Performance Analyzer Technical Reference

© 1998 Sony Computer Entertainment Inc.

Publication date: August 1998

Sony Computer Entertainment America
919 E. Hillsdale Blvd., 2nd floor
Foster City, CA 94404

Sony Computer Entertainment Europe
Waverley House

7-12 Noel Street

London W1V 4HH, England

The Performance Analyzer Technical Reference manual is supplied pursuant to and subject to the terms of
the Sony Computer Entertainment PlayStation® License and Development Tools Agreements, the Licensed
Publisher Agreement and/or the Licensed Developer Agreement.

The Performance Analyzer Technical Reference manual is intended for distribution to and use by only Sony
Computer Entertainment licensed Developers and Publishers in accordance with the PlayStation® License
and Development Tools Agreements, the Licensed Publisher Agreement and/or the Licensed Developer
Agreement.

Unauthorized reproduction, distribution, lending, rental or disclosure to any third party, in whole or in part, of
this book is expressly prohibited by law and by the terms of the Sony Computer Entertainment
PlayStation® License and Development Tools Agreements, the Licensed Publisher Agreement and/or the
Licensed Developer Agreement.

Ownership of the physical property of the book is retained by and reserved by Sony Computer
Entertainment. Alteration to or deletion, in whole or in part, of the book, its presentation, or its contents is
prohibited.

The information in the Performance Analyzer Technical Reference manual is subject to change without
notice. The content of this book is Confidential Information of Sony Computer Entertainment.

PlayStation and PlayStation logos are registered trademarks of Sony Computer Entertainment Inc. All other
trademarks are property of their respective owners and/or their licensors.

Performance Analyzer Technical Reference

Table of Contents

List of Figures

About This Manual
Changes Since Last Release
Related Documentation
Developer Reference Series
Typographic Conventions
Developer Support

Introduction

What Can the Performance Analyzer Do?

Flow of Diagnosis
When a CPU process is to be tuned
When a GPU process is to be tuned

Measurement Techniques

Interpreting Measured Data
Reading Analysis
Measurement of a total statistical amount
Details of Analysis

List of Figures

Figure 1:
Figure 2:
Figure 3:
Figure 4:
Figure 5:
Figure 6:
Figure 7:
Figure 8:
Figure 9:

Motortoon Grand Prix 2 (scene 1)

Motortoon Grand Prix 2 (Scene 2)

V-Blank Interrupt

Background Section Specification

Background Drawing

When a GPU Process is Longer Than a CPU Process
Streaming

Streaming (enlarged)

Statistical Information (CPU Process)

Figure 10: Statistical Information (GPU Process)

Figure 11: zimen\tuto5.cpe

Figure 12: zimen\tuto5.cpe (Instruction Cache Miss Portion Enlarged)
Figure 13: Function that encountered an instruction cache miss (1)
Figure 14: Function that encountered an instruction cache miss (2)
Figure 15: Statistical information of a portion where an instruction cache miss occurred
Figure 16: Duplicate read of data from main RAM (read/write penalty)
Figure 17: Duplicate read of data from main RAM (data dump 1)

Figure 18: Duplicate data read from main RAM (data dump 2)

Figure 19: Enlargement of a portion including a write buffer flush penalty
Figure 20: Write buffer flush penalty (data dump)

Figure 21:
Figure 22:

Null packet detection
Drawing efficiency check

Figure 23: Portion containing more texture cache misses

Figure 24: Portion containing fewer texture cache misses

Figure 25: Portion of a high drawing efficiency (video RAM bus analysis)
Figure 26: Portion having a high drawing efficiency (video RAM viewer)

Figure 27:

Portion having a low drawing efficiency (video RAM bus analysis)

Figure 28: Portion having a low drawing efficiency (video RAM viewer)
Figure 29: Sample program (without mip-mapping)
Figure 30: Sample program (with mip-mapping)

Figure 31:

A polygon including transparent colors

< <

Vi
Vi

16
18

7
8
9

11

12

13

14

15

16

17

18

19

20

20

21

22

22

23

24

24

25

26

27

27

28

29

29

30

31

31

32

Performance Analyzer Technical Reference

iv Table of Contents

Figure 32 : A polygon including transparent colors (video RAM viewer)
Figure 33: CLUT switching and polygons requiring considerable preprocessing
Figure 34 :Polygon penalties

Performance Analyzer Technical Reference

33
34
35

About This Manual

This manual is the latest release of instructions relating to the PlayStation® Performance Analyzer as of
Run-Time Library release 4.3. The purpose of this manual is to describe how to measure software
performance and interpret the results using the Performance Analyser.

Changes Since Last Release

There have been no substantial changes to this document since its last release.

Related Documentation

This manual should be read in conjunction with the Performance Analyzer User Guide, which provides
general instructions on the use of the Performance Analyzer.

Developer Reference Series

This manual is part of the Developer Reference Series, a series of technical reference volumes covering all

aspects of PlayStation development. The complete series is listed below:

Manual

Description

PlayStation Hardware
PlayStation Operating System

Run-Time Library Overview

Run-Time Library Reference
Inline Programming Reference

SDevTC Development Environment

3D Graphics Tools

Sprite Editor

Sound Artist Tool

File Formats

Describes the PlayStation hardware architecture
and overviews its subsystems.

Describes the PlayStation operating system and
related programming fundamentals.

Describes the structure and purpose of the
run-time libraries provided for PlayStation
software development.

Defines all available PlayStation run-time library
functions, macros and structures.

Describes in-line programming using DMPSX,
GTE inline macro and GTE register information.
Describes the SDevTC (formerly "Psy-Q")
Development Environment for PlayStation
software development.

Describes how to use the PlayStation 3D
Graphics Tools, including the animation and
material editors.

Describes the Sprite Editor tool for creating
sprite data and background picture
components.

Provides installation and operation instructions
for the DTL-H800 Sound Artist Board and
explains how to use the Sound Artist Tool
software.

Describes all native PlayStation data formats.

Performance Analyzer Technical Reference

vi About This Manual

Data Conversion Ultilities Describes all available PlayStation data
conversion utilities, including both stand-alone
and plug-in programs.

CD Emulator Provides installation and operation instructions
for the CD Emulator subsystem and related
software.

CD-ROM Generator Describes how to use the CD-ROM Generator
software to write CD-R discs.

Performance Analyzer User Guide Provides general instructions for using the
Performance Analyzer software.

Performance Analyzer Technical Reference Describes how to measure software

performance and interpret the results using the
Performance Analyzer.

DTL-H2000 Installation and Operation Provides installation and operation instructions
for the DTL-H2000 Development System.

DTL-H2500/2700 Installation and Operation Provides installation and operation instructions
for the DTL-H2500/H2700 Development
Systems.

Typographic Conventions

Certain Typographic Conventions are used through out this manual to clarify the meaning of the text. The
following conventions apply to all narrative text except for structure and function descriptions:

Convention Meaning
courier Indicates literal program code.
Bold Indicates a document, chapter or section title.

The following conventions apply within structure and function descriptions only:
Convention Meaning
Medium Bold Denotes structure or function types and names.

Italic Denotes function arguments and structure members.

Developer Support
Sony Computer Entertainment America (SCEA)

SCEA developer support is available to licensees in North America only. You may obtain developer support
or additional copies of this documentation by contacting the following addresses:

Order Information Developer Support

In North America In North America

Attn: Developer Tools Coordinator E-mail: DevTech_Support@playstation.sony.com
Sony Computer Entertainment America Web: http://www.scea.sony.com/dev

919 East Hillsdale Blvd., 2nd floor Developer Support Hotline: (650) 655-8181
Foster City, CA 94404 (Call Monday through Friday, 8 a.m. to 5 p.m.,
Tel: (650) 655-8000 PST/PDT)

Performance Analyzer Technical Reference

http://www.scea.sony.com/dev

Sony Computer Entertainment Europe (SCEE)

About This Manual

SCEE developer support is available to licensees in Europe only. You may obtain developer support or
additional copies of this documentation by contacting the following addresses:

Order Information

Developer Support

In Europe

Attn: Production Coordinator

Sony Computer Entertainment Europe
Waverley House

7-12 Noel Street

London W1V 4HH

Tel: +44 (0) 171 447 1600

In Europe

E-mail: dev_support@playstation.co.uk

Web: https://www-s.playstation.co.uk
Developer Support Hotline:

+44 (0) 171 447 1680

(Call Monday through Friday, 9 a.m. to 6 p.m.,
GMT or BST/BDT)

Performance Analyzer Technical Reference

vii

https://www-s.playstation.co.uk

viii About This Manual

Performance Analyzer Technical Reference

Introduction

The performance analyzer visualizes information such as bus traffic by sampling the signals in the
PlayStation. Some expertise is required to tune a program based on such information. This manual details
the expertise required. This manual assumes that the user has read the Performance Analyzer User Guide
and is familiar with the method of using the performance analyzer. This manual also assumes that the user
is familiar with the architecture and programming of the PlayStation, including programming techniques
specific to high-speed processing in the PlayStation.

What Can the Performance Analyzer Do?

The performance analyzer enables its user to obtain information processed by the CPU and GPU. Based on
this information, the user can use programs to determine, for example, where the CPU is stalling, or the
cause of reduced drawing performance. However, the information obtained from the performance analyzer
is, in itself, not enough to solve all the problems that may occur. For example, the performance analyzer can
detect cache misses, duplicate read accesses and similar problems, but cannot indicate whether the actual
algorithm of the program is satisfactory. Some programs may be capable of much faster processing if the
problem-solving techniques that they apply, including their algorithms, are modified. For example, suppose
that the user always wants to process all the circuit data of a racing game. This would result in there being
too much global data for the CPU to process for the polygons to be displayed. Tuning alone cannot
overcome this CPU bottleneck. To overcome this problem, high-speed processing should be implemented
by the application of a problem solving technique -- an example would be to divide the global data into
groups to enable efficient data access. Unfortunately, the performance analyzer cannot automatically
analyze problem solving techniques to identify such problems. Therefore, the programmer is responsible for
determining whether a tuning technique is appropriate. The performance analyzer should be used as a
measuring tool to help the programmer make this decision.

The performance analyzer samples hardware signals directly, allowing it to double as a debugger. Since the
performance analyzer cannot measure signals in the instruction cache, scratch pad, and other devices
inside the chip, however, its use is limited as an alternative to a full-featured debugger or in-circuit emulator.

In summary, the performance analyzer can be used to:

« Determine the degree to which the current algorithm can improve performance, and identify those
locations where problems have arisen.

* Determine the currently available processing margin and how many more polygons could be displayed
with that margin, if any.

* Measure the processing speed of each candidate technique while considering which algorithm to use,
and also in the graphic design phase.

* Measure undesirable phenomena caused in real time by using the trigger function.

Flow of Diagnosis

The PlayStation includes devices such as a CPU, GTE, GPU, MDEC, and DMA controller. All operate
independently of each other. The PlayStation can be thought of as a system in which a CPU and GPU
operate in parallel. In many cases, therefore, programs that run on the PlayStation are developed using the
double-buffer method so that a CPU process and GPU process can run concurrently to enable higher-
speed processing. This means that the tuning of the CPU must be balanced with that of the GPU to
achieve high-speed processing. By monitoring the CPU and GPU buses, the performance analyzer
visualizes the processing states of the devices through main RAM bus analysis and video memory bus
analysis.

Performance Analyzer Technical Reference

Based on the above information, a program is diagnosed using the performance analyzer. The flow of the
diagnosis is outlined below.

Measurement

Perform measurement of degraded processing, particularly of an overloaded scene or scene to be
improved. Detect degraded scenes using the trigger function.

Determining whether the bottleneck is in the CPU or GPU

Upon the completion of measurement, the results are displayed. From the main RAM bus analysis and
video RAM bus analysis, find the processing end points of a CPU process and GPU process. From
the processing end points, determine the process to be tuned.

When a CPU process is to be tuned

Collecting a total statistical amount to determine whether a desired performance improvement can be achieved by
tuning

Align markers M1 and M2 with the start and end points of a CPU process, respectively, to collect statistical
information. From an estimate of the number of CPU stall cycles, check whether the desired improvement
can be made using the available tuning methods. If the check reveals that an improvement can be made,
perform tuning as described below.

Finding the cause of an instruction cache miss

If an instruction cache miss produces a long CPU stall time, make improvements mainly where a stable
pattern endures for a long time. A portion with a stable pattern is regarded as performing loop processing,
and further improvement can be expected with less work. (This concept applies to improvements in data
read/write access, detailed later.) Enlarge such a section, read the symbol information, then detect the
global symbols accessed in that section to identify a function that causes a conflict in the instruction cache.
Then, perform improvement by changing the address of such a function, or by using inline expansion or
DMPSX. Note, however, that the method of changing the address of a function should be employed in the
last stage because the method is affected by modifications to the program source code.

Detecting duplicate reads from main RAM

The PlayStation has no data cache. So, when a read access is made to main RAM as a result of a load
instruction, the CPU stalls for four cycles. This means that duplicate memory access should be avoided.
Instead, the scratch pad or a register should be used whenever possible. The performance analyzer
displays the read/write penalty "duplicate read" for a portion in which multiple read accesses have occurred
successively with no write operation performed. The ratio of the area of such a portion is regarded as
representing a CPU stall time caused by duplicate reads. For higher-speed processing, emphasis should be
placed on finding such a section.

Some causes are listed below, together with the corresponding countermeasures.
¢ Move global data to the scratch pad before processing the global data.

» If astack area is accessed, pass the argument(s) of a function to a register after reducing the
nesting level and the number of arguments. Or, allocate a stack in the scratch pad. (In the latter
case, however, note that the program may crash if the scratch pad overflows.)

* Ifalong expression is coded, some compilers may allocate a temporary variable in a stack area.
This is because such compilers assume no penalty in stack area access. In this case, decompose
a long expression explicitly, and use a register variable instead of a temporary variable. Or, allocate
a temporary variable in the scratch pad.

e Multiple half-word or byte-data accesses to adjacent areas eventually become multiple long-word
accesses. So, arrange the processing such that memory is accessed once on a long-word basis,
with conversion from long word to half-word or byte data being made between register variables.

Performance Analyzer Technical Reference

Detecting a write buffer flush penalty

With the “PlayStation”, a data write from the CPU to main RAM is performed through a four-stage write
buffer. This means that, usually, no penalty is incurred until the write buffer is full. If a write access is
immediately followed by a read access, however, the main RAM bus is not released until the write buffer
has been entirely flushed. In this case, the CPU stalls for about four cycles. The performance analyzer
indicates such a stall time by the write buffer penalty "flush penalty." Perform analysis, focusing on those
portions that incur a long stall time, then improve the efficiency by, for example, changing the order of reads
and writes, and moving an instruction, if possible, to a point after a write access.

If a CPU write cycle is immediately followed by another access on the main RAM bus, this analysis may
indicate a four-cycle penalty even when the CPU is actually executing another instruction. Thus, a penalty
may be indicated when no stall has occurred. Therefore, assume that penalty indications merely represent
the possibility of the CPU having stalled due to flushing.

A flush penalty occurs, for example, when store and load instructions for the main RAM spaces are
executed alternately. In this case, the number of stall cycles can be reduced significantly by performing four
write accesses at a time.

When a GPU process is to be tuned

Checking for null packets

GPU packet analysis performs a check for null packets. If successive null packets are detected, the CPU
tends to stall because drawing stops and the main RAM bus is occupied accordingly. This problem often
occurs when a background packet is placed at the start of the ordering table, or when a space is drawn
which has no object at a given depth. If idle times caused by null packets cannot be ignored, place the
background packet next to a polygon placed at the far end to start drawing there, or use multiple ordering
tables.

Checking the drawing start point

Drawing is started by calling a function such as GsDrawOt. Check whether time-consuming processing is
inserted between the establishment of V blank synchronization (with a function such as VSync) and the start
of drawing.

Checking areas with a low drawing efficiency

A video RAM bus analysis indicates the amount of data being transferred over the video RAM bus. A higher
value represents a higher transfer rate. A height approaching 100% is indicated for a transfer rate of 32 bits
per clock cycle. On the other hand, a half height represents a maximum rate, for example, in the drawing of
a polygon. Actually, however, the write transfer rate (indicated in green) is reduced for causes such as
texture reading, as described later. Check for an extremely low green pattern. Enlarge such a pattern, if any,
to determine the cause.

Detecting a texture cache miss

In texture mapping, the GPU moves texture data to the internal texture cache before starting drawing. The
size of the texture cache is limited, however, so that a cache miss may occur frequently for polygons with a
large texture or for far polygons with an excessively high texture resolution. If a cache miss occurs, the GPU
stops writing to video RAM, and loads texture data into the texture cache. If video RAM read/write cycle
switching occurs frequently, an extremely low transfer rate results. If a decrease in the drawing efficiency is
caused by texture cache misses, enclose the polygon with markers M1 and M2, then check the write area
and read area with the video RAM viewer to determine the size and direction of the drawn polygon, as well
as the access roughness, direction, and color representing an access frequency of the texture area. Then,
perform cause analysis as described below.

* For one polygon, the texture area accessed for reads is extremely large.
This means that the texture data is too large to be held in the cache. When texture data is to be
shared by multiple polygons, the processing can be speeded up if the texture data can be held on
the cache. As described later, a decrease in processing speed, depending on the direction of

Performance Analyzer Technical Reference

rotation, of a polygon can be avoided by reducing the size of the texture data, even when the data
is used only once. Reduce the sizes of the polygon and texture data, or use 4-bit texture data.

* For a small write area, a large texture read area is used.
This means that the texture resolution is too high. With the video RAM viewer, a texture area
access pattern is represented by thin horizontal parallel lines. Namely, when a texture cache miss
occurs, 64-bit texture cells arranged horizontally and extending to the right from the texture area
are read, regardless of the texture resolution. This read operation results in a thin horizontal line.
Vertically, however, texture cells are not read continuously, but are skipped. Thus, an access
pattern like that described above results.
For correction, reduce the texture resolution. If the resolution varies over a wide range, use mip-
mapping or mip-modeling.

* The texture access area is long vertically. The texture read frequency is greater than the drawing
frequency.
If a texture cache miss occurs, texture cells are read horizontally as explained above. When a
vertical bar is drawn, for example, not all of the read texture cells may be used. In such a case, a
higher efficiency may be achieved by placing the texture data horizontally.
With a rotating polygon, the texture read efficiency changes. A poor efficiency results particularly
when the texture read direction differs from the drawing direction by 90 degrees. In this case, when
the drawing section of a polygon is viewed using the video RAM viewer, the frequency of reading
from the texture area tends to be displayed in a color that represents a higher frequency than that
of writing to the drawing area. Several countermeasures can be applied. Divide the polygon so that
the polygon data can be held in the cache. Read from the texture area by rotating the texture
pattern so as to ensure efficient read access at all times. Or, provide multiple texture patterns to
match the directions of rotation and to switch between them.

Detecting CLUT switching

Compared with an 8-bit texture, a 4-bit texture allows double the number of texture cells to be held in the
texture cache. However, a 4-bit texture supports only a limited number of colors, so frequent CLUT
switching will often be required. The “PlayStation” uses the Z sort method for drawing, such that CLUT
control cannot be applied explicitly. If CLUT switching occurs frequently with the same Z value, the time
required for CLUT switching may become so large that it can not be ignored. With the performance
analyzer, CLUT reads, when displayed, are colored by the video RAM bus analysis, enabling CLUT
switching to be identified. If the texture resolution is high, and texture cells are used on a skipping basis,
many texture cells that are not used may be read even when an attempt is made to improve the cache
efficiency by using a 4-bit texture. If this occurs, the use of a 4-bit texture does not speed up processing,
compared with that possible with an 8-bit texture. If the penalty incurred by CLUT switching cannot be
ignored in such a case, the use of an 8-bit texture with an increased number of colors can eliminate CLUT
switching, thus speeding up drawing.

Checking whether the resolution of the ordering table is too high

If the resolution of the ordering table is too high, an excessive number of null packets will be read, such that
the drawing efficiency decreases. Check this point carefully.

Detecting transparent pixels

When a tree is to be drawn, for example, this can be done by creating a texture with a transparent color
and representing the tree with one quadrangle polygon. This method is not efficient, however, because the
drawing of a transparent color, including the reading of a transparent texture and the drawing of pixels,
requires as much time as the drawing of ordinary pixels. So, divide the object in such a way that the leaves
are represented by triangle polygons, and the trunk by thin rectangles, such that the transparent area is
minimized.

Detecting a GPU preprocessing bottleneck

GPU processing can be divided into two steps: preprocessing for converting packet data to parameters
required for the drawing engine internal to the GPU, and drawing processing. The time required for drawing

Performance Analyzer Technical Reference

processing is roughly proportional to the drawing area. However, the preprocessing time depends not on
the drawing area, but on the type of the polygon. So, for a small polygon placed at the far end, most of the
GPU processing time is generally used for preprocessing. Thus, preprocessing tends to reduce the drawing
efficiency. In particular, when there are many small polygons with a Gouraud texture that require much
preprocessing, the drawing efficiency drops considerably. Using the performance analyzer, such a
preprocessing bottleneck can be detected by applying GPU packet analysis. A portion in which packets
requiring much preprocessing have high patterns involves many small polygons that tend to cause a
preprocessing bottleneck. If polygons that have small drawing areas and which require much preprocessing
need not be used, replace such polygons with other polygons that require relatively little preprocessing
when creating packets.

Detecting polygons with no drawing area, back-face polygons, and polygons subject to GPU clipping

A polygon that has no area requires longer preprocessing time than ordinary polygons do. So, before
packets are registered in the ordering table, the areas of the constituent polygons should be checked; this
check also serves to prevent useless polygons from being sent to the GPU.

Check also whether there are any back-face polygons for which normal clipping is not performed.

The GPU can perform two-dimensional clipping by hardware. However, a polygon that reaches the left and
upper boundaries of the screen requires the same amount of processing time as when the polygon is not
clipped. If there are many such polygons, the drawing efficiency decreases. The performance analyzer
displays the distribution of these polygons by using polygon penalties.

To check for polygons with no area, an outer product value returned from the GTE function can be used.
Note, however, that when a quadrangle polygon is checked, the area of one of the two partial triangles is
returned, and a gap can result.

Checking the time required to draw a background

Usually, a background is drawn by using sprites. However, a longer drawing time may be consumed by
duplicate drawing or drawing using polygons. Using video RAM bus analysis, check whether the time
required to draw a background is sufficiently short.

The typical flow of tuning using the performance analyzer is described above. This method may not be able
to solve many other problems, which may be associated with the use of libraries, or may be specific to
individual programs. In such a case, contact the development support section.

Measurement Techniques

With the performance analyzer, a V-blank interrupt serves as a reference point for measurement data. When
a program with one frame containing 2 V (two V-blank interrupts) or more is to be measured, the first
reference point does not always represent the start point of the main loop. To store data by matching a
reference point with the start point of frame processing, use one of the methods described below.

Methods for storing data by matching a reference point with the start point of frame processing:

a) Using synchronized data after repeated measurements
This is the simplest method. When a longer measurement time is to be set because of a low frame
rate that is caused, for example, by degraded processing, the probability of start point
synchronization is reduced. Accordingly, the measurement will have to be repeated. After measuring
the data, stop the data transfer before it ends. Then, display the results of main RAM bus and video
RAM bus analysis for 100,000 cycles. At the start of a loop, a pattern for clearing the ordering table
occurs on the main RAM bus, and a pattern for clearing the background occurs on the video RAM
bus. Continue to take these measurements until these patterns are obtained. When these patterns
are obtained, do not take a measurement, but instead transfer data to obtain the entire data.

Performance Analyzer Technical Reference

b) Sampling for a longer period of time, then clipping and saving the required portion
Measure the section to be measured by doubling the number of V blanks, then clip and save the
required portion. With a program that has a low frame rate, however, a measurement section may
be too large to be held in the memory of the performance analyzer. Moreover, if measurement is
repeated several times, the data transfer time is doubled, thus resulting in reduced efficiency.

¢) Using the trigger function
The trigger function of the performance analyzer can be used. For example, GsDrawOt (executed
after VSync in the main loop) is used as a trigger address. After reading the symbol information,
check the main RAM access address item in the trigger setting dialog box, then select a function
address to be used as a trigger condition. An instruction cache miss must occur to enable the
performance analyzer to detect a selected address. When addresses are accessed in the main loop,
however, one cache miss is expected to occur for each frame, thus enabling synchronization to be
established.

The above methods may not be suitable for measuring a phenomenon that occurs only rarely. For example,
if the frame rate drops in a rare case, the pinpoint measurement of such a phenomenon should be
performed. For this purpose, use a counter, for example, to find the time required to process the frame
before calling VSync. Then, set up the processing such that a particular global symbol in main RAM is
accessed when the frame rate drops. Namely, modify the program as follows:

#define HCountThreshold 525 /*frame length in H count (needs an
adjustment) */
volatile long ReqTrigger;

main()
f'c;r(;;){ /* main loop */
); compare H-counts since the last VSync exited */
if(VSync(1) > HCountThreshold)
ReqTrigger = 0;
VSync(0);
}
}

Thus, frame rate drop can be measured by setting an access to the ReqTrigger variable as a trigger
condition, and setting NFV of the trigger condition to the number of V blanks applied to one frame.

By modifying a program as described above, a variety of phenomena can be measured using the trigger
function.

Performance Analyzer Technical Reference

Interpreting Measured Data

This section describes how to interpret the measured data.

Figure 1: Motortoon Grand Prix 2 (scene 1)

«1/2048 C: 0
M1-t42 0-0(0) T
[Sampling: Februany 05 1997 23 L L L | A4 | L | L | | L

500000

1000000
N R

[Main Rakd Bus [Time]]
lLéTresolved

e
Refresh

RAS Pre-charge
P10 DM wirite
P10 Dh4A Read
CD 'Write

CD Read

SPU DA write
SPU D& Fead
Internal DA write
Internal DA Read
GPU DM \write
GPU DM Read

D ata wihite

[Data Read

Inst Burst Read

[Sub Bus [time]]
Unresolved M8 Fead SPU
Idle Wirike SPL
Read FIO Riead ROM
wiite P10 Riead Others
Read CD ‘wiite Others
“wite CD

[Wideo Rakd Bus [transfer rat
Idle

Read

frite:

Block 'white

Read Modify 'write

Texture Head

Clut Readd

Clut Reads

[GPU Packets [Hpolygons] |

E==Z==
T
SITIGITIG
TN

Mull Packet
PO 3

oo
maijmnmal
-
—oo
o

s}
o
%
o
)
e o L L o
[
MMM
IODI—‘

4
POLY GT4 B TILE 16 1h 1
UNEF2 M Black il ol ' %
[Read wfite Penalty (tirme] |
Mone
Duplicate Read

['wiite Buffer Penalty [time] |
MHane
Flush Penalty

[Palygon Penalty [time] |
MHane

Outside Frarme
Scigzoring

Back Face

Zern Area

Performance Analyzer Technical Reference

Figure 2: Motortoon Grand Prix 2 (Scene 2)

500000 1000000

R&S Pre-charge
P10 DM wirite
PI0 DMA Read

SPU DA write
SPU D& Fead
Internal DA write
Internal DA Read
GPL DMA wiite
GPU DM Read

D ata wihite
[Data Read

Inst Burst Read

[Sub Buz [time]]
Unresolved M8 Read SPU
Idle irike SPLI

Fead PIO Read ROM]
werite P10 Fiead Others ||
Read CD ‘wfrite Others ||
‘wirite CD |

[Video RéM Bus [ransfer
Idle

Read

write

Elock 'white

Read Modify 'write

Texture Head

Clut Readd

Clut Readd |
[GPU Packets [Hpolygons]] ||
Mane LINE_G2
Others LINEZF3
Command LINE_G3

Mull Packet B8 LINE”F4
POLY_F3 LINE G4
POLY_FT3 _ SPRT
POLY_G3_ M SPRT_8
POLY_GT3 _ SPRT_16
POLY"F4 TILE
POLY_FT4 M TILE_1
POLY_G4 TILEZH
POLY_GT4 B TILE_15
LINE_F2 Block Fil

[Read wfite Penalty [time]]
Mone

Duplicate Read

[Wwinite Buffer Penalty [time]]
Mone I
Fluzh Penalty

[Polygon Penalty [time]]
MHane

Outside Frame
Scizzaring

Back Face

Zern Area

Figures 1 and 2 show the results of measuring the car racing game, Motortoon Grand Prix 2. This program
employs the double-buffer method, a standard PlayStation programming technique. Analysis indicate that
the main RAM bus and video RAM bus are accessed at the same time so that a CPU process and GPU
process are performed concurrently. In Figures 1 and 2, a 2V section is measured; the V blank positions are
indicated by red lines on the upper ruler. (Figures 1 and 2 are based on NTSC. For PAL, these red lines are
spaced further apart.) How to read the patterns numbered in Figures 1 and 2 is described below.

Performance Analyzer Technical Reference

Reading Analysis

Start of a CPU process
Figure 3: V-Blank Interrupt

x 1/64 o

M1M2: 0-00) ;
[Sampling: Februanp 0519972407, 1 o o o L v v o1 b

[bain Bak Busz [Time]]
Uprezolved
Idle

FIO DMA Read
CD Write
CD Read

SPU Didd write

SPU DhA Read

Internal DA Wiite

Internal Dkda, Read

GPU DMa Wiite

GPU DA Read

D ata wiite

[ata Read | I “ | |
Inst Burst Fead

[Sub Busz [time]]
Unrezolyed Fesd SPU
Idle Wirite SPU

Read PIO Read ROM
Write P10 Fead Others
Read CO write Others
Wite CD

[Video RaAk Bus [transfer rat
Idle

Read

Write

Block wiite

Read bodify Write
Texsture Read

Clut Readd

Clut Feadd

A CPU process starts when the VSync function ends in the program. The measurement data first indicates
an interrupt routine caused by a V-blank interrupt. In Figure 3, the starting portion is enlarged. As can be
seen from Figure 3, about 20,000 clock cycles are required for interrupt routine processing, after which the
user program is executed. In Figure 1, this point acts as the start point of a CPU process. (This means that
symbol main is the first point to be accessed.)

End of a CPU process (detection of VSync wait state)

The end of a CPU process is not detected automatically. However, the end point can be obtained by
finding a stable read/write pattern that appears at the end of the processing. This is enabled by the VSync
function polling the variables set by the interrupt routine. Such a stable pattern often represents loop
processing. The end of a CPU process corresponds to the start of a pattern of the VSync function. Usually,
the VSync function operates on the cache, so that no red pattemn, representing a cache miss, appears.

Start of a GPU process (drawing)
The start of drawing is represented by the first access revealed by video RAM bus analysis.

End of a GPU process (drawing)
The end of drawing is represented by the last access revealed by video RAM bus analysis.

Clearing of the ordering table

The ordering table is cleared using a function such as ClearOT. The DMA controller in the CPU chip writes a
long word to main RAM in each clock cycle. Thus, a high peak appears in the first half of the processing.

Performance Analyzer Technical Reference

10

Instruction cache miss

A burst read from memory, caused by an instruction cache miss, is indicated by a red pattern.

On-cache pattern

If the program causes no instruction cache miss, no red pattern is displayed, as indicated here. In this case,
the CPU operates efficiently without stalling.

Interrupt

Usually, an interrupt is a V-blank interrupt. Other types of interrupts, such as sound interrupts and timer
interrupts, can be generated. When an interrupt is generated, an instruction cache miss occurs and a red
spike-like pattern is produced, as indicated here. If such an interrupt is generated frequently, the main task
processing is impeded. So, be careful if such a pattern is detected frequently.

GPU packet read

The GPU usually reads packets from main RAM by means of DMA transfer. This pattern is represented in
pink. When more data is transferred, a thicker pattern results. Thus, main RAM bus access by the CPU is
impeded, causing the CPU to stall.

Null packet

A null packet is a packet for which there is no entry on the ordering table. If null packets occur in
succession, no drawing packet is transferred to the GPU, such that drawing is delayed accordingly. GPU
packet analysis uses a white pattern to represent null packets. Null packets appearing in succession not
only delay drawing by the GPU, but also cause frequent useless GPU packet reads, as can be seen from a
main RAM bus analysis; thus, the availability of the main RAM bus becomes very low.

Ordering table resolution

A white pattern mixed with polygon packets like this indicates reduced drawing efficiency, caused by the
ordering table resolution being too high. By means of video RAM bus analysis, enlarge and check this
portion to determine the adverse effect of high resolution on the processing.

Performance Analyzer Technical Reference

Background drawing (texture mapping)
Figure 4: Background Section Specification

I GULPAD

%1812 C 30720
kA1-h42: 30720 - 162304 [13155
[Sampling: February 05 1997 23

[Main Rakd Bus [Time] |
Jrrezolved

I
Refresh ‘r ‘ H
RAS Pre-charge | | | |
PO DM&, Wirite | | ‘
PIO DA Read
CD write |
CD Read
SPU DMa Wiite

100000

SPU DA Read |
Internal DA Wiite [

Internal Dk4 Read

GPU DM Wwiite
GPU Dia Read | |
Drata wirite il
[ata Read

Inst Burst Read

[Wideo Rk Bus [transfer rat

|dle
ead

Wiite
Block ‘wiite
Bead Modify Wwiite
Texture Read
Clut B e
Clut Feads
[GPU Packets [#polygonsz]]
MHaone LIME G2
Others LIME"F3
Carnrand LIME"G3
Hull Packet B LIME_F4
POLY_F3 LINE_ G4
POLY"FT3 _ SPRT
POCY_G3 M SPRT_A
POLY"GT2 _ SPRT_16

Lv_F4 TILE
POLY”FT4 W TILE 1

Lv_G TILEZB
POLY GT4 & TILE_1E

INE_F2 Block Fill

R]

Performance Analyzer Technical Reference

12

Figure 5: Background Drawing

@ Homal Cx1722 O xlld (J

| T | FHEAD MwRite

Texture

Frame Area

To determine a background boundary, enclose the first pattern in the video RAM bus analysis with the M1
and M2 markers as shown in Figure 4. Then, obtain the drawing area by executing the video RAM viewer
command, as shown in Figure 5, and check that a background is drawn. An access frequency is
represented by a color, enabling a doubly drawn area to be detected. If the resolution of the texture is too
high in background drawing, video RAM bus analysis indicates texture reads in red and a lower write
pattern in green. If background drawing takes a long time, tuning should take this point into consideration.

Pattern exhibiting low drawing efficiency

A low green pattern like that in this portion represents a low drawing transfer rate. For troubleshooting,
enlarge such a portion.

Pattern exhibiting a high drawing efficiency

Efficient drawing is indicated by a pattern like this. No texture reads or CLUT reads are performed.
Moreover, the time required for polygon preprocessing can be ignored, relative to the drawing time, and a
high green write pattern is indicated. In polygon drawing, the pattern height can increase by up to 50%.

Semi-transparent polygon

A semi-transparent polygon is represented by a navy blue pattern. Note that the drawing of a semi-
transparent polygon takes three times longer than an ordinary write.

Performance Analyzer Technical Reference

When a GPU process is longer than a CPU process
Figure 6: When a GPU Process is Longer Than a CPU Process

I BALLSFAD
«1/1024 C:0
M1-t2: 0-0(0)
[S ampling: Februam 07 1557 21

[bain Bak Busz [Time]]
Uprezolved

&
Refresh

RAS Pre-charge
FIO DA Wwite
FIO DMA Read
CD Write

CD Read

SPU Didd write
SPU DhA Read
Internal DA Wiite
Internal Dkda, Read
GPU DMa Wiite
GPU DA Read

D ata wiite

[ata Read

Inst Burst Fead

[Video RaAk Bus [transfer rat
Idle

Read

Write

Block “rite

Read bodify Write

Texsture Read

Clut Readd

Clut Feadd

[GPU Packets [Hpolygonz]]

Maone LINE_GZ
Lk niowan LIME"F3

100000 200000 300000 M#_DDDDD

Command LINE_G3
Mull Packet & LINE_F4
FOLY_F3 LINE_G4
POLY"FT3 SPRT
POCY—G3 M SPRT &
POLYGT3 _ SPRT_1E
OLv—_F4 TILE
POLY"FT4 TILE_1
oLy~ G TILE”S
POLY GT4 & TILE”1E
ME_F2 Block Fil

Figure 6 shows a GPU process that ends after a CPU process ends. As shown in Figure 6, even when the
CPU is performing loop processing in the VSync function, GPU packets are read on the main RAM bus. So,
the VSync wait pattern does not appear in a stable manner when compared with Figure 1. In this case,
however, the CPU has ended its processing. Moreover, it can be observed that an interrupt for drawing
termination was generated upon the completion of drawing, and a spike pattern representing an instruction
cache miss due to interrupt handling occurred on the main RAM bus.

Next, an example of measuring a streaming program is shown in Figure 7. Each numbered pattern is
explained below.

Performance Analyzer Technical Reference

13

14

Figure 7: Streaming

5 STREAMFPAD
«1/2048 C:0

M‘I-M2.: 0-0[m ¥ MT
[S ampling: Februam 07 1557 21) | ;

i =] 3
500000 1000000

[bain Bak Busz [Time]]
Uprezolved

&
Refresh

RAS Pre-charge
FIO DA Wwite
FIO DMA Read
CD Write

CD Read

SPU Didd write
SPU DhA Read
Internal DA Wiite
Internal Dkda, Read
GPU DMa Wiite
GPU DA Read

D ata wiite

[ata Read

Inst Burst Fead

[Sub Busz [time]]
Unrezolyed Fesd SPU
Idle Wirite SPU

Read PIO Read ROM
Write P10 Fead Others
Read CO write Others
Wite CD

[Wideo Rk Bus [transfer rat
Idle

Read

Write

Block wiite

Read bodify Write
Texsture Read

Clut Readd

Clut Feadd

e

MMM\MH H
y fuu fi W

(<]]

DMA transfer from the CD to main RAM

A pattern like this occurs when data is transferred from the CD to main RAM. A high pattern is displayed.
However, main RAM bus analysis indicates the period during which the main RAM bus is occupied. This
means that data is not always transferred in each cycle. Data transfer from the CD occupies the main RAM
bus for a long time although the amount of data is not large. If the CPU attempts to access the main RAM
bus while data is being transferred from the CD, the CPU wiill stall for a long time.

CD read

The CD device is connected to the sub-bus, another bus used by peripheral devices. So, CD reads are

displayed by a sub-bus analysis like this.

Figure 8 shows an enlargement of part of the streaming. The patterns described below are observed.

Performance Analyzer Technical Reference

Figure 8: Streaming (enlarged)

#1/8 C: 377400
M1-t2: 0-0(0)
[S ampling: Februam 07 1557 21

[bain Bak Busz [Time]]
Uprezolved

&
Refresh

RAS Pre-charge
FIO DA Wwite
FIO DMA Read
CD Write

CD Read

SPU Didd write
SPU DhA Read
Internal DA Wiite
Internal Dkda, Read
GPU DMa Wiite
GPU DA Read

D ata wiite

[ata Read

Inst Burst Fead

[Sub Busz [time]]

Unrezolyed Fesd SPU
Idle Wirite SPU
Read PIO Read ROM
Write P10 Fead Others
Read CO write Others
Wite CD

[Video RaAk Bus [transfer rat
Idle

Read

Write

Block “rite

Read bodify Write

Texsture Read

Clut Readd

Clut Feadd

376000 377000 37a000 373000

(4]

Transfer from main RAM to MDEC

Data transfer from main RAM to MDEC is represented by an orange pattern. Usually, compressed data is
transferred.

Transfer from MDEC to main RAM

Transfer from MDEC to main RAM is regarded as an internal DMA write transfer, so that a dark green
pattern appears in the same way as when clearing the ordering table. MDEC expands data, such that data
transferred from MDEC to main RAM is decompressed image data.

Performance Analyzer Technical Reference

16

Measurement of a total statistical amount

Figure 9: Statistical Information (CPU Process)

=10] |
=

GUL_PAD [Sampling: February 08 1937 E2:E3:E4]
Bange: 30720 - 882776 =
Main Memory Bus:
Time (%) Bvtes SpeediMB/sec) Clock Cyclesfword Estimated CPI EBtall Cycles
unresolwed o.a —-——— —_—— —_—— mmmeeeea
IDLE 38.8 ———= -—— _— e
BEFRESH 1.6 -—— -—— —_—— mmmmee -
LAZ PRECHARGE 2.2 —-——— -—— ——— e
PIO DMk WERITE a.o u] —_—— —_—— mmmmee -
PIO DMA BEAD 0.0 u] —— —
Ch DMa WRITE .o u] -—— _—— e
Ch DMA READ 0.0 u] -—— ——— e
SPU DML WRITE 0.0 u] -—— ——— e
5PT DMA READ o.a za0 E&.40 2.3 mmmem———
Internal DML WRITE o.& 19432 131.55 i.o0 mmm————
Internal DHMA READ 0.0 u] -—— ——— mmmmee o
GPUT DMA WRITE 0.0 u] -—— ——— e
GPUT DMA READ 4.0 53064 E3.38 zZ2.8 mmme————
LATAR WRITE 7.9 PEIET 3826 3.5 ———————
DATA READ Z0.&5 174EZ0 24,00 4.0 174520
I-EURST READ 1.8 3E191:2 TE._40 1.8 21864

Statistical information can be obtained by placing markers M1 and M2 at the start and end points of a CPU
process, respectively. Figure 9 shows the statistical information thus obtained, which includes the estimated
number of CPU stall cycles for the program. By referring to that value, determine the type of tuning required.
If the desired processing speed cannot be obtained even after the total number of CPU stall cycles is
reduced, another solution should be found by determining which processing is overloaded.

Next, place markers M1 and M2 at the start and end points of a GPU process, respectively, then measure
the statistical amounts in the same way (Figure 10). Information displayed here shows the number of
polygons and sprites which the GPU processed. Such information can also be used to check whether the
number of polygons to be displayed is adequate.

Performance Analyzer Technical Reference

Figure 10: Statistical Information (GPU Process)

=10 x|

GIT Packets: [~
Polygons
Others ?
Command 2E
Mull Packet 4511
POLY_F3 20
POLY_FT3 41
POLY_G3 100
POLY_GT3 53
POLY_Fd 11z
POLY_FT4 z40
POLY G4 337

POLY_GT4 =
LINE_Fz 1z
LINE_GzZ o
LINE_F3 u}
LINE_G3 u}
LINE_F4 o
LINE_G4 u}
SPRT 100
SPRT_8 o
EZPRT_le u}
TILE o
TILE_1 u}
TILE_%Z u}
TILE_l& o
ElockFill u}
Total: 1040

Performance Analyzer Technical Reference

18

Details of Analysis

The methods of analysis are detailed below.

Detection of the Instruction Cache Miss Function

Figure 11: zimen\tuto5.cpe

141024 G0

M1M2 0-0[0) A 100000 200000 300000 M 400000 500000 5
[Sampling: Febua 101997130 . | 1 o~F

[Main RaM Bus (Time) |
Unresolved

Idle

Refresh

RAS Pre-charge

P10 D& it

P10 DA Read

CD wirite

CD Read
SPU DA \wiite
SPU DMA Read
Internal Dk, Wiite
Internal DM, Fead

1 I I

|
" NN

GPU DM Write
GPU DM Read
D ata white

D ata Read

Inst Burst Read

[Wideo Rakd Bus [transfer rat

Idle

Fead

it

Block \write

Read Modify 'write
exture Read

Clut Readd

Clut Read?

[Read wiite Penalty [time] |
None
Duplicate Read

[Wérite Bulfer Penalty [time] |
Mohe

Flush Penalty ﬂ

Figure 11 shows the results of measuring the sample program, psx\sample\graphics\zimen\tutob.cpe,
provided on the library CD-ROM. A 1V section measurement is made, and a main RAM bus analysis
indicates a cache miss, in red, in the first half. We can determine the function that caused this cache miss.
First, position the cursor to the area where the cache miss occurred, and enlarge that area. Then, the
patterns shown in Figure 12 are obtained.

Performance Analyzer Technical Reference

Figure 12: zimen\tuto5.cpe (Instruction Cache Miss Portion Enlarged)

%1118 C: 91024
M1-t2: BE0TE - 94160 [E144)
[Sampling: Febuay 10195713, | v v 0 o SA v L L SA vl b B

87000 88'3100 83000 30000 31000 32000 33000 8405102 35000

[Main Rk Bus [Time]]

Unresolved
Idle

RAS Pre-charge
P10 Dh& wirite
P10 DiA Read
CD 'write

CD Read

SPU DA write
SPU D& Fead
Internal DA \Write

Internal DA Read
GPU DM \wirite
GPU DM Read

D ata white

D ata Read

Inst Burst Read

| |
' |
!

stack_seg |

unkniwn lacation 1T 1] || 0 0T TR A AT T AT | iIIIIIIIII LRI
STACK
GsSotaDBE0_DF | | | | | | 1o I nnn |

[|
RofTransPersé]]] [[l | 1] |]| 1111 /11 [|
InitH eap | |
gobj !

out_packet I nemn *II Il I|I| Il I|I|| Il lI| 1108 [T I|I|| 1100 [T T qllll e mn

zsoittable | | ' |
HWDO | |
WD0 !
ot | | |
cond !

|

|

ClutHardle | |
GisNDIY | RV RV I N Bl | | | IV B R Y | BV

urknown location | |
of]

These patterns appear cyclically. From the clock cycle values indicated on the ruler, the period is found to
be about 700 cycles. As this period is shorter, and these patterns represent a greater proportion of the
overall processing, a greater improvement can be expected despite the application of less tuning. Here,
enclose several cyclic patterns, regarded as representing loop processing, with markers M1 and M2. Then,
read the mapping information, and display only those global symbols that are accessed in the section by
selecting filtering from the menu. (Figure 12 already indicates these global symbols.) Next, enable global
symbol access display. Furthermore, with the option menu, reset the scale factor specification for global
symbol access display to enable display using the current scale factor.

Then, the global symbols accessed in the M1-M2 section are displayed as shown in Figure 12. Those
functions that caused instruction cache misses are displayed in red. We can determine which functions
caused a particularly large number of instruction cache misses. Figures 13 and 14 show the data dumped
by positioning the cursor to each function and double-clicking.

Performance Analyzer Technical Reference

20

Figure 13: Function that encountered an instruction cache miss (1)

» DUMP ZIMERMS.PAD

P ME N N T P o D mem s s Vv vvv¥ ¥ VOV V G DDC |a
0 Bf W B & ' F i W B & B N HM N M MM M T T |
g W o0 ¥ D u F T EEEE L ¥ D

& B T D E s A HNNN & N M A X Y & ¥ Y I 111

T D E n o E 3210 T K o0 cCo o0 © 1 1L N ®*

A L T wrwr 4 b C c T

T T E O 1 *

5
89506+ [— o R/ W(335, 452) 0 111 |&)
89907: —— 0 R/W W(336, 452} o111 .
go908: —— 0 R Wi337, 4523 0 111 |5
8950%: DR 1 — 0 R/W W(3ID, 452} o 111
89910: DR —— 0 R w333, 4523 0 111
85511: DR —— 0 R/W W(340, 452} o111
89512: DR GO7FFESC CsHDIV+798C2C SO04EZFC ———- o R Wiz4l, 4523 0 111
g9513: H —— 0 R/W W(34Z, 452} o111
g9914: . . — 0 R/ w343, 452 0 111
29515: IR 4 Instructions on cache line 5A ——— 0 RSV W(34d, 452} o111
g9916: IR / —— 0 R W45, 4523 0 111
89517: IR —— 0 R/W W(346, 452} o111
gos1s: IR RotTransPers4+000058 ESOEOOOOD —-—- o R w347, 4523 0 111
89919: IR RotTransPers4+00005C ESZE0000 —-—- 0 R/ W(348, 452} o 111
g9920: IR RotTransPers4+000060 4848F500 —-—- 0 RV w343, 4523 0 111
g99zl: IR Dot TransPers4+000064 48029800 —-—- 0 /W W(350, 452} o 111
goozz: H —— o R W3EL, 4523 0 111
gosza: DR 1 —— 0 R/W W(35Z, 452} o111
g9524: DR —— o R W53, 4523 0 111
89925: DR — 0 R/W W(354, 452} o 111
89926: DR S07FFEED GsMDIV4+792C30 S07FFFI0 --—- 0 RV W(3E5, 4523 0 111
g99z7: H —— 0 /W W(3EE, 452} o 111
gooza: —— o R w357, 4523 0 111
goozs: DR 1 —— 0 R/W W(358, 452} o111
89930: DR —— 0 R W(359, 452} 0 111

Figure 14: Function that encountered an instruction cache miss (2)

» DUMP ZIMENS PAD

P HMD N N M 15 a i) MMM 2 1 w v v v w v v w & EDC]

o Bf w B A T F A LILLTTL I = A E M M Hn M M M M o HET |—
3 w a T ol M F T EEEE L N DER=
1 B T ol B 1 A NN B M M oa X T A K T I 111
T i E I a E 2210 T K [S | n] C 1 1 N *E*

A L T F¥EEE A L C C T
T T E 0O 1 *

20056 - 0O RS W335, 454) o 111 B
20057 DR 1 -—— a RS Wi3ss, 454} 0 111
S00E58: DR - 0O RS W30, 4543 o 111
200559: DR —-—— o RST wiz31l, 454 0 111
20050: DR SO004EZFC out,_packet&Dl’?ASS 001&00E7 —---—- 0 RS W(3DZ, 454} o 111
2008l H A = ks 1 o R/ Wwi3R3, 454) 0 111
sooez. IR 4 Other instructions on the same cachéline 5A 0 RAT (394, 4541 0 11l
00&832: IR - a RS Wi(3%5, 454} 0 111
* S00&4: IR - O RS W(3IIE, 454} o 111
20085: IR GsSort,SDBGD_DPQ+DDD.590 00651024 —---—- o RST wiz37, 454 0 111
20085: IR GsSort,SDBGD_DPQ+DDD.594 10400002 —---- 0 RS W(352, 454} o 111
20087 IR GsSort3DEGO_DPO+00053E 00000000 —-—- a RS wi3ze, 454) 0 111
20085: IR GCs8ort3DEGO_DPO+000E3C D0OADLISZ] —--- 0O RS W(400, 454} o 111

00&89: H - o BRSW Wi40l, 454} 0 111
20070: —-—— 0 RS W(40Z, 454} o 111
20071: —-—— o RST Wi403, 454} 0 111
2007z IR £ - O RSW Wi404, 4547 o 111
20073: IR - a RS o 111
[0074: IR - a RS o 111
20075 IR S001ZEED GsZort3DEGO_DPO+000EAD SEEZ000A —-—- a RS o 111
20076: IR S001Z5E4 GsSort,SDBGD_DPQ+DDDSA4 26640012 —---—- a o 111
20077: IR S001Z5ES GsSort,SDBGD_DPQ+DDDSA8 o00zE5400 —--—- a o 111
20078: IR S001Z5EC GsSort3DEGO_DPO+000SAC D00ASCOS -—--—- a RS o 111
20079 H -—— 0O RS W(3IEOD, 4EE) o 111

S0080: DR 1 - o BRSW Wi3zl, 456} 0 111

The size of the “PlayStation”'s instruction cache is 4KB. The cache line size is 4 long words, and 256 cache
lines are allowed. As shown in Figure 13, the lower two digits next to the lowest digit of a main RAM bus
address represent the line number. This means that a cache miss is caused by instructions that are located
at different addresses but which have the same lower two digits. There are several methods of eliminating
such a cache miss. Use inline expansion or DMPSX, or link those functions to locate the functions at
addresses close to each other if the functions are user functions. Note, however, that a cache miss is

Performance Analyzer Technical Reference

unavoidable if the loop includes code of 4KB or more. One speedup technique for the “PlayStation” involves
ensuring that no small loop includes a code of 4KB or more.

Next, position M1 and M2 to cover the section including all the patterns for loop processing involving a
cache miss, then collect the statistical information for the section (Figure 15).

Figure 15: Statistical information of a portion where an instruction cache miss occurred

ZIMENS.PAD [71040-120152] =10 x|
ZIMENEL . PAD [Sampling: February 10 1997 13:01::21] |
Bange: 71040 — 120132 =

Main Memory BEus:
Time (%) Bytes Speed(MBEf=ac) Claock Cyclesfword Estimated CPO 2tall Cycles
unresolved o.a —-——— -—— —_—— mmmeeeea
IDLE Z4.
REFRESH
EAS PRECHAERGE
PIN0 DMi WRITE
PIO DML READ
CI» DMa WRITE
C» DM2 READ
SPT DMA WRITE
ZPU DIMA READ
Internal DMi WRITE
Intermnal DHMA BEAT
GPT DMi WRITE
GPU DIMA READ
DATA WRITE
DATA BEAD
I-BURST READ

ul
ul
u}
D —_—— —_—— e
a
ul
u}
u}

a —-—— —— mmmmee-
z284 83,31 1.6 memmem————
El4dz 24 .75

13440 3400
131:z0 e 71

- —
A S N R N N = N R = R =

s
-a

2
&
2
ul
ul
u}
u}

.0
ul
u}
u}
a
4
4
3
Z

-
=
Ll N |
wm o m
=
[5]
W
s
o

The CPU stall time caused by an instruction cache miss corresponds to about half of the red indication
provided by main RAM bus analysis. Here, the CPU stall time is represented by the number of clock cycles.
If cache misses can be eliminated from this section, processing can be speeded up by the corresponding
number of clock cycles.

Detection of Duplicate Data Reads

A CPU data read cycle on the main RAM bus is indicated as a yellow pattern by main RAM bus analysis.
The CPU stall time corresponds to the total yellow area. Data such as global symbols may be read from
main RAM, but a work area and temporary variables should be accessed using, for example, the scratch
pad. If main RAM must still be accessed, tuning can be achieved by checking whether there is a duplicate
read, that is, by checking whether there is an access for reading from the same address more than once
without writing. In Figure 11, such a duplicate read is indicated by the read/write penalty "duplicate read." A
red area represents a duplicate read, or CPU stall time. Figure 16 shows an enlarged view of a portion that
includes many read patterns. Here, position the cursor to a red pattern, then double-click to dump the data
(Figure 17).

Performance Analyzer Technical Reference

21

22

Figure 16: Duplicate read of data from main RAM (read/write penalty)

%1 C: 80454
M1-H2: 71040 - 120192 (49153
[Sampling: February 107199714, 1 . . o o Lo

[Main Rak Bus [Time]]

Unresolved
Idle

RAS Pre-charge
PIO Db, wirite
PI0 DhA Read
CD Write

CD Read

SPU DA write
SPU D& Fead
Internal DA \write
Internal DMA Fead
GPU Wirite
GPU DMA Read

[ata 'white:

D ata Read

Inst Burst Read

[Read/wiite Penalty [tirme] |
Mone
Duplicate Read

['wirite Buffer Penalty [time] |
MHaone
Flush Penalty

Figure 17: Duplicate read of data from main RAM (data dump 1)

I MR N N o 5 u} L mom = = w v v v w v v w G RDC =
0 BY w E A T F A T E A B N M Hu n nn n T HET o
g8 w o T L M F T EEEE L N LDERE

a8 B T ol B a8 A MNNMH = M M oa X T A M T I 111

T L E R o E 310 T K o c o n] C 1 1 N *r*

A L T FEEE D L C C T

T T E 0O 1 *

* 80454: DR 1 - o RS w473, E52) 0 111 B
80455: DR - 0 RS W(420, ZE2) o 111
80456: DR - o RS Wwi42l, EZE2) 0 111
S0457: DR S004E13C out_packet+017845 O0L3FF35 ---- 0 R/ W(45Z, Z58) o 111
S04E58: H -—— o RS wid4g3, Z58) 0 111
S0455: -—— O L/ Widad, ZE2) o 111
a0480: - o RS w485, EZ52) 0 111
80481: DR 1 - 0 RS Wid4Be, ZE2) o 111
g04ezZ: DR - o RSW o 111
S0483: DR -—— o RS o 111
80454: DR S004El44 out_packet+0178B0 O0L2FFOL —--- a o 111
80485: H - a o 111
a0486: IR £ - o THR o 111
a0487: IR - 0 THER R{&24, z08) R{&2E, Z02) 0 111
g0458: IR - O THR o 111
80459: IR 80012540 GsESort2DEGO_DPO4+000ESD DOEE10ZA —-—- 0O THR R{&2&, Z08) R(&27, Z08) 0 111
§0470: IR S00125a4 GsZort3DEGO_DPO+000ES4 10400002 -—-—- o THR o 111
80471: IR S001Z548 Gs8o0rt3DEGO_DPQ+000555 00000000 —---- o THR o 111
8047z: IR S001EZE5AC G=sSorte3DEGO_DPO+00053C 00AOD1SZ1 —-—- a o 111
04732 H - Q o 111
S0474: -—— o RS o 111
80475 -—— o RS wi4g7, 258) 0 111
80476: IR £ - 0 RS Wids2, ZE2) o 111
80477 IR - o RS w423, E52) 0 111
a0472: IR - 0 RS W{420, ZE2) o 111

Next, by using the search command, identify an address that is accessed more than once. Figure 18 shows
the dumped data.

Performance Analyzer Technical Reference

Figure 18: Duplicate data read from main RAM (data dump 2)

» DUMP ZIMERMS.PAD

[o W o ey Page: [o0d

P MR N N n g o o] mon o= 5 v v v v v v v v G EDC El
0o Er w E A T F A Wi B A E H M " n N " n T HET ~
g m [u] T L)i F T EEEE L N LDES

-) T D E - A NNNN 2 N M B X T A X T I 111

T o E -3 o E 3210 T K o cCc o a c o1 1 N EEE

A L T FEEE D o C C T

T T E 0O 1 *

* 80343: DR S004E13C out_packet+017848 O0L2FF3E —--- o RS o 111 [=
80344: H ———= [u] o 111
80345: ———= [u] o 111
80346: DR 1 == u] o 111
20347: DR ———= u] o 111
80348: DR ———= [u] o 111
80343: DR S07FFFZ0 GsHNDIV+7S8CFD 0000000A —--- [u] o 111
80350: H ———= [u] o 111
S03E1l: == u} 0 111
2803EZ: DR 1 —-——= u] o 111
203E53: DR ———= u] o 111
80354: DR ———= [u] o 111
80355: DR S07FFF1la GsHNDIV+798CES S00658C0 —--- [u] o 111
80386: H ———= [u] o 111
80357: == u] o 111
20358: DR 1 ———= u] o 111
803E53: DR ———= [u] o 111
80360: DR ———= [u] o 111
80361l: DR S004El44 out_packet+0178B0 O013FF34 —--- [u] o 111
g038Z: H == u} 0 111
20363: IR 4 —-——= u] o 111
20364: IR ———= u] o 111
80365: IR ———= [u] o 111
80366: IR S0012540 G=sSorc3DEGO_DPO+000530 O3ZE1007 -—--—- a o 111
80367: IR S0012544 Gs5o0rt3DEGO_DPQ+000534 SFO30004 —-—- [u] o 111

The reason for such a duplicate read is described in Flow of Diagnosis. The code should be modified,
depending on the cause, to eliminate duplicate reads whenever possible.

A byte access or short-word access is handled as a long-word access on the main RAM bus. This means
that, even when a read access which is not duplicated is coded, the performance analyzer may indicate the
access as a duplicate read.

The CPU stall time for one read access is four cycles. So, if a code for using the scratch pad or a register to
avoid access to main RAM is shorter than the number of duplicate accesses multiplied by four instructions,
the use of such code will speed up processing.

A duplicate global symbol read can be identified from global symbol access and data dumping. However,
access to a stack area requires some care. Namely, when a symbol file is read without first setting a stack
area using the performance analyzer, an access to a stack area is mistakenly indicated as a highest-level
access to a global symbol. In such a case, an access to a stack causes an extremely high offset value for a
particular global variable.

Detection of a Write Buffer Flush Penalty

In Figure 11, a write buffer analysis indicates a portion where a device such as the CPU may stall because
an access request is generated while the write buffer is being flushed. The area represents the stall time.
For tuning, the portion where many red patterns are visible should be carefully checked.

Performance Analyzer Technical Reference

Figure 19: Enlargement of a portion including a write buffer flush penalty

5 ZIMENS. PAD
%1 C: 79812
W1-M2: 71040 - 120192 (49153
[Sampling: February 10199714, |, . . | o , o I~NA o o 1 4 oo by

[kain &k Bus [(Time]]
Unresolved

Idle

Refresh

RAS Pre-charge
P10 D& irite
P10 DA Read
CD Write

CD Read

SPU D& write
SPU D& Fead
Internal DA \write
Internal DA Read
GPU DM \write
GPU DM& Read

D ata white

[ata Read

Inst Burst Read

[Read wiite Penalty [time] |
Maohe
Duplicate Read

[Wwirite Bulfar Penalty [tirme] |

Mone
Flush Penalty

Figure 19 shows an enlarged view of the portion; at the cursor position, a CPU read access occurred
immediately after a write access. Figure 20 shows the data dump, displayed by double-clicking.

Figure 20: Write buffer flush penalty (data dump)

» DUMP ZIMERMS.PAD

I MR N N o 5 u} L mom = = w v v v w v v w G RDC =

o EBEf W E A T F A T E A B N M Hu n nn n T HET o
g8 w o T L M F T EEEE L N LDERE
a8 B T ol B a8 A MNNMH = M M oa X T A M T I 111
T L E R o E 310 T K o c o n] C 1 1 N *r*

A L T FEEE D L C C T
T T E 0O 1 *

]

7I80&6: DT 1 1 - 0 RS Wis02, ZE2) o 111 B

73807 DT - o RST Wie02, E52) 0 111 .

73g02: DT - 0 RS W{sl0, ZE2) o 111 »
FRE0%9: DI aoooooog —--w o RS wiell, £58) 0 111
79810: DT S004E108 out_packet+017874 ——-mr o RS W(ELEZ, EZEE) o 111
73811: H -—— o RS wiel3, Z58) 0 111
* T921E: DR 1 - 0 RS W(sld, ZES) o 111
7381z2: DR - o RST Wielt, Zt2) 0 111
738l4: DR - o RSW Wiele, Z58) o 111
7381E5: DR SO001EBAC InitHeap+0000&80 ZOZOCOOO —---- o RS wiel?, Z58) 0 111
79g8le: H -—— o RS W{ElE, EZEE) o 111
73817 - o RST Wiela, E52) 0 111
73g1a: - 0 RS W{sz0, ZES) o 111
73819 - o RS Wi{eZl, Zt2) 0 111
TIEE0D: DW 1 1 - 0O RS W(GEZ, Z58) o 111
7R8E1: DW -—— o RS Wiez3, Z58) 0 111
TAGEZ: DW -—— O RS W{EEZd, EZEE) o 111
FIZEZ: DU gooQocood —-uwr— o RST WisEE, E52) 0 111
7IZE4: DT g004E108 out_packet+017574 —-—T1r- 0 RS Wisze, ZES) o 111
FREEL: H - o RSW WieZ?, Z&2) 0 111
TASEZE: DR 1 -—— o RS o 111
79827: DR -—— o RS o 111
782 DR - a o 111
7IZES: DR S001BEAC InitHeap+0000E50 Z0Z0CO00 —---- a o 111
73830: H - o THR o 111

Check the code. If a store instruction is immediately followed by a load instruction, reduce the stall time by
inserting another instruction between the two instructions or by exchanging the two instructions with each
other, if possible. Particularly, when a read and write occur alternately and repeatedly, a longer stall time
results. In such a case, take advantage of the four stages of the write buffer. That is, the stall time can be
dramatically reduced by modifying the code so that four writes occur in succession. When 100,000
polygons are to be displayed per second, for example, the length of a loop for processing one polygon will
be about 200 to 300 cycles. If a stall time of 10 cycles is reduced by tuning the write buffer, an
improvement of 3% to 5% is achieved. This means that the number of polygons to be displayed can be

Performance Analyzer Technical Reference

25

increased by such an improvement. Note that, even if an instruction other than a store instruction is
executed immediately after flushing, a write buffer access causes a red pattern when a read access occurs
immediately after on the main RAM bus. Patterns do not always represent penalties.

Detection of Null Packets

As shown by the GPU packet analysis in Figure 1, a null packet is represented by a white pattern. White
patterns occurring in succession represent successive null packets in the ordering table. Successive null
packets can be eliminated using multiple ordering tables, for example.

An enlarged view of a null packet indicates that the drawing is delayed accordingly, as shown in Figure 21.

Figure 21: Null packet detection

%1432 C: 165000

M1M2 0-0[0) 1E0000 165000 170000
[Sampling: Februae 051897 224) 1 v 1 0 L 0 10 10 1 LA 1 b a1

[Main Rak Bus [Time]]
Urresokved
Idle

Refresh
RAS Pre-charge ‘ ‘ H

P10 Db it
P10 DA Read
CD Write

CD Read

SPU D& write
SPU D& Fead
Internal DA \write
Internal D4 Fead
GPL DM \write
GPU DM& Read

[ata 'white

D ata Fiead

Inst Burst Read

[Video RAk Bus [transfer rat
Idle

Fead

White

Block ‘white

Read Modify ‘Write

Texture Read

Clut Readd

Clut Reads

[GPU Packets [Hpolygons] |
Mone LIME_G2
Unknown LINE_FB
E-

_U
[
oy -
===
oy
I
Y

If null packets are mixed with other polygon packets, the drawing efficiency may have decreased because
the resolution of the ordering table is too high. If video RAM bus analysis indicates that the green pattern is
low, the problem may be solved by lowering the resolution.

Performance Analyzer Technical Reference

26

Detection of Inefficient Texture Cell Reads

Figure 22: Drawing efficiency check

% 141024 C: 266240
b1-M2: 202752 - 326656 (123
[Sampling: February 07 1397 2 L P T ST VA N N VA MR T R SN N

100000 200000 300000 400000 500000
k1 2

[Main &k Bus [Time] |
Unresolved

Idle

Refresh

RAS Pre-charge

PIO D Wirite

PI0 DhA Read

CD Write 1 |

CDRead | |

SPL DM, Wiite | 1Y |
SPL DM Read iy I

Internal DMA \write

Internal DA Read

GPU DM& write

GPL DA Read h |

D ata white |

[ata Read i l
Inst Burst Read ! |

[Wideo Rakd Bus [transfer rat
Idle

Fead

write

Elock %/rite

Fead Modify ‘write

Texture Read

Clut Feadd

Clut Reads

[GPU Packets [ﬂpol}lgons]]
Mone E_G2
L ko o LINE F3
Carnmand LINEZG3
Eull F'acléet B NETF4

LY F LINE_G4
POLY"FT3 _ SPRT
pOLY—G2 M SPRT_8
POLY_GT3 _ SPRT_1E
POLCY_F4 TILE
POLY_FT4 M TILE_1
POCY_G4 [TICECS
POLY_GT4 B TILE1R
LINE_F2 Block Fill

As shown in Figure 22, position markers M1 and M2 to a portion with fewer green patterns on the video
RAM bus, and enlarge the enclosed portion. In this case, the pattern shown in Figure 23 is obtained.

Performance Analyzer Technical Reference

Figure 23: Portion containing more texture cache misses

%4 C: 266240

M1-M2: 202752 - 326856 [123 265200 266250 265300
[Sampling FebwarpO7 19972001 v | . | . | |) s) L1

[kain &k Bus [Time]]

Unresolved
Idle

RAS Pre-charge
P10 D& wirite
P10 DA Read
CD Write

CD Read

SPU DA write
SPU D& Fead
Internal DA \write
Internal DA Read
GPU DM \write
GPU DM& Read

D ata white

[ata Read

Inst Burst Read

[Wideo Rakd Bus [transfer rat
Idle

Fead

Wiite

Block “write

Read Modify ‘write

Texture Read

Clut Readd

Clut Read?

[GPU Packets [#palygons] |
Mone LINE_GZ2
Unkhawn B CINETF3
Commar E"G3
Mull Packet B LINE_F4
POLY_F3 ©0 LINETG

I

Next, position markers M1 and M2 to that portion having more green patterns, and enlarge the portion. In
this case, the pattern shown in Figure 24 is obtained.

Figure 24: Portion containing fewer texture cache misses

wd C: 479495

M1-M2: 202752 - 326656 (123 473450 479500 479550
[Sarmpling: February 07 1997 2 L | L) L | L) L | L

[Main RAM Bus (Time) |
Unresolved

Idle

Refresh

RAS Pre-charge
PIO Db wdrite
PI0 Dha Read

CD wirite

CD Read

SPU Db \write
SPU D4 Read
Internal DMA Write
Internal DMA Read
GP WTite
GFU DMA Read

D ata white

[ata Read

Inst Burst FRead

[Wideo RAM Bus [transfer rat
Idle

Fead

Wwhite

Block “ite

Read Modify ‘Write

Texture Read

Clut Readd

Clut Reads

[GPU Packets [#polpgons]]
More = LINE_G2

Unknown B CINETF3

Command LIMEZG3
Hul Packet M LINE"F4
POLY"F3~ © LINE-GA
POLY_FT2 _ SPRT
POCY_GI M SPRT_A
[Y_GT3 _ SPRT_16
POLY_F4 TILE
PaOLY_FT4 M TILE_1
[v_G4 W TILE8
POLY GT4 B TILE 1R
LINE_F2 Black Fil

Performance Analyzer Technical Reference

27

28

The two red stripes produced by video RAM bus analysis represent a 64-bit texture read. For texture read,
the texture cells corresponding to the line size of the texture cache are read from video RAM if a texture
cache miss occurs; the texture cells read at one time are always 64 bits long.

Figure 25 shows an enlarged view of a portion for which the drawing efficiency is high. When such a portion
is checked with the video RAM viewer, a pattern like that shown in Figure 26 is obtained. On the other
hand, when a portion for which the drawing efficiency is poor is enlarged, as shown in Figure 27, and is
checked with the video RAM viewer, a pattern like that as shown in Figure 28 is obtained.

Figure 25: Portion of a high drawing efficiency (video RAM bus analysis)

#1432 C. 477856

M1-M2: 473952 - 451712 [736] M1 475000 480000 W3 435000
[Sarpling: February 0719972001, ¢, 1 v 1 ~2 0 | o1 1 ~72 1 L BF 1 |

[Main RaM Bus (Time) |
Unresolved

Idle

Refresh

RAS Pre-charge

P10 D& wdrite

P10 DA Read

CD wirite

CD Read

SPU D& \wirite

SPU D& Read
Internal DM, Write |
IGn'tjernaI DA Read \

Tite |
GPD Db Read Il | | \
!

D ata white
[ata Read |
Ingt Burst Read |

[Wideo RAM Bus [transfer rat
Idle

Read

Wwhite

Block 'white

Read Modify ‘Wiite

Texture Read

Clut Readd
Clut Reads
[GPU Packets [#polygons] |
Mone _ LINE_GZ
Unknown B CINETF3
Command LIMEZG3
Null Packet B L[INETF4
LY F3 ©0 LINETG4
POLY_FT3 _ SPRT
[v_G3_ M SPRT_S
LYGT3 _ SPRT_1E
POLY"F4 TILE
POLY"FT4 M TILE 1
LG4 TILE”H
POLY GT4 B TILE_16
LINE_F2 Block Fill

Performance Analyzer Technical Reference

Figure 26: Portion having a high drawing efficiency (video RAM viewer)

@ Normal C w172 x1/4
WRITE

Polygons drawn

Figure 27: Portion having a low drawing efficiency (video RAM bus analysis)

%1432 C: 266016
M1-t2: 264032 - 267504 (3472
[Sarnpling: Februam 07 1997 20

260000

] 2E5000

270000

[Main RaM Bus (Time) |
Upresolved

Idle

Refresh

R&5 Pre-charge

PIO DMA Wwirite

SPU D& \wiite
SPU D& Read
Internal DA, Write
Internal D4 Read
GP! WTite
GPU D& Read

[ata white

[ata Read

Inst Burst Read

[Wideo Rk Bus [transfer rat
Idle

Fead

Wwhite

Block Wiite

Read Modify \Write

Texture Read

Clut Readd

Clut Reads

[GPU Packets [#polygons]

o=
S —d0m
ol e R
=
= —o

o

Mone LINE_G2

Unknown B CINEZFS

Command LINETG3

Hull Packet B LINE_F4

POLY_F3 LINE "G4

POLY_FT3 _ SPRT

POCY_G3 T

POLY_GT3 T_

POLY"F4

POLYFT4 1

POLY—G4 8

POLY_GT4 16

LINE_F2 F i
K|

Performance Analyzer Technical Reference

29

Figure 28: Portion having a low drawing efficiency (video RAM viewer)

Texture

Polygons drawn \

In a texture cache line fill, horizontally successive texture cells of the texture area are read. So, if the
resolution of the texture is too high, and 4-bit texture mode is used, for example, 15 out of 16 texture cells
may be discarded, and only one pixel may be drawn. An example is shown in Figure 23. In this example,
only one pixel is drawn for each texture read caused by a texture cache miss. When Figure 26 is compared
with Figure 28, it can be seen that more texture reads are performed in Figure 28.

A similar phenomenon occurs when a texture larger than the texture cache is used, and when a polygon to
be drawn is rotated through 90 degrees relative to the texture pattern. Each cause can be identified from
read access and write access patterns with the video RAM viewer. Apply appropriate action such as
changing the texture size and texture resolution, depending on the identified cause.

Figures 29 and 30 show the improvement realized for the sample program,
psx\sample\graphics\mipmap\tuto5.cpe, made by mip-mapping. These figures reveal that a significant
improvement in drawing speed can be achieved by applying mip-mapping.

Performance Analyzer Technical Reference

Figure 29: Sample program (without mip-mapping)

5 MO MIFMAP.PAD

14024 C:0

b1-M2: 0 - 0[0)

[Sampling: February 10 1937 15

100000

200000 300000

400000

[Main Rak Bus [Time]]
Urresokved
Idle

Refresh

RAS Pre-charge
P10 Db it
P10 DA Read
CD Write

CD Read

SPU D& write
SPU D& Fead
Internal DM, write
Internal D4 Fead
GP! it
GPU DM& Read

[ata 'white

[ata Read

Inst Burst Read

[Widea Rk Bus [transfer rat
Idle

Fead

White

Block ‘white

Read Modify \Wiite

Texture Read

Clut Readd
Clut Reads
[GPU Packets (Hpolygons] |
Mone LINE_G2
Unknown LINETF3
Command LINEZG3
Mull Packet B8 LINE_F4
POLY_F3 LINE_G4
POLY_FT3 _ SPRT
POLY—_G3 M SPRT_S
POLY”GT3 _ SPRT_16
POLYTF. TILE
POLY_FT4 M TILE_1
POLY”G TILE~H
POLY GT4 B TILE_16
INE_F2 Block Fill

w1024 C:0
M1-M2: 0-0(0)
[Sampling: February 101997 15

100000

200000 300000
MT

400000 500000 £

[Main RaM Bus (Time] |
Unrezolved

Idle

Refresh

RAS Pre-charge
P10 D& wirite
P10 DA Read
CD write

CD Read

SPU D& \rite
SPU D& Fead
Internal DA \Write
Internal DA Read
GPU D \write
GPU DM& Read

D ata white

D ata Read

Izt Burst Read

[Wideo Rakd Bus [transfer rat
Idle

Fead

it

Block 'write

Fead Modify ‘Write

Texture Read

Clut Beadd

Clut Reads

[GPU Packets [#polygons] |
Mone LINE_G2
Unknown LIMETF3
Command LINEZG3
Mull Packet B LINE_F4
POLY_F3 LINETG4
POLY"FT3 _ SFRT
POLY—_G2 M SPRT_8
POLY_GT3 _ SPRT_16
POLY_F4 TILE
POLY_FT4 W TILE_1
POLY”G TILEZS
POLY GT4 @ TILE_1E
LINE_F2 Block Fill

Performance Analyzer Technical Reference

31

32

Detection of Transparent Colors

Figure 31: A polygon including transparent colors

% 1/64 C: 608202

b1-b 2 BOZ2250 - B13962 (1171 B00000 M1 F10000 M2 B20000
[Sampling February 071897200, 1 v v v | v A 1 A L S L

[kain &k Bus [Time]]
Unresolved

Idle

Refresh

RAS Pre-charge

PI DMA i H

PI0 DMA Read
CD Write

CD Read

SPL DM, write
SPUDM& Read
Internal DA \write

Internal DA Read |
GPL DM, write ||

GPL Db Read ! | |
D ata white ‘ |

Data Read | |

Inst Burst Read |

[Wideo Rakd Bus [transfer rat
| | |

Idle
Fead
iTite
Block write
Read Modify ‘write

Based on GPU packet analysis, Figure 31 shows an enlarged view of a section containing no accesses.
From the GPU packet analysis, the drawing of one large polygon is assumed. Video RAM bus analysis
indicates that the texture is read constantly, but that drawing is not performed in many portions. Figure 32
shows the information obtained with the video RAM viewer by positioning M1 and M2 such that they
enclose the drawing section of a polygon.

Texture Read

Clut Readd

Clut Read?

[GPU Packets [#palygons] |
Mone e G2

LINE_|
Unkhawn B CINETF3
Command LINE"G3
Hul Packet B LINE“F4
POL I LINETG

===
I

Y_F3 | 4
POLY"FT3 _ SPRT
pOLY—G2 M SPRT_8
POLY_GT3 _ SPRT_1E
POLY_F4 TILE
POLY_FT4 M TILE_1
POCY_G4 [TICECS
POLY_GT4 B TILE1R
LINE_F2 Block Fil

Performance Analyzer Technical Reference

33

Figure 32 : A polygon including transparent colors (video RAM viewer)

o] HAUNTED.PAD

VI WRITE

@ Momal Cx1/2 O xl74 c)

Usually, with the video RAM viewer, the left side represents the frame buffer, while the right side represents
the texture area. When the double-buffer method is used, the frame area is divided into an upper area and
lower area; each time the frame is switched, the access area is switched. Figure 32 shows that a
transparent color is used in the frame buffer area. Thus, a polygon causing a problem can be identified
using the video RAM viewer. A polygon with large transparent area should be divided to reduce the size of
transparent area.

Performance Analyzer Technical Reference

CLUT Switching

Figure 33: CLUT switching and polygons requiring considerable preprocessing

21116 C: 604345

M1-M2: BO0E1E - 507518 (7200 msm 000 £02000 603000 504000 £05000 E06000 607000 EFZBDDD

[Sampling: February 05 1357 23 Ll L a L EFA L b L SNA

[Main Rk Bus [Time]

Unrezolved
Idle

RAS Pre-charge
P10 D& wirite
P10 DA Read
CD write

CD Read

SPU D& \rite
SPU D& Fead
Internal DA \Write
Internal DA Read
GPU D \write
GPU DM& Read

D ata white

D ata Read

Izt Burst Read

[Wideo Rakd Bus [transfer rat
Idle

Fead

White

Elock Write

Read Modify ‘Write

Texture Read

Clut Readd

Clut Read?

[GPU Packets [Hpolygong] |
Mone _ LINE_GZ
Unknown B CINETF3
Command LINEZG3
Mull Packst B LINE_F4
POLY_F3 LI G
POLYTFT3 SPRT
pOLY—G2 M SPRT_8
POLY_GT3 _ SPRT_16
POLY”F4 T
POLY_FT4 M TILE_1
POLY_G4 TILE"®
POLY GT4 B TILE_1E
LINE_F2 B Fill

OO =
i

I

I

o mmmma 303

-1

[

Another example having poor drawing efficiency is shown in Figure 33. A video RAM bus analysis shows
that an orange pattern representing a 4-bit CLUT read occurs with each polygon. This means that many
polygons use different CLUTs with close Z values. If the video RAM bus is occupied because of frequent
switching between CLUTs, action is required.

Preprocessing Bottleneck

The GPU packet analysis shown in Figure 33 indicates that a Gouraud texture polygon is drawn. A video
RAM bus analysis indicates that a relatively large portion involving no accesses precedes texture read or
pixel drawing. This means that a long time is required for Gouraud texture preprocessing. To speed up the
processing, those small polygons that require considerable preprocessing should not be drawn wherever
possible.

Performance Analyzer Technical Reference

Polygon Penalties

Figure 34 :Polygon penalties

5 GULPAD = =] B3
147024 C; 423056

M1-M2: 270336 - 616496 (3481 200000] 300000 T 400000 RO0000 EiIZIIJDEIE12 FO0000
[Sampling Februap 05199724 | =7 | =7 | =F . 1 | 1%7 |

[Main Rk Buz [Time]]
Urregokved

|dle

Refresh

RAS Pre-charge
PIO Db write:
PI0 Dk Read
CD *wiite

CD Read

SPU D wirite
SPU Db Read
Inkernal Dk Wiite
Internal DA Fead
GPU Write
GPU D4 Read
Data ‘wiite

Data Read

Izt Burst Read

[GPU Packets [#polygons] |

Hohe LINE_GZ2
Others LIMETF3
Command LINE_G3
Mull Packet B8 LIME"F4
POLY_F3 LINEZG4
POLYTFT3 __ SPRT
a3 MSPRT_&
POLY”GT3 _ SPRT_16
POLY_F4 TILE
POLY"FT4 M TILE_1
POLY"G4 TILETS
POLY GT4 B TILE1R
INE_F' Black Fil

[Polpgon Penalty [time] |
MHohe

Outzide Frame
Scizzanng

Back Face

Zero drea

U'l m

.M!

| !“"]“

|| m

A "‘“'

“ M

moils

i

1

B

Figure 34 evaluates and indicates the penalties of zero-area polygons, polygons with a poor scissoring
efficiency, polygons clipped by the GPU, and back-face polygons subject to normal clipping. To improve
the processing, cause the CPU to perform normal clipping, area checking, polygon division, and area
clipping for these polygons, if the CPU has enough processing time left to do them.
The performance analyzer identifies back-face polygons checking the order of vertices in a polygon packet.
Some programs may assume such an order is for front-face polygons, or may assume any kind of order is
for valid polygons which should be drawn. In such cases set the parameter in options dialog box to display

correct polygon penalties.

Also the offset value and the screen size should be set in options dialog box to display correct polygon

penalties.

Performance Analyzer Technical Reference

35

36

Performance Analyzer Technical Reference

	PERFORMANCE ANALYZER TECHNICAL REFERENCE
	August 1998
	Changes Since Last Release
	Table of Contents
	List of Figures

	About This Manual
	Changes Since Last Release
	Related Documentation
	Developer Reference Series
	Typographic Conventions
	Developer Support

	Introduction
	Flow of Diagnosis
	Measurement Techniques
	Interpreting Measured Data

