
PLAYSTATION TECHNICAL NOTE
===

Date:
Ref:
Author: Yuji Takahashi, Executive Vice President of Business
Affairs

Subject: Important notice on software development due to some
hardware parts changes

ABSTRACT

Thanks to all of you, we achieved the shipment of 1 million consoles at
the end of May. The sales condition in Japan is very positive. The
reason for the success is that various attractive software titles from
you have been released continuously and that the PlayStation console is
marketed at an attractive price. We highly appreciate your efforts and
would like to ask for your further support to PlayStation.

Now, the sales in the US will be started on September 9th. European
business will also be started in September. In each area, the number of
licensees are already more than 100. The expectation from each market
is also very good.

So, a very big demand for PlayStation is expected all over the world.
SCE is aware that it is very important to keep supplying a very large
number of PlayStation consoles to each market. As you know, the
semiconductor industry is suffering from shortage of memory chips
because of a worldwide increase in PC demand, especially in the US. SCE
has been suffering and is going to continue to suffer from the shortage
of high-performance chips for the PlayStation console. In order to
solve this problem, we have reviewed our current parts design for
PlayStation and have re-designed some of the LSIs.

We have now completed the development of the new LSIs and the
production of PlayStation with the new parts will be started at the end
of this year. This will be a running change.

We named the hardware with new parts the "Revision-C system".

We are aiming at full compatibility within the "Revision-C system".
However, it is reported that very small/subtle differences in the parts
specifications might cause some very subtle difference in the software
operation/gameplay, even though it seems this is a very rare case.

When the software programs contain the following conditions, it is
reported that the possibility of having slightly different gameplay in
Revision-C systems from gameplay in current systems will be
significant.

(1) The VSync() function is not properly called.

(2) MoveImage() for rectangular regions less than 32 dots wide is often
used.

We'd like to ask for your cooperation to check all of your already-
released titles and already-submitted master disks. If you find any
suspicious title, please contact our Account executive immediately. As
soon as we get your reports, we will also check the mentioned titles in
detail.

As for titles under development, please refer to the attached technical
advise to maintain full compatibility. If you think it's difficult for
you to check your title by yourself because of tight schedules, or if
you have any difficulty in finding any suspicious phenomena, please do
not hesitate to contact our account executives. This information is
also available in BBS.

As for yet-to-be developed titles, we'd like to do our best to provide
the circumstances in which developers can start development without
having to be aware of any hardware parts differences. For this purpose,
we'd like to release a new library to suit the current situation.

Your kind cooperation and understanding to this matter will be highly
appreciated.

TECHNICAL DETAILS

Let us inform you of some technical advise on further software
development under the circumstance of the release of the Revision-C
system. The Revision-C system is hardware where the graphics chips have
changed. The main purpose of releasing the Revision-C system is to
maintain stable memory supplies. Basically, it was designed under the
concept with keeping full compatibility with current machine. However,
there is a small difference between the Revision-C system and current
models, Revisions A and B, as follows:

(Revision A is a hardware for the Japanese market, and Revision B is a
hardware for the US/European market. There is no problem of
compatibility between Revisions A and B.)

1) Semi-transparent drawing is faster. An application which uses
many transparent drawings runs faster.

2) It runs slower if vertically thin drawings or MoveImage() are
frequently used. This will be obviously observed with thin
rectangular regions that have a width of less than 16 dots.

Fundamentally, the two points above are the differences between
current system and the Revision-C system. The reasons are due to
the differences of the memory systems which are used as frame
buffers.

Following are the details of each point.

(1) The possibility that the problem occurs increases when the
existence of the GPU-bottleneck (*1), the use of semi-
transparency, and no proper control of frame rate simultaneously
occur.

(Example) while (1) {
DrawSync(0);
VSync(0);
DrawOTag(ot);

}

In the example above, the following problem will happen in the
case of a GPU-bottleneck.

Semi-transparent drawing is faster
-> DrawSync(0) ends earlier.
-> VSync(0) is reached earlier.
-> If the drawing ends near a 1/30 (or 1/15) second mark,

 VSync(0) returns one frame earlier.
-> A frame rate increase (the opposite of a frame rate

 decrease) occurs
-> Movement on the screen seems to be quicker occasionally.

The rate of speeding up of the drawing will depend on how many
semi-transparencies are used.

(*1) GPU-bottleneck is where the drawing by the GPU is the
slowest when one frame is generated and displayed.

[Countermeasure]
Control the frame rate precisely by using VSync(n) function.

For example, in a scene in which more than 80% are running
with 30 frames, please set the frame rate 1/30 sec fixed. Use
VSync(2) instead of VSync(0) to make sure.

Related to this, the following points are about frame rate
synchronization.

[About Frame Rate Synchronization]

In PlayStation, the display region on the frame buffers can
be switched asynchronous to the video frame rate (1/60 sec).
However, if the display region is switched at an irregular rate
which is not a multiple of 1/60 sec, the switching is not done
in the vertical retrace period and a phenomenon in which flicker
can be seen will occur. This may misguide users to think that
that an application has some inferiority.

Therefore, in the normal process, switching of the buffers
should be synchronized with vertical synchronization (V-BLNK).
In (A), the switching of buffers depends on the slower one,
either display or drawing, and the switching becomes

asynchronous with V-BLNK. Therefore, if VSync(0) is not
intentionally targeting special effects, please execute it to
synchronize with the switching of buffers.

(A) (B)
while(1){ while(1){

...
DrawSync(0); DrawSync(0);
swap_buffer(); swap_buffer();

VSync(0);
DrawOTag(ot); DrawOTag(ot);

} }

But, when the switch is forced to be synchronized with V-
BLNK, the movement of objects will be awkward because the frame
rate is frequently changed between 1/60 sec and 1/30 sec, in
case the transaction ends around 1/60 sec. This may cause users
to complain as well.

In such a case, please fix the frame rate to 1/30 sec by
using VSync(2).

while(1) {
....
DrawSync(0);
VSync(2); /* set to 1/30 sec fixed rate */
swap_buffer();
DrawOTag(ot);

}

Thus, as far as possible, please keep the frame rate constant
by using VSync(n).

But depending on the application, it may not be better to set
the worst frame rate. Even in the worst case, the internal clock
of the program should not time buffer switching. Instead an
absolute counter, such as VSync(-1), RCnt3, etc., should be
used.

(A) (B)
while(1){ while(1){

DrawSync(0); DrawSync(0);
swap_buffer(); swap_buffer();
Vsync(0); VSync(0);
frame++; frame = VSync(-1);
DrawOTag(ot); DrawOTag(ot);

} }

By the means of a frame counter counting as shown in (B), the
internal counter will not delay if the frame rate decreases
momentarily due to a calculation or drawing overflow. If the
counter is used to update the position of objects, the movement
of objects can be kept natural, even if the frame rate drops.

(2) MoveImage() is slower than current system when it is
executed for a thin rectangular region of width less than 32
dots. For example, this would be the problem when the
MoveImage() is frequently used to move a thin rectangular region
such as 8 by 240.

[Countermeasure]
- By using ResetGraph(1) just after VSync(0) to stop

MoveImage(), the influence of slowness should be confined within
the frame, and avoid affecting other frames.

- In the case of revision-C, the narrower the width of
rectangular region is, the more prominent the difference from
the current system is. Therefore, please make the width of the
rectangular regions wider.

Both of the approaches above can be considered, but the
former would be better.

More care is needed if the interlace mode is used with this
function. Even if the frame rate is slower than 1/60 sec, the
screen will be disordered. For example, when the drawing is done
with the interlace mode (640x480 etc) and a single buffer,
please use ResetGraph(1) instead of DrawSync(0).

For your reference, the following chart show how much slower
MoveImage() is in Revision-C when compared to current system.

WIDTH Revision-C / Revision-A (%)

32 100 %

16 85 %

8 77 %

4 70 %
