
 Sony Computer Entertainment Europe. All information given is confidential

PLAYSTATION DEVELOPER’S GUIDE

NOTE : DOCUMENT STILL UNDER DEVELOPMENT

Sony Computer Entertainment Europe

Developer Support Group

Version: 2.9 - 28 May 1997

Confidential Information of Sony

This Developer Guide contains confidential and restricted information and is covered by the terms of your Non-
Disclosure Agreement.

All information contained herein is subject to change without notice. Sony Computer Entertainment Europe
accepts no responsibility for any inadvertent errors, omissions or misprints contained in this document.

This Guide is for information purposes only. Its contents do not constitute any change to contractual arrangements between
SCEE and individual Developers or to SCEE's Specifications & Procedures manual.

Confidential PlayStation Developers Guide

Page 2 (DEVGUIDE.DOC) 06 June 1997

About This Document

History

• 2.9 (6th June ’97) – updated Analog controller section

As a PlayStation Developer you have access to technical support from SCEE (Sony Computer
Entertainment Europe) via the Developer Support group. This document is designed to supplement
the standard PlayStation documentation, providing hints and tips for the whole development process
from receiving your licensed development kit, to mastering you first gold disc, ready for submission.

 We are grateful to all who contributed to this guide - especially all those who developers who provide
tips to other developers on our WEB SITE. We welcome any further information that you have.

The latest version of this document can be found on the WEB SITE as DEVGUIDE.ZIP.

PlayStation Developers Guide Confidential

 Page 3 06 June 1997

Contacts

Department: Developer Support
Technical Support: Paul Holman

Stuart Ashley
Mal Duffin
Lewis Evans
Colin Hughes
Mark Breuglemans
Kevin Thompson
Dave Virapen
Thomas Daniel
Jason Page (Sound)

Production Co-ordination: Sarah Bennett

(Tools Ordering) Tim Flett

Web site: Laura Smith

Address: SCEE
Waverley House

7-12 Noel Street
London W1V 4HH

Telephone: +44 (0) 171 447 1649 (Production Co-ordination)

+44 (0) 171 447 1650 (Production Co-ordination)

+44 (0) 171 447 1680 (Hot line1)

FAX: +44 (0) 171 390 4324

E-Mail: dev_support@interactive.sony.com

prod_coord@interactive.sony.com

ps_developer@interactive.sony.com

WWW https://www-s.playstation.co.uk/

Sony Computer Entertainment Europe is a division of Sony Electronic Publishing Ltd. “PlayStation” and its associated logos are
registered trademarks of Sony Corporation Inc.

Adobe, Acrobat are registered trademarks of Adobe Systems Incorporated. Microsoft, MS-DOS are registered trademarks and
Windows is a trademark of Microsoft Corporation Pkzip, Pkunzip are copyright of PKWARE Inc. Apple, Macintosh are
registered trademarks of Apple Computer, Inc.

1 For new developers, and titles in their last month before submission

 Sony Computer Entertainment Europe. All information given is confidential

Table of Contents

SUPPORT DETAILS 5

2.1 THE SCEE WEB SITE 5
2.2 USEFUL READING 6
2.3 DEVELOPMENT TOOLS 7

2.3.1 OUTLINE 7
2.3.2 GENERAL DETAILS 8
2.3.3 PLAYSTATION UTILITIES 9

2.4 DEVELOPMENT TOOLS PROBLEMS 10

3 PLAYSTATION DEVELOPMENT BASICS 11

3.1 GETTING STARTED ON GAMES PROGRAMMING 11
3.1.1 INTRODUCTION 11
3.1.2 DEBUGGING TIPS 12
3.1.3 WORKING WITH PLAYSTATION MEMORY 15
3.1.4 CACHES 19
3.1.5 THE GTE 20

3.2 CD-R ON THE PLAYSTATION 21
3.2.1 HOW MUCH SPACE IS THERE ON A PLAYSTATION DISC ? 21
3.2.2 ORGANISATION OF A PLAYSTATION CD 21
3.2.3 DATA STORAGE ON PLAYSTATION 22
3.2.4 WORKING WITH DATA STORAGE ON THE PLAYSTATION 23

3.3 GETTING STARTED ON SOUND 27
3.3.1 SOUND BASICS 27
3.3.2 SOUND TYPES ON THE PLAYSTATION 32
3.3.3 PRACTICAL SOUND TIPS 38

4 IMPLEMENTATION ISSUES 40

4.1 STREAMING 40
4.2 TITLE THAT USE MULTIPLE CDS 41
4.3 OVERLAYS 43
4.4 GENERAL IMPLEMENTATION TIPS 45

5 PLAYSTATION PERIPHERALS 46

5.2 CONTROLLERS 46
5.2.2 MULTI TAP 47
5.2.3 ANALOG JOYSTICK (SCPH-1110) 48
5.2.4 ANALOG CONTROLLER 50
5.2.5 NAMCO NEGCON 51

5.3 LINK CABLE 53
5.4 MEMORY CARDS 54

5.4.2 MEMORY CARD FILENAMES 55
5.4.3 HINTS ON USING MEMORY CARDS 57
5.4.4 TESTING MEMORY CARDS 58

5.5 CD-ROM GENERATION 59
5.5.1 MASTER DISC CREATION 59
5.5.2 USING THE CD-GENERATOR SOFTWARE 60

PlayStation Developers Guide Confidential

 Page 5 06 June 1997

SUPPORT DETAILS

2.1 The SCEE Web site
All developers with licensed development systems and licensed publishers are provided with accounts
on the SCEE Developer Support Web site.

The site is secure (i.e. communication between your browser and our Web servers is encrypted), with a
URL of “https://www-s.playstation.co.uk/”.

Sites with firewalls (or routers acting as firewalls) should ensure that ports 443 (for the sever) and 444
(for the newsgroups) are open for traffic.

(i) The Best Way To Get Support
At the moment, we are encouraging developers to contact us with queries via the Web site private
newsgroups, rather than directly by phone. There are several reasons for this, the most important being
that often queries cannot be answered on the spot. This method also ensures fairness by enabling us to
handle questions on a first come, first served basis..

(ii) Web site Etiquette
When entering a query onto the Web site newsgroup, it helps if:

• you choose the most appropriate newsgroup for the problem (new messages are automatically
forwarded on to the experts on a newsgroup-by-newsgroup basis).

• you include all information about tools/libraries - including version numbers,

• if the query is hardware related, you provide as much information about the hardware you are
using as possible (for example, the memory/processor configuration of your PC),

• if you can, upload pieces of code that demonstrate the problem (all code will be treated in strict
confidence).

Remember, you can send e-mail to dev_support@interactive.sony.com if you are concerned about
security..

 Sony Computer Entertainment Europe. All information given is confidential

2.2 Useful Reading
• “PlayStation Development Tools Guide” - SCEE Developer Support

(on WEB SITE as DEVTOOLS.ZIP)

• “Guidelines for PlayStation PAL Conversions” - SCEE Developer Support
(on WEB SITE as PALGUIDE.ZIP)

• ELSPA Anti-piracy screen, required for all titles approved by SCEE
(on WEB SITE as WARNING.ZIP)

• “QA Standards ...” - Technical Requirements for all SCE Territories
(on WEB SITE as TRC.ZIP)

• MIPS RISC Architecture, by Gerry Kane and Joe Heinrich (Publisher: Prentice Hall, ISBN: 0-
13-590472-2)

• MIPS Programmer’s Handbook by Erin Farquhar and Philip Bunce (Publisher: Morgan
Kaufmann, ISBN: 1-55860-297-6)

PlayStation Developers Guide Confidential

 Page 7 06 June 1997

2.3 Development Tools

2.3.1 Outline
PlayStation Development Tools consist of three sets of kit and some miscellaneous tools:

• PlayStation Development System

 Programmer tools which operate on a PC to provide a programming environment for developing
PlayStation Games. A specialised PlayStation known as a ‘Debugging Station’ is used in conjunction
with the Development System to test games from CD Write-Once and Production Discs.

• PlayStation Sound Artist Tool

 A system allowing musicians to create PlayStation music with known sound tools on the Apple
Macintosh computer.

• PlayStation Graphic Artist Tool

 A system which operates in a PC environment to provide the Graphic Artist with 2D and 3D graphic
data conversion and manipulation capabilities as well as emulation of PlayStation graphics processing
capabilities. These tools enable the Graphic Artist to work independently from the PlayStation
Development System.

• Miscellaneous Tools

There are further accessories which can be used as part of the Development System, if required and
consumer PlayStations and Games.

To develop games for the PlayStation, you need to use the PlayStation Development System. For
sound and graphics, you can use any tool that you prefer. Obviously, SCEE recommend and support
only the Sony proprietary Sound Artist and Graphic Artist tools.

Confidential PlayStation Developers Guide

Page 8 (DEVGUIDE.DOC) 06 June 1997

2.3.2 General Details

2.3.2a Development System (Programmer Tools)
See the “Shop” section in the “General” area of the SCEE Web site..

(i) Software
The Development Board Set comes with the complete range of GNU C-based development software
and libraries required. Please note that we strongly recommend that all Developers connect to our
WEB SITE to download any updates to the libraries and tools.

The CD Write Once Drive requires CD Write Once Generator (DTL-S2010) software which is sold
separately.

2.3.2b

PlayStation Developers Guide Confidential

 Page 9 06 June 1997

Sound and Graphic Artist Tools
In addition to the Development System, SCEE provides a range of tools that assist you in creating the
sound and graphic effects that match the power of the PlayStation.

The Graphic Artist Tool (DTL-K2) consists of a range of PC based and software hardware (running
on a PC to the same specification as the DTL-H2000), that is designed to run independently of the
Development System. Connectors include 9-pin analogue RGB, S-video and Composite output.

The Sound Artist Tool (DTL-K3) provides hardware and software tools to independently perform
sound data conversions from popular formats such as SMF and AIFF to the SEQ PlayStation format
and to emulate the sound capabilities of the PlayStation. At the time of writing these tools are only
supported for the Apple Macintosh (Recommended: a 68040/PowerPC with 16Mb memory and 100Mb
hard disk with 1 Nubus slot) and an NTSC Television.

Unlike the Development System, described above, you do not have to use Sony proprietary Sound and
Graphic Artist Tools to develop PlayStation games, you can use any tool that you prefer. (There are
some DOS sound utilities available from the WEB SITE for those who don’t use PlayStation Sound
Artist Tools.) Obviously, SCEE Developer Support recommend and support only the Sony proprietary
tools.

2.3.2c Documentation
SCEE provide a full set of documentation in PDF (Adobe Acrobat) format with the PlayStation
Development System Board Set and additional manuals for the CD Emulator (hard copy), CD-ROM
Generator (hard copy) and Write-Once Drive (hard copy), Sound Artist Tool and Graphic Artist Tool .
As with all things appertaining to PlayStation development, we recommend that you examine the
WEB SITE for new versions.

Documentation tends to change frequently, which is why we prefer the electronic versions - however
hard copies can be printed out at your site using the Acrobat Reader software provided with the
manuals.

2.3.3 PlayStation Utilities

Data Converters
A suite of software utilities for 3D and 2D data conversion and manipulation are available. They
include:

• pict2tim Converts PICT image files to TIM format.

• rgb2tim Converts RGP to TIM.

• timpos DOS based modification of TIM image & CLUT location in VRAM.

• timutil Converts 2D image formats (BMP, PICT, RGB) to & from TI .

• MovConv Converts 2D image & AVI into PlayStation movie format.

 Sony Computer Entertainment Europe. All information given is confidential

2.4 Development Tools Problems
(i) General Procedure
If you have difficulties getting your system working, Developer Support recommends the following
steps.

1� Check the documentation both here and that provided with the hardware.. Twice .. to make
sure you none of the installation steps have been skipped.

2� Ensure you have the latest versions of the software component.

3� Check the WEB SITE (using ‘search’) for any notice or discussion of similar problems,

4� If you can, retry the procedure on a different machine, or strip our other cards from your
system (PC interrupt conflicts can be tough to pin down),

5� Attempt to isolate the problem to one card or component - try cleaning the edge connectors
(observing the normal anti-static precautions) and, if you have two development systems, try
swapping cards,

6� If all else fails contact SCEE Developer Support via the WEB SITE (selecting the most
appropriate Conference), detailing all the steps you have tried and the exact symptoms of the
problem. Download the latest FAULTREP.ZIP (in “Shop”).

7� If you do have a faulty piece of hardware, we can arrange to have the hardware sent back here
... upon delivery, we will loan you a new piece of hardware, whilst your original version is
repaired. (But please ensure you send back all the contents - which includes cables, two
controllers and memory cards for Debugging Stations).

(ii) Emulator Specific Diagnosis
The CD-ROM Emulator appears to be one of the most temperamental components of the Development
Kit. Some of the problems seem to be linked to the quality of the PC you have installed the hardware
in, other problems may suddenly occur after months of happy use. Our additional favourite tips are as
follows.

• Try using ‘cddisk -n <scsi-id>‘ to recreate your emulator drive.

• Ensure you are using CDBOOT32.BIN

• Try switching off and on all your hardware. Twice.

• Remove any CDs from your connected PS CD-ROM Drive (you’ll have to select your CD to do
this).

PlayStation Developers Guide Confidential

 Page 11 06 June 1997

3 PLAYSTATION DEVELOPMENT BASICS

3.1 Getting Started on Games Programming

3.1.1 Introduction
This purpose of this section is to steer the novice developer with typically a PC programming or
console background away from many of the more common problems that may occur during a project.

(i) How To run a program on a PlayStation

1� After you have edited, closed and saved your program (let’s call it bull.c), compile it using
psymake (see example makefile below):

psymake bull.c

to make a PlayStation executable file called bull.cpe.

2� Reset the PlayStation to stop the program which is currently running and prepare it to
download another:

resetps 1

Now the coloured bars are displayed on the PlayStation monitor.

3� Load the sound data files that your program will require into main RAM:

psymake load

These files will then be loaded into the PlayStation SPU (sound) RAM by your program when you
run it.

4� Run your program:

run bull

Example makefile

all:

 ccpsx -O -Xo$80100000 bull.c -obull.cpe,bull.sym

load:

pqbload ..\simple\sample.vh 80020000

pqbload ..\simple\sample.vb 80025000

pqbload mozart.seq 80010000

clean:

 del *.cpe

 del *.sym

 del *.map

Confidential PlayStation Developers Guide

Page 12 (DEVGUIDE.DOC) 06 June 1997

3.1.1b Update Tools and Libraries
We strongly recommend that you use the latest tools, utilities and documentation as the basis for any
new title - you will have received a basic version with your development kit, and perhaps later
upgrades, but you should check if there are any newer versions of tools or libraries to download.

3.1.1c Features of PlayStation Development
PlayStation is very different to the previous generation of home consoles and to the PC. The
PlayStation could be said to combine the best features of both.

PC-esque Features

It has a powerful main processor and a comparatively large amount of main memory, it has a mass
storage data system (CD ROM) and it supports development in a high level language (C).

Console-esque Features

It contains several dedicated processors to speed up otherwise CPU intensive tasks.

It is standard. With PlayStation the only versions you have to worry about arePAL and NTSC. There
are no multiple processor / memory configuration / graphics mode / sound card worries.

The PlayStation is in terms of graphics and audio as good if not slightly better than the most powerful
PC and yet costs less than a decent motherboard. This is achieved by using dedicated hardware for
many tasks, a dedicated processor can be engineered to provide a far superior level of performance at a
lower cost than upgrading an inefficient general purpose CPU.

This means that to get the most from the PlayStation, and the current crop of games are only getting
close to using everything the PlayStation has to offer, the developer should make use of the hardware
as provided rather than trying to fight against it. This means that porting a game over from the PC
could well be more difficult than writing the whole thing again from scratch. This is only true,
however, if the developer goes about it in the wrong way.

3.1.1d Quality
The PlayStation sets new standards in home entertainment, not only is it winning over converts from
other formats it is also exciting many people old and young is amazing graphics and sound capability
which assist in making for absorbing gameplay. To maintain this quality we want our developers to
have the best possible start in writing their game.

Dodgy ports of 256 colour 8 bit sound PC streaming games are not going to be approved, derivative
racing games the do not look as good as Ridge Racer are not going to be approved, Doom clones that
are not better than Doom are not going to be approved. Games with shoddy graphics, poor sound are
not going to be approved. Games that do not comply with the Sony guidelines are not going to be
approved.

Who wants to waste a significant portion of their life doing something that disappoints people after five
minutes of playing. Go on, do something nice.

3.1.1e Designing Your Title
We recommend that early during your design stage, you should review the guidelines provided by the
QA and Approvals groups of the territories for which you plan to submit your title.

The latest SCE QA requirements are available on our WEB SITE as TRC.ZIP (with WARNING.ZIP
providing a template for the ELPSA Anti-Piracy screen required for all European titles).

3.1.2 Debugging Tips
Developers tend to use two main strategies to debug their programs; using the PSY-Q Debugging tool
(DBUGPSX) and inserting printf’s into their code, which are displayed on the PC screen using
TESTMESS.

PlayStation Developers Guide Confidential

 Page 13 06 June 1997

3.1.2a Using CD-ROM Emulator (DTL-H2020) and CD-ROM Drive
Almost all titles need to simulate access to the files as they appear in the final game. Although it is
possible to create games using local PC file storage during development and then switch at the end of
development. However, using an Emulator or CD-ROM Drive from the start gives more efficient
game development.

With your emulator you are given access to a new conference and file area. This file contains - the
latter containing a number of essential tools and examples to down load.

The CD Emulator documentation (in Acrobat PDF format, you may wish to print out a copy) and the
sample CDREAD.ZIP file on the WEB SITE show how an emulator disk can be filled with data.

Accessing & Switching Between Units (for DTL-H2000)

Select the emulator.
For each process you need to run a specific CPE. You can use a batch file (for example, one called
runselemu.bat which contains the line run /w5 selemu.cpe). (Incidentally, If you also have a
PlayStation CD-ROM Drive, make sure that you take out any discs beforehand).

Always reset your development system between use of Run.
again you could use a batch file (called, for example, rp.bat that contains the lines resetps and run
snpath.cpe).

To switch back to your PS CD-ROM Drive you can also use a batch file (called runselcd.bat which
contains the line run /w5 <pathname>\selcd.cpe...) remember to rp again.

If you wish to run the CD (whether it’s physically in the PS CD-ROM, or simply built into the
emulator drive) there is another CPE which will read your SYSTEM.CNF file, and start the specified
executable - Sony’s runcdexec actually holds the line run <pathname> \cdexec.cpe. Try this with
your copy of WipEout as an example....

The CD Emulator is prone to erratic behaviour at times, and sometimes will stubbornly refuse to rp
correctly. One solution is to power-cycle your machine.

NB The DTL-H2500 uses a different mechanism using a DESICONS monitor.

3.1.2b DBUGPSX
Complete instructions and tutorial on using DBUGPSX can be found in the pdf document “psyq2.pdf”
on the Technical Reference CD; it’s also known as the System Manual: PC Development System for
the Sony PlayStation. Here are some highlights:

Use MAKEFILEs (and PSYMAKE) to control the compilation of your program. Using macro
references, it is easy to switch between different compiler options - using -g, will produce code that can
be debugged at source code level.

Example makefile

all:

 ccpsx -g -Xo$80100000 bull.c -obull.cpe,bull.sym

load:

pqbload ..\simple\sample.vh 80020000

pqbload ..\simple\sample.vb 80025000

pqbload mozart.seq 80010000

clean:

 del *.cpe

 del *.sym

 del *.map

Confidential PlayStation Developers Guide

Page 14 (DEVGUIDE.DOC) 06 June 1997

Within your code, make sure to use a pollhost():

#include <libsn.h>

main ()

{

pollhost()

.

.

.

 }

When creating gold disks for submission, make sure you remove the “pollhost”.

When using DBUGPSX, remember the /E switch to allow the program to be run under the debugger!
Using the example makefile above (with debugging options)

Psymake

resetps 1

Psymake load

dbugpsx bull /e

While the current version of DBUGPSX is DOS based, a Windows95 version will soon be available.

If you are using the D-Cache (also known as the ScratchPad) you will find it helpful to view this area
of memory and variables placed within it during debugging. Unfortunately you will find that
DBUGPSX will not allow you to view this area of memory by default. This problem can be resolved
by adding the start and end address of the D-Cache in the “readram0” list of the DBUGPSX
configuration file. For example (the last entry refers to the D-Cache):

#readram0

 00000000 007FFFFF

 80000000 807FFFFF

 A0000000 A07FFFFF

 BFC00000 BFC0FFFF

 1F800000 1F8003FF

3.1.2c PRINTF & TESTMESS
Developer Support recommend adding switches (e.g. #ifdef DEBUG) to your code which can be
activated by a compile time flag (e.g. -DDEBUG) to introduce run time ‘printf’ messages. These
messages can then be displayed on your PC by starting the MESS12 TSR, and then running the
TESTMESS command.

One often used technique is to remove all printf statements during the final build with a -DFINAL
compiler flag and a #define printf in game header files. There is a potential pitfall with this method:
when running a final gold disk you may not be able to determine the cause of some problems.

2 MESS1 and TESTMESS can be found in the PSYQBIN file area in CODETOOLS.ZIP

PlayStation Developers Guide Confidential

 Page 15 06 June 1997

3.1.3 Working with PlayStation Memory

3.1.3a Main memory
Video RAM (VRAM) performs considerably better than main memory. Given this, you should avoid
as far as possible operations involving processing large arrays in main memory, or copying from main
memory to video ram. To make a game display fast you should use VRAM directly, loading as many
of the textures that you will use in the game into VRAM at start up.

The development kit comes with 8 Mb of memory, the PlayStation only has 2 Mb of memory. It is
sensible to try and forget the extra 6 Mb of memory right from the start. There is little point in making
use of memory that cannot be used in the final machine, as this only means that parts of the game will
have to be cut-down or modified to squeeze into less memory right at the end of development. This is
not fun to do usually results in the quality of the product suffering.

The extra 6 Mb is for debugging: code compiled without any optimisation will take up far more space
in memory than code compiled with optimisation.

Developers would be wise to have an option for debugging and an option with optimisation in their
makefile and switch between them as appropriate.

3.1.3b Using Memory
This section explains how the memory of the PlayStation is organised and how it can best be used from
within C with the libraries provided.

Main memory can be split into 3 distinct areas; the area used by the program at start-up, the area
reserved for the stack and the remainder known as the ‘heap’ from which memory can be dynamically
allocated by the program.

Global and static local variables are stored in the program area while volatile local variables are stored
on the stack. Obviously then, large local variables are a bad idea as they may result in a stack
overflow.

Explanation of the Addressing Scheme

The R3000 uses 32 bit addressing to access main RAM. The physical RAM is logically mapped into
the 32 bit address space in several places - ie several sets of addresses map to the same physical RAM.
Different sets of addresses mean different things to the processor. Most PlayStation applications will
run using the address ranges 0x80000000 to 0x80200000 (2 Mb RAM). Using this set of addresses
means that the instruction cache is turned on, and thus your code will run faster. An equivalent, but
little used, set of addresses is 0x00000000 to 0x00200000. It is also possible (but not advisable) to run
your code in the address ranges 0xA0000000 -> 0xA0200000. However, this set of addresses, while
accessing the same RAM as 0x80...., has the instruction cache turned off, and thus is slower - this
addressing range is used by the kernel which requires code to run at the same speed at all times, not
guaranteed with a cache in operation.

(See the OS Hardware Guide’s section on memory management for a detailed explanation.)

Program Origin and the Kernel

The bottom 64 Kbytes of PlayStation main RAM is used by the kernel. The first valid program address,
then, is 0x80010000. The program stack usually grows downwards from the top of RAM
(0x80200000). The only exception to these address ranges is the development system, which has 8Mb
of RAM (making the usual address space 0x80000000 -> 0x80800000).

Configuring Memory on the PlayStation

In the past there have been several approaches to ensuring that a program is running on the
development kit in under 2 Megabytes. These included linking with the file 2Mbyte.obj and using the
SetMem(2) function. Whilst these functions do work, there is an simpler, more easily understood way
of ensuring the program is running within the acceptable environment space.

This is done by simply setting the global variables __ramsize and __stacksize (provided in libsn.lib) at
the start of the program.
unsigned long __ramsize = 0x00200000; //2 megabytes

Confidential PlayStation Developers Guide

Page 16 (DEVGUIDE.DOC) 06 June 1997

unsigned long __stacksize = 0x00004000; //16 kilobytes

In this example the ramsize is set to 2 megabytes and the stacksize is set to 16 kilobytes. Setting the
stack size merely ensures that at least 16K is reserved for the stack when the program begins
execution.

3.1.3c How Programs Are Stored In Memory
A program has 3 parts:

• the program 'text', which is the actual code for your game;

• the data, which is global variables which you have initialised in you code;

• the bss segment which is the space your program needs for un-initialised data (or globals or
statics).

Consider the following code, for example.

• The text section will contain the assembler version of the function (but with no variables).

• The array 'numbers' is stored in the data segment (because it must be initialised with the values
specified, which are stored as part of the executable).

• The integer 'myNumber' is stored in the bss section (because it is not initialised).

• The variable 'temp' is created on the stack at run time, and so is not part of the executable
segments.

• The variable 'odd' is stored in the bss section too, because it is static and must keep its value
across function calls.

• The variable 'max' is actually created on the stack at run time too, and initialised with the value
given to it at function entry time (so this is actually more expensive in terms of execution time
than using a global, which is initialised at program start up, or the best case of all, using a
#defined value).

• The heap addresses will be in kseg0 (cacheable memory), even though the data cache is not
automatically used.

So the size of the heap at program start is this:

• 2 Mb (Main RAM size)

• 32k (standard stack)

• 64k (kernel RAM)

• (text length + bss length + data length (your program))

#include <stdio.h>

int numbers[5] = { 0, 1, 2, 3, 4 };
int myNumber;

int Add(int a, int b)
{
 int temp;
 int max = 0xffffffff;
 static int odd;

 temp = a + b;
 return temp;
}

PlayStation Developers Guide Confidential

 Page 17 06 June 1997

The length of the segments and their positions in memory can be obtained from the map file for the
executable. To generate a map file add a map file to the -o section of the makefile command line, i.e.

mem.cpe: mem.c

$(CC) $(OPTIONS) mem.c -omem.cpe,mem.sym,mem.map

The mapfile will then have a section in it that looks as the mapfile below.

Start Stop Length Obj Group Section name

80010000 800100AF 000000B0 80010000 text .rdata

800100B0 80010607 00000558 800100B0 text .text

80010608 80010633 0000002C 80010608 text .data

80010634 80010647 00000014 80010634 text .sdata

80010648 8001064B 00000004 80010648 bss .sbss

The SDATA And SBSS Sections

The Mips compiler has an option to put small data items (e.g. <= 8 bytes) into special sections called
.sdata and .sbss rather than the usual .data and .bss. The global register (gp) is set up at the start of the
program to point to the base of these sections and variables are then accessed as offsets from this
pointer rather than as absolute addresses. This can speed the code up considerably when you're
accessing lots of global variables and also reduce the size of the code.

To use it you add the option -mgpopt to your ccpsx command line,

e.g.
ccpsx -g -c -mgpopt main.c

By default, this will place any data item of size 8 bytes or less in the .sdata/.sbss sections. You can
override this size with the -G switch, as shown below.

ccpsx -g -c -mgpopt -G16 main.c

The -G switch will place any item of size 16 bytes or less in the .s... sections.

If you specify -G0 then no data will be placed in the .s... sections and the optimisation will be disabled.
(Note : even if you do not specify the -mgpopt option the compiler may still place some variables in
the .sdata/.sbss sections and the assembler will generate gp relative addressing modes to access them.
It is therefore necessary to specify -G0 to completely disable this).

Because the size of an offset from the gp register is limited to 16 bits the total size of the .sdata and
.sbss sections is limited too. If the sections grow too large then you will get "Illegal value" type errors
at link time.

There is one problem in using this feature. In an event handler the GP register will be set to point to
the kernel's data area rather than the main program's. This is for efficiency reasons to reduce the time
taken to get into the event handler. It is therefore important to compile any event handler routines
separately and to specify the -G0 option when you do so. You may also need to compile program
overlays depending on the method you use to achieve overlaying.

Dynamic Memory Allocation and the Heap

Memory allocation functions allow the programmer to increase the depth and variety of the game
world whilst making the best use of the PlayStation’s relatively modest memory size.

In C, memory allocation is achieved using the malloc and free functions. Unfortunately there have
been several problems with these functions on PlayStation.

The standard malloc/free combination supplied as part of libc fragments memory due to a bug in the
free function. This means that large chunks on the machine memory become inaccessible even though
they are not holding any valid data.

There is a patch for this bug which is used by linking with a file called mmgm.obj (available from the
SCEE WEB SITE). This supplies a new function for initialising the heap and replaces the buggy

Extract from Map File

Confidential PlayStation Developers Guide

Page 18 (DEVGUIDE.DOC) 06 June 1997

malloc and free with more reliable functions. In this scheme the heap base is unconventionally located
at the address ramsize minus the stacksize and the heap “grows” toward the base of memory.

Whilst these functions are better than the originals, they are still comparatively untested. Also they are
rather generic. You are strongly recommended to consider developing a memory allocation scheme
that is tailored to your specific application, rather than relying on those supplied in the libraries.

An example showing how to implement a simple malloc/free scheme is presented in the Kernighan &
Ritchie book The C Programming Language. This text notes that the optimal memory allocation
scheme depends on the nature of the application.

The Stack

The stack starts at the top of main memory and works down. The stack may not exceed its defined
size. The stacksize can be defined from within the program using the __stacksize variable.

PlayStation Developers Guide Confidential

 Page 19 06 June 1997

3.1.4 Caches

3.1.4a I Cache
The instruction cache is a conventional direct mapped 4 kilobyte cache. As a result it is inefficient
when executing large loops, or loops with function calls in them. This is one of the reasons why many
of the GET functions are now provided as inline statements rather than function calls.

3.1.4b D Cache
The data cache, however, is 1 kilobyte of fast RAM built into the CPU to be used by the developer to
improve the performance of their product.

Some developers have successfully placed their stack on the data cache. While this produces a useful
speed increase, it is not as straight forward as it might first appear because the data cache does not
provide the space that is usually required for a stack. Attempting to read an address below the lowest
value of the data cache (remember the stack grows downward) will result in garbage.

Placing frequently used variables in the data cache is a safe and efficient way to produce fast code. An
example of this is the ordering tables, if the ordering table is small enough, it can be placed in the data
cache. Reading from the data cache is approximately four times faster than main memory.

To obtain the base address of the data cache use the macro getScratchAddr(off) where off is an offset
of 0. This macro is in libetc.h

Confidential PlayStation Developers Guide

Page 20 (DEVGUIDE.DOC) 06 June 1997

3.1.5 The GTE
The GTE is a fast maths coprocessor attached to the PlayStation's R3000 (the main processor). It
provides the 3D calculation power which makes 3D games on the PlayStation so fast. The chip
provides a variety of services at hardware level dealing with rotation, translation and perspective
transform of points, lighting, fogging and depth cueing calculations, linear interpolation and various
matrix and vector functions. Many of these services are much faster than a single R3000 multiply or
divide. It is important to distinguish the GTE from the GPU - the GTE is responsible for the maths
involved in generating a 2D picture from a 3D world, and the GPU is responsible for actually drawing
the polygons in the picture.

The following graph shows the relative timing for GTE functions. DMPSX.ZIP provides information
and example code for using in-line assembler calls to these functions.

gte_sqr0()

gte_sqr12()

gte_avsz3()

gte_avsz4()

gte_op0()

gte_op12()

gte_intpl()

gte_nclip()

gte_rt()

gte_dpcs()

gte_ncs()

gte_rtps()

gte_dpct()

gte_nccs()

gte_ncds()

gte_rtpt()

gte_nct()

gte_ncct()

gte_ncdt()

0 1 2 3 4 5 6 7 8 9

gte_sqr0()

gte_sqr12()

gte_avsz3()

gte_avsz4()

gte_op0()

gte_op12()

gte_intpl()

gte_nclip()

gte_rt()

gte_dpcs()

gte_ncs()

gte_rtps()

gte_dpct()

gte_nccs()

gte_ncds()

gte_rtpt()

gte_nct()

gte_ncct()

gte_ncdt()

G
T

E
 F

u
n

ct
io

n

Time (Relative)

Time (Relative)

PlayStation Developers Guide Confidential

 Page 21 06 June 1997

3.2 CD-R on The PlayStation
(See Beginner’s Guide to Sound section in this document for a simple) explanation of data/sound
storage on PlayStation CD).

The PlayStation is fitted with a dual speed CD ROM reader providing continuous data transfer rate of
300 kilobytes per second at dual speed or 150 kilobytes a second at single speed.

3.2.1 How much space is there on a PlayStation Disc ?
The standard PlayStation CD, played at normal speed can be up to 71 minutes, 59 seconds and 74
sectors long (so not quite 72 minutes). This gives a total capacity of 624Mb:

71(minutes) x 60 (seconds) = 4260 (seconds total length)

4260 (seconds) x 75 (sectors per second) + 74 (sectors) = 319574 (total sectors on the CD)

319574 (sectors) x 2048 (bytes of data storage in a sector) = 654487552 (bytes)

= 639148 (Kb)

= 624 (Mb)
How much room can you use ? Well, there will be some overhead for each DA track you have

(allowing for gaps), and you have to be careful to organise your disc to avoid seeking in the last three
minutes of data (see TRC.ZIP).

3.2.2 Organisation of a PlayStation CD
The data on a CD is arranged in a spiral, much like a record, except that on a CD the data starts at the
centre and works out toward the edge.

The disc is divided logically into tracks, the first track is called the lead-in track and the last track is
called the lead out track.

There can be up to 99 data tracks. The lead in track contains the CD’s table of contents. The TOC
(table of contents) details the position of all the tracks in terms of an offset from the start of the disk.

On PlayStation the rest of the CD can be neatly divided into two sections. Track 1 will contain all of
the PlayStation specific information, such as the executable and any data that it should require. Other
tracks (2-99) may hold standard CD audio files.

There are limitations on the maximum number of files and directories allowed on a PlayStation disc -
roughly 40 directories, each with a maximum of 30 files. The actual limits depend on the physical
length of the filenames. Known Symptoms - cdSearchFile will fail/ CD ROM Generator won’t allow
disc to be created.

One caveat - although CD-DA tracks are physically not in track 1, they do appear in the disc’s Table of
Contents. The advantage is that you can use cdSearchfile to find them - the disadvantage is that they
impact on the number of files per directory limitation.

Confidential PlayStation Developers Guide

Page 22 (DEVGUIDE.DOC) 06 June 1997

3.2.3 Data Storage on PlayStation
The PlayStation uses standard Phillips’ White Book formats to store data on CD (Standard Data Format
‘Frames’, XA and XA-ADPCM). These are listed below.

One sector (one 75th of a second) of CD holds 2352 bytes in total (if it were storing straight Digital
Audio data.)

3.2.3a Standard Data Formats

Mode 0 Frames

Sectors in Mode 0 are ignored by the CD reader so this format tends to be used (if it is used at all) to
hold empty sectors.

 Mode 1 Frames
This Mode has 2048 bytes of data available per sector. The remaining 304 used for a CD reader header
(sector synchronisation and identification) and a CRC (cyclic redundancy check) with error correction.
This format is typically used for items requiring a high level of data integrity such as program
executables.

 Mode 2 Frames

Similar to Mode 1, this looses 16 bytes to a header but leaves 2336 bytes of data available. As this
mode has no error correction, it is best used for non-critical data such as sound which can tolerate an
error rate.

For audio, however the subset of Mode 2 Frames, XA Form 2 or its subset XA ADPCM is more
usually used - see below.

Mode 2 Frames is 14% faster in loading data than Mode 1 Frames.

3.2.3b XA Frames
XA Frames is an extension of the standard frame types listed above to allow interleaving of data. It is
specifically as subset of Mode 2 Frames.

 XA Form 1

This mode has 2048 bytes of data per sector and includes automatically CRC (cyclic redundancy
check) and error correction. It tends to be used for video and audio interleaving.

 XA Form 2

This has 2324 bytes per sector available for data storage with no error correction. This could be used
for video storage but as there is no error correction it is not recommended. It tends to be used to store
audio data, although the specific XA Form 2 audio storage mode ‘XA-ADPCM’ is that most often used

3.2.3c XA-ADPCM
XA ADPCM (eXtended Audio Adaptive Differential Pulse Code Modulation) is a sub-mode of Mode 2
Frames and XA Form 2 data storage mode which is specifically for audio data as opposed to any data
(code, video or audio) of the storage modes listed above

It is a compression technique that can be used to provide near CD-DA quality sound, with a level of
compression.

A 37.8Khz stereo XA ADPCM file only takes up one quarter of the space as the same data stored as a
DA track. However this data is spaced on the disk to use every fourth sector, leaving 75% of the CD
blank. This provides a useful method to interleave tracks - for example four XA-ADPCM tracks
interleaved or video streams interleaved with one XA-ADPCM track.

(See Beginners’ Guide to PlayStation Sound in this document for a more detailed explanation.)

PlayStation Developers Guide Confidential

 Page 23 06 June 1997

3.2.4 Working With Data Storage on the PlayStation

3.2.4a Playing XA on the PlayStation

Ingredients

• Movconv 1.96e or better

• Extract.exe

• Some WAV files. (16bit Stereo with a high sampling rate).

A sample rate of 37.8Khz (not a standard WAV frequency) was used in the following example.

There may be some kind of limited frequency conversion within movconv, but this should not be relied
upon.

Do not use 8 bit WAVs. These are unsuitable.

Preparation

1� Use movconv scripting facility to convert the WAV files to .XA files, 37.8 Khz stereo.

Example Script to convert a WAV to an XA file:

Wav2xa(c:\data\wav\tomtom.wav, # Input file name

\data\wav\da4.xa, # Output file name

37.8KHz, # Frequency of xa audio

Stereo # Stereo or Mono for xa audio

);

2� Remove the sub-header from the file using the extract program.

Example DOS command line:

c:\data\wav\da4.xa c:\data\wav\d4.xa

The output file d4.xa is now ready to be interleaved.

3� Interleave the files.

The interleaving process depends on the final application for the file. The following table shows
what is possible. The example presented here is designed to be played at single speed and has
37.8Khz stereo channels. The table shows that the XA channel must occur once every four
sectors on the disk.

One advantage of XA-ADPCM over DA is that more data can be stored on the disk. In the
example presented four channels are interleaved for this purpose

Double Speed CD, 37.8KHz, Stereo: 8

Double Speed CD, 37.8KHz, Mono: 16

Double Speed CD, 18.9KHz, Stereo: 16

Double Speed CD, 18.9KHz, Mono: 32

Normal Speed CD, 37.8KHz, Stereo: 4

Normal Speed CD, 37.8KHz, Mono: 8

Normal Speed CD, 18.9KHz, Stereo: 8

Normal Speed CD, 18.9KHz, Mono: 16

3.2.4b Buildcd
Buildcd can be used in two ways; to both create files on the Development System’s CD Emulator for
development and testing purposes, and to dump output to the PC’s hard disk without any sub-header
information.

Confidential PlayStation Developers Guide

Page 24 (DEVGUIDE.DOC) 06 June 1997

This is useful as these files can then be copied around on the PC filing system and then eventually be
used to burn the final CD.

Note: Because of the unusual size of the sectors used by XA-ADPCM, it is not possible to copy these
sectors using DOS. This means that you cannot copy an XA-ADPCM file from a CD on to a PC
easily.

3.2.4c How To Force XA Output To The PC Filing System
Firstly ensure that there is a PC path in addition to the Emulator path for an the file you require in the
.CTI file. For example:

XAInterleavedFile even.xa c:\dave\even.xa

Note that neither of the files have version numbers. Do not add version numbers to XA-ADPCM files
as this will cause an error to occur.

Then run the Buildcd program with the -g command line option, specifying an output file name must
(required with the -g option). This is the output for a .CCS file (format of the CD ROM Generator
configuration/script language file). You can disregard this output file as it is not needed in this
example.

Example running build cd program.

Buildcd xagen.cti -s0:1 -gwaster.ccs

(See the CDROM Emulator manual for more information on how to use Buildcd and sample scripts.
Further samples and examples are available on the WEB SITE.)

3.2.4d Example CTI files for XA Interleaving
The following two examples are CTI files to create interleaving.

Create an interleaved XA file with 4 channels
Disc XA_PSX

MapFile xa_int.map

LeadIn XA
Empty 1000
PostGap 150

EndTrack

Track XA
Pause 150
Volume ISO9660

PrimaryVolume

 SystemIdentifier "PLAYSTATION" ;required indetifier
 VolumeIdentifier "DEMO" ; app specific identifiers
 VolumeSetIdentifier "DEMO"
 PublisherIdentifier "SCEE"
 DataPreparerIdentifier "BJF"
 ApplicationIdentifier "DEMO"

 Lpath
 OptionalLPath
 Mpath
 OptionalMPath

 Hierarchy

 XAFileAttributes Form1 Audio
 XAVideoAttributes ApplicationSpecific

 XAAudioAttributes ADPCM_C Stereo

 XAInterleavedFile even.xa c:\gamedata\even.xa

 XAChannelInterleave TimeCritical 1-2-3-4

 XAChannel 1
 XAFileAttributes Form2 Audio

PlayStation Developers Guide Confidential

 Page 25 06 June 1997

 Source c:\data\wav\d1.xa ;put your xa file here
 MinLength 270000 ;note this is the length of the longest of the 4

 ;tracks being interleaved
 XAEndChannel

 XAChannel 2
 XAFileAttributes Form2 Audio
 Source c:\data\wav\d2.xa ;put your xa file here
 MinLength 270000

 XAEndChannel

 XAChannel 3
 XAFileAttributes Form2 Audio
 Source c:\data\wav\d3.xa ;put your xa file here

 MinLength 270000
 XAEndChannel

 XAChannel 4
 XAFileAttributes Form2 Audio
 Source c:\data\wav\d4.xa ;put your xa file here

 MinLength 270000
 XAEndChannel

 XAEndInterleavedFile
 EndHierarchy
 EndPrimaryVolume
 EndVolume

 EndTrack
 LeadOut XA
 Empty 150
 EndTrack
EndDisc

Interleaving video and DA elements
Disc XA_PSX ;disk format

 LeadIn XA ;lead in track, track 0

 Empty 1000 ;defines lead in size min (150)
 PostGap 150 ;required gap at end of lead in

 EndTrack ; end of lead in track

 Track XA ;start of XA (data) track

 Pause 150 ;required pause in first track after lead in

 Volume ISO9660 ;define ISO 9660 volume
 PrimaryVolume ;start point of primary volume

 SystemIdentifier "PLAYSTATION" ;required indetifier
 VolumeIdentifier "PSXTEST" ; app specific identifiers
 VolumeSetIdentifier "PSXTEST"
 PublisherIdentifier "SONY"
 DataPreparerIdentifier "SONY"
 ApplicationIdentifier "SONY"

 Lpath ; Path tables as specified for PlayStation
 OptionalLpath
 Mpath
 OptionalMpath

 Hierarchy ;start point of root directory definition

 XAInterleavedFile dixlogo.str C:\DD\movies\dixlogo.str

 XAChannelInterleave TimeCritical 1-1-1-1-1-1-1-2

 XAChannel 1
 XAFileAttributes Form1 Video
 Source C:\DD\str\dixlogo.str
 XAEndChannel

Confidential PlayStation Developers Guide

Page 26 (DEVGUIDE.DOC) 06 June 1997

 XAChannel 2
 XAFileAttributes Form2 Audio
 XAAudioAttributes ADPCM_C Stereo
 Source C:\DD\newxa\sixty.xxa
 XAEndChannel

 XAEndInterleavedFile

 File MARKER0.STR;1
 XAFileAttributes Form1 Video
 Source C:\DD\movies\mark2.str
 EndFile

 EndHierarchy ;ends root directory definition

 EndPrimaryVolume ;ends primary volume definition

 EndVolume ;ends ISO 9660 definition

 PostGap 150 ;required to change track type

 EndTrack ;ends track definition

 LeadOut XA ;required lead out track (must match previous track
type)
 Empty 150 ;required minimum lead out
 EndTrack ;ends track definition

EndDisc ;ends disk definition

3.2.4e MovPack (interleaved Audio Technique)
To create an interleaved XA file using MovPack:

• Take the individual XA channel files.

• Do not extract the sub headers from these files.

• Use MovPack to merge the files. The input and output sub-header check boxes should be
selected for all input channels and the output channel.

• Terminate with null sectors button should not be checked.

• As this technique does not allow as great a level of control as Buildcd, this method works
best when the samples are of similar lengths.

PlayStation Developers Guide Confidential

 Page 27 06 June 1997

3.3 Getting Started on Sound

3.3.1 Sound Basics

3.3.1a Sound and Your Dev Kit

(i) Sound and PlayStation Memory
Running a program with sound usually requires more than one file: the executable program (the
normal PlayStation’s .cpe file) and its associated sound files.

The R3000 is the PlayStation’s CPU. The PlayStation itself has 2MB of main RAM while the
development kit has 8 Mb of main RAM.

The SPU (Sound Processing Unit) which manages PlayStation sound has its own SPU/sound RAM
of 512 KB. This is not accessible via your PC so files to be used by the SPU must first be loaded
into main RAM so that your program can move them to the SPU RAM.

The command pqbload loads sound files into PlayStation main RAM. This command may be in
the makefile called when you use psymake load. So you can use either.

Figure 1: Loading a Sound Program and Data File into the PlayStation

(ii) Sound Files for the PlayStation SPU
VAG - a sound sample (a snippet of sound stored in digital format)

Main RAM

R3000

 CPU

SPU
512KB

Sound
RAM

Program.cpe Sound Data

run program pqbload

PlayStation/Dev Kit

2Mb

(PlayStation)
8Mb

(Dev Kit)

Confidential PlayStation Developers Guide

Page 28 (DEVGUIDE.DOC) 06 June 1997

VAB - Used by the SPU, it is a collection of VAGs. A VAB file is sometimes split into a VB file
(body) and a VH file (header).

SEQ - A sequence file defines a list of VAGs. To be played from VAG files. The Sequence file
defines the order and speed that the VAGs will be played at.

SEP - A collection of SEQs.

3.3.1b CD Sound Storage

(i) How a CD Stores Sound

Sound is a digitised for storage on a CD.

Taking a sound wave (figure 2), between the points A-B are a complete wave.

Sound is digitised by measuring the amplitude of the wave at discrete intervals (a->k in figure 2) to
get a list of values. In the simplified example above, this would be:

a = 0, b = -1, c = -2, d = -2.5, e = -2, f = -1, g = +0.5, h =+2, i = +2.5, j = +2.5, K= +2

The resulting digitised sound wave wound be a list as follows:

0 | -1 | -2 | -2.5 | -2 | -1 | +0.5 | +2 | +2.5 |+2.5|+2

In reality the values can be anything between -32767 and +32767. Each value is called a ‘sample’
and the number of samples a second is the ‘sample rate’. Normal CD (DA sound) is 44100 samples
per second, expressed in Kilo Herz that is 44.1Khz.

A low sample rate will give a poorer sound quality as the recreated sound wave will not be very
true to the original.

A B
a b ec d f g h i j k

samples

+

-

Figure 3: Low Sample Rate

samples

+

-

Figure 2: Digitising a sound by measuring its amplitude at discrete points.

A

m

p

l

I

t

u

PlayStation Developers Guide Confidential

 Page 29 06 June 1997

The digitised sound from this is:

0 | -2 | 0 | +2

The recreated sound wave will be:

Because the human ear can hear different sound timbres, some sound can be stored with a low
sample rate - bassy sounds or drums for example.

samples

+

-

Figure 4: Sound Reproduction form a Low Sample Rate

Confidential PlayStation Developers Guide

Page 30 (DEVGUIDE.DOC) 06 June 1997

(ii) CD Tracks - Space Available
While data is physically stored on the CD in a spiral track, there can be between one and ninety
nine conceptual ‘tracks’ on a PlayStation CD which are like individual songs on a normal audio CD
(or vinyl record or magnetic cassette).

Each track is a certain number of minutes and seconds long in time. Each second of playtime is
divided into 75 sectors. If a sector is used to store data, it can hold 2Kbytes (or 2048 bytes).

So, one second of CD must be 150Kb of data as:

1 (second) x 75 (sectors) x 2 (Kb) = 150 (Kb)

The PlayStation does have a dual speed CD ROM reader which can give continuous data transfer
rate of twice the 150 Kb per second as well. (That is 300 kilobytes per second at dual speed.)

(See section 0 3.2.1 How much space is there on a PlayStation Disc ? 021)

This is the space when using XA Data Storage for programs. Called XA - Form 1, the 2Kb (2048
bytes) of storage space in each section is sandwiched between a header which announces the
storage type and a CRC (Cyclic Redundancy Check) error check.

When storing certain types of sound, however, this space for the header and CRC is not always
required. This space, then, can be used to store sound data too. Thus there can be an extra 288 or
304 Bytes available per sector for sound storage (depending on the type of sound stored, see Types
of Sound, later)

2Kb

1 Second of Sound

1 2 75
A Sector (1/75th of a Second)

……
…….

……
…….

Figure 5: A Second of DA Sound has 75 Sectors

Figure 6: A Second of DA Sound has 75 Sectors

1 Sector 1 Sector

Header HeaderError Checker Error Checker

PlayStation Developers Guide Confidential

 Page 31 06 June 1997

(iii)Which Sampling Rate?

The important thing to remember here is that:

INCREASE in SAMPLING RATE = INCREASE in QUALITY + INCREASE in SIZE.

So there is a cost to higher quality, that is more memory use. It is important, then, to ensure you
use the most appropriate sampling rate.

For ordinary CD (DA) tracks on the PlayStation, this is fixed at 44.1 KHz which gives sound at the
highest quality that the human ear can detect. (According to Shannon’s rule, in order to reproduce
sound accurately, the sampling rate must be over twice the 15 - 20 KHz that is human hearing.)

For the other sorts of sound on the PlayStation (really SPU-ADPCM), the sampling rate is variable.
To make things simple we can use multiples of the 44.1KHz to get some idea of the achievable
quality (see Figure 7).

High

 -> not worth it

44.1 KHz - > CD audio quality

22 KHz -> acceptable for music (half CD audio quality)

11 KHz -> Bassy Sounds/Speech (quarter CD audio quality)

-> too distorted

Low

S

A

M

P

L

E

R

A

T

E

FIGURE 7: Sampling Rates and Their Sound Quality

Confidential PlayStation Developers Guide

Page 32 (DEVGUIDE.DOC) 06 June 1997

3.3.2 Sound Types On The PlayStation

3.3.2a Simple List

The first two types of PlayStation sound listed here (DA and XA-ADPCM) are played directly in
real time by the CD sub-system. The third, SPU-ADPCM, is a data type processed by the
PlayStation’s SPU.

• DA (Digital Audio)

 DA is ‘normal’ sound that you get from in your CD player. It plays at 44.1 KHz and uses
the full 2352 bytes of a sector in CD storage as it has neither header nor error checking.

 This is used on the PlayStation for background music, like that on Ridge Racer.

• XA- ADPCM (eXtended Audio -Adaptive Differential Pulse Code Modulation)

 This is a type of Mode 2 Frames, XA From 2 data storage format. Compressed audio to
approximately 25% of DA. It can be either:

 KHz stereo or mono or 18.9 KHz stereo or mono and uses 2336 bytes of a sector in CD
storage as it has header but no error checking.

 This is used for video and music or, more usually in PlayStation, for a pre-rendered
sequence and music - like the introduction to Worms, for example.

• SPU-ADPCM (Sound Processing Unit -Adaptive Differential Pulse Code Modulation)

Another compressed sound proprietal to Sony, this can be played at any speed - usually
somewhere below 44.1 KHz. A data type, it is not expressed in terms of sector size as in
XA and DA.

This is used for sound effects in a game which can happen at any time - such as the car engine
in Ridge Racer which changes pitch as you accelerate.

PlayStation Developers Guide Confidential

 Page 33 06 June 1997

3.3.2b DA - The Basic Sound Store
As the PlayStation executable Program lies in track 1 of a PlayStation CD (holding data like
pictures, 3D models and Sound SPU RAM data), you can store simple DA in later tracks on the
PlayStation CD.

DA goes straight to playback, just like a normal CD player.

DA plays at 44.1 KHz. (To reiterate: there are 44,100 samples - in the form of numerical values -
every second. This gives the best quality that the human ear can detect.) Each sample requires a 16
bit memory space to be stored being a value of between -32767 and +32767 (as described in How a
CD Stores Sound, above).

As DA can be stereo, there is a left (‘L’) and right (‘R’) channel and a sample value for each, so:

This fits into the space available for one second of space on a CD (as described in CD Tracks,
above).

For each of the 44,100 samples in a second, a 16 bit storage space is used for the left and a 16 bit
for the right (16 bits = 2 bytes).

2 (bytes) x 2 (channels) x 44100 (number of samples) = 176400 bytes

DA data on CD is not error corrected. (If one of the sample values on the CD is read badly, it is not
important as it represents only 1/44100 of a second of bad sound - not really likely to be a problem).
So there is some additional space is available for DA: a DA audio sector is 2352 bytes per sector,
rather than 2048 in XA Data Form 1.

So, in one DA sector there (2352 bytes) there are 1176 samples of 16 bits (2 bytes):

2352 (bytes space) / 2 (bytes per) = 1176 samples per sector.

If we remember that there are 75 sectors a second and 2 channels (left and right) we get the magic
number 44,1000 samples per second:

1176 (samples per sector) x 75 (samples per second) = 882000 samples a second) / 2 (channels) =
44,1000 (samples per second)

LLL R RR
value value value value value value

Figure 8: Stereo DA

Sample

2 bytes

Sample

2 bytes

Sample

2 bytes

16 bit 16 bit 16 bit 16 bit 16 bit 16 bit

Confidential PlayStation Developers Guide

Page 34 (DEVGUIDE.DOC) 06 June 1997

3.3.2c XA - ADPCM - Compressed Sound and Interleaving

While a normal audio CD player plays the DA track, as if it were a continuous list of sound sample
data (see Figure 9).

XA-ADPCM is compressed and so a given amount of sound data can be squashed into a smaller
amount of CD space. The PlayStation has the capacity to spin the CD twice as fast as a normal
audio CD (300 Kb per second at double speed). So using this double speed play and compression
together, the PlayStation can achieve continuous sound. It need only read the compressed data at
intervals, playing what it has collected at each read until the next read. (See Figure 10)

This gives the space for extra storage of video or pre-rendered sequences so it can be viewed while
sound is played. The Sound Sample is said to be ‘interleaved’ with the video sample. (See Figure
11)

The interleaved sound sectors must be regular enough to give unbroken sound - so their interval
depends on the compression ratio of the data. The interval must also take account of stereo or

Read Compressed Sample at Twice Normal Speed
and go Straight to Play

Spare Storage

Figure 10: XA- ADPCM Compressed Data Samples are
Read at Twice the Speed of DA

Figure 9: DA Sound - A Continuous List

Read Sample and Go Straight to Play

Figure 12: Video Samples Interleaved with Sound

Read Compressed Sample at twice normal speed
and go Straight to Play

Read Video Sample Read Into RAM

value value value value value

PlayStation Developers Guide Confidential

 Page 35 06 June 1997

mono sound. If we bear in mind that XA - ADPCM sound can be 37.8 or 18.9 MHz, this sound
(with a sample rate of say, 37.8 Mh mono has an interleave of one in every sixteen sectors. The
same sample rate in stereo with two channels and twice as much data requires an interleave of 7 in
every 8 sectors.

An XA-ADPCM sound sample takes approximately one quarter of the CD space if a DA sample -
that is approximately 4 bits.

Confidential PlayStation Developers Guide

Page 36 (DEVGUIDE.DOC) 06 June 1997

3.3.2d SPU-ADPCM: Changeable Sound

SPU - ADPCM is Sony proprietary compressed sound. Unlike DA and XA-ADPCM, this sound is
loaded from the CD into SPU sound) RAM. Pieces of sound for use by the SPU RAM are called
sound samples (confusingly this is the same name as the individual value used in storing sound
digitally - so here they will be ‘ssamples’ to ease confusion).

A ssample can be held in the SPU RAM and replayed in loop, but at each play its pitch can change,
simply because the SPU can play a ssample at any speed.

So the sound of a car revving in Ridge Racer is that same sample in a loop but being played at a
faster and faster speed to give a higher and higher pitch. This change in pitch is called a ‘pitch
bend’.

This is (again) simple physics :

Here, the original samples are all played in half a second, giving a shorter sound wave and therefore
higher pitch.

T

T1 T2

1 second

Original Ssample

Here the sample rate is
10 per second

T

T1 T2

1 second

Played at Higher Speed

The sample rate is 20
per second

samples

+

-

T 1.5

FIGURE 13: Ssample played back at higher speed to increase pitch

samples

+

-

PlayStation Developers Guide Confidential

 Page 37 06 June 1997

Or to give a simpler example: when you used to play your vinyl LPs of U2 (33 RPM) at single
speed (45 RPM), U2’s Bono had a high pitched voice like he had been on the helium.

Similar to XA-ADPCM, an SPU-ADPCM sound sample takes up approximately one quarter of the
size of DA - about 4 bits per sample.

However, an SPU-ADPCM ssample recorded and replayed at 44.1Mhz will be of a poorer quality
than a normal DA track (recorded and played at the same speed). This is because the compression
loses some data - this is said to be ‘lossy’.

So a sample recorded at 22 Mhz can be looped at different speeds:

In figure 14: Loop 3 will be over sooner than 2 which will be over sooner than 1……

Loop 1 takes 4 x 1/22000 of a second

Loop 2 takes 4 x 1/30000 of a second

Loop 3 takes 4 x 1/40000 of a second

Play @ 22 Mhz (Read a value every 1/22000 seconds)

Play @ 30 Mhz (Read a value every 1/30000 seconds)

Play @ 40 Mhz (Read a value every 1/40000 seconds)

FIGURE 14: SPU- ADPCM Variable Playback

W

X

Y

Z

Loop
1

W

X

Y

Z

Loop
2

W

X

Y

Z

Loop
3

Confidential PlayStation Developers Guide

Page 38 (DEVGUIDE.DOC) 06 June 1997

3.3.3 Practical Sound Tips

3.3.3a File Formats
The VAG file format is a proprietary file format, based upon the AD-PCM compression technique.
This provides a compression ratio of around 4:1. Samples are converted into the VAG file format
using the program AIFF2VAG, on either the Mac (it is provided as a part of Sony’s Sound Artist
Tool) or the PC (where it takes the form of a command-line DOS converter, and is provided free).
AIFF is a standard file format for sound, and can be produced by most sample editing software.
You can use samples of any sample rate up to 48KhZ, so long as they are mono.

As well as the sample data itself, it is necessary to combine VAGS into one file, called a VAB, or
Voice Bank file. This is produced using the program SoundDelicatessen, which is part of the Mac
Sound Artist Tool. VABs control the ADSR (attack, decay, sustain and release), or envelope of a
sound, as well as specifying information about their tuning and other factors.

3.3.3b Sample Editing
Samples should be edited before conversion into VAG format. For this a package such as Sound
Designer II, Sound Forge or Cool Edit should be used. It is important that the sample starts and
ends cleanly - that is, the sample’s volume at the start and end should be zero. This is because the
TV speaker will move in and out depending upon the pattern of the wave-form being played back.
If, when a sample is played, its amplitude is not zero at the start, the speaker is rapidly moved into a
new position, which results in an unpleasant sounding ‘click’ sound, and can damage the speaker.
This can be avoided by fading the sample in and out before conversion (only over a few
milliseconds is fine).

3.3.3c Looping
For certain sounds, particularly certain musical sounds such as drum beats or strings, it is often
desirable to ‘loop’ the sound. This involves the setting of loop start and end points in the sample.
When the sample is playing back, as it encounters the loop end point, playback will move back to
the loop start point. This will continue until the sample is stopped.

Again, to avoid the speaker ‘clicking’ the amplitude at the loop start and end must be identical.
This can usually be achieved in a sample editing program with a ‘crossfade’ function.

Due to the ADPCM compression, loop points must be placed on 28 sample boundaries. That is,
they can exist only on 1 in every 28 sample positions. Thus, a loop point can be placed at sample 0,
sample 28, 56 and so on. When looping a sample therefore, it is advisable to loop it manually (so it
sounds about right), then adjust the loop points until they are exactly divisible by 28. The loop can
then be cross-faded (over a few samples) to make sure it sounds OK.

3.3.3d MIDI sequencing
As well as playing individual sound samples for sound effects or speech, LIBSND allows the
playback of MIDI sequences. MIDI sequences are a very efficient way of storing sound, as they
consist of ‘note-on’ and ‘note-off’ messages which are used to trigger individual sound samples. In
this way, a very long piece of music could be played using just a few instrument sound samples,
thus using very little sound RAM.

MIDI sequences are produced using a sequencing package, such as Cubase, Vision or Notator.
Many people have had trouble getting the Sound Artist Card to work with a sequencer. This seems
to be because SoundDelicatessen supports the Apple Midi Manager standard, while many
sequencers do not behave reliably under this. Vision seems to give the best performance - details of
setting up sequencers to work are given in the Sound Artist Tool documentation.

The best solution is to use two computers in your music setup. One (PC, Mac, Atari etc) should be
running a sequencer program, and outputting via MIDI to the Mac containing the Sound Artist
Tool. The MIDI Manager and Patchbay (see SA Board documentation) can then patch the MIDI
input of the Mac to play back on the sound artist tool.

If this is not possible, it is advisable to produce samples and music on an external sampler, such as a
Digidesign SampleCell II (the system used in house at SCEE) or an Akai S1100. Once the music
has been produced, it can then be converted into PlayStation format for testing on a development
system.

PlayStation Developers Guide Confidential

 Page 39 06 June 1997

MIDI files should be saved in Standard MIDI format. They should not contain any aftertouch, and
pitch bend should be kept minimal (continuous controllers produce large amounts of data, which
can cause playback to slow down on PlayStation).

The SMF2SEQ program on the Mac is used to convert the MIDI files into PlayStation’s SMF
format. Full details about this format and how to use it are in the Sound Artist and Library
Overview documentation.

The SAMPLE directories which come with the PlayStation libraries give a good overview of how
to use the important sound functions on PlayStation.

3.3.3e Reverb
PlayStation can apply reverb and echo to sounds. Reverb is an algorithm which simulates the
reverberant effect of making a sound in a room or hall. It is useful for making sounds ‘bigger’ and
more impressive. Reverb can also be applied to CD audio and XA-ADPCM audio. The most well-
known example of this is moving through the tunnel in Ridge Racer - in the tunnel, reverb effects
are applied to all sounds in the game.

Reverb uses a buffer in sound RAM. Depending upon the size of the reverb (ie the size of the room
you are simulating), more or less memory is required. Large reverbs tend to use up too much sound
RAM to be very useful. As SoundDelicatessen allows you to test the different reverb algorithms on
your VAB files, you can find the one most suited to your situation

Confidential PlayStation Developers Guide

Page 40 (DEVGUIDE.DOC) 06 June 1997

4 IMPLEMENTATION ISSUES

4.1 Streaming
The CD-ROM reads at a maximum of 300K per second. This means that for a stream to be played
back at 15 frames per second, there is 20K available per frame.

A 640 by 480 24bit image is (640*480*24) around 900k. For the PlayStation movie player to work
with images of this size, it would require a compression ratio of around 45:1. Unsurprisingly this is
not really feasible.

4.1.1a MDEC Compression
The PlayStation has a decompression system built into its hardware. This is the MDEC (Motion
DECompressor) which uses a ‘lossy’ (i.e there is a lot of data loss) compression technique to
compress individual frames of video.

Two techniques are used: DCT (Discrete Cosine Transformation), and VLC (Variable Length
Coding). The actual processes involved are discussed in the Libpress chapter of the Library
Overview manual.

In brief, the DCT function makes an image more suitable for run level encoding. The VLC is a form
of run-length compression. This means that images with a narrow range of colours will compress
far better than images that are dithered or contain noise.

There are various image processing programs available that allow the user to use a low pass filter to
reduce the amount of noise in the image.

4.1.1b Streams Tips
Tips on improving your streaming techniques, gleaned from the European Developers.

• If it's a linear 'Play_stream(<my_filename>)' type, try running with the stack in the DCache,
like this.

⇒ unsigned long old_stack;

⇒ old_stack = SetSp(0x1f8003fc);

⇒ Play_stream(<mr_streamy>);

⇒ SetSp(old_stack);

• When you swap frame buffers, you've probably got a VSync(0) in there just before. Try
commenting it out, if you’re dropping frames.

• Make sure, under library 3.3, that you're using the new definition of CdlModeStream (now
0x120 instead of 0x100), when using CdRead2.

• Build your stream with MDEC Version 2 in MovConv (not V3), or run some sort of image
processing over the sequence to eliminate all those nasty high frequencies.

• Add several dummy frames at the end to absorb the time gap.

 Sony Computer Entertainment Europe. All information given is confidential

4.2 Title that use Multiple CDs
This section explains the procedures related to CD swapping during a game. (August 9, 1996,
SCEI R & D Division

Regarding the titles consisting of multiple CDs and CD swapping is required during game play,
make sure to follow the steps below:

1) Prior to CD Swapping

(MUST) Prior to CD swapping(before displaying the prompt message

for CD swapping), set the CD subsystem to "Normal

Speed Mode".

(OPTIONAL) After setting the mode, stop the CD rotation using

"CdlStop".

Example of "Normal Speed Mode" setting
:

com = 0;

CdControlB(CdlSetmode, &com, result);

:

2) How to Detect Completion of CD Swapping

Follow the two steps (A) Detect Open/Close status and (B) Detect spindle rotation, in this order to
detect the completion of CD swapping.

The command "CdlNop" is used in both detection tests.

CdControlB(CdlNop, 0, result); /* char result[8]; */

(A) The Open/Close status of the cover is reflected to the Bit 4 (0x10) of

 result[0]. This flag is used to detect that the cover was opened and

 then closed and has the following states;

Cover being opened: Always 1

Cover was closed: 1 for the first detection,

0 after the first detection

Therefore, when the flag changes from 1 to 0, it can be assumed that the CD

was changed.

(B) Wait till Bit 1 (0x02) of result[0] becomes 1 after issuing the

 "CdlNop" command.

3) Immediately After CD Swapping

After CD swapping followed by the cover close, the CD subsystem starts

reading the TOC data. During this read, do not issue any command except

for "CdlNop" and "CdlGetTN".

To detect the completion of TOC data read, use "CdlGetTN" command described

below. After successful execution of "CdlGetTN", the CD subsystem finishes

TOC data read and is able to issue standard command. Thus repeat issuing

the "CdlGetTN" command till detect the completion of TOC data read.

Name Number Execution Result Description type

CdlGetTN 0x13 status

First Track No.

Obtained number
of TOC

non-block

Confidential PlayStation Developers Guide

Page 42 (DEVGUIDE.DOC) 06 June 1997

Last Track No.

 4) PlayStation Disk Check

Check whether the CD placed is a PlayStation disk (black disk) by issuing the logical access
command (CdlReadS/N, CdlSeekL, etc.)

Logical access to the disk that was not recognised as a PlayStation disk will result in a "Command
Error".

This "Command Error" differs form the ordinal DiskError in the following manner.

Right after DiskError, the bits below are set to 1;
Bit 0 (0x01) of result[0]

Bit 6 (0x40) of result[1]

After detecting a "Command Error", any logical access will not be accepted. The reason for this
error may be due to setting an incorrect type of CD (e.g. CD-DA etc.), or placing a CD improperly.

The only way to recover from this "Command Error" is to open the cover and place the CD again.
Thus display appropriate message and then repeat steps starting from Step 1).

When a logical access such as data load exists immediately after the data load, as game was
designed, checking if the disk is a PlayStation disk or not can be done by issuing the logical access
command.

For other cases (e.g. playing DA), check the disk by issuing a dummy read.

Note 1) Since Step 1) through Step 3) can be successfully

executed even for the CD-DA or other ordinal CD-ROM,

make sure to check whether the disk is a PlayStation

disk or not.

Note 2) Although ordinal CD-ROM is also recognised as a

PlayStation disk on the Debugging Station, only the black

disk is recognised as a PlayStation disk on the

PlayStation.

5) Others

- Be sure to use the "Normal Speed Mode" thorough-out Steps 1)- 3).

- Be sure to detect the command completion using "CdControlB"

 during Step 1) through 3). Although examples above are

 simplified for easy reading, be sure to include the execution

 result checking for each command.

n Please display appropriate messages while checking CDs.

4.2.1a Important Information: Sector Drop Out Problem during CD Read
We would like to inform you of special programming notes in regards to CD access.

During CD data read by issuing CdRead()€CdRead2() of CdlReadN or CdlReadS command,
issuing other commands below may result in dropping out one sector of data:

CdlNop
CdlGetlocL
CdlGetlocP
CdlSetloc

When the drop out occurs, the data obtained by CdReady() orDataReady callback is that of the
NEXT sector, not the one expected.

The Reason for this problem is that issuing other commands during CD read overloads the CD
subsystem, and thus finish reading the next sector before completion of the previous command
process. This problem occurs more frequently in case of issuing several other commands.

PlayStation Developers Guide Confidential

 Page 43 06 June 1997

To avoid the drop out problem, please make sure not to issue other command during data read.

CdRead() or Streaming Library of the Library Version 3.5 or later monitors the sector continuity
from the sub-header location information. In case of drop out, CdReadSync is designed to return an
error code -1 (read failed).

4.3 Overlays
PlayStation has only 2 Megabytes of main memory, although many games have been written that
use far smaller amounts of memory and still provide a quality experience, for a lot of applications,
the 2Mb will simply not be enough.

Large amounts of Data can be loaded from the CD when required (actually it is better if it is loaded
before it is needed).

Code, however, is a different matter. It is feasible to have several executables present in main
memory that share data and pass control between them. (This is how programs like the Demo Disc
work). However this is probably not a convenient way for most game engines. Overlays allow the
program to have more functions than will fit into main RAM and page them in when required.

In the simplest case, the main core program would always be memory resident, with a number of
other modules (for example one for CD loading, Memory card access) introduced as overlays
since these functions are not interdependent, so they are not required to be in main RAM
simultaneously.

The process of creating overlays then, is to trick the compilation process into creating two modules
that occupy the same area in RAM, and then doing some processing to ensure that the correct
module is loaded when the functions are called. Because the modules are quite small, they do not
take long to load, so time taken to swap overlays is minimised.

 Start Stop Length Obj Group Section name

 80040000 800409B7 000009B8 80040000 text .rdata

 800409B8 800498FB 00008F44 800409B8 text .text

 800498FC 8004A99F 000010A4 800498FC text .data

 8004A9A0 8004A9AB 0000000C 8004A9A0 text .sdata

 8004A9AC 8004A9AF 00000004 8004A9AC bss .sbss

 8004A9B0 8005372B 00008D7C 8004A9B0 bss .bss

 8005372C 80053762 00000037 8005372C l1 l1.rdata

 80053763 8005382F 000000CD 80053763 l1 l1.text

 8005372C 8005376D 00000042 8005372C l2 l2.rdata

 8005376E 8005399B 0000022E 8005376E l2 l2.text

Map File Extract From A Program Using Overlays

In this example the overlay sections (l1 and l2) are placed in main memory after the bss sections.

Note that both sections start at the same point in memory as far as the calling program is concerned.

It is important to realise at this point that this now makes the heap_base variable used by Malloc()
incorrect since this points to then end of the bss section.

Since there is no guarantee that the two modules (l1 and l2) are of the same size the heap_base must
be assigned a value that is clear of the biggest section, to prevent the heap and the code being
overwritten with disastrous consequences.

main.cpe: main.obj overlay1.obj overlay2.obj address.obj

psylink /v /c /m @main.lnk,main.cpe,main.sym,main.map

main.obj: main.c

ccpsx -c -g -comments-c++ main.c

overlay1.obj: overlay1.c

ccpsx -c -g -G0 -comments-c++ -Wa,sl1 overlay1.c

Confidential PlayStation Developers Guide

Page 44 (DEVGUIDE.DOC) 06 June 1997

overlay2.obj: overlay2.c

ccpsx -c -g -G0 -comments-c++ -Wa,sl2 overlay2.c

address.obj: address.s

asmpsx /l address,address

Note: A complete example using overlays is available on the WEB SITE. This includes more notes
on how to use overlays.

4.3.1a Hints on programming Overlays
If any of the code in any of the modules is changed, the positions of the sections may also

change. This means that if the program is being run from the Emulator the image must be
rebuilt each time, because their position in RAM may have altered

Overlays are thus one of the few areas of code where it may be sensible to use the PC filing
system during development. Just bear in mind that the PC filing system operates in a
different way and with a faster data transfer rate to the CD

• It is important to ensure that the Instruction cache is flushed when a code overlay is loaded
into ram, else if the previous overlay is still in the cache this will be executed instead, with
disastrous consequences.

• Ensuring the overlays are of equal size minimises wasted memory: if one overlay is much
smaller than the other, the extra space reserved for it is wasted, so either redesign the
structure of the game to equalise the overlays or fill the wasted space with something nice.

• Consider the advantages of having lots of small overlay sections rather than a few big ones.
Small overlays will load faster.

• The newest version of the C compiler and assembler (listed below) should be employed.
Earlier versions had problems with handling overlays.

aspsx 1.12+

ccpsx 1.06+

psylink 2.34+

dbugpsx 4.81+

 Sony Computer Entertainment Europe. All information given is confidential

4.4 General Implementation Tips
1� Reducing On-Screen Flicker when using ResetGraph(0)

 After using ResetGraph(0) to rest the graphic environment, code should be structured to any
non-screen relevant functions (such as PadInit or CdReads) before performing initialisation
of your display environment with setRECT/PutDispEnv followed by a SetDispMask(1).
This will allow the GPU to sufficiently ‘warm-up’ and will reduce unsightly flicker.

2� Required use of ResetCallback() Function

 You should ensure that you programs perform correct initialisation of the system by using
ResetCallback(). This function initialises all of the System Callbacks, and without its use
symptoms such as system hang - especially on newer versions of the PlayStation hardware,
and libraries after 3.1.

 Please see Section 5 (Controller Library - libetc) of the Library Reference manual.

3� Use VSync to lock the frame rate:

VSync(0), when the frame rate is 50 (60 for NTSC) frame/sec.

VSync(2), when the frame rate is 25 (30 for NTSC)frame/sec.

VSync(3), when the frame rate is 20 .. for NTSC frame/sec.

VSync(4), when the frame rate is 15 .. for NTSC frame/sec.

Confidential PlayStation Developers Guide

Page 46 (DEVGUIDE.DOC) 06 June 1997

5 PLAYSTATION PERIPHERALS

Controllers

Link Cable

Memory Card

Further Reading

Additional Information for using Controllers is available for the following sources.

Library Overview Libapi psxman

Library Reference Libapi psxman

cntrller.zip psxlibs

5.2 Controllers
The PlayStation has several different control options available at the current time. This number will
expand over time. Currently there are five types of Controller that should be considered in title
development (compulsory compatability with the standard Controller only), others on the market
need not be explicitly developed for as they conform to the standards for the Controllers listed
below.

CTRLLER.ZIP explicitly supports :

• Standard Controller (called a ‘Controller’)
This is the only Controller/Peripheral that your title MUST work with.

• negCon

• Mouse

• Multi tap

• Analog Joystick

NOTE: Two new Controllers still under consideration are a gun and a steering wheel. Please
contact your Account Manager for details of these.

The operation of most of the Controllers listed above are described in the Library Overview
manual (Lib API). neGcon and Analog Joystick are described below.

We provide a consistent way of writing code to handle the various controllers designed for the
PlayStation - see CTRLLER.ZIP, for an include file that will simplify coding.

There are three types of peripherals to consider:

PlayStation Developers Guide Confidential

 Page 47 06 June 1997

Nomenclature of Peripherals

(ii) Controller Conditions
The following conditions should be met by the game for it to pass the tests placed upon it by the
European Quality Assurance Group (the latest QA standards should be obtained from the WEB
SITE as TRC.ZIP).

• The game must be playable with the standard Controller. Controller Port 1 always takes
precedence over Port 2. So in the case of a single player game, the game only responds to
Controllers connected to Port 1.

• If a Controller is plugged in that is not supported by the game it should be ignored. For
example, if a neGcon is plugged into a game which requires a standard pad, the neGcon
input should be ignored. (Under the current rules, for example Tekken would have failed
QA on this point.)

• The game should recognise specific Controllers from the Controller option screen and
include calibration options, if they are required. For example the, analogue controls should
be adjustable for sensitivity. It should be possible to reconfigure a game to any attached
peripheral

• If a controller is removed during play the game should go into a pause state, and maintain
that state while the Controller is reconnected or a different Controller connected. If the
newly connected Controller needs configuring, this should be an option.

(iii) Multiple Controllers and Different Controller Types
Most of the sample code supplied only supports a single Controller and does not detect the type of
Controller connected - in a title this would fail QA tests.

Standard code uses the PadInit and PadRead functions. However Libapi supports a more
sophisticated interface to the Controllers, and SCEE provides an additional header file cntrller.h
which allows access to these facilities easily and tidily.

5.2.2 Multi Tap
The Multi tap allows the connection of up to four individual Controllers and/or memory cards to
each PlayStation controller port.

Titles which use a Multi tap should ensure that libtap.lib is used.

There are certain requirements for using Multi tap in a title. These are listed below.

• Make sure you use the correct and authorised naming conventions (especially the ports):

Right Wrong

Memory card RAM card

Controller Pad

Link cable Combat cable

Multi tap Multi-tap, Multitap

Analog Joystick Flight Stick

Mouse

Directional button D-PAD, Cross button

Controller port Controller slot

Memory card slot Memory card port

neGcon Negcon

Confidential PlayStation Developers Guide

Page 48 (DEVGUIDE.DOC) 06 June 1997

• When a Multi tap is connected to console controller port 1, the names of each port on
Multi tap are 1A, 1B, 1C and 1D.

• When a Multi tap is connected to console controller port 2, the names of each port on
the Multi tap are 2A, 2B, 2C and 2D.

5.2.3 Analog Joystick (SCPH-1110)
Availability - quarter 3, 1996 for commercial version.

Physically, the Analog Joystick consist of two standard joysticks, linked by a control panel with
standard switches. The joystick can act in either digital or analogue mode.

Make sure you include a Calibration menu (0 position calibration, idle movement, sensitivity etc.)
in your title.

(See diagram of the Joystick on the next page.)

The 8 byte Controller packet (giving the status of the Controller) which can be returned at every
vsynch call back consists of the following for the Analog Joystick.

Byte No Type Bit
No./Value

Button Assignment

1 Buffer Status 8 bits 0x00: success;

0xff: failure

2 Data length

Controller type

bits 0 - 3

bits 4 - 7

(8 bits total)

data length/2 (= 0x03)

Controller type (0x05)

(Analog Joystick is 5)

3, 4 Status of 14 digital
buttons

16 bits 0x00: push ;

0x01 : release

(as per standard Controller -
however L1/L2/R1/R2 are not
present on stick)

5 - 8 Analogue value (4
values)

4 x 8 bits range 0x00 - 0xff.

(x, y) , (x, y)

Table 8.1c - 1: The Controller Packet for an Analog JoyStick

PlayStation Developers Guide Confidential

 Page 49 06 June 1997

SCPH-100 Analog Joystick

 Sony Computer Entertainment Europe. All information given is confidential

5.2.4 Analog controller

Overview.
 The Analog controller is a standard Controller with two additional 2-axis (horizontal and
vertical directions) analog levers which double as two new buttons. In addition there is an Analog
mode switch that allows consumers to select one of three modes. An LED indicates the current
active mode.

Design Overview
 The new Controller is a standard Controller plus 2 analog levers. One lever is placed between
“SELECT” and downward directions buttons, and the other between “START” and “X” buttons.

Release
 Released in Japan April ’97, expected release by SCEA and SCEE - Autumn ’97..

Technical Information

 Controller ID
 Three controller ID’s below can be selected with a mechanical switch:

-0x41: Standard controller (LED: Off)

-0x53: Analog joystick (LED: Red)

-0x73: Analog controller (LED: Green)

Naming Conventions
Unconfirmed at present. Likely to be:

• Left stick, Right stick

• L3 button, R3 button (Analog controller mode only)

• Analog mode switch

New Analog Controller (SCPH-1180E)

PlayStation Developers Guide Confidential

 Page 51 06 June 1997

5.2.5 Namco negCon

NegCon Controller Button Assignment

The input data is transmitted as 6-byte serial data and the contents are as follows.

Make sure you include a Calibration menu (0 position calibration, idle movement, sensitivity etc.)
in your title.

The 8 byte Controller packet (giving the status of the Controller) which can be returned at every
vsynch call back consists of the following for the neGcon.

Note: The value varies by twisting NegCon not by pressing a button.

Byte No Type Bit No./Value Button Assignment

1 Digital No. 1 bit 7 Left (on cross button)

bit 6 Down (on cross button)

bit 5 Right (on cross button)

bit 4 Up (on cross button)

bit 3 S (Start)

bit 2 none

bit 1 none

bit 0

(8 bits total)

none

2 Digital No. 2 bit 7 none

bit 6 none

bit 5 A

bit 4 B

bit 3 R (side button)

bit 2 none

bit 1 none

bit 0

(8 bits total)

none

3 Analog 0-255 Centre (1)

4 Analog 0-255 I

5 Analog 0-255 II

6 Analog 0-255 L (side button)

NegCon Controller Data Format

 1 - Switch Data
0 is returned when the button is pressed otherwise 1 is returned. Unused bits return 1. The

return values comply with the standard Controller specifications, however, they can be changed by
BIOS if necessary.

2 - Switch Data
As above.

The Controller Packet for an Analog JoyStick

Confidential PlayStation Developers Guide

Page 52 (DEVGUIDE.DOC) 06 June 1997

3 - Twist Data
The title needs to be designed so that neGcon’s twist data value is around 128 when it is released.
However, a variation of +/-8 should be allowed for to take account of variations that may occur
between different neGcons and the different effect gravity may have on Controller buttons if the
Controller is held in a different position. (The specified +/-8 allowance may be changed later if it
proves unsuitable but this does not affect your current title.)

Remember that you are recommended to include a calibration option in any title which uses a
neGcon Controller as individual neGcons may differ slightly.

4 - I button Data
The more this button is pressed, the bigger value is returned. The title should be designed so that a
value of 16 or less is returned when it is released.. The software should consider 16 or less as the
button not pressed. This error margin allows for variations between different neGcons, as described
in 3 - Twist Data, above - the specified value of 16 or less may be changed later if it proves
unsuitable but this does not affect your current title.) The maximum value returned when pressed
should be not less than 192(C0H).

5 - II button Data
Same as I button, above.

6 - L button Data

Same as I button, above.

 Sony Computer Entertainment Europe. All information given is confidential

5.3 Link Cable
Originally known as the ‘Combat Cable’, the Link Cable allows two PlayStations to be connected
together, and is supported by the libcomb library.

A special version of the cable is provided to link development systems together (DTL-H2060). Be
warned - you are advised to connect this cable when the development PCs are powered down.
There have been cases reported where connecting (or reconnecting) to “live” PCs has resulted in
damage to the development board itself.

Link cable tips:

• Make sure you do an initial read to enable interrupts

• Read and write in 8 byte chunks (this is the size of the hardware buffer)

• Intersperse write() with read()

 Sony Computer Entertainment Europe. All information given is confidential

5.4 Memory Cards
Memory cards are the removable storage medium used by the PlayStation to save and recover game
sessions (game save file). A Memory card contains 120K of static non volatile RAM. This is
divided conceptually into 15 slots, each of 8k.

Memory cards have the advantage of small size and ruggedness (there are no moving parts and no
batteries) but they are slow to access.

General Features of Memory Cards

• Capacity 120 Kilobytes

• Access Speed 10 Kilobytes per second

• Life span. 100,000 reads guaranteed

As well a being accessed by the application that created the game save file, each file will also need
to be compatible with the OSD memory card management program built into the ROM of each
PlayStation.

Different versions of the OSD are available for each PlayStation territory (i.e. European, Japanese,
American).

The OSD program displays each save game file as a number of icons plus a textual title. Each icon
displayed relates to a slot used. This information is provided by a header that must be included at
the start of the save game file.

 Sony Computer Entertainment Europe. All information given is confidential

5.4.2 Memory Card Filenames
Filenames used for memory card save games are based upon the product code for your game. The
file name is in the following format:

Always B

Some Rules on Title Names

• Choose either Shift-JIS or ASCII code. Do not mix them.

• Use a maximum 32 ASCII letters (32 Byte). If less than 32 characters, please put null letter
(0x00) at the end or fulfil the vacant part with blank letter.

5.4.2b Save Game File Header Format
The Save Game File Header format is as follows.

Name Size (Bytes)
Magic Number 2 (always ‘SC’)

Type(see table 1) 1 (always 0x11 for Europe)

No. of Slots 1 (1..15, each being 8k)

Text Name 64 (32 Shift JIS (Must be Kanji, not
ASCII)

Pad 28 (padding)

CLUT 32

Icon Image (1) 128 (16 x 16 x 4 bits)

Icon Image (2) 128 (Type:0x12, 0x13 only)

Icon Image (3) 128 (Type:0x13 only)

In the header file there is provision for three icon images, as below, which allows animation.

Type Number of Icon Images
(automatically replaced animation)

0x11 1

0x12 2

0x13 3

Use Kanji fonts

The Memory card save game file header Text Name must be stored in Kanji (Japanese Shift-JIS)
type character coding and not the normal ASCII.

(If ASCII were used the game header file, the title would not be displayed correctly if it is longer
than 16 characters - 32 is the total possible.)

E - Europe

A - America

I - Japan

Product Code

(different for

each territory)

8 Characters

(used as required by the
developer)

BE SLES-12345 plusthis

Always B

Memory Card File Names Scheme

Confidential PlayStation Developers Guide

Page 56 (DEVGUIDE.DOC) 06 June 1997

There is an example program (writecrd.c) for this on the WEB SITE called CARD2.ZIP in the
PlayStation code area.

Animated Icons

As can be seen from the table above it is possible to have animated icons in the save game. There
are three frames available and they are cycled automatically by the OSD.

(If two slots are used per save, a two frame animation is allowed; with three slots, a three frame
animation).

The Icon is a 16 * 16 image with 4 bit colour depth.

Note: The European OSD has a bug in it which gives on-screen corruption if animated icons are
used. Therefore do not use animated icons for European titles (i.e. only use type 0x11) if your save
occupies a single slot.

 Sony Computer Entertainment Europe. All information given is confidential

5.4.3 Hints on Using Memory Cards
Memory cards are slow to recognise and access. Memory card accesses, therefore, should be kept to
a minimum and when they are made be as efficient as possible.

As a Memory card is divided into 8k slots, the minimum possible number should be used. Writes to
the card system are always done as multiples of 8K, so if the intended game save is 8K + 1 bytes, it
will use two slots, taking twice as long to save as one slot and take twice as much space as a save
that is only 1 byte smaller.

In this example, there is only 1 byte over so some compression/economising of the data could
probably be achieved. For over spill which cannot be squeezed into 8k, the alternative is to save
more data in the in the file and use up the wasted space. It costs nothing in terms of resources or
performance.

5.4.3a Notes for those writing RPG’s and Strategy games
Many games in these genres benefit from allowing the user to save several sessions concurrently.
This allows the user to backup before undertaking hazardous stages, or to approach a complex
problem from several angles simultaneously.

This can be achieved in two ways, firstly by having several saves within the same file. For example
if the data required by the save game is only 2K, you can save 4 games within the same slot.

Alternatively, the format of the save game filename allows for multiple saves from the same game,
because there are nine characters in the memory card file name left available for user allocation.
This could be used to store a user entered string that is a description of the game save at that point
in the game.

Better still, add an internal character field that allows for a textual description of the current stage
of the game and display this when displaying a list of all the save games on the memory card.
BESLES-12345level2

In some games the memory card facilities play a very important role. A classic example of this is
XCOM: Enemy Unknown, which would be very hard, if not impossible to finish without frequent
memory card access.

These unfortunately are slow and so disrupt the flow of play. One solution would be to save games
into RAM as a quick save, with the option to commit the game to the card at any time. This is only
feasible if the game never crashes out and there is room in memory for the save game(s).

As Memory cards are quite expensive, games that use a large amount of space on the memory card
and will take a long time to complete (e.g. a RPG) may prove unpopular to the user group (author’s
opinion).

It is not possible to lengthen a file saved on a Memory card once it is created, therefore when the
file is created it should as large as it will ever need to be.

 Sony Computer Entertainment Europe. All information given is confidential

5.4.4 Testing Memory Cards

1� Is the Memory card operation display working? (Display of icon, or file name, etc.)

2� Can Memory card be formatted? (On-screen instructions and statements are correct?)

3� The “formatting menu” options should include a dialogue such as "The Memory card ID is
not formatted yet. Do you want to format that? Yes? or No?". Then, when "Yes" is
chosen, saving should start and when "No" is chosen, the menu should exit from save
mode.

4� Check what happens when there aren’t enough empty blocks in the Memory card for a
game save.

5� Check what happens when the Memory card is not inserted into memory card slot.

More information about memory cards is available on the WEB SITE.

 Sony Computer Entertainment Europe. All information given is confidential

5.5 CD-ROM GENERATION

5.5.1 Master Disc Creation
Final master disks must be created on an approved Sony CD-ROM burner, with the Sony CD
Generator software.

There are no exceptions to this - any discs created by any other CD-ROM burner are not suitable for
the DADC pressing factory - Only these burners and software can write the necessary territory and
copy protection information.

Similarly, the master discs must be produced using CDR-71PS mastering discs.

You’ll be able to store approximately 71 minutes of data (roughly 624 MB) of a combination of
data (in track 1) and audio tracks (other tracks).

There are many variables as to the exact quantity of information you’ll be able to squeeze on a disc
- for example the total will be reduced by the number of audio (DA) tracks you have, and how you
wish to access the outer tracks (you can’t seek around the last few minutes). These issues are
discussed below.

License files

You will require a license file for each territory (Japan, Europe and America) in which your game is
to appear. You can get a license file for Europe from us (specifically via your Account Manager).
License files for other territories must be obtained from SCEA and SCEJ.

CPE to EXE converter

The CPE2X.EXE program is supplied with the license file on floppy disc on request from your
Account Manager. This program can create a different executable for each territory. Please ensure
that the appropriate command line switch is used to select the correct territory.

5.5.1b Mastering Procedures for PlayStation products
Full details may be found in TRC.ZIP..

Procedure
Place in the root directory of CD-ROM, the file "SYSTEM.CNF;1which specifies the boot file.

Naming rule for the boot file:

Assuming that the product code of the disc is XXXX-AAAAA, make the name of the boot file
XXXX_AAA.AA;1 (note that the hyphen ‘-’ is replaced with an underscore ‘_’ for ISO-9660
compatibility) by inserting the period (.) between 8th and 9th character.

Example: Disc Type Number File Name

SLPS-12345 SLPS_123.45;1

SLUS-12345 SLUS_123.45;1

SLES-12345 SLES_123.45;1

Contents of SYSTEM.CNF;1

(Assuming the name of boot file is XXXX-AAAAA. It is necessary to specify the full path with the
name of the device)

BOOT = cdrom:\XXXX_AAA.AA;1
TCB = 4
EVENT = 10
STACK = 801fff00

 Sony Computer Entertainment Europe. All information given is confidential

5.5.2 Using the CD-Generator Software
In general, add files (including audio tracks) via the directory menu, and organise them in the layout
menu. (Note that you can drag files and directories from the standard Windows file manager
menu.)

(Although Buildcd can generate CCS files, the process is problematic and is not recommended).

5.5.2a Writing DA Tracks to a CD-ROM
The process of writing DA tracks involves two main tasks.

1� Preparation of DA source files.

2� Creating DA tracks using the CD-ROM Generator.

 DA Source Files
Before you can write a DA track onto a CD you need to prepare a DA source containing the DA
data to be written onto the CD. The structure of DA source files are described in section 3.1.3 of the
CD-ROM Generator manual. It is also possible to use 16-bit PCM/44.1kHz WAV files as DA
source files.

In the case of Macintosh RAW2DA tool conversions, input data format must be Sound Designer II.
If you use AIFF format, some noises may appear before and after data.

Also, when transmitting data from Macintosh to PC, remember not to use MacBinary format !
(Your resource parts will be turned into noise!).

5.5.2b Creating CD-DA Tracks
Once the DA source files have been prepared they can be placed onto the CD in one of three ways:
the directory method, Drag and Drop (both described below) or by using “Put Files”, also discussed
below.

Directory

Using the Directory mode, which can be selected via the “Directory” button, you can add DA to a
CD by simply copying the DA source file to a directory on the CD. This is achieved in the same
way as copying any other file.

For example (using the “Put Files and Directories” function):

1� Once the DA source file has been copied into the desired directory you need to set its file
type to CD-DA using the “File Type” dialog box (accessed from the File Type button).

In the “File Type” dialog box select the “CD-DA File(s)” radio button, and click “Ok”. If
this has worked correctly the DA file type icon in the directory structure window will have
changed to a musical note icon.

2� You can now view your new DA track by using the Layout mode (selected via the
“Layout” button).
If you have inserted the new DA track using the method described above its location
defaults to track 2. By selecting this track in the “Track Window” the name of the DA
source file associated with it will be displayed in the “Location Window”.

3� If you wish to change the order of the DA tracks you can either alter the order of the tracks
using the “Move” operation, or move the actual DA source files into other tracks. Both of
these methods are described in the CD-ROM Generator manual.

Drag and Drop

1� From “Windows File Manger” and select the DA source file to be copied.

PlayStation Developers Guide Confidential

 Page 61 06 June 1997

2� Drag the selected DA source file into the desired track by using the CD-ROM Generator’s
“Track Window”.
If this has worked correctly the name of the newly copied source file will appear in the
“Location Window”. Please remember that when a DA file is copied in this way it will not
appear in the directory structure of the CD as a standard file would. This is completely
normal, as CD-DA tracks are not visible in a CD’s directory structure.

Put files

DA source files can also be copied directly into a track via the “Put Files” function, which can be
invoked from the Edit Menu. This method is fully described in section 3.6.2 of the CD-ROM
Generator manual.

