
mode bits 2-5
privileged 1-3, 2-2, 2-6
reset 2-7
supervisor mode 2-2
system mode 1-3, 2-2
undefined mode 2-2
unprivileged modes 1-4
user mode 2-2

PROG32 signal 5-8
program counter (PC) 1-2, 1-4, 2-3, 3-6

26-bit architecture 5-2
program status register 3-12

26-bit architectures 5-4
access instructions 3-12
instructions

list of 3-12
PUSH 6-64
push multiple registers (PUSH) instruction 6-64

R
register 15

26-bit architectures 5-2
program counter bits 5-3

registers
banked 1-3, 2-6
banks of 2-3
high 6-8
operand value 3-85
overview 1-2
shifted operand value 3-85

reset 2-6
return address 1-6, 3-6
reverse subtract (RSB) instruction 3-61
reverse subtract with carry (RSC) instruction 3-62
RISC (Reduced Instruction Set Computer) 1-2
ROR

ARM 3-95 to 3-96, 3-102, 3-105, 3-108
Thumb 6-66

rotate left with extend 3-30
rotate right (ROR) instruction

ARM
as addressing mode 3-102, 3-105, 3-108
immediate 3-96
register 3-95

Thumb
register 6-66

rotate right with extend (RRX) instruction 3-97
ARM

as addressing mode 3-105
as addressing mode 3-102, 3-105, 3-108

RRX 3-97, 3-102, 3-105, 3-108
ARM 3-105

RSB 3-61
RSC 3-62

S
Saved Program Status Register. See SPSR
SBC

ARM 3-63
Thumb 6-67

second-level descriptor 7-19
section descriptor 7-17
section references 7-17
semaphores 1-6, 7-31

examples 4-9
instruction list 3-19
ARM Architecture Reference Manual
ARM DDI 0100B

Index-viii

Index

shift 1-5, 3-7, 3-53

instructions 1-5
shifted register 1-5

shifter operand 3-7, 3-84
default 3-85
register 3-85

signals
DATA32 5-8
PROG32 5-8

signed multiply accumulate long (SMLAL) instruction
3-64

signed multiply long (SMULL) instruction 3-65
sign-extend 1-5, 2-2
SMLAL 3-64
SMULL 3-65
software interrupt (SWI) 1-3, 1-4, 2-6

examples 4-10
instruction

ARM 3-75
Thumb 6-81

SPSR 1-3, 1-5, 2-3, 3-12
26-bit architectures 5-2

stack pointer (SP) 1-2, 1-3, 1-6, 2-3
incrementing 6-26

status register access instructions 3-12
status register transfer instructions 1-5

See also MRS and MSR instructions
status registers. See program status register
STC 3-66
STM

ARM 3-67 to 3-68
Thumb 6-68

store coprocessor (STC) instruction 3-66
store multiple (STM) instruction

ARM 3-67 to 3-68
Thumb 6-68

store register (STR) instruction
ARM 3-69
Thumb

immediate 6-70
register 6-71
SP-relative 6-72

store register byte (STRB) instruction
ARM 3-70
Thumb

immediate 6-73
register 6-74

store register byte with translation (STRBT) instruction
3-71

store register halfword (STRH) instruction
ARM 3-72
Thumb

immediate 6-75
register 6-76

store register with translation (STRT) instruction 3-73
STR

ARM 3-69
Thumb 6-70 to 6-72

STRB
ARM 3-70
Thumb 6-73 to 6-74

STRBT 3-71
STRH

ARM 3-72
Thumb 6-75 to 6-76

string compare 4-6
STRT 3-73
SUB

ARM 3-74
Thumb 6-77 to 6-80

subroutine
call 1-2, 2-3, 3-6, 3-33
call and return 1-6
return 3-53
return address 1-6

subtract (SUB) instruction
ARM 3-74
Thumb

decrement stack pointer 6-80
immediate 6-77
large immediate 6-78
large register 6-79

subtract with carry (SBC) instruction
ARM 3-63
Thumb 6-67

swap byte (SWPB) instruction 3-77
swap word (SWP) instruction 3-76
swapping

byte order (endianness) 4-3
register and memory values 1-6

SWI
ARM 3-75
Thumb 6-81

SWP 3-76
SWPB 3-77
ARM Architecture Reference Manual
ARM DDI 0100B

Index-ix

Index

system control coprocessor 7-2

ARM version 3 7-10
ARM version 4 7-2
See also coprocessor 15

system mode 1-3
See processor mode, system mode

T
TEQ 3-78

TEQP (26-bit test equivalence) instruction 5-4 to 5-5,
5-8

test (TST) instruction
ARM 3-79
Thumb 6-82

test equivalence (TEQ) instruction 3-78

THUMB 6-12
architecture 6-1
ARM code execution 2-5
branch instructions 6-5

list of 6-6
code 1-4, 3-35
code execution 2-5
data-processing instructions 6-7

list of 6-8, 6-10O
instruction set 1-4, 6-1

overview 6-4
load and store instructions

examples 6-13
list of 6-13

load and store multiple instructions 6-14
examples 6-14
list of 6-15

T flag 2-5, 3-35

translating
large page references 7-20
section references 7-17
small page references 7-21

translation fault 7-26

translation lookaside buffers 7-14
architecture version 3 7-13
coprocessor 15 7-9

flush functions 7-9

translation table 7-14

base 7-15

base register

architecture version 3 7-12

coprocessor 15 7-6

TST

ARM 3-79

Thumb 6-82

TSTP (26-bit test) instruction 5-4 to 5-5, 5-8

U
UMLAL 3-80

UMULL 3-81

undefined instruction 1-3, 2-6

extension space 3-27

unsigned multiply accumulate long (UMLAL) instruction
3-80

unsigned multiply long (UMULL) instruction 3-81

user mode 1-2, 1-3

context switch 4-13

See also processor mode, user mode

V
variables 4-5

vector exception 5-8, 5-9, 7-26

vectors 1-3, 2-6

virtual memory 1-3

W
word 1-5

write buffer 7-2, 7-22, 7-29

Z
zero-extend 1-5, 2-2
ARM Architecture Reference Manual
ARM DDI 0100B

Index-x

	ARM ARCHITECTURE REFERENCE MANUAL
	July 1996
	Foreword
	Contents
	Preface
	Architecture Overview
	1.1 Overview
	Program counter
	Link register
	Other registers

	1.2 Exceptions
	CPSR and SPSR
	The exception process

	1.3 ARM Instruction Set
	Conditional execution

	1.4 Branch Instructions
	1.5 Data�processing Instructions
	Arithmetic/logic instructions
	Multiply instructions
	Status register transfer instructions

	1.6 Load and Store Instructions
	Load and store single register
	Load and store multiple registers
	Swap a register value with the value of a memory l...

	1.7 Coprocessor Instructions

	Programmer’s Model
	2.1 Data Types
	2.2 Processor Modes
	2.3 Registers
	2.4 Program Status Registers
	2.4.1 The control bits
	2.4.2 The mode bits

	2.5 Exceptions
	2.5.1 Reset
	2.5.2 Undefined instruction exception
	2.5.3 Software interrupt exception
	2.5.4 Prefetch Abort (Instruction Fetch Memory Abo...
	2.5.5 Data Abort (Data Access Memory Abort)
	2.5.6 IRQ (Interrupt Request) exception
	2.5.7 FIQ (Fast Interrupt Request) exception
	2.5.8 Exception priorities

	The ARM Instruction Set
	3.1 Using this Chapter
	3.1.1 Overview of the ARM instruction types (page ...
	3.1.2 Alphabetical list of instructions (page 3-30...
	3.1.3 Addressing modes (page 3-84 through 3-126)

	3.2 Instruction Set Overview
	3.3 The Condition Field
	3.3.1 Condition codes

	3.4 Branch Instructions
	Examples
	3.4.1 List of branch instructions

	3.5 Data Processing
	3.5.1 Instruction encoding
	Notes

	3.5.2 Condition code flags
	3.5.3 List of data�processing instructions

	3.6 Multiply Instructions
	3.6.1 Normal multiply
	3.6.2 Long multiply
	3.6.3 List of multiply instructions

	3.7 Status Register Access
	3.7.1 CPSR value
	3.7.2 Examples
	3.7.3 List of status register access instructions

	3.8 Load and Store Instructions
	3.8.1 Examples
	3.8.2 Examples of halfword and signed byte address...

	3.9 Load and Store Word or Unsigned Byte Instructi...
	3.9.1 List of load and store word or unsigned byte...

	3.10 Load and Store Halfword and Load�Signed�Byte�...
	3.10.1 List of load and store halfword and load si...

	3.11 Load and Store Multiple Instructions
	Addressing modes
	3.11.1 Examples
	3.11.2 List of load and store multiple instruction...

	3.12 Semaphore Instructions
	Examples
	3.12.1 List of semaphore instructions

	3.13 Coprocessor Instructions
	Examples
	3.13.1 List of coprocessor instructions

	3.14 Extending the Instruction Set
	3.14.1 Arithmetic instruction extension space
	MUL and MLA
	UMULL, UMLAL, SMULL, SMLAL
	Other opcodes

	3.14.2 Control instruction extension space
	MRS
	MSR
	BX
	Other opcodes

	3.14.3 Load/Store instruction extension space
	SWP and SWPB
	LDRH
	LDRSH
	LDRSB
	STRH
	Other opcodes

	3.14.4 Coprocessor instruction extension space
	3.14.5 Undefined instruction Space

	Alphabetical List of ARM Instructions
	Immediate operand
	Register operand

	3.16 Data�processing Operands
	32�bit immediate
	Immediate shifts
	Register shifts
	3.16.1 The shifter operand
	Format 1: Immediate operand value
	Format 2: Register operand value
	Format 3: Shifted register operand value
	The default shifter operand

	3.16.2 Shifter Operands

	3.17 Load and Store Word or Unsigned Byte Addressi...
	Immediate offset/index
	Register offset/index
	Scaled register offset/index

	3.18 Load and Store Halfword or Load�Signed�Byte A...
	Immediate offset/index
	Register offset/index

	3.19 Load and Store Multiple Addressing Modes
	3.20 Load and Store Multiple Addressing Modes (Alt...
	3.20.1 Block data transfer
	3.20.2 Stack operations
	Full or Empty
	Ascending or Descending

	3.21 Load and Store Coprocessor Addressing Modes

	ARM Code Sequences
	4.1 Arithmetic Instructions
	4.1.1 Bit field manipulation
	4.1.2 Multiplication by constant
	4.1.3 Multi-precision arithmetic
	4.1.4 Swapping endianness

	4.2 Branch Instructions
	4.2.1 Procedure call and return
	4.2.2 Conditional execution
	4.2.3 Conditional compare instructions
	4.2.4 Loop variables
	4.2.5 Multi�way branch

	4.3 Load and Store Instructions
	4.3.1 Simple string compare
	4.3.2 Linked lists
	4.3.3 Long branch
	4.3.4 Multi�way branches

	4.4 Load and Store Multiple Instructions
	4.4.1 Simple block copy
	4.4.2 Procedure entry and exit

	4.5 Semaphore Instructions
	4.6 Other Code Examples
	4.6.1 Software Interrupt dispatch
	4.6.2 Single�channel DMA transfer
	4.6.3 Dual�channel DMA transfer
	4.6.4 Interrupt prioritisation
	4.6.5 Context switch

	The 26�bit Architectures
	5.1 Introduction
	5.2 Format of Register 15
	5.2.1 Reading register 15
	5.2.2 Writing register 15

	5.3 Writing just the PSR in 26�bit architectures
	5.4 26�bit PSR Update Instructions
	5.5 Address Exceptions
	Returning from an address exception

	5.6 Backwards Compatibility from 32�bit Architectu...
	5.6.1 32�bit and 26�bit configuration
	32�bit configuration
	26�bit configuration

	5.6.2 Vector exceptions

	The Thumb Instruction Set
	6.1 Using this Chapter
	6.1.1 Introduction to Thumb (page 6-3 through 6-4)...
	6.1.2 Overview of the Thumb instruction types (pag...
	6.1.3 Alphabetical list of instructions (page 6-19...

	6.2 Introduction to Thumb
	6.2.1 Entering Thumb state
	6.2.2 Exceptions

	6.3 Instruction Set Overview
	6.4 Branch Instructions
	6.4.1 Encoding
	Format 1
	Format 2
	Format 3
	Format 4

	6.4.2 Examples
	6.4.3 List of branch instructions

	6.5 Data�processing Instructions
	Examples
	6.5.1 High registers
	Examples

	6.5.2 Formats
	Format 1
	Format 2
	Format 3
	Format 4
	Format 5
	Format 6
	Format 7

	6.5.3 List of data�processing instructions

	6.6 Load and Store Register Instructions
	6.6.1 Formats
	Format 1
	Format 2
	Format 3
	Format 4

	6.6.2 Examples
	6.6.3 List of load and store register instructions...

	6.7 Load and Store Multiple Instructions
	6.7.1 Formats
	Format 1
	Format 2

	6.7.2 Examples
	6.7.3 List of load and store multiple instructions...

	Alphabetical List of Thumb Instructions

	System Architecture and System�Control�Coprocessor...
	7.1 Introduction
	7.2 CP15 Access
	7.3 CP15 Architectures
	7.4 ARMv4 System Control Coprocessor
	7.4.1 Register 0: ID register
	7.4.2 Register 1: Control register
	Enabling the MMU

	7.4.3 Register 2: Translation table base register
	7.4.4 Register 3: Domain access control register
	7.4.5 Register 4: Reserved
	7.4.6 Register 5: Fault status register
	7.4.7 Register 6: Fault address register
	7.4.8 Register 7: Cache functions
	7.4.9 Register 8: TLB functions
	7.4.10 11-15: Reserved

	7.5 ARMv3 System Control Coprocessor
	7.5.1 Register 0: ID register
	7.5.2 Register 1: Control Register
	Enabling the MMU

	7.5.3 Register 2: Translation Table Base Register
	7.5.4 Register 3: Domain Access Control Register
	7.5.5 Register 4: Reserved
	7.5.6 Register 5: Fault Status Register and Flush ...
	7.5.7 Register 6: Fault Address Register and Flush...
	7.5.8 Register 7: Flush Cache
	7.5.9 Registers 8-15: Reserved

	7.6 Memory Management Unit (MMU) Architecture
	7.6.1 Overview
	The translation lookaside buffer
	Memory accesses
	Translation table
	Domains

	7.6.2 Translation process
	7.6.3 Translation table base
	7.6.4 First�level fetch
	7.6.5 First�level descriptors
	7.6.6 Section descriptor and translating section r...
	7.6.7 Page table descriptor
	7.6.8 Second�level descriptor
	7.6.9 Translating large page references
	7.6.10 Translating small page references

	7.7 Cache and Write Buffer Control
	7.8 Access Permissions
	7.9 Domains
	7.10 Aborts
	7.11 MMU Faults
	7.11.1 Fault Address Register (FAR) and Fault Stat...
	Notes

	7.11.2 Fault�checking sequence
	7.11.3 Vector Exceptions
	7.11.4 Alignment fault
	7.11.5 Translation fault
	7.11.6 Domain fault
	7.11.7 Permission fault

	7.12 External Aborts
	7.13 System�level Issues
	7.13.1 Memory systems, write buffers and caches
	Write buffers
	Caches

	7.13.2 Interrupts
	Cancelling interrupts

	7.14 Semaphores

	Index

